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Type-I quantum superalgebras, q -supertrace,
and two-variable link polynomials

Mark D. Gould and Jon R. Links
Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

Yao-Zhong Zhanga)
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan

~Received 25 October 1995; accepted for publication 19 September 1995!

A new general eigenvalue formula for the eigenvalues of Casimir invariants, for the
type-I quantum superalgebras, is applied to the construction of link polynomials
associated withanyfinite dimensional unitary irrep for these algebras. This affords
a systematic construction of new two-variable link polynomials associated with any
finite dimensional irrep~with a real highest weight! for the type-I quantum super-
algebras. In particular infinite families of nonequivalent two-variable link polyno-
mials are determined in fully explicit form. ©1996 American Institute of Physics.
@S0022-2488~96!00802-8#

I. INTRODUCTION

Following the celebrated discovery by Jones1 of the so-called Jones’ link polynomial, there
has been considerable interest in recent years in modern knot theory, which has been found to be
closely related, through the quantum Yang–Baxter equation~QYBE!, to various areas of physics
such as solvable models and quantum field theories.2,3 With the equally important discovery of
quantum algebras during the same period by Drinfeld4 and Jimbo5 following the initiatives of the
St. Petersberg group, it was soon realized by Reshetikhin6 and Turaev7 that quantum algebras
provided a useful tool in constructing link polynomials. This idea was further developed in Refs.
8–10 where the authors proposed a simple systematic procedure for the construction of link
polynomials arising from quantum bosonic algebras.

There were many attempts~see, e.g., Refs. 2, 11, and 12! to construct new two- or multi-
variable link polynomials since the work of HOMFLY13 and Kauffman14 concerning two-variable
extensions of the Jones link polynomial. The two-variable HOMFLY and Kauffman link polyno-
mials arise from the minimal representations ofAn andBn , Cn , Dn quantum algebras, respec-
tively.

Subsequently, link polynomials arising from quantum superalgebras have been addressed by
various authors.15–20 Among all quantum superalgebras those of type-I, Uq@gl(mun)# and
Uq@osp~2u2n!#, are particularly interesting because they possess one-parameter families of finite-
dimensional unitary irreps even for genericq. The freedom of having extra parameters in the
irreps opens up new and exciting possibilities in physics.21 For the current case, the link polyno-
mials from such representations will then also depend on these extra parameters, thus naturally
yielding multi-variable link polynomials. We remark however that such multi-variable link poly-
nomials are not related22 to those arising from ‘‘colored’’ braids.11

For the case of quantum superalgebras, the situation is much more complicated than the
bosonic case. The fundamental difficulty is the zeroq-supertrace problem over typical irreps, so
that the usual techniques developed for computing the eigenvalues of Casimir invariants for
quantum bosonic algebras fail in this case. Due to this problem, only very few isolated examples
of multi-variable link polynomials for quantum superalgebras have so far been known. These
include the two-variable link polynomials23 based on Uq@gl~2u1!# and multi-variable ones22 for a
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special class of representations of Uq@gl(mun)#. In these examples, the authors only considered
representations for which the above mentioned difficulty does not occur.

In this paper, we have succeeded in overcoming the above problem and obtain a well-defined
q-supertrace formula which is applied to compute the eigenvalues of the Casimir invariants. These
results are given in theorems 1, 2, and 3. However, the proof of theq-supertrace formulas are
extremely lengthy and will be published in a separate paper.32 Using these results, we are able to
construct link polynomials associated withanyfinite dimensional unitary irrep of a type-I quantum
superalgebra. Applied to one-parameter families of inequivalent finite dimensional irreps of
Uq@gl(mun)# and Uq@osp~2u2n!# for genericq, our method affords infinite families of nonequiva-
lent two-variable link polynomials in fully explicit form.

This paper will be presented in the following order. After recalling some fundamentals in Sec.
II, we give, in Sec. III an account of the atypicality indices and unitary irreps of Uq~G !. In Sec. IV
we present three theorems concerning the computation of theq-supertraces and therefore the
eigenvalues of Casimir invariants over typical irreps. Section V derives a spectral decomposition
formula for the braid generator and its powers. A general method for constructing link polynomials
is presented in Sec. VI and examples of two-variable link polynomials are illustrated in Sec. VII.
In the last section, we give a brief discussion of our main results.

