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 ABSTRACT 

In recent years, there have been an increasing interest in long-term monitoring of civil 

structures, as the research community has been alarmed by some tragic events and collapses of 

bridges and buildings that pointed out the vulnerability of some existing structures and the 

uncertainties in their analysis for monitoring and maintenance purposes. SHM is the measurement 

of the operating and loading environment; as well as the critical responses of a structure to track 

and evaluate the symptoms of incidents, anomalies, damage and/or deterioration which may affect 

operation, serviceability, safety and reliability. Although many damage detection techniques were 

applied to scaled models or specimen tests in controlled laboratory environments, the performance 

of these techniques in real operational environments is still questionable and needs to be validated. 

Often damage sensitive features employed in these damage detection techniques are also sensitive 

to changes of environmental and operation conditions of the structure. The objective of this study 

is to propose a new Time Varying Autoregressive (TVAR) modeling technique for SHM of large-

scale structures like bridges and buildings. TVAR model, a method by virtue of its nature is 

applicable for modeling data whose spectral content varies with time. The research is conducted 

to critically understand the effective performance of the structures under various loads and health 

conditions, and detect their operational anomalies using the proposed data-driven technique. In 

this research, an attempt is made to alleviate the use of system identification method where TVAR 

modeling is conducted directly on the data. The proposed method does not depend on the 

complicated algorithms and free of any other user-defined parameters. In pursuance of applying 

the proposed data-driven technique, the data collected on site are essentially paramount. Data 

inherently used are mainly obtained from experiments, as well as the data acquired from the Harbin 

Institute of Technology in fulfillment of a full-scale validation. The proposed TVAR technique 

detects not only the occurrence of structural damage, but also the location of damage. Whereas the 

TVAR developed captures the changes in the time domain, for comparison, Stochastic Subspace 

System Identification (SSI) method is applied to the experimental data. The method is used 

because it is an important tool that captures the frequency changes, as the SSI tracks the changes 

in the frequency domain. Using both experimental and full-scale studies, it is shown that the 

proposed TVAR technique and the comparable SSI method applied, can therefore be considered 

as a useful tool for SHM. 
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1. INTRODUCTION 

The goal of the Structural Health Monitoring (SHM) technology is to understand the behavior 

of civil structures, evaluate the safety levels and make maintenance decisions making. The SHM 

is important in monitoring the safety of structures, and establishing the lifecycle performance 

strategies or techniques, so as to maintain the integrity of the structures to ensure public safety. 

There are several proposed definitions of SHM; however, the most commonly accepted one 

for SHM is the measurement of the operating and loading environment; as well as the critical 

responses of a structure to track and evaluate the symptoms of incidents, anomalies, damage and/or 

deterioration which may affect operation, serviceability, safety and reliability [1]. Relatively, vast 

literature presents an extensive survey of various damage detection techniques in civil structures 

that utilize changes in modal properties such as natural frequency, damping and mode shapes [2]. 

Many damage detection techniques are developed in the last decades [3] which can be 

broadly classified based on the level of attempted identification: the presence, location, and the 

severity of the damage [4]. Recent development in signal processing tools has resulted in a 

paradigm shift in its application towards damage detection [3]; thereby, leading to a class of 

algorithms which employ different time-frequency transformation based approaches such as 

wavelets [5], empirical mode decomposition and Hilbert-Huang transform [6].  

In time-domain approach for SHM, a number of linear time series models have been 

described in literature, but they only consider the linear Autoregressive (AR) models as an 

alternative benchmark to the nonlinear autoregressive models. By its very nature, the AR model 

specifies that, the output variable depends linearly on its own previous values [7]. Hence, in the 

time-domain methods, model properties are extracted either from time histories (direct methods), 

or from impulse response functions - which are the inverse Fourier transforms of the measured 

spectra (indirect methods) [8].  
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Another method which uses the same approach is the Eigen Realization Algorithm (ERA). 

It utilizes the structural vibration data to build a state-space system, in which the model parameters 

of the structure of interest can be identified from the experimental data. Fundamentally, as stated 

by Juang et al. in [9], ERA model is the state-space representation of a physical system of a set of 

input, output and state variables of a dynamical system. In case of the ERA method, a matrix 

containing the measured data is created first; then singular value decomposition is performed on 

the data matrix to determine the rank of the system and rebuild the reduced matrix; which in turn 

is used to calculate the state-space matrices. Finally the Eigen values and Eigen vectors or the 

modal properties are then calculated from the realized state-space matrices. 

James et al. proposed the Natural Excitation Technique (NExT) in [10] for an input which 

is not measured, it can be assumed to be white noise – a broad-band random excitation with 

constant spectral density. The cross-correlation function between two response measurements is 

likewise an inverse Fourier transform of the Cross Power Spectrum (CPS), which can be expressed 

as the sum of the decaying sinusoids having the same frequencies and damping ratios as the modes 

of the system. Therefore time-domain methods such as the ERA can be applied to obtain the 

resonant frequencies. On the other hand, Stochastic Subspace Identification (SSI) is an output-

only modal analysis time-domain method. As stated by Peeters et al. in [11], SSI can be considered 

as an enhanced ERA whereby the input is not measured but assumed to be a stochastic process 

with white noise. 

The effects of damage in a structure are classified as linear or nonlinear [2]. In essence, a 

linear damage situation is defined as the case when an initially linear-elastic structure remains 

linear-elastic after damage. Therefore, changes in modal properties primarily occur due to the 

changes in geometry and/or the material properties of the structure. Consequently, the structural 

response can still be modeled using a linear equation of motion [2]. 
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Time-series models can be used to characterize the sources that are obtained from the past 

observations, followed by the future sources which are the predicted measurements [12]. With the 

arrival of newer measurements which contain the signature of structural damage, if some clear 

difference can be observed between the predicted and true measurements, it indicates damage. 

Once the damage is detected, the modal parameters of the damaged state are updated based on the 

new measurements. As a result, the damage and the undamaged modal parameters are estimated 

in an adaptive fashion [13].  

In general, the long-span bridges accommodate a number of vehicles concurrently, and 

therefore, are subjected to strong bridge-vehicle dynamic interactions. On the other hand, traffic 

loads on the long-span bridges such as the cable-stayed and suspension bridges are subjected to 

wind excitations, which make them experience complicated dynamic loads from both the bridge 

stochastic traffic and wind [14]. Such stochastic nature of wind and traffic, as well as the dynamic 

interactions, creates fatigue damage on bridges during their lifetime. Since the wind and the daily 

traffic load on bridges have a significant impact on their strength and serviceability [14], their 

fatigue damage can be categorized as a result of the following:  

(1) Bridge and vehicle interactions;  

(2) Bridge and wind interactions;  

(3) Vehicle and wind interactions;  

(4) Wind and vehicle interactions.  

As a result of the above impacts to the structures, in recent years, there have been an increasing 

interest in long-term monitoring of bridges, as the research community has been alarmed by some 

tragic events and collapses of bridges that pointed out the vulnerability of some existing structures 

and the uncertainties in their analysis for monitoring and maintenance purposes. Some researchers 

have proposed the design approaches of SHM systems for cable-stayed bridges. Essentially, a 

SHM systems includes the following modules: data acquisition, signal transmission, data 
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management, data analysis, safety evaluations and alarm. A SHM system also contains functions 

such as a user interface, software developing configurations, and the software operational 

environment configurations [15]. 

In vibration-based SHM, damage identification is performed from time histories that are 

measured simultaneously with several vibration sensors (e.g., accelerometers) or strain gauges at 

different structural locations. Structural damage detection can then be performed in the time-

domain from signal analysis; damage-sensitive features are first extracted from the time series for 

SHM. The impediment of frequency-domain is the difficulty to distinguish between peaks that 

represent natural frequencies, those due to excitation, and the difficulty to identify closely spaced 

modes. Time–frequency also show too much redundancy and do not exhibit significant features 

related to damage [16]. 

Research on the design approaches of SHM systems from many research papers which 

include data analysis, modeling, SHM technology safety evaluation; as well as the summary of 

applications of the SHM technology for the cable-stayed bridges and the building structures have 

generated a great desire to use the Time Varying Autoregressive (TVAR) modeling techniques 

because it is essential for the development of the long-term continuous vibration-based SHM of 

structures. 

 

1.1. Organization of the Thesis 

The remaining ineludible work is organized as follows: Chapter 2 comprises of literature 

review, which focuses on SHM related research in general, and the time-domain approach for 

SHM in particular. Problems are then recognized and the objectives, strategies and significance 

are introduced. For Chapter 3, the emphasis is on the proposed methodology, the methodology 

flowchart, and the contribution. Chapter 4 encompasses the experimental validation of the 6 DOF 

model A and the 5 DOF model B. The description, testing set-up, results and conclusion for both 
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models are covered in this chapter. Chapter 5 is mainly on the full scale validation, which includes 

description, established monitoring system, and the results of the data acquired from Harbin 

Institute of Technology (HIT). This vibration data was extracted from a full scale bridge in China. 

Chapter 6 covers the Stochastic Subspace System Identification technique used for comparison; 

whereas Chapter 7 comprises of the summary, key conclusions and future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

2. LITERATURE REVIEW 

2.1. General Overview of Structural Health Monitoring (SHM) 

Bridge health monitoring programs have historically been implemented with the aim of 

understanding and eventually calibrating models of the load–structural response chain. Carder et 

al. in [17] documented the earliest systematic bridge monitoring system on Golden Gate bridge, 

and the San Francisco-Oakland Bay bridge, in an elaborate program of measuring periods of 

various components during their construction. The purpose was to learn about the dynamic 

behavior and possible consequences of an earthquake.  

A University of Washington report in [18] describes the monitoring of the first Tacoma 

Narrows bridge over its short life before it collapsed due to wind-induced instability. The focus 

was on the vibration measurements, but with an obviously warranted concern for the health of the 

structure. The Tacoma Narrows experience has far reaching importance since almost all of the 

long-span suspension bridge monitoring exercises to date have been related to concerns about wind 

induced response and possible instability.  

The Tacoma incident occurred on November 7, 1940 near Seattle, USA, whereby, with the 

wind velocity of about 60 Km/h, the bridge twisted about 45 degrees in two waves, and oscillated 

violently up and down one meter in nine waves. According to Levy et al. in [19], the oscillations 

reached 8 meters as the bridge tore itself apart as per Figures 2.1 and 2.2. The Federal Works 

Agency investigated the collapse found that the bridge was well designed and well built. While it 

could safely resist all static forces, the wind caused extreme undulations which led to the bridge’s 

failure. The failure was due to the bridge's design reacting to the wind, and the collapse is described 

as a simple case of resonance. 
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Figure 2.1: The start of the collapse of Tacoma Narrows bridge [19]. 

 

 
Figure 2.2: After the collapse of Tacoma Narrows bridge [19]. 

The collapse of the Tacoma Narrows bridge is perhaps the best recorded and documented 

bridge failure in the history of bridge engineering. The prolonged failure process was captured on 

extensive live footage, giving a unique document for the investigation committee, as well as the 

engineering society at large. Even though the Tacoma Narrow incident is not directly related to 
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SHM, the footage however since then has been used in civil engineering classes all around the 

world for educational purposes, as it is a very instructive video showing the consequences of 

neglecting dynamic forces in the design and construction of civil structures such as bridges [19]. 

 

Another unfortunate incident likewise took place in 2007 where there was a bridge collapse 

on the Interstate 35W Mississippi River, officially known as Bridge 9340 in Figures 2.3 and 2.4, 

an eight lane steel truss arch bridge which carried I-35W across the Saint Anthony 

falls in Minneapolis, Minnesota, USA [21]. During the evening rush hour on August 1, 2007, 

it suddenly collapsed and consequently killed 13 people and 145 were injured. According to the 

National Transportation Safety Board in [22], inadequate capacity for the expected loads on the 

structure initiated the gusset plates on the center portion of the deck truss to fail, which resulted in 

the collapse. The tragic incident have raised many concerns regarding the current condition of 

bridges, and also served as reminder of the necessity to develop rational and practical methods for 

SHM. 

 
Figure 2.3: During the collapse of 35W bridge [21]. 

