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The parapoxvirus orf virus (ORFV) encodes a chemokine-binding protein

(CBP) that functions to downregulate the host’s immune response at the site of

infection by blocking the chemokine-induced recruitment of immune cells. In

order to shed light on the structural determinants of CBP–chemokine binding,

ORFV CBP was crystallized as part of an ongoing structure–function study on

this protein. ORFV CBP crystals were obtained by the sitting-drop vapour-

diffusion technique using ammonium citrate as a precipitant. The crystal quality

was greatly improved through the addition of small-molecule additives to the

crystallization mother liquor. ORFV CBP crystals diffracted X-rays to 2.50 Å

resolution and belonged to the hexagonal space group P6122 or its

enantiomorph P6522, with unit-cell parameters a = b = 75.62, c = 282.49 Å,

� = 90, � = 90, � = 120�.

1. Introduction

Chemokines are small (8–14 kDa) secreted proteins that regulate

inflammation-induced leukocyte recruitment to the sites of infection

as well as the homeostatic migration of leukocytes through lymphoid

organs (Baggiolini, 1998). Members of the chemokine superfamily

can be classified into four subfamilies (CC, CXC, CX3C or C, where

X is any residue) based on the arrangement of the highly conserved

cysteine residues that are involved in disulfide-bond formation at the

N-terminus (Rollins, 1997). Chemokines function as attractants to

leukocytes, signalling through G-protein-coupled receptors (GPCRs)

on the cell surface (Murphy, 1994). The association of chemokines

with glycosaminoglycans (GAGs) in the extracellular matrix facil-

itates the retention of these molecules and the formation of a con-

centration gradient radiating from chemokine-producing cells (Yu et

al., 2005; Proudfoot et al., 2003; Hoogewerf et al., 1997; Middleton et

al., 1997). Secretion of pro-inflammatory chemokines is upregulated

during viral infections (Baggiolini, 1998) and in some autoimmune

diseases (Rotondi et al., 2007). Despite the poor sequence identity

observed for members of the chemokine superfamily, they share a

similar tertiary structure (an N-terminal extended loop and a

C-terminal Greek-key motif formed by a three-stranded �-sheet) and

bind to their cognate receptors with picomolar affinities (Fernandez

& Lolis, 2002; Lau et al., 2004).

Members of the chordopoxvirus subfamily encode a set of secreted

proteins called chemokine-binding proteins (CBPs). They disrupt

chemokine signalling and prevent leukocyte recruitment to the site

of infection (Smith et al., 1997; Lateef et al., 2009; Seet et al., 2003;

Alcami et al., 1998; Graham et al., 1997). Furthermore, a subset of

poxviral proteins called vCCIs has been described which bind

chemokines from the CC subfamily with picomolar affinity (Smith et

al., 1997; Lateef et al., 2009). To date, four structures of vCCIs are

available: the vCCIs from rabbitpox virus (PDB code 2ffk; Zhang et

al., 2006) and cowpox virus (PDB code 1cq3; Carfi et al., 1999), the

EVM1 protein from ectromelia virus (PDB code 2grk; Arnold &

Fremont, 2006) and the A41 protein from vaccinia virus (PDB code

2vga; Bahar et al., 2008). EVM1 and the first two vCCI proteins share

between 80 and 85% sequence identity. On the other hand, the

vaccinia virus A41 protein is only 22% identical in sequence to the
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ectromelia virus EVM1 protein. All these viral chemokine-binding

proteins share a conserved �-sandwich topology with no resemblance

to GPCRs (Arnold & Fremont, 2006; Bahar et al., 2008; Carfi et al.,

1999; Zhang et al., 2006). Structural studies of vCCIs in complex with

host CC chemokines (Carfi et al., 1999; Zhang et al., 2006) and

mutagenesis experiments (Beck et al., 2001; Arnold & Fremont, 2006)

have shown that the ability of vCCIs to bind different host chemo-

kines arises from the presence of a patch of charged residues on

�-sheet II of the viral protein. These studies suggest a general

mechanism of action for vCCIs that involves binding of the targeted

CC chemokine at the site through which the chemokine would

normally interact with its host-cell receptor, thus blocking their

ability to deploy effectively during infection or inflammation (Arnold

& Fremont, 2006; Bahar et al., 2008; Beck et al., 2001; Carfi et al., 1999;

Zhang et al., 2006; Seet et al., 2003).

