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Type-lI quantum superalgebras, g-supertrace,
and two-variable link polynomials

Mark D. Gould and Jon R. Links
Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

Yao-Zhong Zhang?
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan

(Received 25 October 1995; accepted for publication 19 Septembej 1995

A new general eigenvalue formula for the eigenvalues of Casimir invariants, for the
type-l quantum superalgebras, is applied to the construction of link polynomials
associated witlany finite dimensional unitary irrep for these algebras. This affords
a systematic construction of new two-variable link polynomials associated with any
finite dimensional irregwith a real highest weightfor the type-l quantum super-
algebras. In particular infinite families of nonequivalent two-variable link polyno-
mials are determined in fully explicit form. €996 American Institute of Physics.
[S0022-24886)00802-9

I. INTRODUCTION

Following the celebrated discovery by Johe$ the so-called Jones’ link polynomial, there
has been considerable interest in recent years in modern knot theory, which has been found to be
closely related, through the quantum Yang—Baxter equdf@¥BE), to various areas of physics
such as solvable models and quantum field thedriéaith the equally important discovery of
quantum algebras during the same period by Drifffalttl Jimba following the initiatives of the
St. Petersberg group, it was soon realized by Reshefildnid Turae¥ that quantum algebras
provided a useful tool in constructing link polynomials. This idea was further developed in Refs.
8-10 where the authors proposed a simple systematic procedure for the construction of link
polynomials arising from quantum bosonic algebras.

There were many attempfsee, e.g., Refs. 2, 11, and)1® construct new two- or multi-
variable link polynomials since the work of HOMFEYand Kauffmah* concerning two-variable
extensions of the Jones link polynomial. The two-variable HOMFLY and Kauffman link polyno-
mials arise from the minimal representationsAyf andB,, C,,, D, quantum algebras, respec-
tively.

Subsequently, link polynomials arising from quantum superalgebras have been addressed by
various author$®>=?° Among all quantum superalgebras those of type-b[gihlm|n)] and
Uq[osp{2|2n)], are particularly interesting because they possess one-parameter families of finite-
dimensional unitary irreps even for generjc The freedom of having extra parameters in the
irreps opens up new and exciting possibilities in phy&tdSor the current case, the link polyno-
mials from such representations will then also depend on these extra parameters, thus naturally
yielding multi-variable link polynomials. We remark however that such multi-variable link poly-
nomials are not relaté@to those arising from “colored” braid&:

For the case of quantum superalgebras, the situation is much more complicated than the
bosonic case. The fundamental difficulty is the zgrsupertrace problem over typical irreps, so
that the usual techniques developed for computing the eigenvalues of Casimir invariants for
guantum bosonic algebras fail in this case. Due to this problem, only very few isolated examples
of multi-variable link polynomials for quantum superalgebras have so far been known. These
include the two-variable link polynomiafsbased on gl(21)] and multi-variable onééfor a
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988 Gould, Links, and Zhang: g-supertrace and two-variable link polynomials

special class of representations oa‘[g](m|n)]. In these examples, the authors only considered
representations for which the above mentioned difficulty does not occur.

In this paper, we have succeeded in overcoming the above problem and obtain a well-defined
g-supertrace formula which is applied to compute the eigenvalues of the Casimir invariants. These
results are given in theorems 1, 2, and 3. However, the proof ofjtbepertrace formulas are
extremely lengthy and will be published in a separate p¥pésing these results, we are able to
construct link polynomials associated wihyfinite dimensional unitary irrep of a type-I quantum
superalgebra. Applied to one-parameter families of inequivalent finite dimensional irreps of
Uqlgl(m|n)] and U,[osH2|2n)] for genericg, our method affords infinite families of nonequiva-
lent two-variable link polynomials in fully explicit form.

This paper will be presented in the following order. After recalling some fundamentals in Sec.
1, we give, in Sec. lll an account of the atypicality indices and unitary irreps Q). In Sec. IV
we present three theorems concerning the computation ofjtha@pertraces and therefore the
eigenvalues of Casimir invariants over typical irreps. Section V derives a spectral decomposition
formula for the braid generator and its powers. A general method for constructing link polynomials
is presented in Sec. VI and examples of two-variable link polynomials are illustrated in Sec. VII.
In the last section, we give a brief discussion of our main results.