II. PRELIMINARIES

Let G be a type-I simple Lie superalgebra24 with generators$ei , f i ,hi% and let ai ,
i50,1,...,r , be its simple roots witha0 the unique odd simple root; here we choose the distin-
guished set of simple roots.~Superalgebras allow many inequivalent systems of simple roots. See
Ref. 24. The relation between the different quantum superalgebras obtained by choosing different
systems of simple roots is studied in Ref. 25.! Let ~,! be a fixed invariant bilinear form onH* , the
dual of the Cartan subalgebraH of G . The quantum superalgebra Uq~G ! has the structure of a
Z2-graded quasi-triangular Hopf algebra. Throughout the paper we will assume thatq is generic,
i.e., not a root of unity. We will not give the full defining relations of Uq~G ! here but mention that
the simple raising and lowering generators of Uq~G ! obey more relations than just the usual
q-Serre relations known from quantum bosonic algebras.26–29These necessary extra relations are
referred to as ‘‘extraq-Serre relations.’’ Uq~G ! has a coproductD and antipodeS given by

D~q6hi !5q6hi ^q6hi,

D~ei !5ei ^q2hi /21qhi /2^ei ,

D~ f i !5 f i ^q2hi /21qhi /2^ f i , ~1!

S~a!5q2hrg~a!qhr, a5ei , f i ,hi , ~2!

whereg is the principal anti-automorphism on Uq~G ! and r is the graded half-sum of positive
roots ofG . We omit the formulas for the counit which are not needed here.

The algebra Uq~G ! is a quasitriangular graded Hopf algebra, which means the following. Let
D8 be the opposite coproduct so thatD85TD, where T is the graded twist map:
T(a^b)5(21)[a][ b]b^a, ;a,bPUq~G !. Here [a]PZ2 denotes the grading of elementa: [a]50
if a is even and [a]51 if it is odd. ThenD andD8 are related by the universalR-matrix R in
Uq~G !^Uq~G ! satisfying, among others, the relations

RD~a!5D8~a!R, ;aPUq~G !, ~3!

~ I ^ D!R5R13R12, ~D ^ I !R5R13R23, ~4!

988 Gould, Links, and Zhang: q-supertrace and two-variable link polynomials

J. Math. Phys., Vol. 37, No. 2, February 1996

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:38:05



where if R5(at^bt thenR125(at^bt^1, R135(at^1^bt , etc. It follows from ~4! that R
satisfies the QYBE:

R12R13R235R23R13R12. ~5!

Note that the multiplication rule for the tensor product is defined for homogeneous elements
a,b,c,dPUq~G ! by

~a^b!~c^d!5~21!@b#@c#~ac^bd!. ~6!

It is a well established fact for quasitriangular Hopf algebras, that there exists a distinguished
element4

u5(
t

~21!@ t#S~bt!at , ~7!

where, as above,at andbt are coordinates of the universalR-matrix. One can show thatu has
inverse

u215(
t

~21!@ t#S22~bt!at ~8!

and satisfies

S2~a!5uau21, ;aPUq~G !, D~u!5~u^u!~RTR!21, ~9!

whereRT5T(R). It is easy to check that

v5u21q22hr ~10!

belongs to the center of Uq~G ! and satisfies

D~v !5~v^v !~RTR!21. ~11!

Moreover, on a finite dimensional irreducible moduleV~L! with highest weightLPD1, the
Casimir operatorv takes the eigenvalue

xL~v !5q~L,L12r!. ~12!

Note that the generators$ei , f i ,q
hi,i 5 1,...,r % form generators of the quantum group Uq~G 0!,

whereG 0 is the ‘‘even subalgebra’’ ofG . Specifically,

G 05u~1! %sl~m! %sl~n!, for G5sl~mun!, m,n>2,

G 05u~1! %sl~n!, for G5sl~1un!, n>2,

G 05u~1! %sp~2n!, for G5osp~2u2n!. ~13!

Throughout we letV0~L! denote the finite dimensional irreducible Uq~G 0! module with highest
weightLPD1. We call

Dq
0~L!5 )

bPF0
1

@~L1r,b!#q
@~r,b!#q

~14!
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theq-dimension of the Uq~G 0! irrepV0~L!, whereF0
1 denotes the set of even positive roots ofG .

Here and in what follows we will adopt the notation

@x#q5
qx2q2x

q2q21 . ~15!

III. ATYPICALITY INDICES AND FINITE-DIMENSIONAL UNITARY IRREPS

Let K~L! be the Kac-module associated toV~L!. K~L! is not necessarily irreducible. If it is,
we haveV(L)5K(L) and refer toL and V~L! as ‘‘typical.’’ Recall thatL is typical iff~L
1r,b!Þ0, ;bPF1

1 , whereF1
1 is the set of odd positive roots ofG .

Let us remark that for typical modules the dimensions are easily evaluated to be
dimV(L)52d•dimV0~L!, whered, which is equal tomn for gl(mun) and 2n for osp~2u2n!, is the
number of odd positive roots. This formula is particularly useful in determining tensor product
decompositions of typical modules.