Orf virus (ORFV) is the prototypical parapoxvirus, but the

sequence of its chemokine-binding protein has low identity to other

viral chemokine-binding proteins (the highest identity is 18%). Also,

its sequence contains only six of the eight cysteine residues that are

conserved in other poxvirus chemokine-binding proteins. In vitro,

ORFV CBP has shown the unusual ability to bind chemokines from

two different subfamilies: CC and C (Seet et al., 2003). These results

suggest that ORFV CBP does not fit well within the vCCI family and

may represent a unique subclass of chemokine-binding protein.

Previous work has also shown that ORFV CBP can dampen the

inflammatory response in a mouse skin model (Lateef et al., 2009). In

order to define how ORFV CBP interacts with chemokines and to

elucidate whether it comprises a unique chemokine-binding fold, we

are working to determine its three-dimensional structure. Here, we

describe the expression, purification and preliminary X-ray analysis

of the chemokine-binding protein from ORFV.

2. Materials and methods

2.1. Expression and purification of ORFV CBP

The coding region for the CBP from ORFV strain NZ2 (GenBank

ABA00630.1) was amplified from the pAPEX-3 vector (Seet et al.,

2003) by PCR using the forward primer 50-CGC GAA TTC GCC

ACC ATG AAG GCG GTG TTG TTG CTG-30 and the reverse

primer 50-GCG AAG CTT TCA GTG GTG GTG GTG GTG GTG

GGA CTG GAA GTA CAG GTT TTC ATT GCC AGG GTT GAG

GTT AAG-30 (bold nucleotides indicate restriction sites: EcoRI on

the forward primer and HindIII on the reverse primer). The ORFV

CBP amplicon was introduced into the EcoRI/HindIII sites of

plasmid pTT5 (Zhang et al., 2009), a derivative of vector pTT

(Durocher et al., 2002). The recombinant DNA construct was intro-

duced into Escherichia coli strain DH5� (Bethesda Research

Laboratories, 1986) through electroporation (Sambrook & Russell,

2006). Milligram quantities of pTT5/CBP plasmid were isolated from

E. coli DH5� cells grown on liquid ZYM-505 medium (Studier, 2005)

using the Plasmid Mega Kit from Qiagen (Valencia, California,

USA). ORFV CBP was produced following transient transfection of

suspension-growing HEK293-6E cells with pTT5/CBP following the

method developed by Durocher et al. (2002). The recombinant

protein expressed from HEK293-6E included a C-terminal TEV

protease-cleavable His6 tag (the His6 and TEV cleavage site were

introduced into the ORFV CBP construct through the reverse primer

during cloning). Secreted His6-tagged ORFV CBP was purified from

the cell-culture medium 144 h post-transfection by immobilized

metal-ion affinity chromatography (IMAC) in the following manner.