Il. PRELIMINARIES

Let ¥ be a type-l simple Lie superalgeBtawith generators{e,,f; ,h;} and let «;,
i=0,1,...r, be its simple roots withy, the unique odd simple root; here we choose the distin-
guished set of simple rootéSuperalgebras allow many inequivalent systems of simple roots. See
Ref. 24. The relation between the different quantum superalgebras obtained by choosing different
systems of simple roots is studied in Ref.)25et (,) be a fixed invariant bilinear form oH*, the
dual of the Cartan subalgebka of . The quantum superalgebra,(¥) has the structure of a
Z,-graded quasi-triangular Hopf algebra. Throughout the paper we will assume idhaeneric,

i.e., not a root of unity. We will not give the full defining relations of(J") here but mention that
the simple raising and lowering generators qf(d) obey more relations than just the usual
g-Serre relations known from quantum bosonic algeB?ta® These necessary extra relations are
referred to as “extray-Serre relations.” |{(%) has a coproduch and antipodeS given by

A(g™" =g Meg™",
A(e)=e®q "+q"ee;,
A(f)=fieq "+ g% f, (1)
S(a)=q "y(a)q™, a=¢,f;,h;, 2

where y is the principal anti-automorphism on,(¥) andp is the graded half-sum of positive
roots of <. We omit the formulas for the counit which are not needed here.

The algebra (:9) is a quasitriangular graded Hopf algebra, which means the following. Let
A’ be the opposite coproduct so that'=TA, where T is the graded twist map:
T(a®b)=(-1)!¥"hea, Va,beU, (). Here [a] e Z, denotes the grading of elemeant[a] =0
if a is even and §] =1 if it is odd. ThenA and A’ are related by the univers&®-matrix R in
Ug(i9)®Uqy(:9) satisfying, among others, the relations

RA(a)=A'(a)R, VaeUy(¥), 3

(1®A)R=Ry3R12, (A®1)R=R3Ry3, 4
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where if R=2a,®b; thenR,,=2a,®b;®1, Ri3=2a,91®b,, etc. It follows from(4) that R
satisfies the QYBE:

R12R13R23= Ro3R13R2. 5

Note that the multiplication rule for the tensor product is defined for homogeneous elements
a,b,c,deUy(¥) by

(a®b)(c@d)=(—1)Placebd). (6)

It is a well established fact for quasitriangular Hopf algebras, that there exists a distinguished
element

u=>, (-1)Ms(byay, (7)
t

where, as abovey, andb, are coordinates of the universtmatrix. One can show that has
inverse

ut=> (-1)Is%(by)a, (8)
t

and satisfies
Sf(a)=uau !, VaeUy(¥), A(u)=(uau)(R'R) 9
whereR"=T(R). It is easy to check that
v=u"1q 2" (10)
belongs to the center of Jd¢) and satisfies
A(v)=(v®v)(R'TR) 1. (12

Moreover, on a finite dimensional irreducible modgA) with highest weightAeD™, the
Casimir operatop takes the eigenvalue

xa(v)=qhAe2e), 12

Note that the generatofs; ,f; ,q",i = 1,...r} form generators of the quantum group(y),
where %, is the “even subalgebra” of¢. Specifically,

Zo=u(D@slmyesl(n), for £=sl(mn), mn=2,
Zo=u(l)@sl(n), for =sl(1|n), n=2,
Zo=u(l)y@sp2n), for L=osp2|2n). (13

Throughout we leV(A) denote the finite dimensional irreducible,(d”;) module with highest
weight AeD ™. We call

Dg(A)Z H [(A+p,,3)]q

e oA, (19

J. Math. Phys., Vol. 37, No. 2, February 1996



990 Gould, Links, and Zhang: g-supertrace and two-variable link polynomials

the g-dimension of the () irrep Vo(A), whered; denotes the set of even positive rootsf
Here and in what follows we will adopt the notation

q‘—q*
T (15)

Ma=g=gT

lll. ATYPICALITY INDICES AND FINITE-DIMENSIONAL UNITARY IRREPS

Let K(A) be the Kac-module associated\gA). K(A) is not necessarily irreducible. If it is,
we haveV(A)=K(A) and refer toA and V(A) as “typical.” Recall thatA is typical iff(A
+p,B)#0, VBe®] , where®] is the set of odd positive roots of.

Let us remark that for typical modules the dimensions are easily evaluated to be
dim V(A)=2%.dimVy(A), whered, which is equal tann for gl(m|n) and 2h for osg2|2n), is the
number of odd positive roots. This formula is particularly useful in determining tensor product
decompositions of typical modules.