Definition 1: The integer

aL5uF̄1
1~L!u, F̄1

1~L!5$bPF1
1u~L1r,b!50% ~16!

is called the ‘‘atypicality index’’ ofLPD1. In particular, aL50 iff L is typical.
The type-I quantum superalgebras admit two types of unitary representations which may be

described as follows. We make the simplifying assumption thatq.0 ~i.e., q is real and positive!
and define a conjugation operation on the Uq~G ! generators byei

† 5 f i , f i
† 5 ei , hi

† 5 hi which is
extended uniquely to all of Uq~G ! such that (xy)†5y†x†, ;x,yPUq~G !. We call pL type ~1!
unitary if

pL~x†!5pL~x!, ;xPUq~G ! ~17!

and type~2! unitary if

pL~x†!5~21!@x#pL~x!, ;xPUq~G !, ~18!

where the overline denotes Hermitian matrix conjugation. The two types of unitary representations
are in fact related via duality.

Lemma 1: Such unitary representations have the property that they are always completely
reducible and the tensor product of two irreducible unitary representations of the same type
reduces completely into irreducible unitary representations of the same type. Moreover the atypi-
cality indices of the irreps occurring in this decomposition are less than or equal to the atypicality
index of either component.

The finite dimensional irreducible unitary representations for all type-I quantum superalgebras
have been classified in Refs. 30 and 31. For completeness we cite these classification results
below. Let us first of all introduce some notation. For gl(mun), we choose$e i% i51

m ø$d j% j51
n as a

basis forH* with @ei#50, @dj #51 and

~e i ,e j !5d i j , ~d i ,d j !52d i j , ~e i ,d j !50. ~19!

Using this basis, any weightL may written as

L[~L1 ,...,LmuL̄1 ,...,L̄n![(
i51

m

L ie i1(
j51

n

L̄jd j ~20!

and the graded half-sumr of the positive roots is
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2r5(
i51

m

~m2n22i11!e i1(
j51

n

~m1n22 j11!d j . ~21!

For osp~2u2n!, choose$e0%ø$e i% i51
n as a basis forH* with @e0#51, @ei#50 and

~e0 ,e0!521, ~e i ,e j !5d i j , ; i , j51,...,n, ~e0 ,e i !50. ~22!

In this case, any weightL may be expressed as

L[~L̄uL1 ,...,Ln![L̄e01(
i51

n

L ie i ~23!

and the graded half-sumr of the positive roots is given by

r5(
i51

n

~n2 i11!e i2ne0 . ~24!

Proposition 1:(I ) A givenUq@gl(mun)#-module V~L!, with LPD1 , is type~1! unitary iff: (i)
~L1r,em2dn!.0; or (ii) there exists an odd indexvP$1,2,...,n% such that ~L1r,em2dv!
505~L,dv2dn!. In the former case the given condition also enforces typicality on V~L!, while in
the latter case all irreps are atypical.
(II ) TheUq@gl(mun)#-module V~L!, with LPD1 , is type~2! unitary iff: (i) ~L1r,e12d1!,0; or
(ii) there exists an even index kP$1,2,...,m% such that~L1r,ek2d1!505~L,e12ek!. In the former
case V~L! is typical, while in the latter case it is atypical.

Proposition 2: A givenUq@osp~2u2n#!-module V~L! is type~1! unitary iff ~L,a0!>0,wherea0
denotes the unique odd simple root, and type~2! unitary iff (i) ~L1r,e01e1!,0; or (ii) there exists
an index kP$1,2,...,n% such that~L1r,e01ek)505(L,e12ek!; or (iii) L50.

IV. q -SUPERTRACE AND EIGENVALUES OF CASIMIR INVARIANTS

Throughout this section we assumeV~L! is a fixed but arbitrary finite dimensional irreducible
Uq~G !-module. SupposeV(n),V(m)^V(L) is typical and letP@n# denote the central projection
of the tensor product moduleV(m)^V(L) onto its isotypic componentV̄(n)[mnV(n)
,V(m)^V(L) @that isV̄(n)5V(n)% ••• %V(n),mn copies#. We state the followingq-supertrace
formula:

Theorem 1: For m, nPD1 typical,

~ I ^str!~ I ^ pL~q22hr!!P@n#5~21!@n#mn

xm~G0!

xn~G0!
•

Dq
0~n!

Dq
0~m!

, ~25!

where@n# modulo2 is the degree of the weightn, G0 is a central element ofUq~G 0! andxm~G0! is
the eigenvalue ofG0 on theUq~G 0!-module V0~m!:

xm~G0!5 )
bPF1

1

@~m1r,b!#q
@~r,b!#q

. ~26!