HEK293-6E cells were removed from the culture medium by

centrifugation (5000g for 10 min). To the clarified cell medium,

sufficient 1.0 M Tris–HCl pH 8.0, 50%(v/v) glycerol, 5.0 M NaCl and

1.0 M imidazole pH 8.0 was added to achieve a final concentration of

50 mM Tris–HCl, 10%(v/v) glycerol, 150 mM NaCl and 30 mM

imidazole. The conditioned cell medium was concentrated using a

stirred cell (model 8400, Amicon) fitted with a regenerated cellulose

ultrafiltration membrane (YM10, 76 mm diameter; Millipore,

Billerica, Massachusetts, USA) and applied onto a 5 ml HisTrap FF

Crude column (GE Healthcare) pre-equilibrated with equilibration

buffer [50 mM Tris–HCl pH 8.0, 10%(v/v) glycerol, 150 mM NaCl and

30 mM imidazole]. The column was washed with 20 column volumes

of equilibration buffer. His-tagged ORFV CBP was eluted with five

column volumes of 130 mM imidazole in equilibration buffer. Frac-

tions containing ORFV CBP were dialyzed overnight at 277 K

against TEV protease reaction buffer (50 mM Tris–HCl pH 8.0,

0.5 mM EDTA, 1 mM DTT). The C-terminal His6 tag was removed

from ORFV CBP by overnight treatment with His6-tagged TEV

protease at 277 K (1:5 molar ratio of protease to ORFV CBP). ORFV

CBP without the His6 tag was purified from the TEV reaction mixture

using the same IMAC strategy as described above. Column-

flowthrough fractions containing ORFV CBP were pooled together

and concentrated using Amicon ultracentrifugal devices (molecular-

weight cutoff 10 000 Da; Millipore). ORFV CBP was further purified

by size-exclusion chromatography on a Superdex 200 HiLoad 26/60

column (GE Healthcare) pre-equilibrated with 50 mM Tris–HCl pH

8.0, 150 mM NaCl and 1 mM DTT. Fractions containing ORFV CBP

were pooled together and dialysed overnight into crystallization

buffer (25 mM HEPES pH 7.0, 1.0 mM DTT). ORFV CBP was

concentrated to �34 mg ml�1 in crystallization buffer using Amicon

ultracentrifugal devices (molecular-weight cutoff 10 000 Da;

Millipore). Aliquots (50–100 ml) of ORFV CBP were flash-frozen in

liquid nitrogen and stored at 193 K. The protein concentration was

estimated using the Coomassie Plus (Bradford) Protein Assay

(Thermo Scientific). Recombinant ORFV CBP contains the following

extra C-terminal residues from the TEV recognition sequence:

ENLYFQ.

2.2. Dynamic light-scattering analysis

Quasi-elastic light scattering of purified ORFV CBP (20 ml;

1 mg ml�1 in crystallization buffer at 289 K) was performed on a

DynaPro 99E instrument and analysed using DYNAMICS software

(Protein Solutions). All samples were passed through a 0.02 mm

Anotop 10 filter (Whatman, Maidstone, England) prior to DLS

analysis.

2.3. Mass-spectrometric analysis

Mass-spectrometric analyses of ORFV CBP samples were per-

formed by the Centre of Protein Research at the University of Otago.

For intact mass determination, samples were analysed on a 4800

MALDI tandem time-of-flight analyzer (MALDI TOF/TOF; Applied

Biosystems, Masschusetts, USA). For peptide identification, samples

were separated using SDS–PAGE and the bands of interest were

excised from the gel and treated with trypsin. The resulting peptides

were analysed on a 4800 MALDI TOF/TOF (Applied Biosystems,

Massachusetts, USA). The 15–20 strongest precursor ions of each

sample spot were selected for MS/MS collision-induced dissociation

analysis. MS/MS data were searched against the UniProt/SWISS-

PROT amino-acid sequence database using the Mascot search engine

(http://www.matrixscience.com).
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2.4. Crystallization and X-ray data collection

Initial screenings for crystallization conditions were performed at

289 and 277 K using the hanging-drop and sitting-drop vapour-

diffusion techniques in 96-well microplates (Sarstedt Australia Pty

Ltd) and employed commercially available crystallization screens

(Index HT, PEG/Ion HT and Crystal Screen HT from Hampton

Research, Aliso Viejo, California, USA). Crystallization trays were

set up using a Mosquito robot (TTP LabTech, Royston, Hertford-

shire, England). A 0.2 ml droplet of 34 mg ml�1 ORFV CBP in 25 mM

HEPES pH 7.0, 1.0 mM DTT was mixed with an equal volume of a

reservoir solution. The droplet was allowed to equilibrate against

100 ml reservoir solution.

Hits from initial crystallization screens were further optimized by

varying the protein and precipitant concentrations and by the addi-

tion of small molecules. Crystallization screens for small-molecule

additives were performed in 96-well plates as described above using

Silver Bullets from Hampton Research (McPherson & Cudney, 2006).