Definition 1: The integer

ay =|®; (A)], @ (A)={Be®]|(A+p,B8)=0} (16)

is called the “atypicality index” ofAeD ™. In particular, a,=0 iff A is typical

The type-l quantum superalgebras admit two types of unitary representations which may be
described as follows. We make the simplifying assumption df¥a® (i.e., g is real and positive
and define a conjugation operation on thg¥) generators bg = f;, | = e, h! = h; whichis
extended uniguely to all of {4%) such that xy)'=y'x", Vx,yeU,(¥). We call =, type (1)
unitary if

mA(xN=ma(X), VxeUg(¥) 17)
and type(2) unitary if
ma(xN=(=D)Mm (x), VxeUy(9), (18

where the overline denotes Hermitian matrix conjugation. The two types of unitary representations
are in fact related via duality.

Lemma 1: Such unitary representations have the property that they are always completely
reducible and the tensor product of two irreducible unitary representations of the same type
reduces completely into irreducible unitary representations of the same type. Moreover the atypi-
cality indices of the irreps occurring in this decomposition are less than or equal to the atypicality
index of either component.

The finite dimensional irreducible unitary representations for all type-1 quantum superalgebras
have been classified in Refs. 30 and 31. For completeness we cite these classification results
below. Let us first of all introduce some notation. Forngll), we choose ¢} ;U{5;}]_; as a
basis forH* with [¢]=0, [§]=1 and

(€,€)=0j, (6,6)=—36;, (&,6)=0. (19

Using this basis, any weight may written as
AE(Al,...,Ali,...,An)EZ)l Aiei+;l A8, (20

and the graded half-sum of the positive roots is

J. Math. Phys., Vol. 37, No. 2, February 1996
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n

2p=i21(m—n—2i+1)ei+j21(m+n—2j+1)6j. (21)

For osg2|2n), choose] e} U{€}- 1 as a basis foH* with [¢]=1, [¢]=0 and

(60,60):_1, (Ei,EJ):5ij, Vi,j=l,...,n, (Eo,Gi):O. (22)

In this case, any weighk may be expressed as

n

A=(AJAq,... Ap)=Aeg+ D, Aie; (23
i=1

and the graded half-sum of the positive roots is given by

p=2, (N—i+1)g—nep. (24)
=1

Proposition 1:(1) A givenUg[gl(m|n)]-module MA), with AeD ., is type(1) unitary iff: (i)
(A+p,em— 8,)>0; or (ii) there exists an odd indexve{1,2,...n} such that(A+p,e,—3,)
=0=(A,8,— 4,). In the former case the given condition also enforces typicality 6h)Mwhile in
the latter case all irreps are atypical.

(1) TheUg[gl(m[n)]-module MA), with AeD., is type(2) unitary iff: (i) (A+p,e;—6,)<0; or
(i) there exists an even indexeK1,2,...m} such that(A+p,g,— 8;)=0=(A,e;—¢). In the former
case \(A) is typical, while in the latter case it is atypical.

Proposition 2: A givean[osr(2|2n])-moduIe \(A) is type(1) unitary iff (A,ap)=0, whereay
denotes the unique odd simple root, and t¢®eunitary iff (i) (A+p,ey+€)<0; or (ii) there exists
an index ke{1,2,...n} such that(A+p,ey+€) =0=(A,e;— €); or (iii) A=0.

IV. g-SUPERTRACE AND EIGENVALUES OF CASIMIR INVARIANTS

Throughout this section we assuiMéA) is a fixed but arbitrary finite dimensional irreducible
Ug(:9)-module. Suppos¥(v) CV(u)®V(A) is typical and letP[v] denote the central projection
of the tensor product moduld/(u)®V(A) onto its isotypic componen¥(v)=m,V(v)
CV(u)®V(A) [thatisV(v)=V(v)®---®V(v), m, copied. We state the followingj-supertrace
formula:

Theorem 1: For u, veD™ typical,

x.(To) Do(v)

" %(To) D)’

where[v] modulo2 is the degree of the weight Iy is a central element dfl,(:<) and x,(T'o) is
the eigenvalue ofF, on theU,(:£o)-module \(u):

o [eteB)l,
X“(FO)‘BEI [0 By

(Iestn(1@my(q~2"))P[v]=(—1)["Im

(29

(26)

The proof of this theorem is very lengthy and detailed, and will be published elseWhere.
Proposition 3: If the operator e U,(9)®EndV(A) satisfiesA y(a)c=cA y(a), VaeUy(¥),
whereA,=(l®,)A, then

Cy=(@st{ll®my(q—>")]c"}, kez* @7

J. Math. Phys., Vol. 37, No. 2, February 1996



992 Gould, Links, and Zhang: g-supertrace and two-variable link polynomials

belong to the center dfi,(¥) and thus form a family of Casimir invariants
An important example of is given by

|1 —RiR,
c=—>—, 28
q—q ° (28)
whereR, = (l® 7,)R, with R the universaR-matrix.
Now assumeV/(u) ® V(A) is completely reducible and write