 

https://en.wikipedia.org/wiki/Interstate_35W_(Minnesota)
https://en.wikipedia.org/wiki/Saint_Anthony_Falls
https://en.wikipedia.org/wiki/Saint_Anthony_Falls
https://en.wikipedia.org/wiki/Minneapolis
https://en.wikipedia.org/wiki/Minnesota
https://en.wikipedia.org/wiki/Rush_hour
https://en.wikipedia.org/wiki/Catastrophic_failure
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Figure 2.4: After the collapse of 35W bridge [21]. 

2.2. Excerpt from the shocking 9/11 World Trade Center Attack  

Another devastatingly unforgettable event that shocked the world was the World Trade 

Center (WTC) attack on September 11th, 2001, when two commercial aeroplanes were hijacked 

by terrorist, then crashed into the two WTC towers in Figure 2.5. Each WTC building was 110 

stories, and were built to withstand extreme conditions such as hurricane force winds, sabotage of 

external columns, and even collision from a medium size aircraft. With the 9/11 incident, however, 

the explosion damage coupled with the extreme heat from the fires weakened the steel beams and 

the columns until they buckled. When the collapse initiated, the dynamic impact of each floor led 

to progressive failure of all the columns, which resulted in the complete destruction of both towers, 

and consequently contributed to a catastrophic 2,800 loss of lives [23]. 
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Figure 2.5: Collapse of WTC tower 2 after the 9/11 terrorist attack [21]. 

Research by Usmani et al. in [23] have shown that the structural system adopted for the 

twin-towers may have been unusually vulnerable to a major fire. A robust but simple 

computational and theoretical analysis has been carried out to answer some questions. As per 

Usmani et al. in [23], all results presented can be checked by any structural engineer either 

theoretically or through widely available structural analysis software tools. The paper stated that 

the analysis results showed a simple but unmistakable collapse mechanism that pointed out more 

to the geometric thermal expansion effects, as it does to the material effects of loss of strength and 

stiffness. The collapse mechanism discovered is a simple stability failure directly related to the 

effect of heating as a result of fire. Such studies resonates with the need for the SHM to ensure 

structural integrity in order to save lives. 

 

2.3. Review of SHM  

A comprehensive reviews of the technical literature concerning the detection, location, and 

characterization of structural damage via techniques that examine changes in the measured 
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structural vibration response was conducted by Doebling et al. in [24]. For example in [2], neural 

networks (NN) are used to estimate and predict the extent and location of damage in complex 

structures. A commonly applied NN is the multilayer perceptron trained by backpropagation, a 

system of cascaded sigmoid functions whereby, the outputs of one layer multiplied by weights, 

summed and shifted by a bias are used as the inputs to the next layer.  

After the architecture for the network is chosen, the actual function represented by the NN 

is encoded by the weights and biases. The backpropagation learning algorithm is to adjust the 

weights and biases by minimizing the error between the predicted and measured outputs. There 

are typically more adjustable weights than experiments, and the body of data is repeatedly run 

through the training algorithm until some criterion for training is satisfied [2]. 

Almost all of the reviewed soft-computing-based approaches suffer from a common 

drawback, which requires a large data sets from both the undamaged and damaged structures for 

training, which may be hardly available from real world structures [25]. Likewise, the accuracy of 

the NN models depends on how it is trained to solve new problems. Other issue associated with 

the biological approach is that, a poorly trained model using sparse or corrupt data could lead to 

inaccurate results [26]. Review by Doebling et al. in [2] shows that, the main obstacles for 

deploying a monitoring system in field is the environmental and operations variation of the 

structure. Although many damage detection techniques were applied to scaled models or specimen 

tests in controlled laboratory environments, the performance of these techniques in real operational 

environments is still questionable and needs to be validated. Often damage sensitive features 

employed in these damage detection techniques are also sensitive to changes of environmental and 

operation conditions of the structure [25].  
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2.4. Related SHM Technique for Damage Detection 

In general, damage detection employed in different fields of engineering are the conventional 

model-based approaches, soft-computing approaches such as the NN and genetic algorithm (GA), 

Signal processing-based approaches which includes wavelets, Chaos theory and the Multi-

paradigm approaches [26]. Paper [2] presents an extensive survey of many damage detection 

techniques in civil structures. Damage indicators are primarily based on changes in the model 

parameters that reflect equivalent variations in the physical parameters of the system. The 

alterations in physical parameters commonly occur due to structural degradation under various 

environmental conditions, human-induced excitation or natural events, such as earthquake and 

strong winds. 

Many damage detection techniques are developed in the last decades [3] which can be 

broadly classified based on the level of attempted identification: the presence, location, and the 

severity of the damage [4]. Recent development in signal processing tools has resulted in a 

paradigm shift in its application towards damage detection [3]; thereby, leading to a class of 

algorithms which employ different time-frequency transformation based approaches such as 

wavelets [5], empirical mode decomposition and Hilbert-Huang transform [6].  

Finite-element method is a conventional model-based approach typically done through 

computer modeling of the structure. It identifies structural parameters using data acquired from 

the field or laboratory. Its main advantage is the conducive modeling and estimation of the physical 

properties; whereas its convenience factors are the ability to use commercially available software 

such as MATLAB to create and maintain the structural model.  

Wavelets and other signal processing approaches have been utilized for their ability to 

retain time and frequency information to solve complicated time series pattern recognition 

problems in civil engineering [27]. A few researchers have employed the Chaos Theory and its 

fractal concept to model complicated structural dynamics, and estimate the fatigue damage in Fiber 
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Reinforced Polymer (FRP) stay cables using acoustic emission technique, and the fractal concept 

from the chaos theory [28]. Multi-paradigm approach integrates two or more computing paradigms 

such as NNs, fuzzy logic, evolutionary computing or GA, and the signal processing techniques 

such as the wavelet transforms, for nonlinear and complex problems [29].  

The effects of damage in a structure are classified as linear or nonlinear [2]. In essence, a 

linear damage situation is defined as the case when an initially linear-elastic structure remains 

linear-elastic after damage. Therefore, changes in model properties primarily occur due to the 

changes in geometry and/or the material properties of the structure. Consequently, the structural 

response can still be modeled using a linear equation of motion [2]. 

Time-series models can be used to characterize the sources that are obtained from the past 

observations, followed by the future sources which are the predicted measurements [12]. With the 

arrival of newer measurements which contain the signature of structural damage, if some clear 

difference can be observed between the predicted and true measurements, it indicates damage. 

Once the damage is detected, the model parameters of the damaged state are updated based on the 

new measurements. As a result, the damage and the undamaged modal parameters are estimated 

in an adaptive fashion [13]. Rytter in [4] classified the various methods based on the level of 

identification attempted, which are:  

 Level 1: determines the damage in the structure;  

 Level 2: determines the geometric location of the damage;  

 Level 3: quantify the severity of the damage;  

 Level 4: predicts the remaining service life of the structure.  

Although real damage in a structure can either be localized or distributed, model-updating 

techniques are generally more suitable for distributed damage events. The use of a large number 

of individual damage parameters coupled with a limited amount of measured data can lead to 

difficulties in convergence and non-uniqueness of solutions in updating algorithms [4]. 
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2.5. Statistical Damage Related Technique - Kurtosis 

Root Mean Square (RMS) is commonly used time-domain feature which measures the 

energy content of a signal. Likewise, statistical moments such as the mean, variance, skewness, 

and kurtosis are often used to process raw time-series data. Kurtosis is the normalized fourth 

moment that describes the relative spikiness and flatness of a distribution as compared to normal 

distribution, and it can be utilized as an important feature in representing fault condition. Kurtosis 

of a random variable is defined as the normalized fourth central moment, i.e.   

𝐾 =
𝐸(𝑥 − µ )4

σ4
                                                                                                                           (2.1) 

where E is the expectation operator, µ and σ is the mean and standard deviation respectively. A 

distribution with kurtosis higher than 3 is referred to as Leptokurtic, and when the kurtosis less 

than 3 is Platykurtic; whereas for the Gaussian distribution, the kurtosis is 3 and is called 

Mesokurtic [30]. Kurtosis greater than 3 indicates more data far from the mean or some peaks can 

be observed in data distribution. If the kurtosis is less than 3, the data distribution is flat with short 

tails. 

 

2.6. Time Domain Approach for SHM 

In the time-domain methods, model properties are extracted either from time histories 

(direct methods), or from impulse functions - which are the inverse Fourier transform (FT) of the 

measured spectra (indirect methods) [8]. Another method which uses the same approach is the 

Eigen Realization Algorithm (ERA). It utilizes the structural vibration data to build a state-space 

system, in which the model parameters of the structure of interest can be identified from the 

experimental data.  

Fundamentally, as stated by Juang et al. in [9], ERA model is the state-space representation 

of a physical system of a set of inputs, output and state variables of a dynamical system. In the 

case of ERA, a matrix containing the measured data is created first, and then singular value 
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decomposition is performed on the data matrix to determine the rank of the system and rebuild the 

state-space matrices. Finally the Eigen values and Eigen vectors or the model properties are 

calculated from the realized state-space matrices. 

The dynamic model of a structure can be described by a set of linear differential equations:  

𝑀Ü(t) + 𝐶U̇(𝑡) + 𝐾U(𝑡) = 𝐹(𝑡)                                                                                            (2.2) 

where M, C and K are the mass, damping and stiffness matrices; whereas U(t) and F(t) are the 

displacement and input force vectors; (U̇, Ü) are displacement derivatives with respect to time 

[31]. Alternatively, Eq. [2.1] can be re-written in a state-space representation as a set of first-order 

differential equations: 

ẋ(𝑡) =  𝐴𝑐𝑥(𝑡) +  𝐵𝑐𝑢(𝑡)                                                                                                        (2.3𝑎) 

𝑦(𝑡) =  𝐶𝑐𝑥(𝑡) +  𝐷𝑐𝑢(𝑡)                                                                                                       (2.3𝑏) 

where the state vector x(t) and force vectors F(t) are: 

𝑥(𝑡) =  {
U(𝑡)

Ů(𝑡)
}                                                                                                                           (2.4𝑎) 

𝐹(𝑡) =  𝐵2u(𝑡)                                                                                                                          (2.4𝑏) 

The vectors u(t) and y(t) represent observations of the input and output of the process respectively, 

Ac is the state matrix which represents the dynamic characteristics of the system, and the Bc is the 

input matrix which represents the input influence; Cc is the output matrix which specifies how 

system states are transformed to the output, while Dc is the output control or the direct feed-through 

matrix, and the subscript c denotes continuous time. Hence, a discrete time state-space model 

becomes: 

𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘                                                                                                                 (2.5𝑎) 

𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷𝑢𝑘                                                                                                                      (2.5𝑏) 

where k is an index which identifies a specific time increment.  
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In practice, there is always noise with random variables (measurements), which can be 

divided into process and measurement noise. The process noise is due to disturbances in the input, 

whereas the measurement noise is due to the inaccuracy in sensor readings. The state-space model 

can therefore be extended to include these stochastic components, as follows: 

𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝐵𝑢𝑘 + 𝑤𝑘                                                                                                     (2.6𝑎) 

𝑦𝑘 =  𝐶𝑥𝑘 +  𝐷𝑢𝑘 +  𝑣𝑘                                                                                                           (2.6𝑏) 

where wk and vk are the disturbance and measurement noise respectively, both of which are 

assumed to resemble white noise. 

A graphical representation of the system in state-space terms is shown in Figure 2.6. It 

shows the vector signals uk and yk are measurable or in other words, observed. While vk and wk are 

the unknown disturbances with noise, the symbol Δ represents a delay. 

 
Figure 2.6: State-space system [31]. 

In the civil engineering structural testing, only the response yk of the structure is usually 

measured, and therefore, it becomes impossible to distinguish the input term uk from the noise term 

wk in Eq. [2.6a], which result in the output-only stochastic system [31]: 

𝑥𝑘+1 =  𝐴𝑥𝑘 +  𝑤𝑘                                                                                                                    (2.7𝑎) 

𝑦𝑘 =  𝐶𝑥𝑘 + 𝑣𝑘                                                                                                                          (2.7𝑏) 
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2.7. Frequency Domain Methods  

Frequency-domain methods make use of the FT spectra of measured signals to extract the 

modal properties [32].  As per the basic principles of structural dynamics, a structure will vibrate 

either at one or more of its own natural frequencies, or at the frequencies induced as a result of 

forced vibrations. When a structure is excited by a force with a flat spectrum in the frequency 

range of interest, the structure will vibrate most vigorously at its own natural frequencies due to 

resonance.  