The proof of this theorem is very lengthy and detailed, and will be published elsewhere.32

Proposition 3: If the operator cPUq~G !^EndV~L! satisfiesDL(a)c5cDL(a), ;aPUq~G !,
whereDL5~I ^pL!D, then

Ck
L5~ I ^str!$@ I ^ pL~q22hr!#ck%, kPZ1 ~27!
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belong to the center ofUq~G ! and thus form a family of Casimir invariants.
An important example ofc is given by

c5
I ^ I2RL

TRL

q2q21 , ~28!

whereRL5(I ^ pL)R, with R the universalR-matrix.
Now assumeV(m)^V(L) is completely reducible and write

V~m! ^V~L!5 %

n

mnV~n! ~29!

with now mn the multiplicity of the moduleV~n! occurring in the tensor product. This always
occurs whenm andL are unitary of the same type. Moreover, in such a case, each of the modules
V~n! is also unitary. IfcP(I ^ pL)(Z^Z)D(Z) whereZ is the center of Uq~G !, then one can
deduce the following spectral decomposition forc and its powersck, kPZ:

ck5(
n

~xn~c!!kP@n#, ~30!

wherexn(c) is the eigenvalue ofc on V(n),V(m)^V(L). Thus if c is given by the above
example, then we have

xn~c!5
12qC~m!1C~L!2C~n!

q2q21 , ~31!

whereC~L![~L,L12r! denotes the eigenvalue of the second order Casimir invariant ofG .
With the aid of Theorem 1, we can determine the eigenvalues of the Casimir invariantsCk

L on
a finite dimensional typical moduleV~m! @notation as in Eq.~29!#.

Theorem 2: If m,n are all typical, then the eigenvalues of the Casimir invariants on V~m! are
given by

xm~Ck
L!5(

n
~21!@n#mn~xn~c!!k

xm~G0!

xn~G0!
•

Dq
0~n!

Dq
0~m!

, kPZ. ~32!

Remark:Let $li% denote the set of distinct weights inV~L! occurring with multiplicities
ml i

. It can be shown that the above theorem may be extended to all finite dimensional modules
V~m!, mPD1, by replacingn,mn with m 1 l i ,ml i

, respectively, and summing overli . For more
details see Ref. 33. The eigenvalue formula obtained in this way is referred to as the ‘‘extended
eigenvalue formula’’ onV~m!, mPD1. Note that for genericm, the extended eigenvalue formula
determines a polynomial function onH* . It is well defined if allm1li are typical but if some
m1li is atypical it is necessary first to expand the right-hand side of the extended eigenvalue
formula into a polynomial in order to avoid singularities.33

In the case of unitarymPD1 this latter problem can be overcome as follows. We set

F1
1~l!5$bPF1

1u~l1r,b!Þ0% ~33!

so that

uF1
1~l!u1al5uF1

1u. ~34!

Then we have the following.
Theorem 3:The eigenvalues of the Casimir invariants on a unitary module V~m! are given by
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xm~Ck
L!5 (

$nuan5am%
~21!@n#mn~xn~c!!k

PbPF
1
1~m!@~m1r,b!#q

PbPF
1
1~n!@~n1r,b!#q

•

Dq
0~n!

Dq
0~m!

, kPZ1 ~35!

provided that V~L!, V~m! are unitary of the same type. Here the sum overn is over
V0(n),V0(m)^V(L) and mn is the multiplicity of V0~n! in this space.

For a given unitary moduleV~L!, the above formula is well defined for all unitarymPD1 of
the same type.

V. DIAGONALIZATION OF THE BRAID GENERATOR

Let P be the graded permutation operator onV(L)^V(L) defined by P(ux& ^ uy&)
5(21)[x][ y] uy& ^ ux&, for all homogeneousux&, uy&PV~L! and set

s5PR PEnd~V~L! ^V~L!!. ~36!

Here and in what follows we regard elements of Uq~G ! as operators onV~L!. Then ~3! is
equivalent to

sD~a!5D~a!s ;aPUq~G ! ~37!

and ~5! can be written as

~ I ^ s!~s ^ I !~ I ^ s!5~s ^ I !~ I ^ s!~s ^ I !. ~38!

It follows immediately that the operatorssi
6PEnd(V(L)^M), i5$1,2,...,M21% defined by

~39!

generate a nontrivial representation of the rank~M21! braid groupBM .
In the case whens acts onV(L)^V(L) with V~L! unitary, it can be shown thats is

self-adjoint and diagonalizable.34 We remark however that only the type-I quantum superalgebras
admit finite dimensional unitary irreps.

