



## Thermal stability of Er 2 O 3 thin films grown epitaxially on Si substrates

Sheng Chen, Yanyan Zhu, Rong Wu, Yueqin Wu, Yongliang Fan, and Zuimin Jiang

Citation: Journal of Applied Physics **101**, 064106 (2007); doi: 10.1063/1.2712144 View online: http://dx.doi.org/10.1063/1.2712144 View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/101/6?ver=pdfcov Published by the AIP Publishing

### Articles you may be interested in

Study of thermal stability of distributed Bragg reflectors based on epitaxial rare-earth oxide and silicon heterostructures J. Vac. Sci. Technol. B **32**, 02C103 (2014); 10.1116/1.4862951

Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO3-buffered Si(001) substrates J. Vac. Sci. Technol. A **31**, 01A136 (2013); 10.1116/1.4770291

Phase stability of epitaxially grown Ti 2 Al N thin films Appl. Phys. Lett. **89**, 074101 (2006); 10.1063/1.2335681

Interface structure and thermal stability of epitaxial Sr Ti O 3 thin films on Si (001) J. Appl. Phys. **100**, 014912 (2006); 10.1063/1.2206710

Thermal stability of Pr 2 O 3 films grown on Si(100) substrate J. Vac. Sci. Technol. A **20**, 1860 (2002); 10.1116/1.1507332



# Thermal stability of Er<sub>2</sub>O<sub>3</sub> thin films grown epitaxially on Si substrates

Sheng Chen, Yanyan Zhu, Rong Wu, Yueqin Wu, Yongliang Fan, and Zuimin Jiang<sup>a)</sup> Surface Physics Laboratory (National Key Laboratory), Fudan University, Shanghai 200433, China

(Received 22 November 2006; accepted 18 January 2007; published online 22 March 2007)

The thermal stability of  $\text{Er}_2\text{O}_3$  thin films grown epitaxially on Si substrates has been investigated in this paper by x-ray diffraction and high resolution transmission electron microscopy. The  $\text{Er}_2\text{O}_3/\text{Si}(001)$  films are found to react with Si to form silicates at the temperature of 450 °C in N<sub>2</sub> ambience, whereas O<sub>2</sub> ambience can prevent the silicate formation even at the temperature of 600 °C. However, at a high temperature of 900 °C in either N<sub>2</sub> or O<sub>2</sub> ambience,  $\text{Er}_2\text{O}_3$  films react with Si, and both silicate and SiO<sub>2</sub> are formed in the films. In addition, the  $\text{Er}_2\text{O}_3$  films grown on Si(111) substrates show poorer thermal stability than those grown on Si(001) substrates; Er silicide is formed at the interface in the films annealed at 450 °C in O<sub>2</sub> ambience, which is attributed to that the reaction product hexagonal  $\text{ErSi}_2$  is formed more easily on Si(111) than on Si(001) due to structure similarity as well as small lattice mismatch. © 2007 American Institute of Physics. [DOI: 10.1063/1.2712144]

#### **I. INTRODUCTION**

High-k dielectrics are being considered as possible replacements for  $SiO_2$  of the gate oxide of the complementary metal-oxide-semiconductor (CMOS) devices. Apart from the common electrical requirements such as a high dielectric constant, a low gate current, and a low interface state density, good thermal stability is also very important for an ideal high-k material. It is not only the demand of the device work environment but also the demand of the CMOS manufactural process. A particularly demanding step in the conventional CMOS process flow is the 900-1000 °C dopant drive-in annealing. The stability of high-k oxides under postdeposition annealing is crucial to guarantee compatibility with the integration step.<sup>1</sup> In thermal process, various atmospheres will be used, such as forming gas (N<sub>2</sub>:H<sub>2</sub>), N<sub>2</sub>, Ar, O<sub>2</sub>, N<sub>2</sub>O, and vacuum. Extensive studies about the annealing effect of high-k materials such as  $Al_2O_3$ ,  $^2 ZrO_2$ ,  $^3$  and  $HfO_2$  (Refs. 4 and 5) have been reported; an excellent review about this aspect has been given by de Almeida and Baumvol.<sup>6</sup>