V(p)©V(A)=om,V(v) (29

with now m, the multiplicity of the moduleV(») occurring in the tensor product. This always
occurs wherp and A are unitary of the same type. Moreover, in such a case, each of the modules
V(v) is also unitary. Ifce (I®m,)(Z®Z)A(Z) whereZ is the center of (:¢), then one can
deduce the following spectral decomposition éoand its powers®, keZ:

ck=EV (x,()*P[»], (30)

where y,(c) is the eigenvalue ot on V(v)CV(u)®V(A). Thus if c is given by the above
example, then we have

C(m)+C(A)=C(v)

1_
CN—— (31

J(C)= =
X.,(C) a=q
whereC(A)=(A,A+2p) denotes the eigenvalue of the second order Casimir invariait of
With the aid of Theorem 1, we can determine the eigenvalues of the Casimir invaZiaits
a finite dimensional typical modulé(w) [notation as in Eq(29)].
Theorem 2: If u,v are all typical, then the eigenvalues of the Casimir invariants ¢p)\are
given by

Xu(T'o)  Dg(»)
XV(FO) Dg(M) ,

X, (CH =2 (—1)Mm,(x,(c) keZ. (32

Remark: Let {\;} denote the set of distinct weights M(A) occurring with multiplicities
m,,. It can be shown that the above theorem may be extended to all finite dimensional modules
V(u), neD™, by replacingy,m, with u + \; My respectively, and summing ovey. For more
details see Ref. 33. The eigenvalue formula obtained in this way is referred to as the “extended
eigenvalue formula” orV(u), ueD ™. Note that for generig., the extended eigenvalue formula
determines a polynomial function ad*. It is well defined if all u+X\; are typical but if some
ptN; is atypical it is necessary first to expand the right-hand side of the extended eigenvalue
formula into a polynomial in order to avoid singulariti&s.

In the case of unitaryyeD ™ this latter problem can be overcome as follows. We set

Dy (M) ={Be® |(\+p,B)#0} (33
so that
@7 (V)| +ay=]P]. (34)

Then we have the following.
Theorem 3: The eigenvalues of the Casimir invariants on a unitary moduje) \dre given by

J. Math. Phys., Vol. 37, No. 2, February 1996
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Ugcarwl(ntp.Bly DY(w)
HBE@I(V)[(V—i_p’ﬁ)]q . Dg(:u“),

X.(CH= 2 (=)m,(x,(c)* keZ® (39

vja,=a,

provided that WA), V(u) are unitary of the same type. Here the sum ovueris over
Vo(v) CVo(u)®V(A) and m, is the multiplicity of () in this space

For a given unitary modul®(A), the above formula is well defined for all unitageD ™ of
the same type.

V. DIAGONALIZATION OF THE BRAID GENERATOR

Let P be the graded permutation operator M{A)®V(A) defined by P(|x)®]y))
=(—1)MM)y)®|x), for all homogeneouk), |y) e V(A) and set

o=PR eEndV(A)®V(A)). (36)

Here and in what follows we regard elements of(¥) as operators o’V(A). Then (3) is
equivalent to

gA(a)=A(a)o VaeUy(¥) (37)
and(5) can be written as
(o) (o) (I®og)=(cx])(I®0)(o®]). (39

It follows immediately that the operators™ e End(V(A)®M™), i={1,2,...M—1} defined by

ocf=1®  --@Itel® - @l
N’ N
i-1 M-i-1 (39

generate a nontrivial representation of the rélk—1) braid groupB,, .

In the case wherr acts onV(A)®V(A) with V(A) unitary, it can be shown that is
self-adjoint and diagonalizabf We remark however that only the type-I quantum superalgebras
admit finite dimensional unitary irreps.

Similar to (29) we write,

V(A)®V(A)=am,V(v), (40)

where againm,, is the multiplicity of the modulé/(v) occurring in the tensor product and each of
the modulesV(v) is unitary. In view of the self-adjointness af, o is diagonalizable on
V(v)=m\V(v)=V(v)®---®V(v) (m, copies, regardless of the multiplicity. In fact it is possible
to derive a spectral decomposition formula faras in the case of quantum bosonic algeBfas.