Similar to ~29! we write,

V~L! ^V~L!5 %

n

mnV~n!, ~40!

where againmn is the multiplicity of the moduleV~n! occurring in the tensor product and each of
the modulesV~n! is unitary. In view of the self-adjointness ofs, s is diagonalizable on
V̄(n)[mnV(n)5V(n)% ••• %V(n) ~mn copies!, regardless of the multiplicity. In fact it is possible
to derive a spectral decomposition formula fors, as in the case of quantum bosonic algebras.10

Recall that limq→1 s5P and P is diagonalizable onV(L)^V(L) with eigenvalues61.
Following Ref. 10, letP@6# denote the projection operators defined by

P@6#~V~L! ^V~L!!5W6 , ~41!

where

W65$wPV~L! ^V~L!u lim
q→1

~s71!w50%. ~42!
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Sinces is an Uq~G !-invariant each subspaceW6 determines a Uq~G !-module andP@6# commute
with the action of Uq~G !. As aboveP@n# denotes the projection operator onto the modulesV̄~n!;
then obviously

P@n,6#5P@6#P@n#5P@n#P@6# ~43!

is the projection onto the isotypic componentV̄~n! consisting of eigenvectors ofs with parities
61, respectively@i.e., the component ofV̄~n! in W6 , respectively#.

The diagonalizability ofs, together with the fact that

s25PRP•R5RTR5~v^v !D~v21!, ~44!

implies the following spectral decomposition fors and its powers:

sk5q2kC~L!(
n

q~k/2!C~n!~P@n,1#1~21!kP@n,2# !, kPZ, ~45!

where as beforeC~l![~l,l12r!. It follows in particular thats satisfies the polynomial identity

)
n

~s2q
1
2
C~n!2C~L!!~s1q

1
2
C~n!2C~L!!50 ~46!

which leads to the generalized skein relations for the corresponding link polynomials investigated
below.

VI. LINK POLYNOMIALS

Let uPBM be a word in the generatorssi
6, 1< i<M21 and letû denote the link obtained by

closing the braid. For the construction of link polynomials, the Markov tracef plays an essential
role. It is defined by

~ i! f~uh!5f~hu!, ;u,hPBM ,

~ ii ! f~usM21!5zf~u!, f~usM21
21 !5 z̄f~u!, ;uPBM21,BM . ~47!

Given such a Markov trace, it is well-known that one can define a link polynomialL( û) through

L~ û !5~zz̄!~M21!/2~ z̄z21!e~u!/2f~u!, uPBM , ~48!

wheree~u! is the sum of the exponents of thesi ’s appearing inu. The functionalL( û) enjoys the
following properties:

~ i! L~uĥ !5L~hû !, ;u,hPBM ,

~ ii ! L~u,sM21
61̂ !5L~ û !, ;uPBM21,BM ~49!

and is an invariant of ambient isotopy.
Proposition 4: The functionalf(u) defined by

f~u!5
~ tr^str^ ~M21!!~ I ^ D~M21!~q22hr!u!

dim V~L!
, ~50!

where tr and str denote the trace and supertrace over V~L!, respectively, qualifies as a Markov
trace with
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z5q~L,L12r!, z̄5q2~L,L12r!. ~51!

Corollary 1: It follows that

L~ û !5q2~L,L12r!e~u!f~u!, uPBM , ~52!

defines a link polynomial.
Now consider the family of Casimir invariants

Ck
L5~ I ^str!@ I ^ pL~q22hr!#sk. ~53!

Let jk
L denote the eigenvalues of the invariantsCk

L onV~L!. In view of ~45! and Theorem 2, one
can deduce, forL typical, that they are given explicitly by

jk
L5q2kC~L!(

n
~21!@n#q~k/2!C~n!~mn

11~21!kmn
2!

xL~G0!

xn~G0!
•

Dq
0~n!

Dq
0~L!

, ~54!

wheremn
6 are the multiplicities ofV~n! in W6 , respectively, so that

mn5mn
11mn

2 . ~55!

Note: In the case thatL is typical it necessarily follows that allV~n! in the tensor product
decomposition~40! are also typical so that~54! is always well defined~c.f. Lemma 1!.

Theorem 4: Consider the braid group BM and a braidu of the following general form:

u5~s i1
!k1~s i2

!k2•••~s i M21
!kM21, kiPZ ~56!

with $ i 1 ,i 2 ,...,i M21% an arbitrary permutation of$1,2,...,M21%. Then the following functional is
a link polynomial

L~ û !5q2~L,L12r!( i51
M21ki )

i51

M21

jki
L . ~57!

In the case thatL is typical, jk
L is given by (54).

VII. NEW TWO-VARIABLE LINK POLYNOMIALS

We will now apply the technique developed in previous sections to develop a general method
for obtaining two-variable link polynomials corresponding to any realLPD1. Again we restrict to
the type-I quantum superalgebrasG5gl(mun) or G5osp~2u2n!.