Because the theoretical studies show that they have high dielectric constant and good thermal stability, rare earth (RE) oxides such as  $Pr_2O_3$  (Refs. 7 and 8) and  $Y_2O_3$  (Refs. 9 and 10) have attracted more and more attention as the candidates of high-*k* materials. Some papers dealing with interfacial layer formation and thermal stability of RE oxide films on Si substrates such as  $Nd_2O_3$  (Ref. 11),  $Gd_2O_3$  (Ref. 12) have been published. Recently,  $Er_2O_3$  thin films were grown by several groups with different techniques.<sup>13–15</sup> Among them, the  $Er_2O_3$  films grown epitaxially on Si substrate with an equivalent oxide thickness of 2 nm have been realized, which reveals a good electrical property.<sup>16</sup> To check whether epitaxially grown  $Er_2O_3$  is an ideal high-*k* material, the knowledge on its thermal stability is needed. Ten years ago, Hubbard and Schlom<sup>17</sup> gave a theoretical analysis on the thermal stability of the majority of binary oxides. In their

paper, the thermal stability of  $\text{Er}_2\text{O}_3$  film was not included because the thermodynamic data of  $\text{Er}_2\text{O}_3$  were not available. Up to now, the thermal stability of  $\text{Er}_2\text{O}_3$  thin films grown epitaxially on Si substrates has not been reported. In this study, by a series of annealing experiments under various conditions, the thermal stability of  $\text{Er}_2\text{O}_3$  films grown epitaxially on Si substrates was illuminated, and the reactions of the  $\text{Er}_2\text{O}_3$  film with Si substrate under different conditions were investigated.

#### **II. EXPERIMENT**

Approximately 8 nm thick  $\text{Er}_2O_3$  thin films were grown on 1.5 in., *p*-type Si(001) and Si(111) wafers by molecular beam epitaxy (MBE) with the substrate temperature of 700 °C. Molecular oxygen was introduced into the growth chamber through a flowmeter and a leakage valve. The details on growth have been reported in our previous publication.<sup>15</sup> After deposition, the samples were annealed at various temperatures and under different ambiences. The structures of the thin films and the interfaces between the films and Si substrates were investigated by x-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM).

#### **III. RESULTS AND DISCUSSION**

Firstly, the cross-sectional HRTEM images of the film show a very sharp interface layer between the  $Er_2O_3$  layer and Si substrate.<sup>16</sup> These results indicate that as-grown  $Er_2O_3$ films on Si(001) have a single crystal structure and a good interface with Si, which allows us to easily clarify the interface reactions that occur in thermal processes. Figures 1(a) and 1(b) show the XRD patterns of the  $Er_2O_3$  thin films annealed at 450 °C for 30 min in  $O_2$  and  $N_2$  ambiences, respectively. In Fig. 1(a), there is only one diffraction peak observed at 48.8°, which corresponds to the cubic phase  $Er_2O_3(440)$  diffraction, whereas a silicate peak can be clearly observed in Fig. 1(b). This indicates that in  $N_2$  ambience even at the temperature as low as 450 °C,  $Er_2O_3$  films are

se of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 130.102.82.188 On: Tue, 04 Oct 201

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed; FAX: +86-21-65104949; electronic mail: zmjiang@fudan.ac.cn



FIG. 1. XRD patterns of the  $Er_2O_3$  thin films annealed at 450 °C for 30 min in different ambiences. (a) In  $O_2$  ambience and (b) in  $N_2$  ambience.

not stable and react with Si at the interface to form silicates. However, if the film is annealed in  $O_2$  ambience instead of  $N_2$ , no silicate will be formed. It seems that the films are more stable in  $O_2$  ambience. To confirm this conclusion, the cross-sectional HRTEM observation is carried out on the sample annealed at 450 °C in  $O_2$  ambience in order to exclude any other amorphous phase such as SiO<sub>2</sub> in the films or at the interface, which is very hard to be observed by XRD. Figures 2(a) and 2(b) show the cross-sectional HRTEM images of the sample before and after annealing in  $O_2$  ambience at the temperature of 450 °C for 30 min, respectively. No difference could be found in these two cases. So it can be concluded that the oxygen ambience can prevent the film from reacting with Si substrate and the  $Er_2O_3$  films show more stability in  $O_2$  ambience.

To further investigate the thermal stability of the  $\text{Er}_2\text{O}_3$ films in  $\text{O}_2$  ambience, the films are annealed in  $\text{O}_2$  ambience for 30 min at higher temperatures of 600 and 900 °C. As shown in Figs. 3(a)–3(d), for the samples annealed at 450 and 600 °C, no other noticeable x-ray diffraction peak is observed except for the  $\text{Er}_2\text{O}_3(440)$  peak, indicating that neither silicate nor silicide is formed in the  $\text{Er}_2\text{O}_3$  film after annealing at 600 °C. For the sample annealed at 900 °C, a peak at 44.26° in XRD pattern is clearly observed, which probably can be attributed to Er silicate  $\text{Er}_2\text{Si}_2\text{O}_7(022)$  diffraction, indicating that silicate is formed at this temperature and the films are not stable in  $\text{O}_2$  ambience at the temperature of 900 °C.