Recall that lim_,, o=P and P is diagonalizable orV(A)®V(A) with eigenvaluest1.
Following Ref. 10, letP[ =] denote the projection operators defined by

P[=]I(V(A)®V(A))=W.., (41
where
W.={weV(A)®V(A)| lim(c+1)w=0}. (42
q—1
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994 Gould, Links, and Zhang: g-supertrace and two-variable link polynomials

Sinceo is an U,(:¥)-invariant each subspadi.. determines a |{:%)-module andP[*] commute
with the action of |(:5). As aboveP[v] denotes the projection operator onto the modiies);
then obviously

Plv,£]=P[£]P[v]=P[v]P[ =] (43

is the projection onto the isotypic com_poné?(tv) consisting of eigenvectors a@f with parities
+1, respectivelyfi.e., the component d¥(v) in W.., respectively.
The diagonalizability ofo, together with the fact that

0’=PRP-R=R'R=(v®v)A(v 1), (44)

implies the following spectral decomposition farand its powers:
o*=q KN WP, +]1+ (- D*P[r,— 1), keZ, (45)
where as befor€(\)=(\,\+2p). It follows in particular thato satisfies the polynomial identity
I (o—gqFm—C) (g4 250y = 46)

which leads to the generalized skein relations for the corresponding link polynomials investigated
below.

VI. LINK POLYNOMIALS

Let 9By, be a word in the generatots , 1<i<M—1 and letd denote the link obtained by
closing the braid. For the construction of link polynomials, the Markov taqgays an essential
role. It is defined by

(i) ¢(6n)=¢(n06), VO,neBy,
(i) B(Bom-1)=2p(0), G(6oyi,)=2H(0), VOeBy_ 1CBy. 47
Given such a Markov trace, it is well-known that one can define a link ponndn@i?@I through
L(0)=(22™M Y22z ¥ "2p(6), 6eBy, (48)

wheree(6) is the sum of the exponents of thes appearing ind. The functionaIL(b) enjoys the
following properties:

(i) L(@p=L(78), VOneBy,

(i) L(6,o5 )=L(#), VOecBy_,CBy (49)

and is an invariant of ambient isotopy.
Proposition 4: The functionad () defined by

_ (trest®™ D) (1o AM V(g 2") )
B dim V(A) ’

b(0) (50)

wheretr and str denote the trace and supertrace ovetAY, respectively, qualifies as a Markov
trace with
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7= q(A,A+2p), E:q—(A,A-FZp). (51)
Corollary 1: It follows that
L(B)=q MAT20%0g(6),  feBy, (52

defines a link polynomial
Now consider the family of Casimir invariants

Ci=(lest[lom,(q 2")]o. (53

Let gﬁ denote the eigenvalues of the invaria@t{é onV(A). In view of (45) and Theorem 2, one
can deduce, foA typical, that they are given explicitly by

xa(o)  Dg(v)

A _ —KC(A) — 1) [M1gk2C) (m* + (= 1)¥m= . , 54

fe=a N2 ()M my (- Dfm) T ey (54
wherem;, are the multiplicities oV (v) in W.., respectively, so that

m,=m’+m, . (55)

Note: In the case thai\ is typical it necessarily follows that a¥(») in the tensor product
decomposition40) are also typical so thab4) is always well definedc.f. Lemma ).
Theorem 4: Consider the braid group B and a braid 6 of the following general form:

0=(0;) o )2 (o, )Mt kieZ (56)

with {i4,i,,....im_1} an arbitrary permutation o{1,2,...M —1}. Then the following functional is
a link polynomial

M-1
L(B)y=q A2t T g (57

In the case that\ is typical, gﬁ is given by (54)

VII. NEW TWO-VARIABLE LINK POLYNOMIALS

We will now apply the technique developed in previous sections to develop a general method
for obtaining two-variable link polynomials corresponding to any realD *. Again we restrict to
the type-l quantum superalgebras=gl(m|n) or £'=0s{2/2n).

Corresponding to angeal AeD* we have the one-parameter family of irreps

V(A,)=V(A+ad), aeR,

>, &, for “=gl(m[n)
I

5= (58

€, for ¥=os{2|2n).

The moduleV(A,) is typical and unitary forle| sufficiently large. For example, for the case
“=gl(m|n), we have from Proposito 1 a type (1) unitary module for
a>—(A+p,ep—36,)=n—-1—(A,e,—36,), and a type (2) unitary module for
a<—(A+p,e,—8))=1-m—(A,e;— 8;). Below we assume belongs to this rangéalthough
the final formula for link polynomials should apply, by analytic continuation, to all tgal
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996 Gould, Links, and Zhang: g-supertrace and two-variable link polynomials

Here we obtain a representation of the braid gener@toEnd[V(A + @8)® V(A + ab)] and
a formula for two variable link polynomials. Consider thg(l4)-module direct sum decompo-
sition