The resonant vibration will be manifested as peaks in the structural response spectra 

corresponding to the structural natural frequencies. It therefore becomes possible to look at the 

response spectra from an FT analysis, then check for peaks that correspond to the damped natural 

frequencies of the structure, a technique referred to as ‘The Peak Picking’ [32]. Once the natural 

frequencies are identified, the relative model amplitudes at various measurement locations can 

then be computed to estimate the vibration mode shapes [33]. The impediment of this method 

includes the difficulty to distinguish between peaks that represent natural frequencies, and those 

due to excitation, as well as the difficulty to identify closely spaced modes [34]. 

In ambient vibration measurements such as the bridge vibration testing, it is impossible to 

measure the time history of the input force due to ambient excitation such as that caused by traffic 

or wind loading. It is the reason why only the spectra of bridge responses are measured and then 

used to extract the structural model properties. The response of the structure at one location is then 

used as a reference to scale the responses at other locations so as to calculate the mode shape 

amplitudes. For more accurate estimate of model properties, the Cross Power Spectrum (CPS) 

approach is often used, which is considered as a product of the spectra of a reference accelerometer, 

and that of another accelerometer [35].  

CPS represents the measure of the power that two signals have in common at specific 

frequencies [35]; the two measured responses will be correlated only at frequencies common to 
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both signals. The peaks retained in the CPS are those common to both signals, and are more likely 

to be true natural frequencies. The natural frequencies can then be estimated using visual 

inspection to locate the peaks in the CPS. Mode shapes are subsequently estimated from the 

relative magnitudes of these peaks at different locations on the structure. Another enhancement to 

the peak picking method is to apply Singular Value Decomposition to the cross spectral matrix, 

which can reduce the influence of noise in the signal [11]. These signal processing techniques [32] 

are described below: 

For a time series x(t), its FT (Spectrum), X(f)., is defined as: 

𝑋(𝑓). =  ∫ 𝑋(𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝑡                                                                                                           (2.8) 

where t and f are time and frequency variables, respectively. 

The Auto Power Spectrum of X(f)., APS(X), is then written as: 

𝐴𝑃𝑆(𝑋) = 𝑋(𝑓). 𝑋(𝑓).∗                                                                                                             (2.9) 

where * denotes the complex conjugate. 

The CPS of the time series x(t) and another time series y(t) is defined as: 

𝐶𝑃𝑆(𝑋, 𝑌) = 𝑌(𝑓)𝑋(𝑓).∗                                                                                                        (2.10) 

where Y(f) is the spectral function of y(t). Hence, the frequency response function, H(f), may then 

be defined as: 

𝐻(𝑓) =  
𝑋(𝑓).

𝐹(𝑓)
                                                                                                                           (2.11) 

where F(f) is considered to be the spectrum of the input force, and X(f)., represents the spectrum 

of the structure response [36].  

 

2.8. Overview of the SHM Systems of Stayed Bridges 

Some researchers have proposed the design approaches of the SHM systems for cable-

stayed bridges, which include the objectives, modules and the functions of structural health 
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monitoring systems. Essentially, a SHM systems includes the following modules: data acquisition, 

signal transmission, data management, data analysis, safety evaluations and alarm. A SHM system 

also contains functions such as a user interface, software developing configurations, and the 

software operational environment configurations [15]. 

 

2.8.1. Design of Sensor Modules and Sensing Technologies 

The design of sensory module of SHM systems for cable-stayed bridges comprises of the 

variable type, the sensor type, and the positioning of the installed sensors. The monitored variables 

can be categorized into three types: loads and environmental actions, global responses, and local 

responses. As per Li and Ou in [15], the loads and the environmental actions mainly include vehicle 

loads, wind velocity, earthquake ground motion, vessel collisions, temperature, humidity, rainfall 

intensity, chloride ion concentration, and CO2 concentration.  

The acceleration, deformation, and tilt are global response variables; whereas the strain, 

cable tension force, displacement and wears of joints and bearings, fatigue and crack of elements, 

corrosion of elements, and scour around piers are the local response variables. The vehicle loads 

including the weight of each axle, number of axles, and vehicle speed are frequently measured by 

weigh-in-motion (WIM) systems embedded in all lanes at a cross section of a cable-stayed bridge; 

the WIM systems can provide the vehicle load information at one cross section only [15]. 

Bao et al. in [37] proposed an approach to identify the spatial–temporal distribution of 

vehicle loads on a cable-stayed bridge through a compressive sensing technique based on 

monitoring of the cable tension force. In order to improve the identification accuracy, Chen & Cai 

in [14] proposed an identification method of the spatial-temporal distribution of vehicle loads on 

a cable-stayed bridge by combining WIM systems with cameras that is validated through the 

identification of location and time of heavy trucks on the Hangzhou Bay Bridge, which is a cable-

stayed bridge in China. 
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The earthquake ground motion in three directions can be monitored by seismometers; 

however, the seismometers should be installed at the free-field away from the bridge, and on the 

piles of bridge piers. For long-span cable-stayed bridges, seismometers should be installed at more 

than one pier so as to investigate the travel wave effects. The vessel collisions can be measured by 

accelerometers, or by the seismometers on the piles of bridge piers [14]. 

Wind is one of the critical loads for long-span cable-stayed bridges; it excites vortex 

induced vibration of the decks and cables. Anemoscopes or ultrasonic anemoscope can be used for 

fluctuating winds, whereas propeller anemoscope can be employed to measure wind velocity. Due 

to rain-wind-induced stay cables vibration, rainfall intensity is a critical variable which can be 

measured by a rainfall gauge installed on the bridge without any shield [38].  

For temperature measurements, thermocouples or optical fiber Bragg grating (FBG) 

sensors are frequently employed to measure the temperature around and inside the bridges. To 

ensure the survival of FBG sensors during construction of the civil structures, Ou and Li in [39] 

proposed embedded FBG sensors into fiber reinforced-polymer bars, which results in FRP bars 

with self-sensing properties and better mechanical performances. The location of temperature 

sensors is determined based on a thermodynamic analysis of the bridge.  

The temperature sensor arrays should be embedded into the concrete elements so as to 

obtain the temperature gradient along at least one cross-sectional height. Due to the temperature 

compensation requirement of a strain gauge, temperature sensors should be installed close to strain 

sensors. On the other hand, the humidity is frequently monitored by hygrometers installed inside 

a box on the bridge girders. The chloride ion concentration can be measured by electrode probes, 

whose arrays are embedded in the cover of reinforced concrete piers [15]. 

Displacement or acceleration should be monitored for cable-stayed bridges by 

accelerometers with low-frequency bands. The location of accelerometers on the bridge deck can 

be determined by some placement optimization approaches. Accelerometers should be attached to 
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the long cables rather than the short cables because long cables are more prone to dramatic 

vibrations [15]. Transportation Research Board of the National Academies of the USA in [40] has 

indicated that security cameras mounted on the tower are proposed to monitor vibration of stay 

cables; however, there have been no indication of this technique practically used in monitoring of 

rain-wind induced vibration of stay cables.  

For the tower, accelerometers should be attached to the top of the towers in two horizontal 

directions. The deformation of the tower can be measured by a global positioning system (GPS) 

and a tilt meter, whereas the deformation of a girder is usually monitored by GPS and hydraulic 

pressure connecting the pipe system [15]. Since strain is one of the most important variables for 

direct safety evaluation, fatigue assessment, and validation of the design, strain can be monitored 

using traditional strain gauges, vibrating-wire strain gauge, and the FBG strain sensors. Vibrating-

wire strain gauges can only measure the static strain, which is why, in China, FBG strain sensors 

have been installed on many cable-stayed bridges for strain monitoring, such as the one installed 

on the Shandong Binzhou Bridge, a 3-tower cable-stayed bridge, as well as Jiashao Bridge that is 

a 6-tower cable-stayed bridge [41]. 

Dascotte in [42] proposed a method to derive strain from the displacement measured by a 

GPS system for accumulated fatigue assessment; however, the location of the strain sensors needs 

to be determined based on a structural analysis and fragility analysis. It further stated that, stay 

cables are the most critical elements in cable-stayed bridges because of their effect on steel wires 

and anchorage. The monitoring variables of the stay cables include vibration, tension force, fatigue 

damage, and corrosion. 

Load cells can be installed at the anchorage of the cable, or a single strand; however, these 

cells are hard to replace. Zhang et al. in [43] proposed a method that employs smart sensors based 

on the elasto-magnetic (EM) and magneto-electric effect to monitor the stress of steel cables. The 

design theory of the sensor involves the EM coupling effect and magneto-electric coupling effect. 
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The potential of the elasto-magnetoelectric sensor as a non-destructive evaluation tool for 

monitoring cable stress was verified in a full-scale experiment with high sensitivity in [43]. Since 

EM sensor is sensitive to the cable cross section and size, it is implemented into the stay cables of 

the Adige Bridge in Italy [44].  

The sensor life-span is estimated for 50 years, whereas the operational temperature range 

is between -20 to +80 °C, and the sampling rate can be 10 seconds [44]. Although the EM sensor 

can be easily replaced, it can only measure the static cable tension force, and cannot monitor the 

cable tension force in real time because of the demagnetization effect; that is why the Fiber optical 

sensors have been proposed to monitor cable tension force [44].  

Another solution for monitoring cable frequencies from large distance is using laser 

vibrometer [45], which can speed up the vibration process. Suffice to say, the feasibility of this 

technique has been validated in [45]. The assumption on the chord may not reflect the actual cable 

boundary conditions and nonlinearity of cables caused; therefore, Kurz et al in [46] analyzed the 

existing non-destructive testing methods, and commented on a suitable approach for different 

scenarios of cable elements. Methods for the accessible parts include magnetic inspection and 

acoustic emission monitoring. Suitable techniques for monitoring the non-accessible parts include 

ultrasonic guided waves - particularly for anchorage zones, magnetic flux leakage inspection, 

micro magnetic method, and the acoustic emission method.  

Corrosion of reinforced bar in concrete can be monitored based on the electrochemical 

response mechanism. Qiao et al. in [47] developed corrosion sensors, recognition algorithms, 

corrosion control actuators, for the internet-based durability monitoring. These components realize 

the assessment of safety, maintenance and reinforcement, as well as the performance-based design 

of the major infrastructures. Alternatively, Zhao et al. in [48] proposed to wrap the optical fiber 

sensors on reinforced bars to measure the expansion of concrete caused by corrosion, so as to 

diagnose corrosion locations and corrosion extent of reinforced bars. 
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2.8.2. DAQ, Transmission, Management, and User Interface 

The design of data acquisition module includes selecting the transmission technology, data 

acquisition (DAQ) devices, and the sampling modes. In [49], analog signals can be transmitted to 

DAQ devices directly through shielded cables before analog-digital (A/D) conversion. Since the 

transmission distance should be limited because of the signal attenuation, direct analog signal 

transmissions are often used over short distances.  

For the long transmission distance range, analog signals can be first converted to a digital 

signal, and then transmitted through industrial communication buses such as ethernet, PROFIBUS, 

RS-485, and wireless transmission techniques [15]. The communication bus can also be used by 

other automatic devices. Wireless transmission techniques have been applied in SHM including 

WiFi and ZigBee, whereas for the long distances, microwave communication is more appropriate 

[15].  

DAQ devices contain signal conditioning devices; however, non-standard signals must first 

be conditioned through amplification, filtering, isolation, and any other processes. DAQ devices 

are determined according to the type and number of sensors and signals, and proper sampling rates, 

whereby, they can be connected with analog signals and digital signals when they are extended to 

the other interfaces [15]. For example, signals from FBG sensors may be collected by DAQ, 

whereas the static signals such as the strain and temperature can be collected by serial devices like 

the RS-232-based devices. The selection of sampling modes and the sampling rate are important 

when executing DAQ tasks [15].  