Corresponding to anyreal LPD1 we have the one-parameter family of irreps

V~La![V~L1ad!, aPR,

d5H (
i

d i , for G5gl~mun!

e0 , for G5osp~2u2n!.
~58!

The moduleV~La! is typical and unitary foruau sufficiently large. For example, for the case
G5gl(mun), we have from Proposition 1 a type ~1! unitary module for
a.2(L1r,em2dn)5n212(L,em2dn), and a type ~2! unitary module for
a,2(L1r,e12d1)512m2(L,e12d1). Below we assumea belongs to this range~although
the final formula for link polynomials should apply, by analytic continuation, to all reala!.
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Here we obtain a representation of the braid generatorsPEnd[V(L1ad)^V(L1ad)] and
a formula for two variable link polynomials. Consider the Uq~G 0!-module direct sum decompo-
sition

V0~L! ^K~L!5 %

n

mnV0~n!, ~59!

whereG 0 is the even subalgebra ofG andV0~L! the maximalZ-graded component ofV~L!. Then
for uau sufficient large~i.e., in the range considered above! we have the easily established decom-
position

V~L1ad! ^V~L1ad!5 %

n

mnV~n12ad!. ~60!

Note that this decomposition may be obtained solely from a knowledge of the Uq~G 0! modules
occurring inK~L! and Uq~G 0! tensor product rules. In principal this follows from the known
characters ofK~L! andV0~L!.

From our previous results we have the Casimir invariants

Ck
L5~ I ^str!@ I ^ pL1ad~q22hr!#sk ~61!

which, from ~54!, take the following eigenvalues onV~n1ad!:

jk
L~q,a!5q2kC~L1ad!(

n
~21!@n#q~k/2!C~n12ad!~mn

11~21!kmn
2!

xL1ad~G0!

xn12ad~G0!
•

Dq
0~n!

Dq
0~L!

,

~62!

where use has been made of the fact thatad is orthogonal to all even roots andL1ad, n12ad are
all typical for a in the range considered.

Now for u a braid of the general form~56!, we arrive at at the link polynomial

L~ û !5q2~L1ad,L1ad12r!( i51
M21ki )

i51

M21

jki
L~q,a! ~63!

with jk
L(q,a) given by~62!. In this way we obtain a two-variable link polynomial corresponding

to any realLPD1.

A. Two-variable link polynomials from U q[gl( m zn )]

Following Ref. 35, we assumem>n and for 0<N<mn we call a Young diagram
@l#5@l1,l2,...,lt#, l1>l2•••>lt>0 for the permutation groupSN ~i.e.,l11l21•••1lt5N! allow-
able, if it has at mostn columns andm rows; i.e.,t<m, l i<n. Associated with each such Young
diagram@l# we define a weight of gl(mun)

~64!

Using the basis$e i ,d j%, the weightL@l# may be expressed as
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L@l#52(
i51

t

l iem2 i111t(
j51

l t

d j1(
s51

t

~ t2s! (
j5l t2s11

l t2s

d j . ~65!

Let us consider the one-parameter family of finite-dimensional irreducible
Uq~gl(mun)!-modulesV~La! with highest weights of the formLa5~0,...,0ua,...,a![~0̇uȧ!5ad.
@That is the caseL5~0̇u0̇!.# These irrepsV~ad! are unitary of type~1! if a.n21 and unitary of
type ~2! if a,12m. As mentioned above we assume reala satisfying one of these conditions, in
which caseV~ad! is also typical of dimension 2mn.

We have the following decomposition ofV~ad! into irreps of the even subalgebra
gl(m)%gl(n):

V~ad!5 %

N50

mn

%

@l#PSN

V0~L@l#1ad!, ~66!

where the summation is over allowedN-box Young diagrams. Note that the indexN gives the
Z-graded level of the irrep concerned. Alternatively we may simply write

V~ad!5 %

@l#

V0~L@l#1ad!. ~67!

The number of boxesNl in the Young diagram@l# then gives the level. We can deduce the tensor
product decomposition

V~ad! ^V~ad!5 %

@l#

V~L@l#12ad!. ~68!

The parity of the moduleV~L@l#12ad! is ( 2 1)Nl. The eigenvalue of the second-order Casimir on
the irrepV~L@l#12ad! can be shown to be

C~L@l#12ad!52(
i51

t

l i~l i1122a22i !22an~2a1m!,

C~ad!52an~a1m!. ~69!

Introduce the notation

ga@l#[
1

2
C~L@l#12ad!2C~ad!52(

i51

t

l i~l i1122a22i !2an~3a1m!. ~70!

For u a braid of the general form~56! we arrive at the two variable link polynomial

L~ û !5q2na~a1m!( i51
M21ki )

i51

M21

jki~q,a!, ~71!

where now

jk~q,a!5(
@l#

~21!~k21!Nlqkga@l#
xad~G0!

xL@l#12ad~G0!
•

Dq
0~L@l#12ad!