For these screens, the crystallization droplet consisted of 300 nl

reservoir solution, 300 nl protein solution and 200 nl Silver Bullets.

Further screens and growth of large crystals for data collection were

performed in 24-well Linbro plates (Hampton Research, Aliso Viejo,

California, USA) using the hanging-drop vapour-diffusion technique.

Crystallization droplets (6 ml total volume; 3 ml ORFV CBP at

12 mg ml�1 plus 3.0 ml of a solution containing the desired concen-

tration of additive dissolved in 1.8 M ammonium citrate tribasic)

were placed onto siliconized cover slides (Hampton Research, Aliso

Viejo, California, USA) and equilibrated against 1.0 ml reservoir

solution. ORFV CBP crystals could be observed after 5–7 d at 289 K.

Crystals utilized for X-ray diffraction analysis were mounted in

nylon loops (Hampton Research, Aliso Viejo, California, USA) and

flash-cooled directly in a nitrogen cryostream at 100 K (Garman &

Schneider, 1997); the same temperature was used for X-ray data

collection. Alternatively, crystals were plunged directly into a liquid-

nitrogen bath or into a 2-methylbutane (Sigma-Aldrich) bath cooled

to 100 K. For the analysis of X-ray diffraction quality at room

temperature, crystals were mounted using MicroMounts and covered

with MicroRT X-ray capillaries containing 10–20 ml reservoir solution

(MiTeGen, Ithaca, New York, USA). The X-ray diffraction quality of

these crystals was assessed following two short exposures taken 90�

apart.

X-ray diffraction images for ORFV CBP crystals were collected on

a Micromax-007 HF rotating-anode X-ray generator equipped with

a copper anode, Hi-Res optics and an R-AXIS IV++ image-plate

detector (Rikagu). Images were recorded using a frame width of 0.5�,

an exposure time of 90–300 s and a crystal-to-detector distance of

260 mm.

Images were processed, scaled and merged using the programs

within the CrystalClear software package (Pflugrath, 1999). Further

data analysis, including a survey of systematic absences and calcula-

tion of the Matthews coefficient, was conducted using software within

the CCP4 suite (Collaborative Computational Project, Number 4,

1994).

3. Results and discussion

The full-length CBP from ORFV strain NZ2 was expressed in

HEK293-6E cells transiently transfected with plasmid pTT5/CBP.

Upon expression, ORFV CBP accumulated in the extracellular

medium, as previously reported (Seet et al., 2003).

ORFV CBP could be purified to homogeneity from the cell-culture

medium. In the last purification step, involving size-exclusion chro-

matography, ORFV CBP eluted as a single peak (Fig. 1a), but SDS–

PAGE analysis of the purified protein showed the presence of

multiple bands (Fig. 1b). Mass-spectrometric analysis of these bands

identified them all as ORFV CBP (data not shown). The molecular

weights of the bands corresponded roughly to what would be

expected for a monomer, a dimer and a higher oligomer, either a

trimer or a tetramer, but all were somewhat higher than expected.

The molecular weight of an intact CBP monomer, as determined

by mass spectrometry (MALDI TOF/TOF), is 36.7 kDa (data not

shown). This figure is larger than that calculated from the primary

sequence (31.3 kDa), but close to what is seen on the SDS–PAGE gel.

Knowing that glycosylation is a common event for viral proteins

produced in eukaryotic hosts and that ORFV CBP contains several

putative glycosylation sites, we attempted to resolve the discrepancy

between the observed and predicted molecular mass of the ORFV

CBP monomer by the treatment of purified protein with

deglycosylation enzymes. This treatment reduced the apparent

molecular weight of the protein to a value that was much closer to

that calculated from the primary sequence (data not shown). The
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Figure 1
Analysis of purified ORFV CBP by size-exclusion chromatography (a) and SDS–PAGE (b). (a) Chromatogram from size-exclusion chromatography of approximately 4 mg
IMAC-purified TEV-treated ORFV CBP on a Superdex 200 HiLoad 26/60 column; the UV signal is in arbitrary absorbance units. (b) �10 mg of the peak fraction from (a)
(labelled CBP) was separated by electrophoresis on a denaturing 4–20% polyacrylamide gradient gel. SDS–PAGE was performed under reducing conditions. The numbers
on the left indicate the molecular weight in kDa of the marker proteins (left lane). All three protein bands visible in the CBP lane (arrowheads) were identified as ORFV
CBP by mass spectrometry following tryptic digestion.



discrepancy in molecular weight that we observed is therefore at least

in part a consequence of post-translational glycosylation of ORFV

CBP by HEK293-6E cells.