An appropriate sampling rate is required to avoid huge and redundant data in the following 

fashion: data are sampled at specific time period each day, sampled when exceeding the threshold 

only, and sampled when a special event occurs. For instance, data are sampled after a typhoon, 

earthquake, vessel collision, or attack to the bridge; therefore, all data are sampled at a sampling 

rate. On the other hand, only typical data are saved and the remaining data are deleted [15].  
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For the dynamic and wave propagation signals, the sampling rate should follow the 

Nyquist– Shannon sampling theorem. Additionally, for the case of the static signal, the sampling 

rate can be determined according to the variation characteristics of the signals [15]. 

 

2.8.3. SHM System’s Reliability 

Given the fact that the lifetime of sensors is typically much shorter than that of the 

infrastructure, sensors must be long-term qualified, and might need to be replaced with new 

sensors during the life cycle of a structure. The reliability of both the sensing system and the 

monitoring data must be evaluated, and their uncertainties be also measured [50]. 

 

2.8.4. Real Time Monitoring of the 2nd Jindo Bridge 

Figure 2.7 shows the instrumentation diagram for the online real time monitoring, which 

represents the general flowchart of the possible approach [51]. Essentially, static and dynamic 

types of sensors could be used for each monitoring project, whose data lines can be connected to 

the main data acquisition center at the bridge site. It was suggested in [51] that the data center can 

function 24 hours a day, 365 days a year, and should be capable of acquiring all the data 

concurrently, then synchronize and transfer the data to any remote location over an internet 

gateway.  

The data center needs to have the capability of recording the data locally based on the 

preset trigger conditions, and also need to be monitored continuously at one or more remote 

locations. A real-time and continuous software based analysis can be carried out at the remote 

monitoring center, as a decision support system provider for the administrators and engineers in 

charge. For the warning messages, they need to be reported to the bridge administration 

immediately [51]. 

 



25 
 

 
Figure 2.7: The general diagram of the suggested 7/24 real-time instrumentation approach [51]. 

 

Problems that are recognized with the existing SHM techniques in [24, 25] include the 

dependence of many methods on prior analytical models for the detection and location of damage. 

Almost all of the damage-identification methods reviewed were on some type of a linear structural 

model. The number and location of sensors were another important issue that was not addressed 

to any significant extent in the previously reviewed literature.  
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The literature was also found to have scarce instances of studies whereby, different health-

monitoring procedures were compared directly through application to common data sets.  

Additionally, many research appeared not to be focused on testing of real structures in their 

operating environment, but rather on laboratory tests of simple structural systems in controlled 

environments [25]. On the other hand, the disadvantage of finite-element method is that, it does 

not produce accurate results for large and complex structures [26]. Many damage detection 

methods reviewed attempt to identify damage by solving an inverse problem, which inevitably 

requires the construction of analytical models [25]. Such a dependency, often uncertain and not 

fully validated with experimental data, makes these approaches less attractive for certain 

applications. Some researchers try to avoid this dependency on the numerical models by 

performing signal based unsupervised learning; however, these approaches could be effective for 

identifying the onset of damage, but they only identify the existence of damage [25].  

 

2.9. Objectives, Strategies, Significance and Contribution 

The objective of this study is to propose a new TVAR modeling technique for SHM of large-scale 

structures like bridges and buildings. The research is conducted to critically understand the 

effective performance of the structures under various loads and health conditions, and detect their 

operational anomalies using the proposed data-driven technique. In pursuance of applying the 

SHM technique, the data collected under various types of structures including experimental and 

real-life systems are essential, as it can help the validation of the proposed method. The TVAR-

models are then used for analyzing data whose spectral content varies with time due to change in 

the properties or load of structures. The main advantages of damage detection in the time domain 

is that direct sensor data can be used without complex feature extraction.  

In this study, the strategy is to use two different experimental models: 6-degree of freedom (DOF) 

building model, and a 5-DOF building model, both developed at the LU Civil Engineering 
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laboratory. The full scale validation is also performed with the aid of the benchmark study data 

provided by the Harbin Institute of Technology (HIT) in China. The research is conducted to 

systematically investigate the effective structural performance, detect performance anomalies, and 

localize damage to meet the standards for SHM. The significance of the proposed technique is to 

develop the practically effective and efficient approach of computing the time-varying parameters 

of degraded structures using the TVAR model, as well as the data from a full-scale structure, to 

prove that the model can work in both the laboratory environment and any real structure. 

Contributions of this work includes the following: 

(1) Most of the SHM methods rely on system identification (ID) techniques where the 

vibration is decomposed into various modal components and then the respective model 

responses are investigated to evaluate the existing damages in the structure. However these 

methods are completely data-driven and the type of system ID method used becomes 

problem specific which requires enormous user discretion. In this research, an attempt is 

made to alleviate the use of system ID where TVAR modeling is conducted directly on the 

data. The proposed method does not depend on the complicated algorithms and free of any 

other user-defined parameters. The SSI method used is for comparison purposes only. 

(2) Since TVAR modeling is employed directly on the raw data, model order selection 

becomes very critical. A new approach is proposed for model order selection. RMS values 

for each coefficient under undamaged and damaged case are determined as the time-

domain features to measure the change in the energy content in a signal. The model order 

is selected by observing relative energy distribution of the signal across various channels.  

(3) The third contribution is related to damage localization, which is identified by considering 

the percentage difference in the energies of the signal of the damage and the undamaged 

data. The channel with the highest percentage difference is considered as the damaged 

location.  
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3. METHODOLOGY  

3.1. TVAR Background 

Time Varying Autoregressive (TVAR) models are used for modeling data whose spectral 

content varies along time [52]. TVAR models for non-stationary time series are the extension of 

autoregressive (AR) models for stationary time series. While AR models have time-invariant 

coefficients, TVAR models have time-varying coefficients to capture the non-stationarity. 

Therefore, the theoretical backgrounds for AR and TVAR models are the Wold decomposition 

theory and the Cramér decomposition theory, respectively [53]. 

Rao in [52] addressed the TVAR models in the pioneer paper in which three parameter 

identification methods were proposed: the spectral matching method, local least squares method, 

and the local maximum method. The evolutionary power spectral density (EPSD) was simply 

related to TVAR models without explanation; however, since 1970, TVAR models have been 

studied and applied in civil engineering. TVAR models constitute a class of non-stationary 

processes; therefore, justifying TVAR models for applications and improving parameter 

identification methods are the two main issues in the vast literature [53]. 

In the latest research on TVAR, Musafere [54] proposed blind source separation (BSS)-

based TVAR modeling technique to detect discrete damage. The second-order BSS is employed 

first to obtain the mono-harmonic responses from the vibration data where each of the undamaged 

natural frequencies has a discrete change to its damaged counterpart. Since the modal responses 

are single-frequency components, the TVAR modeling with a low model order is utilized to track 

the damage instant and detect the severity of changes in the modal parameters.  Thus, the 

complexities in selecting the appropriate model order of the time-series models are alleviated. 

However one of the limitations of this method is the prerequisite of BSS method which is indeed 

computationally intensive. 
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Theoretically, the TVAR coefficient could be of any form. TVAR coefficients need to 

slowly vary with time so that these TVAR models can have the spectral representations and their 

coefficient functions to be identified from one single sample [53].  

According to Dahlhaus in [55], identifying TVAR coefficients is a statistical problem 

which normally involves three stages: identification, model selection, and verification. The 

principle of maximum likelihood is the theoretical setting for TVAR parameter identification. Prior 

to the identification procedure, a specific TVAR model has to be set, which includes choosing the 

TVAR order and parameterizing the coefficient functions by putting smoothness constraint on the 

coefficient functions. Thereafter, the optimal coefficients can then maximize the associated 

likelihood function [55, 56]. 

Identifying TVAR coefficients is analogous to fitting a curve model to a noisy data; 

therefore, a more complex model with more parameters is needed for the smaller error or larger 

likelihood. A simpler and smoother model with less parameters has higher probability to exist, and 

is therefore more desirable in practice. Hence, this fidelity versus smoothness trade-off can be 

chosen via numerous criteria such as the Akaike’s information criterion (AIC) [57], whereby the 

best model has the minimum AIC. The uncertainty principle is also true in TVAR models in the 

sense that increasing the resolution in the frequency-domain is required so as to improve the TVAR 

order, whereas increasing the resolution in the time-domain needs more parameters to characterize 

the coefficients.  

 

3.2. Time Series Models 

 In time-domain approach for SHM, a number of linear time series models have been 

described, but they only consider the linear AR models as an alternative benchmark to the 

nonlinear AR models. On the other hand, Vector Autoregressive (VAR) is essentially a time series 

model used to capture the linear dynamics among multiple time series [7]. The VAR models 
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generalize the univariate AR model by allowing for more than one evolving variable. The VAR 

requires prior knowledge about variables which can be hypothesized to affect each other inter-

temporally. A VAR model describes the evolution of a set of k endogenous variables over the same 

time period as a linear function of only their past values. A VAR model with lag length p, denoted 

as VAR(p) is defined as: 

tptpttt eyAyAyAcy   ...2211                                                                          (3.1) 

where yt is k × 1 vector of endogenous variables and et is IID distributed white noise process term 

of the same dimension. The coefficient matrices A1, ..., Ap are of dimension k × k and estimated 

through OLS. The lag length in VAR(p) model can be selected through using information criteria 

such as AIC or BIC [7]. 

 

3.3. Model Order Selection 

Appropriate model order selection is crucial for TVAR modeling. As per the principle of 

parsimony, extra parameters shouldn’t be used when not necessary when describing a dynamic 

process [58]. With noise presence, TVAR model can recognize several spectral peaks well; 

however, the changes in the model order makes it sensitive, thereby producing false spectral peaks 

in the event that an inaccurate model order is chosen. It is based on this reason that the selection 

of the model order is an important aspect in TVAR modeling.  

On the accuracy of the TVAR model which is sensitive to the choice of model order, 

inappropriate model order only results in model parameters that will not characterize the 

underlying nature of the process, which can further result in an inaccurate representation of the 

signal. In essence, for model based spectral analysis, too low of a model order can result in 

smoothed spectral estimate, whereas too high of a model order gives rise to misleading spectral 

peaks [57, 59, 60]. 
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In a nutshell, with a given order coupled with smoothness constant, the model of the TVAR 

can be established. The challenge is which model order works best, which is the main intimidating 

thing with TVAR modeling. Since a given order in tandem with the smoothness constant aids with 

maximizing the likelihood function, as well as minimizing the sum of squares of residuals, it is 

fair to say that the model that is best in terms of fitness can be reached at if the right model is 

chosen.  

In the event that there are two models that fit the data well on equal basis, the simpler one 

with free parameters should be the best choice as it is determined to be more likely closer to the 

truth [60]. The purpose of model selection is to optimize the balance between the degree of 

exactness to the data and the model simplicity, which suits a model that is in close relationship to 

the true model [61]. Statistical techniques that have been used in the selection of TVAR model 

order are the Akaike’s final prediction error (FPE) [57], the AIC [60], the Bayesian information 

criterion (BIC) [61]. 

 

3.4. The Autoregressive (AR) Model 

Essentially, the AR model is composed of parameters which define the general structure of 

the model, and the coefficients which are realized by fitting the AR model to the data [62]. Despite 

the fact that visualization of the power spectral density (PSD) is a powerful inference tool, the 

primary advantage of the AR model is that, the underlying process that produced the observed data 

can be inferred directly from the AR parameters and coefficients without ever constructing a PSD 

plot or spectrogram [62]. 

In this work, the ultimate interest is in a group of solutions which is peculiar to the class 

referred to as TVARs [63]. In general, TVARs largely consist of a three-step process:  

(1) Assuming a general structure for the AR model;  

(2) Employing an adaptive filter framework for dynamic AR model estimation;  
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(3) Using the resulting TVAR model to infer the dynamics of the data [64, 65].  

The choice of the adaptive filter framework can greatly affect the quality of the TVAR model 

estimates; the challenge related is to understand the assumptions of the adaptive filter, and how to 

ensure that the adaptive filter and data input are mutually compatible? Thereafter, derive and apply 

a fixed-interval Kalman smoother sequential estimator for the TVAR model. A Kalman filter based 

approach needs to be chosen over other adaptive filters for the wealth of existing theoretical and 

practical knowledge [63].  