Dq
0~ad!

. ~72!

In this formula, the sum is again over all allowable Young diagrams. This formula can be made
fully explicit if we make use of the easily established result~which takes a bit of algebra!
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xad~G0!• )
bPF1

1
@~r,b!#q5)

i51

m

)
j51

n

@ i2 j1a#q ,

xL@l#12ad~G0!• )
bPF1

1
@~r,b!#q5)

i51

m

)
j51

n

@ i2 j2l i12a#q)
l51

t
@l i2 i22a112 l #q

@l l1l i2 i22a2 l11#q
,

~73!

where, in this last formula, it is implicitly understood thatli50 for m> i.t. We thus obtain

jk~q,a!5(
@l#

~21!~k21!Nlqkga~@l#!xa~@l#!Dq
0~L@l#!, ~74!

where

xa~@l#![
xad~G0!

xL@l#12ad~G0!
5)

i51

m

)
j51

n
@ i2 j1a#q

@ i2 j2l i12a#q
)
l51

t
@l l1l i2 i22a112 l #q

@l i2 i22a112 l #q
. ~75!

As an illustration, let us consider some specific cases in the remaining part of this subsection.
Example „1…: Uq@gl~2u2!#
The tensor product decomposition is

V~ad! ^V~ad!5V~0,0u2a,2a! %V~0,21u2a11,2a! %V~21,21u2a12,2a! %V~0,22u2a

11,2a11! %V~21,22u2a12,2a11! %V~22,22u2a12,2a12!. ~76!

We have in this case~using the Young diagram notation!

~77!

while thexa factors read
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~78!

It follows that

~79!

Example „2…: Uq@gl~mu1!#
We have the tensor product decomposition

V~ad! ^V~ad!5V~ 0̇u2a! %V~ 0̇,21u2a11! %V~ 0̇,21,21u2a12! % ••• %V~21̇u2a1m!.
~80!

In this caseDq
0~L@l#! reads

Dq
0~L@l#!5)

i51

t
@m112 i #q
@ t112 i #q

[
@m#q!

@m2t#q! @ t#q!
~81!

andga@l#, xa~@l#! reduce to, respectively,

ga@l#52t~ t21!2a~a12t !,

xa~@l#!5)
i51

m
@ i1a21#q

@ i12a1t212l i #q
. ~82!

The jk(q,a) have the following form,
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jk~q,a!5(
t50

m

~21!~k21!tq2k@ t~ t21!1a~a12t !#)
i51

t
@m112 i #q@ i1a21#q

@ t112 i #q@ i12a1t22#q
)
i.t

m
@ i1a21#q

@ i12a1t21#q
.

~83!

B. Two-variable link polynomials from adjoint representation of U q[gl(2 z1)]

As another illustration of how the general formalism works it is instructive to consider the
caseL5c, c5~1,0u21! the highest weight of the adjoint representation of gl~2u1!. This example
is of interest since it affords the simplest example of a two-variable link polynomial in which a
multiplicity occurs in the tensor product space.

First note that in this casee12e2 is the single even positive root ande12d1,e22d1 are the two
odd positive roots, from which we deduce that for anyL5~L1,L2uL̄1!

Dq
0@L#5@L12L211#q , xL~G0!5@L11L̄111#q@L21L̄1#q . ~84!

For the Kac-moduleK~c! we have the Uq~G 0!-module~G 05gl~2!%u~1!! decomposition~il-
lustrated in terms ofZ-graded levels!:

K~c!5V0~1,0u21! %V0~1,21u0! %V0~0,0u0! %V0~0,21u1! ~85!

which is easily seen to be 22•258 dimensional as required. Thus

V0~c! ^K~c!5V0~1,0u21! ^V0~1,0u21! %V0~1,0u21! ^ @V0~1,21u0! %V0~0,0u0!#

%V0~1,0u21! ^V~0,21u1!

5V0~2,0u22! %V0~1,1u22! %V0~2,21u21! %2V0~1,0u21!

%V0~1,21u0! %V0~0,0u0! ~86!

which yields the tensor product decomposition:

V~c1ad! ^V~c1ad!5V~2,0u2a22! %V~1,1u2a22! %V~2,21u2a21! %2V~1,0u2a21!

%V~1,21u2a! %V~0,0u2a!. ~87!

It is seen thatV~1,0u2a21! occurs twice in the tensor product space. From the aboveZ gradation
on V0(c)^K(c) we obtain

~21!@n#5 H 21, for n5~2,21u2a21!, ~1,0u2a21!

1, otherwise. ~88!