Next, rapid thermal annealing (RTA) at 900 °C for 25 s in  $N_2$  ambience has been carried out on the film in order to investigate whether the thin film is compatible with the in-



FIG. 3. XRD patterns of the  $\rm Er_2O_3$  thin films as-grown, annealed in  $\rm O_2$  ambience for 30 min at different temperatures, and annealed at 900 °C in  $\rm N_2$  ambience for 25 s.

dustrial process, as RTA process is often used in the metaloxide-semiconductor field-effect transistor (MOSFET) manufactural process. Figure 3(e) shows the XRD patterns of the Er<sub>2</sub>O<sub>3</sub> thin film before and after RTA. Before RTA, as shown in Fig. 3(a), only  $Er_2O_3(440)$  diffraction peak is observed. After RTA, besides Er<sub>2</sub>O<sub>3</sub> peak, two additional peaks are clearly observed, as shown in Fig. 3(e), which are attributed to the Er silicates of Er<sub>2</sub>SiO<sub>5</sub> and Er<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>, indicating the formation of silicates in the RTA process. The silicate peaks have stronger intensity than the oxide peak, which probably indicates the extensive conversion from oxide to silicates in the film. Figure 4 shows the cross-sectional HRTEM images of the Er<sub>2</sub>O<sub>3</sub> thin films after RTA. An amorphous interface layer is clearly observed, indicating that an amorphous silicon oxide or an amorphous Er silicate layer is formed after RTA at 900 °C in N2 ambience for 25 s. For the sample annealed at 900 °C in O2 ambience for 30 min, similar results are observed with Er silicate or  $SiO_x$  formed in the films. So  $Er_2O_3$  films grown epitaxially on Si(001) substrates are unstable at the temperature of 900  $^\circ\text{C}$  in either  $N_2$  or  $O_2$ ambience. From that point, it is not compatible with the current CMOS manufactural process.

For comparison, the thermal stability of the  $\text{Er}_2O_3$  thin films grown epitaxially on Si(111) substrates was also investigated. For the as-grown sample, a very good single crystal structure and a very sharp interface were confirmed by cross-



FIG. 2. Cross-sectional HRTEM images of the  $Er_2O_3$  thin films on Si(001) substrates. (a) The as-grown films and (b) the films after annealing at 450 °C in  $O_2$  ambience for 30 min.



FIG. 4. Cross-sectional HRTEM image of the  $Er_2O_3$  thin films on Si(001) after RTA at 900 °C in  $N_2$  ambience for 25 s.

euse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 130.102.82.188 On: Tue, 04 Oct 201



FIG. 5. XRD patterns of the  $Er_2O_3$  thin films grown on Si(111) substrates. (a) The as-grown films and (b) the films after annealing at 450 °C in  $O_2$  ambience for 30 min.

sectional HRTEM images (not shown here). Figure 5 shows the XRD patterns of the Er<sub>2</sub>O<sub>3</sub> films before and after annealing at the temperature of 450 °C in O2 ambience. Before annealing, except the Si(111) peak at  $28.4^{\circ}$  and Si(222) peak at 58.9°, in a wide angle range, only  $Er_2O_3(444)$  and  $Er_2O_3(222)$  peaks appear at 60.8° and 29.3°, respectively. The latter is much broader than Si(111) and located at the higher angle side of Si(111), as shown in the inset of Fig. 5(a). It is noteworthy that at both sides of Si(111) peak, many oscillation peaks are clearly observed, which are attributed to interference fringes of Er<sub>2</sub>O<sub>3</sub> films, reflecting a smooth interface and a smooth surface of the Er<sub>2</sub>O<sub>3</sub> film. After annealing, as shown in Fig. 5(b), a peak at 44.3° in XRD patterns is attributed to Er silicide ErSi<sub>2</sub> (0002) diffraction. According to the previous research, Er silicide can be easily epitaxially grown on Si.<sup>18-20</sup> The silicide epitaxial orientation on Si (111) is ErSi<sub>2</sub>(0001), and the corresponding XRD peak is at the position of 44.26°. Due to the epitaxial growth, other peaks corresponding to silicide are not observed. It is in contrast to the Er<sub>2</sub>O<sub>3</sub> films grown on Si(001) substrate, in which no significant interface reactions are observed during annealing at the same condition. It is believed that silicide ErSi<sub>2</sub> is formed more easily at the interface on Si(111) substrate than on Si(001) due to structure similarity as well as small lattice mismatch. The basic ErSi2 structure is hexagonal with the lattice parameters:  $a_{\text{hex}} = 0.379$  nm and  $c_{\text{hex}} = 0.4085$  nm. The surface of Si(111) has a hexagonal symmetry. The lattice parameters on the  $\text{ErSi}_2(0001)$  hexagonal plane nearly match those on the Si(111) planes (0.384 nm) with the orientation relations of  $(111)_{Si}/(0001)_{ErSi_2}$ ,  $[1\overline{10}]_{Si}/[10\overline{10}]_{ErSi_2}$ , and  $[0\overline{1}1]_{\text{Si}}/[1\overline{1}00]_{\text{ErSi}_2}$ <sup>20</sup> The lattice mismatches along both directions of  $[1\overline{10}]_{Si}$  and  $[0\overline{11}]_{Si}$  are as low as 1.3%, which favors hexagonal ErSi<sub>2</sub> epitaxial growth on Si(111). However, the surface of Si(001) has a tetragonal symmetry instead of a hexagonal symmetry. As reported,<sup>19</sup> the hexagonal ErSi<sub>2</sub> epitaxy on Si(001) substrate follows the orientation relations of  $(001)_{Si}//(0\overline{1}10)_{ErSi_2}$ ,  $[110]_{Si}//[0001]_{ErSi_2}$ , and  $[110]_{Si}//[2110]_{ErSi_2}$ . Although the lattice mismatch along the direction of  $[\bar{1}10]_{Si}$  is still as low as 1.3%, however, the lattice mismatch along the direction of  $[110]_{Si}$  is as large as 6.5%.