 

3.5. The AR process 

In the observation interval t∈(0, T), time is discretized such that the discrete time index, n, 

obeys the sampling interval equation t = nΔ, fs=1/Δ which is the sampling frequency, and       

J = T / Δ which is the largest discrete time index. The y(n) denote the measured signal, and v(n) 

denote the zero-mean Gaussian measurement white noise with variance σ2
v; whereas the 

operator x* denote the complex conjugate value of x. Thus, the AR model of order p or AR(p) 

model can then be described as follows [64, 65]: 
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where the respective z-transform and the power spectral density (PSD) functions can be 

represented as, 
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The relationship between the AR model order and the assumed structure of the data, as 

well as the AR coefficients (a1,…,ap) specify the shape of the PSD. Hence, the denominator 
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of (3.2c) is referred to as the characteristic polynomial because it fully captures the behavior of the 

model. Once the polynomial is factored, the roots or the poles will indicate if y(n) has unstable, 

oscillatory, or damped components [66].  

The interest should be in the oscillatory components, which are given when two roots of 

the characteristic polynomial have non-zero imaginary components and are complex conjugates 

of each other.  In practice, the model order p is generally constrained to be even in such a way that, 

when all the roots have complex conjugates amongst themselves, the PSD of an AR(p) 

process, S(z), will be a multi-modal function that resembles a summation of peaks; whereby each 

peak represents a signal. The relative height, shape, and location of the peaks are therefore entirely 

determined by the poles of the transfer function; whereas the phase of the pole determines where 

the center of the peak is positioned on the frequency axis. The height and width of the peak are 

determined by the modulus of the pole. The shape of the PSD is only as valid as the data is 

stationary in structure, and that is why AR model need to be extended to a TVAR model so as to 

explicitly describe the temporally evolving harmonics of the time series [64, 65]. 

 

3.6. Instantaneous Frequency Estimation Using Fixed Interval Kalman  

Some methods of estimation assume that ak is fixed over time [67], but the analysis of non-

stationary signals requires a time-varying approach such that, ak→ak (n). Therefore, the Kalman 

filter (KF) framework can be thought of as a sequential estimator that optimizes the AR model 

coefficients with incremental observations of the data, and Gaussian variability. KF version of the 

TVAR can be derived as follows: By writing the AR process in discrete state-space form, a 

representation that is convenient for formulating adaptive filters [63]. 

 

),()1()( nwnxnx                                                                                                       (3.3a) 

),()()()( nvnxnCny                                                                                                      (3.3b) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767386/#FD4
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where x(n) = [a1(n),…,ap(n)]T is the hidden or state variable which corresponds to the AR 

coefficients at discrete-time n; then C(n) = [y(n − 1),… y(n − p)] is the observation transformation 

vector; whereas w(n) is the state transition noise with covariance  w w
pxpI 

2 , and v(n) is the 

observation noise with covariance  2
v . Additionally, the diagonal form of w , is an assumption 

that allows the AR coefficients to evolve independently of one another, as well as simplifies the 

algorithm by reducing the number of parameters. Given the values for  2
w ,  2

w , ,p  and the 

data y(n), the KF estimates the variable x(n) for each discrete-time point in the observation 

interval, n∈[1, J]. Hence, the one-step prediction equations use past information to predict the state 

variables, and their statistics under a zero mean Gaussian random variable fulfills the assumption 

[63]. Details of the respective equations 3.6 to 3.8 are shown in section 3.7. 

 

3.7. Application of TVAR  

This work can be primarily classified as a parametric damage detection method; whereby, 

it literally estimate the inherent parameters of the structure using frequency response functions 

[68], auto-regressive models [16], and the statistical information [69]. In addition, Nguyen in [65] 

described TVAR as a form of modeling which tracks the real-time changes of the model 

coefficients, thereby, revealing the faults in the structures. In an alternate approach, y(n) represent 

the Mixed-Model Response (MMR) sources, and v(n) denotes the zero-mean Gaussian 

measurement noise with variance σv
2 ; therefore, the AR model of order p can be represented as in 

equation 3.2a in section 3.5. 

It is because of the non-stationary nature of the MMR sources that, a recursive modeling 

approach is required whereby, ak becomes ak(t).  Kalman filter is then utilized to estimate these 

time-varying coefficients, knowing the observations of the data [65]. The following equation is the 

discrete representation of the ak(t) coefficients, where w(n) is the process noise with variance σw
2  , 
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and the covariance of  𝑃𝑤 = 𝐼𝑝𝑥𝑝σv
2 .  Both noise measurements v(n)  and w(n) are mutually 

independent and uncorrelated. 

),()1()1()( nwnxnTnx                                                                                           (3.4) 

),()()()( nvnxnCny                                                                                                       (3.5) 

where, 𝑥(𝑛) = [𝑎1(𝑛), 𝑎2(𝑛), … , 𝑎𝑝𝑛]𝑇 is the unknown state vector; whereas the following matrix 

T(n-1) = Ipxp  is assumed to be an identity matrix, and  𝐶(𝑛) = [𝑦(𝑛 − 1), … , 𝑦(𝑛 − 𝑝)] is the 

observation data with discrete n-step. It is therefore important to know that the Kalman filter has 

mainly two processes, which are: time update or prediction, and measurement update or correction. 

At each step, the Kalman filter equations can be written as [65]: 

)11()1(  nnxnnx                                                                                                    (3.6a) 

2)11()1( wxx Innpnnp                                                                                     (3.6b) 

)1()()1(  nnxnCnny                                                                                                 (3.7a) 

22 )()1()()1( v
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and 

12 )1()()1()(  nnnCnnpnk y
T

x                                                                               (3.8a) 

 )1()()()1()(  nnynynKnnxnnx                                                                    (3.8b) 

  )1()()(1)(  nnpnCnKnnp xx                                                                                    (3.8c) 

where, x(n|n-1) represents a priori estimate where its linear combination would result in x(n|n), 

which is a posteriori. The Kalman gain, k(n) would therefore give a weightage to the prediction 

error y(n|n) – y(n|n-1), so as to minimize the state estimation error x(n|n); whereas Px(n|n-1), and 

Px(n|n) becomes the priori and posteriori error covariance estimates [65]. 
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3.8. Damage Location Identification  

For damage location, Sadhu and Hazra in [2] estimated the model shapes of the undamaged 

and damaged system to determine the damage location. The mode shape of the system under 

undamaged state can be utilized as a baseline data, and any difference in the mode shape ordinates 

under damaged state and the baseline data of the undamaged state can be used to find the damage 

location.  

Mosavi et al. in [70] used a statistical measure called Mahalanobis distance to extract the 

damage features. This statistical measure recognize the variation patterns in the selected terms of 

the Vector Autoregressive (VAR) models by measuring the distance between the selected terms 

corresponding to a condition of interest, and the reference condition of the structure. Mahalanobis 

distances capture these deviations in the fitted VAR model coefficients, as the VAR extract the 

damage features for different sensor locations by measuring the amount of variations in the 

coefficients of VAR models obtained for a reference condition of the structure, and coefficients 

obtained for an unknown condition of the structure. Therefore, the selected terms of the fitted VAR 

models should experience the most extreme deviations at the sensor located closest to the physical 

damage location, as these coefficients are directly related to the model properties [70]. 

In this work, the damage localization is identified by taking the RMS percentage difference 

of the damage and the undamaged coefficients in each channel. Thus, the channel with the highest 

percentage difference is where the location closest to the physical damage location is.  
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3.9. Flowchart 

 
Figure 3.1: Flowchart 

3.9.1. Description of Flowchart 

Figure 3.1 shows the methodology flowchart representing the entire TVAR technique developed 

in this study, and supplemented with Kurtosis as per the following procedure: 

(1) The undamaged (UD) data (y) with the damaged (D) data (x) are used as data inputs. 

(2) FFT is then undertaken to observe the difference in the frequency and the amplitude 

between the UD and the D data, x and y. 

(3) With model order carefully selected, and applying Kalman filter, the time series of the UD 

and D data is then created, followed by the plot of the Time Series for the UD and the D 

data.  
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(4) The model order is an important aspect for the creation of the AR model and the parameters 

defining the general structure of the model. Therefore, the coefficients which are realized 

by fitting the AR model appropriately to the data becomes the output of the model. 

(5) RMS, a time-domain feature with the ability to measure the energy content of a signal and 

at the same time, contains signature of structural damage is created for all the channels. 

(6) The RMS is plotted against coefficients for some selected channels. 

(7) The developed TVAR technique is supplements with Kurtosis, which is likewise plotted 

against the number of coefficients to aid as an alternative technique for comparison 

purposes. 
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4. EXPERIMENTAL VALIDATION 

4.1. Types of Models Used 

The experimental validation comprises of two models: 6-DOF (model A), and a 5-DOF (model 

B), both developed at the LU Civil Engineering laboratory as shown in Figure 4.1. The experiments 

conducted on model A as shown in Figure 4.1 (a) and data collected is for the purpose of this work. 

Whereas for model B as shown in Figure 4.1 (b), it is developed during a degree project by LU 

Civil Engineering students whose data is acquired to be used for validating the technique 

developed. The reason why model B is used in addition to model A is because of the difference in 

the testing procedure conducted for both. While the bracing for model A was cut prior to running 

the test, the bracing for model B was cut when the test was running. 

 

 

 

 

 

(a) Model A 

 

(b) Model B 

Figure 4.1: Experimental models. 

4.2. Fundamental Theory of Multiple Degree of Freedom System 

As per Rao in [71], when any type of a system is allowed to vibrate freely after an initial 

disturbance, its frequency is the number of cycles of motion the system vibrates per second. 

However, with structural dynamics, a multi degree of freedom building needs to be reduced to 
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Figure 4.2: Model A. 
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Figure 4.3: Model A with bracing. 
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4.3.3. Experimental Procedure 

The experiment was conducted through the following procedure. The model was attached to the 

shake table which provide random excitation in order to see all the structural modes.  The sampling 

frequency of the data points used based on Nyquist– Shannon sampling theorem [15] was 200 Hz, 

and the procedure was performed as follows: 

(a) Test-1: The first test was ran for 1 minute, then the shaking was stopped, and that 

represented the undamaged test with all the bracing intact.  

(b) Test-2: As the apparatus was at rest, the first bracing on top was cut prior to the restart of 

the test, then the shaker was restarted, and likewise, Test-2 was recorded for another 1 

minute, and that represented the first damaged test.  

(c) Test-3: The same procedure was repeated as per Test-2 except that, it is the second from 

top bracing that was cut that represented the second damaged test.  

(d) Test-4: This was done similar to Test-2 except that, it is the third from top bracing that was 

cut, and that represented the third damaged test.  

(e) Test-5: This was again repeated as Test-2 except that, it is the fourth or the last from top 

bracing that was cut, and that represented the fourth or last damaged test.  

In total, there were five tests conducted (one undamaged and four damaged tests). After the final 

test, the data files were saved for each test. 
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4.3.4. Data Analysis 

 
Figure 4.4: FFT of UD vs. D data for channel 4. 

Table 4.1: Frequencies of UD and D data of model A. 
Mode ω (Hz) Amplitude (UD) ω (Hz) Amplitude (D) 

1 4.55 0.33 4.22 0.14 

2 9.15 0.39 10.02 0.62 

3 21.60 0.39 18.75 0.96 

4 26.14 1.00 25.02 1.00 

5 35.49 0.03 28.29 0.60 

6 47.41 0.04 38.76 0.14 

 

Using the experimental data with the sampling frequency of 200 Hz, the FFT for the undamaged 

(UD) and damaged (D) data is created. FFT generates corresponding displacement response 

spectra; hence, the natural frequencies and mode shape amplitude values were extracted from the 

displacement spectra of the undamaged and the damaged data using peak picking method [32]. 