The behaviour of ORFV CBP in solution was further characterized

using dynamic light scattering (DLS). Analysis of the DLS data

revealed a single species in solution with an estimated molecular

weight of 75 kDa and a polydispersity of 8.5% (data not shown).

Together with the intact mass of an ORFV CBP monomer estimated

by mass spectrometry at 36.7 kDa, the DLS data suggest that ORFV

CBP is a dimer in solution.

Initial crystallization screens (a total of 576: 288 distinct conditions

set up at two temperatures) of purified glycosylated ORFV CBP were

performed using 0.2 ml volume drops in 96-well microplates. These

screens identified eight conditions in which crystals could be

observed. Notably, seven of these initial crystal hits contained 20–

25%(w/v) PEG 3350 as the precipitant. One crystallization hit was

observed with 1.80 M ammonium citrate tribasic pH 7.0 as the

precipitant. The same eight conditions produced crystals at 289 and

277 K. Preliminary X-ray diffraction analysis of these crystals

suggested that those grown from the ammonium citrate condition

displayed superior diffraction quality (as judged by resolution limit,

spot shape and anisotropy) compared with those obtained from the

PEG conditions (data not shown). Moreover, large ORFV CBP

crystals grown in ammonium citrate were easier to obtain in the

higher volume drops that were set up using 24-well plates.

Initial ORFV CBP crystals grown in vapour-diffusion experiments

with 1.80 M ammonium citrate as the precipitant displayed no sharp

edges (Figs. 2a and 2e) and diffracted X-rays to 3.0 Å resolution (data

not shown). The overall morphology and X-ray diffraction quality of

these crystals were not affected by using either the sitting-drop or

hanging-drop vapour-diffusion approaches. These initial crystals were

greatly optimized by the addition of small molecules to the crystal-

lization droplet. It has been suggested that small molecules can

stabilize protein conformation, improve protein solubility or facilitate

crystal contacts, thus improving crystal quality (McPherson &

Cudney, 2006). Addition of a mixture of small peptides (Gly-Phe,

Gly-Tyr and Leu-Gly-Gly) dramatically improved the crystal

morphology (Figs. 2b, 2c and 2d). More importantly, these crystals

displayed higher resolution limits (up to 1.9 Å at room temperature)

and less anisotropy than the originally obtained crystals. Addition of

l-Arg and glucose also had a positive effect on crystal morphology

(Figs. 2f–2i) and a similar impact on X-ray diffraction quality. In all

cases, crystal-quality improvement was directly related to how much

additive was included in the crystallization. Attempts to crystallize

deglycosylated ORFV CBP under these optimized conditions have

not been successful to date.