Vo(A)@K(A)=®m,Vo(v), (59

v

where < is the even subalgebra 6f andVy(A) the maximalZ-graded component &f(A). Then
for |a| sufficient large(i.e., in the range considered abpwvee have the easily established decom-
position

V(A+ad)@V(A+ad)=em\V(v+2ad). (60
Note that this decomposition may be obtained solely from a knowledge of jti¢ Wmodules
occurring inK(A) and U,(:¢p) tensor product rules. In principal this follows from the known

characters oK(A) andVy(A).
From our previous results we have the Casimir invariants

Ce=(lestl@m,, soq 2")]0" (61)
which, from (54), take the following eigenvalues of(v+ ad):

. «sTo)  Dg(»)
(g, a)=q KA +ad) _ 1)W1k 2a8) (Mt 1 (— 1)Km XA+as a7
& (d.@)=g 2 (-)g (M4 (= Dfm, ) S T DYA)

(62

where use has been made of the fact thais orthogonal to all even roots and+ ad, v+2aé are
all typical for « in the range considered.
Now for # a braid of the general forr(b6), we arrive at at the link polynomial

M-1
~ M-1
L(G)qu(A+a5,A+a§+2p)Zi:l ki i];[l é—/k\l(q’a) (63)

with & (g, ) given by(62). In this way we obtain a two-variable link polynomial corresponding
to any realAeD ™.

A. Two-variable link polynomials from U [gl( m|n)]

Following Ref. 35, we assumen=n and for O<N=mn we call a Young diagram
IN]=[N A, At A=Ay --=N =0 for the permutation grouBy (i.e., \;+X,+---+A=N) allow-
able, if it has at most columns andn rows; i.e.,t<m, A;<n. Associated with each such Young
diagram[\] we define a weight of git|n)

A[/\] = (Om-t,—/\t,"',—/\1|t,"',t,t— 1,...’75_1,...’1,...,1,0,...,0)'
e’ ~ R e
At At—1—Ae A=Az n—X
(64)

Using the basige;, 6;}, the weightAp,; may be expressed as
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t ¢ t Ni—sg
A[)\]:_z )\iem—i+1+tz 5l+2 (t_S)' 2 51 (65)
i=1 j=1 s=1 J=N—s+1

Let us consider the one-parameter family of finite-dimensional irreducible
Uq(gl(m[n))-modulesV(A,) with highest weights of the form\,=(0....,Qa,....®)=(0la)=aé.
[That is the casé\ =(0|0).] These irreps/(ad) are unitary of typgl) if a>n—1 and unitary of
type (2) if a<1—m. As mentioned above we assume reaatisfying one of these conditions, in
which caseV(ad) is also typical of dimension™..

We have the following decomposition o («d) into irreps of the even subalgebra

gl(m) &gl(n):
mn
N=0 [A]eSy

where the summation is over allow@ttbox Young diagrams. Note that the inddkgives the
Z-graded level of the irrep concerned. Alternatively we may simply write

[A]

The number of boxeHl, in the Young diagrania] then gives the level. We can deduce the tensor
product decomposition

V(ad)®V(asd)=a V(A +2ad). (69)
[\]

The parity of the modul® (Ap,;+2ad) is ( — 1)Nx. The eigenvalue of the second-order Casimir on
the irrepV (A, +2ad) can be shown to be

t
C(Apg+2a8)=22 \i(\j+1—2a—2i)—2an(2a+m),
i=1
C(ad)=—an(a+m). (69)

Introduce the notation

1 t
Yl N=5 C(Am+2a5)—C(a6)=2iZl NN +1-2a—2i)—an(3a+m). (70

For 6 a braid of the general forrtb6) we arrive at the two variable link polynomial

M-1
L(a)y=q " T 6(a,a), (7

where now

Xas(To) DY(Apy+2ad)
XA+ 225(T0) Dg(ad)

§k<q,a>=% (— 1)k~ DNrgkvalM] (72)

In this formula, the sum is again over all allowable Young diagrams. This formula can be made
fully explicit if we make use of the easily established regulhich takes a bit of algebya
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Xas(To)- II [(p.B)1q= H H[|—1+a]q,

,BECIJ

i—2a+1-1]g
[)\ +)\ —i—2a—-1+1],’
(73

X, r20o00) 11 [(0.B)]q= H H[I—J x+2a]qH

,Be<1>

where, in this last formula, it is implicitly understood thgt=0 for m=i>t. We thus obtain

§k<q,a>=% (— 1) DNagkralDy (INDDS(A L), (74

where

m

_ Xas(l'o) —j+aly 1 [NFA—i—2a+1-1],
xah= e i L [n—j—x+2a]qu L D 2at 1T

. (75

As an illustration, let us consider some specific cases in the remaining part of this subsection.
Example (1): Uy[gl(22)]
The tensor product decomposition is