With channel 4 being chosen because of its location which is not too flexible as the top of the floor 

or too rigid as the bottom, Figure 4.4 shows that the amplitude of Fourier spectra is higher for 

damaged FFT, an indication that the forced vibration induced by the shaker and the cutting of the 

braces have introduced some damage by reducing the structural stiffness. The damage is also 
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shown to be significant at the frequency of 28.29 Hz and 38.76 Hz as per table 4.1. On that other 

hand, the presence of damage in the structure causes changes in the frequency of the structure 

whereby the frequencies are mostly lower for the damaged than the undamaged frequencies. 

 
Figure 4.5: Coefficient a1, a2 and a3 for the UD vs. D data of channel 1. 

Since TVAR is sensitive to the choice of the model order, it therefore requires the right selection, 

as inappropriate model order only results in model parameters that will not characterize the 

underlying nature of the process, thereby, resulting in an inaccurate representation of the signal. 

To further establish the TVAR model, the smoothness constant which in this case is the Kalmen 

filter is applied. This is done in order to normalize the amplitude automatically inside the function 

so that the amplitude of the entire signal will be adjusted to have a maximum value of 1. Thus, for 

the time series result of model A shown in Figure 4.5, the model order of 18 is chosen, and the 

coefficient of a1, a2 and a3 for the undamaged versus damaged data shows that the damaged time 

series is more fluctuated, an indication of the effects of excitation and the damage induced as a 

result of cutting of the braces.  Subsequent results are in the following Figures. 
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Figure 4.6: RMS values of TVAR coefficients of channel-1 using model order of 18. 

 
Figure 4.7: RMS values of TVAR coefficients of channel-2 using model order of 18. 
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Figure 4.8: RMS values of TVAR coefficients of channel-3 using model order of 18. 

 
Figure 4.9: RMS values of TVAR coefficients of channel-4 using model order of 18. 

After selection of the right model order 18, results of time series of channels a1, a2 and a3 were 

obtained. Kalman filter is then applied for the normalization of data, and the RMS for all  

channels were created and plotted versus their coefficients as shown in Figures 4.6, 4.7, 4.8, 4.9, 

4.10 and 4.11. Hence, the following is the observation of the model performance: 
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 For channel 1 (Figure 4.6), coefficients a1 and a2 are showing the biggest RMS difference 

as indications of damage.  

 Same for channel 2 (Figure 4.7) whereby, coefficients a1 and a2 are also showing the RMS 

biggest difference.  

 As for channel 3 and 4 (Figures 4.8 and 4.9), damage were detected in all the coefficients 

with the exception of coefficients 8 and 13. 

 With channel 5 (Figure 4.10), damage were also detected in all the coefficients except in 

coefficients 10, 11 and 12. 

 Whereas for channel 6 (Figure 4.11), some damage were detected in all the coefficients 

except in coefficients 3, 8, 16 and 17. 

 
Figure 4.10: RMS values of TVAR coefficients of channel-5 using model order of 18. 
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Figure 4.11: RMS values of TVAR coefficients of channel-6 using model order of 18. 

4.3.5. RMS vs. Kurtosis 

Subsequent to applying the TVAR technique and obtaining the results for all the six channels, for 

comparison purposes, TVAR is supplemented with Kurtosis. By definition, Kurtosis is the measure 

of peakedness of distributions, and therefore, a distribution with kurtosis higher than 3 is referred 

to as Leptokurtic, and when the kurtosis less than 3 is Platykurtic; whereas for the Gaussian 

distribution, the kurtosis is 3 and is called Mesokurtic. In a nutshell, Kurtosis greater than 3 

indicates more data far from the mean or some peaks can be observed in the data distribution. If 

the kurtosis is less than 3, the data distribution is flat with short tails. With Kurtosis which can also 

be utilized as an important feature in representing fault condition, it is applied to channel 5 as per 

Figure 4.12. 
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Figure 4.12: Comparison of the RMS values of TVAR coefficients of channel-5 using model order of 18 

with Kurtosis of Si. 

Since Kalman filter have been applied to TVAR, under the same condition, Kurtosis results for 

the undamaged data shows that it is higher than 3, which means Leptokurtic for the following 

coefficients: 6, 8, 9, 10, 12, 14, 16, 17 and 18. For the damaged case, Kurtosis is Leptokurtic as 

expected in the following coefficients: 2, 3, 4, 6, 7, 10, 11, 14, 16, 17 and 18. In overall, Kurtosis 

is more leptokurtic for the damaged case, an indication of the presence of damage due to the 

excitation of the structure and the cutting of the braces. As for the Kurtosis coefficients less than 

3 or Platykurtic, out of the undamaged coefficients, there are more coefficients with Kurtosis that 

are Platykurtic. Whereas for the damaged case, there are less coefficients with Kurtosis that are 

Platykurtic, an additional indication that more damage is detected.  

With the six channels plotted in Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11, the coefficients are 

showing the biggest RMS difference in a1 and a2, and that is why a1 and a2 are chosen and plotted 

for all the channels in order to observe the performance of the model.  

Therefore, results are shown in Figures 4.13 for coefficient a1 and 4.14 for coefficient a2. Figure 

4.13 shows higher damage in channel 1, but damage is reduced in the subsequent channels due to 
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the locations of the channels close to the base which is more rigid compared to the top of the 

model. Whereas for Figure 4.14 for coefficient a2, damage is also significant in channel 1, but 

reduced in the rest of the channels. Since the biggest RMS difference is in channel 1 for coefficient 

a2, it is for this reason that it is further considered for damage localization as per Figure 4.15. 

 
Figure 4.13: RMS values of TVAR coefficients a1 using model order of 18. 

 

 
Figure 4.14: RMS values of TVAR coefficients a2 using model order of 18. 
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For damage localization as shown in Figure 4.15, RMS percentage difference in the energies of 

the signal of the damage and the undamaged data are considered and calculated. Where the highest 

RMS is, its corresponding channels should be where the damage is located. Thus for model A, the 

damage is located in channel 1 and 3, but less in channels 4, 5 and 6 due to the rigidity of the 

structure. As for channel 2, issues that might have contributed to it being less might be the location 

of the sensor or its placement on the structure. 

 

 

 

 

 

 

 

 

 

 

 

4.3.6. Conclusion 

Results shows that the AR model and parameters which define the general model structure, plus 

the coefficients which are realized by fitting the AR model to the data have allowed the model to 

infer with the dynamics of the data. That is how damage detection and localization is achieved. 

 

 

 

Figure 4.15: RMS percentage difference of TVAR coefficient a1 for damage localization. 
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4.4. Model B 

4.4.1. Description  

The model was a 10 DOF fabricated and welded structure, designed for the purposes of 

SHM studies under Dr. Ayan Sadhu at the Lakehead University department of Civil Engineering. 

It comprised of four columns of steel tubes with plates on each story welded onto the columns.  

 

4.4.2. Description of all experiments 
 

 
(a) Free vibration                                                                            (b) Forced vibration with braces 

Figure 4.16: Model B vibration testing. 

 

4.4.3. Model B Testing Set-up 

A partial layout of the experiments conducted on the structural model is shown in Figure 

4.17, with the sensor locations and labels of the sensors being indicated by numbers in Figure 4.16 

(a) and (b). Whereas table 4.2 shows the descriptions of all the experiments performed. Some of 

the tests conducted were symmetrical about the x and y axis, hence, one direction is only shown.  
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Figure 4.17: Braced structure resting on top of the shaker table. 

4.5. Experimental Procedure of Model B 

For the vibration testing, wires used as braces were hand tightened on to the model as per 

Figure 4.17. Free vibration tests were then conducted, thereafter, the damage tests were performed 

as follows: 

(a) The model was randomly shaked for 5 seconds.  

(b) Data was then collected for 10 seconds.  

(c) The bracing was immediately cut after the 10 seconds. 

(d) Data collection was continued for another 10 seconds. 

(e) Data collection and random shaking were then stopped. 

(f) Test restarted and the bracing of the structural model were then cut during tests 20 through 

29. 
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4.5.1. Braced Vibration Testing Descriptions 

Table 4.2: Summary of vibration testing of building model with bracing. 
Excitation Description Bracing 

Random Shaking  All Floors Braced  

Random Shaking  Front face brace on Top floor cut mid test  

Random Shaking  Rear face brace on Top Floor cut mid test  

Random Shaking  Front face brace on 4th floor cut mid test  

Random Shaking  Rear face brace on 4th Floor cut mid test  

Random Shaking  Front face brace on 3rd Floor cut mid test  

Random Shaking  Rear face brace on 3rd Floor cut mid test  

Random Shaking  Front face brace on 2nd Floor cut mid test  

Random Shaking  Rear face brace on 2nd Floor cut mid test  

Random Shaking  Front face brace on 1st Floor cut mid test  

Random Shaking Rear face brace on 1st Floor cut mid test 

 

For data collection, the sampling frequency of the data points was set to 200 Hz. With the 

accelerometer placed to detect the accelerations felt on each floor, motions are relayed into a 

computer, and a text file is created which contains data points of acceleration and timestamp.  
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4.5.2. Results  

 

Mode ω (Hz) Amplitude (UD) ω (Hz) Amplitude (D) 

1 2.346 0.211 2.397 1.000 

2 11.340 0.093 6.507 0.081 

3 19.780 0.259 10.620 0.080 

4 24.390 0.426 17.240 0.061 

5 29.790 0.145 23.390 0.354 

6 46.360 0.150 42.580 0.463 

 

Whereas for Figure 4.18 for model B, likewise, the sampling frequency of 200 Hz were used for 

channel 4 to create the FFT for the UD and D data. As a result, the FFT shows higher Fourier 

amplitude in almost all the six modes, with significant damage at 42.580 Hz which is lower than 

the UD frequency of 46.360 Hz as per table 4.3.  

Table 4.3: Frequencies of UD and D data of Model B. 

Figure 4.18: FFT of UD vs. D data for Channel 4. 
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Figure 4.19: Coefficient a1, a2 and a3 for the UD vs. D data of channel 7. 

The time series result of model B in Figure 4.19 shows more fluctuations in the D than the D. 

Unlike the model order 18 which worked best for model A, it is model order 16 which is chosen 

for model B, and the way the order is chosen is illustrated in the below section 4.5.3. 

 

  4.5.3. Illustration of how the Model Order is Chosen 

In selection of the model order, RMS values for each coefficients under undamaged and damaged 

case are determined as the time-domain features to measure the changes in the energy content of 

the signal. The RMS values are then observed as model order are applied until the optimal model 

order is identified using trial and error method. This practice is shown in Figure 4.20 versus 4.23 

using channel 11 to observe the differences in order to choose the best fitted model.  
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Figure 4.20: RMS values of TVAR coefficients of channel-11 using model order of 8. 

Using channel 11 as a benchmark, the choice of model order 8 is disregarded due to the fact that 

it didn’t fit the model as shown in Figure 4.20 where damage is not detected very well. Whereas 

for Figure 4.23, model order 16 became the best fit as the observation of the RMS versus 

coefficients shows some indications of damage in all the coefficients. This allows the model to be 

further analyzed with the right choice of the model order 16.  

 

The application of TVAR provide the resulting Figures 4.21 and 4.22 which shows that, the model 

is capable of detecting damage as being reflected in almost all the coefficients. The only exception 

is that, in coefficient 12 for Figure 4.21, it shows slightly higher undamaged RMS and lower 

damage RMS. Whereas for Figure 4.22, there are more damage coefficients with higher RMS. In 

Figure 4.23, RMS values is higher for all the damaged coefficients. For the sake of comparison, 

Kurtosis is applied to channel 4 as per Figure 4.24. 
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Figure 4.21: RMS values of TVAR coefficients of channel-4 using model order of 16. 

 
Figure 4.22: RMS values of TVAR coefficients of channel-5 using model order 16. 

 
Figure 4.23: RMS values of TVAR coefficients of channel-11 using model order of 16. 
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4.5.4. RMS vs. Kurtosis 

Result on Figure 4.24 shows that for the undamaged case, Kurtosis is Leptokurtic (higher than 3) 

for the following coefficients: 2, 3, 7 and 12. For damaged case, it is Leptokurtic in coefficients 2, 

4, 6, 7, 8, 10 and 14, which means more Leptokurtic Kurtosis in the damaged coefficients than the 

undamaged coefficients. In overall, out of the 16 coefficients, there are less Kurtosis that are 

Platykurtic in the damage coefficients, a sign that Kurtosis is similarly capable of detecting damage 

in model B.  