In theq→1 limit the above tensor product module decomposes into symmetric and antisymmetric
components~which determine the parities!:

V~c1ad! ^V~c1ad!5W1 %W2 ~89!

with

W25V~1,1u2a22! %V~2,21u2a21! %V~1,0u2a21! %V~0,0u2a!,

W15V~2,0u2a22! %V~1,0u2a21! %V~1,21u2a!. ~90!
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Note that there is one copy ofV~1,0u2a21! in each of these spaces. For the Casimirs we have

1
2C~n12ad!2C~c1ad!55

2a~a12!, n5~2,0u22!,~1,21u0!

2~a211!, n5~1,0u21!

2~a212a12!, n5~0,0u0!

2~a222a12!, n5~1,1u22!

2a212, n5~2,21u21!.

~91!

Collecting together all of this information and substituting into~62! we arrive at

jk
c~q,a!5q2ka~a12!

@a11#q@a21#q@3#q
@2a11#q@2a22#q@2#q

1q2ka~a12!
@a11#q@a21#q@3#q

@2a12#q@2a21#q@2#q
1~21!k

3q2k~a212a12!
@a11#q@a21#q

@2a11#q@2a#q@2#q
1~21!kq2k~a222a12!

@a11#q@a21#q
@2a#q@2a21#q@2#q

2

~21!kq2k~a222!
@a11#q@a21#q@4#q

@2a12#q@2a22#q@2#q
2~11~21!k!q2k~a211!

3
@a11#q@a21#q

@2a11#q@2a21#q
. ~92!

C. Two-variable link polynomials from U q[osp(2 z2n )]

Consider the one-parameter family of 22n- dimensional irreducible Uq@osp~2u2n!#-modules
V~La! with highest weights of formLa5~au0,...,0![ae0 @and with lowest weightLa

25~a22n!e0#.
V~ae0! is unitary and typical provided thata,0 or a.2n. We therefore consider the tensor
product moduleV(ae0)^V(ae0) with a,0 or a.2n which decomposes as

V~ae0! ^V~ae0!5 %

c50

n

%

d50

n2c

V~Lc,d! ~93!

with

Lc,d5~2a2c22d!e01lc , lc5(
i51

c

e i . ~94!

The decomposition~93! is obtained from known character formulae@c.f. Eq. ~59!#.
From theZ gradation onV~ae0! we can deduce that the level of the moduleV(Lc,d) is equal

to c12d. Thus the parity of the moduleV(Lc,d) is ~@1#!c12d. The Casimir eigenvalues read

C~Lc,d!54~a2d!~n1c1d2a!22c~c21!,

C~ae0!5a~2n2a!. ~95!

For u a braid of the general form~56! we thus arrive at the two variable link polynomial

L~ û !5q2a~2n2a!( i51
M21ki )

i51

M21

jki~q,a!, ~96!

where thejk(q,a)’s are given by
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jk~q,a!5 (
c50

n

(
d50

n2c

~21!~k21!~c12d!qkga
xae~G0!

xLc,d
~G0!

•

Dq
0~Lc,d!

Dq
0~ae!

~97!

with

ga[ 1
2C~Lc,d!2C~ae!. ~98!

After a bit algebra, we end up with

xae~G0!• )
bPF1

1
@~r,b!#q5)

i51

n

@2n112 i2a#q@ i2a21#q ,

xLc,d
~G0!• )

bPF1
1

@~r,b!#q5)
i51

n

@c12d12n112 i22a2d i<c#q•@c12d1 i22a211d i<c#q ,

~99!

wheredi<c equals 1 fori<c and zero otherwise. We thus obtain

jk~q,a!5 (
c50

n

(
d50

n2c

~21!~k21!~c12d!qkgaxa~c,d!•Dq
0~lc!, ~100!

where

xa~c,d![
xad~L0!

xLc,d
~L0!

5)
i51

n
@2n112 i2a#q@ i2a21#q

@c12d12n112 i22a2d i<c#q@c12d1 i22a211d i<c#q
,

Dq
0~lc!5)

i, j

c
@2~n12!2 i2 j #q
@2~n11!2 i2 j #q

)
l51

c
@2~n122 l !#q
@2~n112 l !#q

. ~101!

VIII. DISCUSSION

We have demonstrated how link polynomials can be constructed associated with any finite-
dimensional unitary irrep of a type-I quantum superalgebra. This is achieved by successfully
overcoming a fundamental problem in computing the eigenvalues of Casimir invariants for the
quantum superalgebras. Applying our results to one-parameter families of inequivalent irreps, we
have been able to construct infinite families of nonequivalent two-variable link polynomials. Such
two-variable link polynomials were previously known only for some isolated cases. For a class of
braids, we have computed the link polynomials in fully explicit form.
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