V(ad)®V(ad)=V(0,02a,2a)®V(0,~ 1|2a+1,2a)®V(—1,— 1|2a+2,22) ®V(0,~ 2| 2a
+1,2a+1)@V(—1,-2]2a+220+1)0V(-2,—2|2a+2,22+2). (76

We have in this casésing the Young diagram notatipn
Ya(') = =20, 7(0) = —2a(a +1),
Yo(m) = =2(a” + 2~ 1), %@ = —2(a +1)?%,
To(BF) = —2a(a +3), () = —2a(a +4), (77
Dy()=1, Do =[2), Dg(m)= 3],

D@ =[], DA =[] DYF=1,

while the y, factors read
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X () _ [a]g[a - 1]q[o‘ + 1]q
“ [20)2[2a — 1]4[2c + 1],

- _ _lofgla = Tyl +1],
Xa(®) = Xa(B) = 20)2[2a — 2],[2a + 2],

S of2fa = 1o+ 1],
Xel) =@ = 50 7] pa— 1], 2~ 2, B 1 2,

~ _ [alfla=1]y[a+1],
Xo(B) = Xal") = 2a]22a — 1],2a + 1],

(78

It follows that

Gl ) = ¢ Oxa()DY() + ¢ By (B DB
~(=1)* [ Oxa@D@) + ¢ Exa () Dy (8]

+¢7= @y o () DY(em) + ¢ Bx. @ DB
—2ka(a+2) (¢ + ¢ **) o + 1gle — 1
(¢ + q—a)2[2°‘ + 1]q[2a - l]q
(g% + g~ %) [2]7
(¢ +q7)%(¢* " + g ot)(g*F + ¢~
g~ 2o Hok) (g2 4 g~k 3] (¢ 4+ ¢7%)°
(q2ot — g-2et1)(getl — g=2o-1)(ga=l 4 gmotl)(gotl 4 g=a=1)’

= 4

_ ( . l)kq—2ka(a+2)

+

(79

Example (2): Uy[gl(m|1)]
We have the tensor product decomposition

V(ad)®V(ad)=V(02a)®eV(0,—1|2a+1)@V(0,—1,—1|2a+2)& - &V(—1|2a+m).

(80)
In this caseDJ(Apy) reads
t .
B [m+1—-ify, [m]g!
DA =1L T, = et (@)
and y,[\], x,([\]) reduce to, respectively,
YoN]=—t(t—=1)— a(a+2t),
O [i+a—1],
xaDD=11 [i+2a+t—1-N\]g° ®2)

The ¢,.(q,a) have the following form,
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gk(qia):E

t=0

m

t . . .
(_1)(k—1)tq—k[t(t—1)+a(a+2t)]1‘[ [m+1_']q['+a_1]q [H'“_l]q
i1 [t+1-ig[i+2a+t—=2]q 5t [i+2a+t—1]y

(83
B. Two-variable link polynomials from adjoint representation of U g[91(2]1)]

As another illustration of how the general formalism works it is instructive to consider the
caseA=1y, y=(1,0—1) the highest weight of the adjoint representation ¢2d). This example
is of interest since it affords the simplest example of a two-variable link polynomial in which a
multiplicity occurs in the tensor product space.

First note that in this casg —e, is the single even positive root amg- &, ,6,— 8, are the two
odd positive roots, from which we deduce that for aky (A;,A,|A4)

DUYAT=[A1—Az+1]y, xa(To)=[A1+A;+1][Ag+Asly. (84)

For the Kac-modul& () we have the \X:p)-module(¥,=gl(2)®u(1)) decompositior(il-
lustrated in terms oE-graded levels

K(¢)=V(1,0—-1)®Vy(1,—1|0)®V(0,00)®Vy(0,—1|1) (85
which is easily seen to be?2=8 dimensional as required. Thus
Vo) @K () =Vo(1,0 —1)® V(1,0 —1)d V(1,0 —1)®[V(1,— 1|0)dV((0,00)]
&Vo(1,0-1)®V(0,—1[1)
=Vy(2,0-2)@ V(1,1 -2)@Vy(2,—1|-1)®2V,(1,0 - 1)
®Vo(1,—1|0)®V,(0,00) (86)
which yields the tensor product decomposition:
V(+ad)@V(p+ad)=V(2,02a—2)0V(1,12a—2)8V(2,~ 1|2a—1)&2V(1,02a— 1)
eV(1,—1|2a)®V(0,02a). (87

It is seen tha¥/(1,02«—1) occurs twice in the tensor product space. From the adogeadation
on Vy(¢)®K() we obtain

-1, for v=(2,—1|2a—-1), (1,02a-1)

—_1)\[vl=
(=1 1, otherwise.