 
Figure 4.24: Comparison of the RMS values of TVAR coefficients of channel-4 using model order of 16 

with Kurtosis of Si 
 

Subsequent approach for model B is to average all the 12 channels using TVAR so as to further 

analyze the model accordingly. The RMS average of all the channels and their corresponding 

coefficients is shown in Figure 4.25. The average of RMS values of ai versus channel number in 

Figure 4.25 shows that the model is best fitted. Channel 4 shows 0.578 undamaged RMS and 0.344 

damaged RMS. For channel 8, it shows 0.576 undamaged RMS and 0.204 damaged RMS. In 

overall, the performance of the model indicates that there are more damage channels being 

observed than the two undamaged channels 4 and 8 with little higher RMS. 
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Figure 4.25: Average of RMS value of ai vs. channel number using model order of 16. 

 

Since coefficient a1 and a2 are showing the biggest difference in terms of higher RMS, a1 and a2 

will be plotted for all the different channels. This is shown in Figures 4.26 for coefficient a1 and 

4.27 for coefficient a2. 

 
Figure 4.26: RMS values of TVAR coefficients a1 using model order of 16. 
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Both Figures 4.26 and 4.27 shows that, the coefficient of channel 1 has the highest RMS. That 

leads to the identification of the damage whereby, RMS percentage difference in the energies of 

the signal of the damage and the undamaged data is calculated with the results shown in Figure 

4.28 which shows that damage is highest in channel 1 

 
Figure 4.27: RMS values of TVAR coefficients a2 using model order of 16. 

 
Figure 4.28: RMS percentage difference of TVAR coefficient a1 for damage localization. 
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4.5.5. Conclusion 

The model performance shows that it is capable of damage detection and localization. Damage 

localization appeared in channel 1 because the top of the floor level is prone to more vibration as 

opposed to the base of the floor which is rigid because of its attachment to the base. On the other 

hand, channel 4 seems to have exhibit less damage and that might be due to factors such as the 

location of the sensor, placement or more structural stiffness where the sensor is placed. 
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5. FULL SCALE VALIDATION 

5.1. Description 

The data obtained is from an actual cable-stayed bridge with an implemented SHM system 

[72], which monitors vehicle loads, cable stresses, girder strains, accelerations, wind, temperature, 

and humidity, employed as the benchmark structure by HIT. The bridge which is shown in Figure 

5.1, is one of the first cable-stayed bridges constructed in mainland China [73, 74]. The bridge 

consists of a main span of 260 meters (m), and two side spans of 25.15 + 99.85 meters each. The 

length of the bridge is 510 meters long and 11 meters wide, which comprised of 9 meters for the 

vehicles and 2 x 1 meters for the pedestrians. The concrete bridge tower consist of two transverse 

beams, which is 60.5 meters tall, and was constructed using sliding formwork technology. The 

main girder was assembled from 74 precast concrete girder segments, formed continuously by 

cast-in-place joints that connect the girder ends and form transversely reinforced diaphragms [73, 

74]. 

The 2 x 41.6-meters prestressed girder of the side span was built on the site using formwork 

supported by temporary false work. There are a total of 88 pairs of cables containing steel wires, 

which is 5 millimeters in diameter. The minimum number of steel wires within a cable is 69 and 

the maximum is 199. The design cable tension forces under dead load range from 559.4 to 1,706.8 

Kilo-Newton (kN), and the stress is approximately 450 Mega pascal (MPa); whereas the design 

stress in the cables due to live load is 160 MPa. The construction of the bridge started in 1983, and 

it became operational to traffic in December 1987 [73, 74]. 

After 19 years of operation, cracks with a maximum width of 2 centimeter (cm) were 

observed at the bottom of a girder segment over the mid-span, and these cracks may have been 

induced by overweight vehicles, as the weights and the volumes of vehicles on the bridge are much 

greater than anticipated in the original design. The stay cables, especially those near the anchors 
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were severely corroded and repairs were conducted between 2005 and 2007 where the girder over 

the mid-span was recasted, and all of the stay cables were replaced [73, 74]. 

 
Figure 5.1: General view of the investigated bridge [73]. 

 

 

Figure 5.2: Sensor setting and smart cable embedded with OFBG sensors of SHM system [73]. 
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5.2. Full Scale SHM Established System 

During the repair and rehabilitation process, a sophisticated SHM system was designed for 

the bridge and implemented by the Center of SMC at HIT [72]. A diagram of the SHM system is 

shown in Figure 5.2. As part of the SHM system, more than 150 sensors were installed on the 

bridge’s cables, towers, and girders, and data acquisition devices were located in the control room. 

Fourteen uniaxial accelerometers were permanently installed on the deck, and one biaxial 

accelerometer was attached to the top of the south tower so as to monitor the horizontal oscillation 

of the tower [73, 74]. 

An anemoscope and a temperature sensor were also attached to the top of the south tower 

to measure the 3-D wind velocity and ambient temperature respectively. A WIM system was 

mounted on the bridge deck for all lanes, and Optical Fiber Bragg Grating (OFBG) sensors were 

embedded into the newly cast concrete, or welded onto the girder - the existing concrete, for strain 

and temperature measurement at some critical locations which is S1–S4 as shown in Figure 5.2 

(top Figure) [73, 74]. 

In the study by HIT, smart cables with embedded OFBG sensors shown in Figure 5.2 

(bottom Figure) were employed in the SHM system so as to record the time history of the cables’ 

stresses. Peripheral Component Interconnect Based Techniques and a LabVIEW-based acquisition 

program were employed for data collection. A wireless Motorola instrument was installed on top 

of the south tower to transmit data from the personal computer on the bridge site to the server at 

the toll station - with 2 MB of information at a time transmitted across 15 km. Thereafter, all the 

measured data from the sensors and structural information were saved and managed in an SQL 

Server 2000 database on the main server. Li et al. in [75] provided the detailed information on the 

SHM system including the DAQ system and the data transmission system. 
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5.3. Description of data 

The following information is from the data manual which addressed the data contained in 

the online database, controlled by the HIT [72]. Based on the study, the acceleration and 

environmental conditions collected by the SHM system were done in the following months: 

January 1, January 17, February 3, March 19, March 30, April 9, May 5, May 18, May 31, June 7, 

June 16 and July 31, 2008. These were selected as the benchmark time history of the bridge, from 

a healthy status to a damaged one [74].  

While considering the effects of temperature and the wind velocity might have certain 

impacts on model parameters of cable-stayed bridges [72], the environmental conditions of the 

corresponding accelerations were also reported in the study. For the acceleration data, there are a 

total of 17 columns. In each file, the first column represents the measurement time and the next 16 

columns denote the acceleration time history, which were collected using 14 uniaxial 

accelerometers that had been installed on the bridge deck, and 1 biaxial accelerometer affixed on 

the top of south tower. The sampling frequency of the acceleration is 100 Hz [74]. 

 

5.4. Field Testing 

For the field testing acceleration, there are a total of 18 accelerometers which were used to 

measure the semi-span acceleration of the upriver or downriver lanes each time. The 1st to 18th 

accelerometers were located from the side span to the mid-span, which is labeled as 1 through 18 

at the south tower side, or 1’ through 18’ at the north tower side as per Figure 5.3.  

 
Figure 5.3: Accelerometer location in the field testing [75]. 
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The locations on the south tower side and the north tower side were symmetrical. The 

reference sensor selected was Accelerometer 18 as modeled by HIT.  As for the vibration field 

testing [72, 74], it was conducted four times, once each day from the 7th to the 10th of August 2008. 

The acceleration files were described as follows according to the data manual:  

(1) Filename ACC08-8-7: Semi-span of downriver acceleration on the south tower side, 

measured on August 7, 2008 with a 32 Hz sampling frequency. 

(2) Filename ACC08-8-8: Semi-span of downriver acceleration on the north tower side, 

measured on August 8, 2008 with a 20 Hz sampling frequency. 

(3) Filename ACC08-8-9: Semi-span of upriver acceleration on the north tower side, measured 

on August 9, 2008 with a 20 Hz sampling frequency. 

(4) Filename ACC08-8-10: Semi-span of upriver acceleration on the south tower side, 

measured on August 10, 2008 with a 20 Hz sampling frequency. 

Each file has its own file heading which included the beginning and ending time of testing, 

sampling frequency, actual sensitivity (V/g) and the channel number. In accordance to the structure 

of the data collected, there were a total of 36 columns in each file, whereby, 18 accelerometers 

were used each time. The odd number columns give the time while the even number columns were 

the acceleration measurements (V). 
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5.5. Results of full-scale data 

 
Figure 5.4: FFT of UD – Jan Data vs. D - May data for channel 16. 

 
Table 4.4: Frequencies of UD and D full scale HIT data. 

Mode ω (Hz) Amplitude (UD) ω (Hz) Amplitude (D) 

1 1.4430 0.0024 1.4290 0.0141 

2 2.1080 0.0021 1.9730 0.0122 

3 3.7070 0.0012 2.7230 0.0095 

4 6.7600 0.0063 6.5860 0.0175 

5 7.7650 0.0014 7.9100 0.0284 

6 8.7380 0.0011 8.8320 0.0018 

 

For the data acquired from HIT, environmental factors and traffic were considered as damaged 

contributors. With less damage starting from the data collected in January to more damage in the 

subsequent months, Jan and May were chosen and compared as per Figure 5.4. As a result, the 

undamaged Fourier spectra for Jan data versus damaged FFT for may data shows that damage is 

observed in all the six modes, as the amplitude of the damaged (May data) is higher than the 

amplitude of the undamaged (Jan data). It also shows that frequency is low in the damaged data 

than the undamaged data as shown in table 4.4 for the first to the fourth mode. This leads to the 

observation of the time series results as per Figure 5.5. 
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Figure 5.5: Coefficient of a1, a2 and a3 for the UD – Jan vs. D – May data. 

For the HIT full-scale study, it is model order 12 which fits, therefore, Figure 5.5 shows the time 

series of the undamaged (Jan data) and the damaged (May data), adjusted accordingly with the 

Kalman filter, so as to have the amplitude of the signal with a maximum value of 1, an indication 

of the correct model being used. The time series shows smooth pattern in the HIT data because 

unlike model A and model B which were excited by the shaker and damage induced by cutting of 

the braces, it is the environmental factors which contributed to the bridge damage. 

To further observe the performance of the model developed for the HIT data, RMS values for each 

coefficient under undamaged and damage case is determined so as to measure the energy content 

in a signal. Therefore, Figure 5.6 is created which shows higher RMS for damaged coefficients 1, 

2, 4, 6, 7, 8, 9, 11 and 12.  

Since the RMS biggest difference is shown in coefficient a1 and a2 in Figure 5.6, they are then 

plotted for different channels. Thus, Jan, March and May were chosen and compared while plotting 

coefficient a1 and a2 so as to further observe the performance of the model, and that is shown in 

Figure 5.7 for coefficient a1 and 5.8 for coefficient a2 which shows the results with healthy, 

moderate and significant damage. In both Figures 5.7 and 5.8, comparing January, March and May 

in each Figure, the month of January that is considered healthy has low RMS in all the channels, 

but more lower at channel 10 for both Figures. The month of March shows moderate damage but 
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also very low RMS at channel 10 for both cases. Likewise, the month of May shows significant 

damage with also very low RMS at channel 10.  

 
Figure 5.6: RMS Values of TVAR coefficients ai using model order of 12. 

 

 
Figure 5.7: RMS values of TVAR coefficients a1 using model order of 12. 
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Figure 5.8: RMS values of TVAR coefficients a2 using model order of 12. 

For both Figures 5.7 and 5.8, the main difference is the higher RMS values in all the channels of 

a1 than a2 for the healthy, moderate and significant damage. Since damage is detected in the HIT 

data, further approach is to determine damage localization whereby a1 is considered. 

 

5.6. HIT Damage Localization 

In addressing the damage localization, RMS percentage difference of May (significant damage) 

and Jan (healthy) is computed with its results shown in Figure 5.9 which clearly shows that the 

highest percentage difference is in channel 16, and that should be where the damage is located. 