Flash-cooling ORFV CBP crystals directly in a gaseous nitrogen

stream (set at 100 K) had a negative impact on the diffraction quality

of the crystal. Visual inspection of mounted flash-cooled crystals

indicated that both the crystal and its surrounding solution remained

clear within the cryoloop and no ice rings could be detected on X-ray

images. Quick soaks (1–15 s) in varying concentrations of commonly

used cryoprotectants did not preserve crystal diffraction quality

following flash-cooling. Longer incubations in cryosolutions (30 s to
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Figure 2
Effect of small-molecule additives on ORFV CBP crystals. Crystals were grown in 1.80 M ammonium citrate tribasic pH 7.0 in the presence of no additives (a, e) or varying
concentrations of a small-peptide cocktail containing Gly-Phe, Gly-Tyr and Leu-Gly-Gly (b, c, d), glucose (f, g, h) or a fixed amount (100 mM) of l-arginine (i, j). The protein
concentration in (a)–(d) and that in (i) was 10 mg ml�1. The protein concentration in (e)–(h) and (j) was 18 mg ml�1. The concentration of the small-peptide cocktail was
0.033%(w/v) in (b), 0.083%(w/v) in (c) and 0.116%(w/v) in (d). The concentration of glucose was 93.75 mM in (f), 156.25 mM in (g) and 312.5 mM in (h). The crystals in (a)
have approximate dimensions of 0.2 � 0.1 � 0.1 mm. The crystals in (d), (h), (i) and (j) have dimensions of approximately 0.7 � 0.3 � 0.3 mm.



minutes) generally induced cracks in the crystals and led to poor

X-ray diffraction. Attempts to sequentially add cryoprotectant to the

crystallization drop also led to crystal damage.

Replacing the salt within crystals by PEG has occasionally been

shown to be a valid strategy to preserve diffraction quality following

flash-cooling (Ray et al., 1991, 1997). Unfortunately, we could not find

conditions that allowed ORFV CBP crystals to be transferred from

1.8 M ammonium citrate to PEG without damaging the crystals. As

an alternative strategy for flash-cooling crystals, we tried plunging

crystals directly into liquid-nitrogen baths or into cryocooled

2-methylbutane baths (Garman & Schneider, 1997). Unfortunately,

these methods did not improve the X-ray diffraction quality of flash-

cooled crystals when compared with the use of a cryostream. Flash-

reannealing has also proven to be helpful in some instances in

reducing cryocooling-associated degradation of diffraction (Yeh &

Hol, 1998). We have determined that for some crystals of CBP flash-

annealing does reduce the diffraction anisotropy introduced by the

flash-cooling process, but it does not restore the X-ray diffraction to

the resolution limits observed for ORFV CBP crystals at room

temperature.

Preliminary X-ray diffraction data (200� wedge, 0.5� oscillation

angle; Table 1) were collected from a flash-cooled ORFV CBP crystal

(0.5 � 0.3 � 0.3 mm) grown in 1.8 M ammonium citrate tribasic pH

7.0 in the presence of 100 mM l-Arg without the addition of cryo-

protectants. Analysis of the diffraction data using POINTLESS

(Collaborative Computational Project, Number 4, 1994) identified a

hexagonal lattice and indicated that systematic absences were iden-

tified along c* (00l) and conformed to the l = 6n rule. Taken together

with additional symmetry along a* and b*, these results suggest that

the most likely space group for the ORFV CBP crystals is the

hexagonal space group P6122 or its enantiomorph P6522. The unit-

cell parameters for the ORFV CBP crystals are a = b = 75.62,

c = 282.49 Å, � = � = 90, � = 120�. ORFV CBP crystals have a

Matthews coefficient of 3.18 Å3 Da�1, corresponding to a single

protein molecule per asymmetric unit and a solvent content of

61.30% (Matthews, 1968).

Attempts to solve the ORFV CBP structure by molecular

replacement using the atomic coordinates of other poxviral CBPs as

search models have thus far failed. In general, the sequence identity

between ORFV CBP and other poxviral CBPs ranges from 16 to

18%. Therefore, the most likely reason for the failure of molecular

replacement is the low structural similarity between the CBP from

ORFV and the CBP proteins produced by other poxviruses. We are

currently exploring a solution to the phase problem based on the use

of heavy-atom derivatives.
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Table 1
Statistics of data collection and processing.

Wavelength (Å) 1.5418
Space group P6122 or P6522
Unit-cell parameters (Å, �) a = b = 75.62, c = 282.4,

� = � = 90, � = 120
Solvent content (%) 61.30
Resolution range (Å) 59.41–2.50 (2.59–2.50)
No. of reflections 154029 (5048)
Unique reflections 16826 (1265)
Redundancy 9.09 (3.98)
Completeness (%) 96.0 (75.0)
Rmerge† (%) 11.8 (58.9)
I/�(I) 13.1 (3.8)

† Rmerge as a percentage is defined as
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ �

100.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5061&bbid=BB33