(89)

In theg—1 limit the above tensor product module decomposes into symmetric and antisymmetric
componentgwhich determine the paritigs

V(g+ad)oV(y+ad)=W, eW_ (89
with
W_=V(1,12a—2)aV(2,—1|2a—1)8&V(1,02a—1)&V(0,024),

W, =V(2,02a—2)8V(1,02a—1)®V(1,—1|2a). (90)
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Note that there is one copy &f(1,02a—1) in each of these spaces. For the Casimirs we have

—a(a+2), V=(2,q—2),(1,—1|0)

—(a?+1), v=(1,0-1)
iIC(v+2ad)—C(y+ad)={ —(a®+2a+2), v»=(0,00) (91)

—(a?-2a+2), v=(1,1-2)

—a?+2, v=(2-1]-1).

Collecting together all of this information and substituting i@ we arrive at

[a+1]la—1][3]4 ket 2) [a+1]g[a—1][3]q

K@= ol za a2, T ar2lf2a- 12, Y

~ka?+2a+2) L@t L@~ 1lq qykg-k(a2-2avz) L@ 1la=1]g

x4 [2a+1]4[2a]4[2], (—1%q [2a][2a—1]4[2]4
(_l)kq—k(az—z) [a+1][a—1]4]q (1+(_1)k)q7k(a2+l)

[2a+2][2a—2]4 2],

[a+1]la—1],
[2a+1][2a—1],"

92

C. Two-variable link polynomials from U ;[osp(2|2n)]

Consider the one-parameter family of"2 dimensional irreducible osp2|2n)]-modules
V(A,) with highest weights of form\ ,=(«|0,...,0=a¢, [and with lowest weight\ , =(a—2n)¢,].
V(agpy) is unitary and typical provided that<<O or a>2n. We therefore consider the tensor
product moduléV/(aey) ®V(aey) with <0 or a>2n which decomposes as

n n—c
V(aeg)@V(ae)= & & V(Acq) (93
c=0d=0
with
C
Acg=(2a—c—2d)egt A, A=, €. (94)
i=1

The decompositiori93) is obtained from known character formulpef. Eq. (59)].
From theZ gradation orV(ae,) we can deduce that the level of the module\ . 4) is equal
to c+2d. Thus the parity of the moduM(A g) is ([1])¢729. The Casimir eigenvalues read
C(A¢g)=4(a—d)(n+c+d—a)—2c(c—1),
C(aey)=a(2n—a). (95)

For 6 a braid of the general forr(b6) we thus arrive at the two variable link polynomial

M-1
L<b>=q‘“<2“‘“)2y=31kiﬂl &,(a,@), (96)

where the¢ (q,a)’s are given by
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n n-c 0
— _ (k—1)(c+2d) yky,, XaE(FO) ) Dq(AC,d)
fda,a)=2 2 (~1) T . To)  Dlae) 97
with
Ya=3C(A¢qg)—C(ae). (98)

After a bit algebra, we end up with

n

XeeTo)- II [(p.®1e=11 [2n+1-i-alfi—a—1],,

+ i=1
Bed,

X, (o) 11 [(p,,B)]qul;[l [c+2d+2n+1—i—2a—8]q[c+2d+i—2a—1+ 8],

BE’:I)I
(99)
where & .. equals 1 fori<c and zero otherwise. We thus obtain
n n-—c
Ed0,0)= 2 X (—1kVer2gkray (c,d)-DY(\), (100
c=0 d=0
where
Xas(Ao) 1 [2n+1-i—al i—a—1]
Xa(C,d)= = . 1

Xa, (Mo) =i [c+2d+2n+1-i—2a—di=c]glct2d+i—2a—1+ =g’

C

o [2n+2)—i—jlg 5 [2(n+2-D)],
Dge =11 G =imj, L e

(101)

VIIl. DISCUSSION

We have demonstrated how link polynomials can be constructed associated with any finite-
dimensional unitary irrep of a type-I quantum superalgebra. This is achieved by successfully
overcoming a fundamental problem in computing the eigenvalues of Casimir invariants for the
quantum superalgebras. Applying our results to one-parameter families of inequivalent irreps, we
have been able to construct infinite families of nonequivalent two-variable link polynomials. Such
two-variable link polynomials were previously known only for some isolated cases. For a class of
braids, we have computed the link polynomials in fully explicit form.
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