 
Figure 5.9: RMS percentage difference of TVAR coefficient a1 for damage localization. 
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5.7. Conclusion 

With the HIT data results, it is fair to say that in overall the model worked as per its intended 

function in detecting and localizing damage. It seems that for all the cases of coefficients a1 and a2 

which is considered, it is common for both cases that channel 10 didn’t show higher RMS. Further 

investigation regarding the location of the channel in Figure 5.3 shows that, channel 10 is located 

right where the bride support is, which should have less vibration. Whereas for the damage 

localization, it falls right in channel 16 simply because channel 16 is located almost in the middle 

of the bridge which should exhibit more vibration as there is no support directly underneath the 

bridge where channel 16 is attached. 
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6. TECHNIQUE USED FOR COMPARISON  

6.1. Stochastic Subspace System Identification  

In recent years, system identification of engineering structures such as buildings or bridges 

has received considerable interest [76]. Through the identification process, the modal 

characteristics of the observed structures can be determined. System identification methods are 

well explained by Juang and Ljung in [77, 78]. According to Van Overschee and De Moor [79], 

among many existing system identification algorithms, N4SID (Numerical Subspace State Space 

System Identification) identifies the system with an easy parameterization and a fast non-iterative 

convergence. The N4SID algorithm estimates the structural model in state-space form from which 

modal properties can be extracted. The algorithm can be applied to systems subjected to known or 

unknown excitation [80]. 

 

6.2. Stochastic Subspace Identification Theory  

Mathematically, the system is described in [80] by the following stochastic state-space 

model: 

kkkk wBuAxx 1                                                                                                       (6.1a) 

kkkk vDuCxy 1                                                                                                               (6.1b) 

where kx  is the state vector, ku  is the vector of input forces, and ky  is the vector of output 

measurements, and A, B, C, and D are the system matrices of appropriate dimensions to be 

estimated. kw  and kv  are the process noise and the output measurement noise vectors. Both are 

assumed to be zero mean, white Gaussian with a covariance matrix as follows: 
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where E is the expected value operator. The Kronecker delta pq  means 0pq  if qp  , and 

1pq  if qp  . 

The stochastic identification is performed by determining the order n of the system and the 

system matrices A, C, Q, S, and R. The output measurements are used to construct a block Hankel 

matrix that can be divided into a past and a future part: 
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The subscripts of 120 iY  denote the subscript of the first and last element in the first column 

of the block Hankel matrix. The value of i must be greater than the maximum order of the system 

that must be identified. For statistical reasons, it is assumed that j . The Hankel matrix can 

be divided into 2 parts, pY  and fY , which denote past and future, respectively.  

In van Overschee and de Moor [82], iP  is defined as the projection of the row space of the 

future outputs on the row space of the past outputs as follows:  

pfi YYP / .                                                                                                                           (6.4) 

The main stochastic subspace identification theorem states that, the projection iP  is equal 

to the product of the extended observability matrix i  and the state sequence iX is represented as, 

   11
1



 jiii
Ti

iii xxxCACACXP  .                                                   (6.5) 

i  and iX  can be extracted using the singular value decomposition (SVD) of the projection iP  as 

follows: 
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U and V are unitary matrices, and S is a diagonal matrix; U1, V1, and S1 are similar to U, V, and S 

without their zero singular values. The extended observability matrix i  can be recovered from 

the SVD of the projection iP  as, 

2/1
11 SUi  .                                                                                                                         (6.7) 

The state sequence   is the other half of the decomposition. 

T
i VSX 1

2/1
1 .                                                                                                                          (6.8) 

The system matrices A and C can be determined in the following system equation: 
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where iiY  is a block Hankel matrix with only 1 row of outputs. This set of equations can be easily 

solved for A and C. Since the Kalman filter residuals vw  ,  are uncorrelated with iX , it is natural 

to solve the set of equations in a least square approach because the least square residuals are 

orthogonal and uncorrelated with the regressors iX . 

After identifying the system matrices, the modal analysis is started by performing an 

eigenvalue decomposition of the system matrix A to obtain the eigen values i  and the eigen 

vectors i . The modal frequency i  and modal damping i  are computed from the following 

formulas: 

iiiiiii ii   21                                                                                              (6.10) 

and
22
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ii
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iiii







 .                                                                     (6.11, 6.12) 

The mode shape matrix is found from 

CΦ  .                                                                                                                        (6.13) 
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Finally, in order to assure the quality of the estimated modal vectors, the modal assurance 

criteria (MAC) are used to measure a consistency between the estimated modal vector and the 

measured modal vector. The MAC of each mode can be computed from the following equation: 
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i
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ˆ 2

 .                                                                                                                               (6.14) 

where î  is the identified modal vector, and i  is the measured modal vector. 

The N4SID computations are performed in MATLAB, and the stochastic subspace 

identification algorithm is implemented using the function N4SID in [83]. It is well known that 

the accuracy of any system identification technique depends on the level of signal to noise ratio. 

The modal parameters are identified from structural responses and input forces with the sampling 

rate.  

 

6.3. Data Analysis 

The data used for the N4SID method for comparison is the experimental validation 6-DOF model 

A, described in section 4.3. The method is used for comparison purposes because it is an important 

tool that captures the frequency changes. Whereas the TVAR developed captures the changes in 

the time domain, the N4SID tracks the changes in the frequency domain.  

 

Figure 6.1 shows the acceleration time plot of the raw UD and D data in time domain. The damage 

acceleration seems dominant because of the excitation of the experimental model through forced 

vibration using the model shaker and the cutting of the braces. Whereas in Figure 6.2, it shows the 

data Spectra of the raw UD and D data. The frequencies of the damaged data are more clearly seen 

than the undamaged data. 
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Figure 6.1: Time Plot of the raw UD and D data 

 

 
Figure 6.2: Data Spectra of the raw UD and D data 
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Figure 6.3: Frequency Function of the raw UD and D data 

Similarly, Figure 6.3 shows the frequency function of the raw UD and D data. It is clear that after 

frequency of 48 Hz, there are more visible fluctuations in the D data, similar to what is seen in the 

application of the TVAR in Figure 4.5. 

 

After preprocessing the data by removing the mean followed by the separation of the data into 

equal half as model estimation and the model validation, the stochastic subspace method is applied 

to the data. The reason mean values are subtracted from each signal is to build a linear models that 

describe the responses for deviations from a physical equilibrium. With steady-state data, it is 

reasonable to assume that the mean levels of the signals correspond to such equilibrium. Therefore, 

one can seek models around zero without modeling the absolute equilibrium levels in physical 

units [84].  

 

According to Peeters and De Roeck [85], an important issue is the determination of the 

model order. Theoretically, this choice is based on a singular value plot which is one step of the 

subspace method, but practically, it is more useful to choose the order by considering a 
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stabilization diagram. The stabilization of the modal parameters can be plotted against the model 

order. The order where the eigen frequencies, damping ratios and mode shapes remain stable is 

then selected [85]. Nonetheless, for the model order selection, the model order of 18 that is applied 

to the main TVAR technique developed is likewise used in the N4SID so as to maintain the model 

under the same condition for comparison purposes. The application of N4SID with model order 

18 resulted into the SSI model response in Figures 6.4 and 6.5.  

 
Figure 6.4: N4SID model frequency response for the UD and D data using model order 18 

 

Table 6.1: Frequency response table 
 Channel i 

Mode UD 

ω 

(Hz) 

D 

ω 

(Hz) 

1 8.911 9.27 

2 21.37 18.73 

3 26.19 24.90 

4 45.14 28.22 

5 64.60 38.77 

6 82.34 58.19 
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Table 6.2: Noise spectrum frequencies 
 Channel i 

Mode UD 

ω 

(Hz) 

D 

ω 

(Hz) 

1 8.69 5.74 

2 20.87 9.42 

3 26.25 18.72 

4 46.06 24.91 

5 64.55 28.18 

6 80.51 38.76 

 

Figure 6.4 shows the N4SID model frequency response for the UD and D data, and Figure 6.5 

shows N4SID model noise spectrum for the UD and D data. Both N4SID Figures 6.4 and 6.5 

shows linear responses and the signal-to-noise ratio is very well represented.  In Figure 6.5, the 

high quality signals with clear peaks in the power spectra are also represented.  

 

On the other hand, the frequency response in Table 6.1 corresponding to Figure 6.4 shows 

existence of damage in all the frequency modes except for mode 1; whereas in Table 2 

Figure 6.5: N4SID model noise spectrum for the UD and D data using model order 18 
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corresponding to Figure 6.5, the frequency mode shapes are well represented, as all the six 

frequency modes for the D is less than the UD modes, a clear indication of damage being 

represented in the model. 

 

Another useful tool to validate the identified state space model is converting it to theoretical 

expressions for the output spectra and comparing these spectra with that obtained via FFT on the 

data [85]. Therefore, in comparing the model frequencies obtained in the SSI and the spectra 

obtained via FFT on the data in Table 4.1, the frequencies are comparably the same. On the other 

hand, the SSI technique is able to detect frequencies beyond the natural frequencies obtained 

using FFT on the data, an indication that it is an important technique that can also be used for 

damage detection for SHM purposes. 

 

6.4. Conclusions 

The effectiveness of the stochastic subspace identification algorithm to estimate modal parameters 

of the experimental model A is demonstrated. Based on the acceleration responses, the algorithm 

is capable of identifying natural frequencies and mode shapes of the structure with reasonable 

accuracy. The algorithm is quite efficient computationally and is therefore implemented using the 

N4SID function in MATLAB.  
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7. SUMMARY AND CONCLUSION  

In this thesis, a SHM technique is proposed for the purpose of detecting, tracking, and evaluating 

structural damage and deterioration during in-service condition, as well as extreme events. The 

study is conducted so as to ardently understand the effective performance of structures, and detect 

operational anomalies in order to meet the required standards for the SHM. In pursuance of 

applying the proposed data-driven technique, the data collected on site are essentially paramount. 

Data inherently used are mainly obtained from experiments, as well as the data acquired from the 

Harbin Institute of Technology in fulfillment of a full-scale validation. The technique developed 

is the TVAR model, a method by virtue of its nature is applicable for modeling data whose spectral 

content varies with time. In a nutshell, TVAR largely consists of a three-step process: state-space 

modeling of data, employing an adaptive filter framework for dynamic AR model estimation, and 

using the resulting TVAR model to infer the dynamics of the data. Intrinsically, the AR model is 

composed of parameters that define the general structure of the model, and the coefficients are 

realized by fitting the AR model to the data. Therefore, TVAR coefficient time functions need to 

slowly vary with time so as to have the model achieve the desired spectral representations. Several 

parametric features including RMS and Kurtosis are used to measure the energy content of a signal, 

and containing signature of structural damage. Unlike other TVAR-based approaches in the 

literature, the proposed method is free of any pre-identification step where the vibration data is 

directly fed into the TVAR modeling. The proposed TVAR technique detects not only the 

occurrence of structural damage, but also the location of damage. Such damage localization is 

performed by analyzing relative difference in the energy of the damage and the undamaged 

coefficients of vibration data. Using both experimental and full-scale studies, it is shown that the 

proposed TVAR technique can be used effectively to detect and localize damage. For comparison, 

Stochastic Subspace System Identification (SSI) method is applied to the experimental data. The 

method is used because it is an important tool that captures the frequency changes, as the SSI 
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tracks the changes in the frequency domain. Based on the acceleration responses, the algorithm is 

capable of identifying natural frequencies and mode shapes of the structure with reasonable 

accuracy. Both techniques can therefore be considered as a useful tool for SHM.  

 

7.1.Future Work  

In this thesis, the following are considered as future work:  

(1) Write a paper to compare the TVAR technique with the N4SID technique or other 

techniques on similar structure. 

(2) Explore the proposed TVAR technique on pipeline data acquired wirelessly and 

transmitted remotely to monitor leaks in pipes. 

(3) Use the time-series modeling to forecast wind speed for the effective performance of wind 

turbine and time forecast of solar energy. 

(4) Employ the proposed technique on data collected from mechanical equipment such as the 

gear box and any other oilfield equipment. 
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