#### **IV. CONCLUSION**

In summary, annealing experiments under various conditions have been done to investigate the thermal stability of  $Er_2O_3$  thin films grown epitaxially on Si substrates. Due to interface reactions the films are unstable at high temperatures. The  $Er_2O_3/Si(001)$  films are found to react with Si substrates to form silicates at the temperature of 450 °C in  $N_2$  ambience, whereas  $O_2$  ambience can prevent the silicate formation at this temperature. However, at a high temperature of 900 °C in either  $N_2$  ambience or  $O_2$  ambience, the  $Er_2O_3$  films react with Si to form Er silicate and SiO<sub>2</sub>. The  $Er_2O_3$  films grown on Si(111) substrates have poorer thermal stability than those grown on Si(001) substrate. The reason may be attributed to that the hexagonal  $ErSi_2$  is formed more easily on Si(111) than on Si(001) with structure similarity as well as small lattice mismatch.

#### ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NNSFC) Project Nos. 60425411 and 10321003, and partially supported by the special funds for Major State Basic Research Project No. G2001CB3095 of China.

- <sup>1</sup>G. Wilk, R. Wallace, and J. Anthony, J. Appl. Phys. 89, 5243 (2001).
- <sup>2</sup>T. Klein, D. Niu, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, Appl. Phys. Lett. **75**, 4001 (1999).
- $^{3}$ M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. **76**, 436 (2000).
- <sup>4</sup>B. H. Lee, L. Kang, R. Nieh, W. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
- <sup>5</sup>N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa, and A. Toriumi, Jpn. J. Appl. Phys., Part 2 42, L138 (2003).
- <sup>6</sup>R. M. C. de Almeida and I. J. R. Baumvol, Surf. Sci. Rep. 49, 1 (2003).
- <sup>7</sup>R. L. Nigro, V. Raineri, C. Bongiomo, R. Toro, G. Malandrino, and I. L. Fragalà, Appl. Phys. Lett. 83, 129 (2003).
- <sup>8</sup>A. Goryachiko, J. P. Liu, D. Krüger, H. J. Osten, E. Bugiel, R. Kurps, and V. Melnik, J. Vac. Sci. Technol. A **20**, 1860 (2002).
- <sup>9</sup>J. Kwo et al., J. Appl. Phys. 89, 3920 (2001).
- <sup>10</sup>B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, and B. J. Sapjeta, Appl. Phys. Lett. **79**, 2447 (2001).
- <sup>11</sup>A. Fissel, Z. Elassar, O. Kirfel, E. Bugiel, M. Czernohorsky, and H. J. Osten, J. Appl. Phys. **99**, 074105 (2006).
- <sup>12</sup>H. D. B. Gottlob *et al.*, Solid-State Electron. **50**, 979 (2006).
- <sup>13</sup>V. Mikhelashvili and G. Eisenstein, J. Appl. Phys. 95, 613 (2004).
- <sup>14</sup>M. P. Singh, C. S. Thakur, K. Shalini, N. Bhat, and S. A. Shivashankar, Appl. Phys. Lett. 83, 2889 (2003).
- <sup>15</sup>R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, J. Cryst. Growth **277**, 496 (2005).
- <sup>16</sup>S. Chen, Y. Y. Zhu, R. Xu, Y. Q. Wu, X. J. Yang, Y. L. Fan, F. Lu, and Z. M. Jiang, Appl. Phys. Lett. 88, 222902 (2006).
- <sup>17</sup>K. J. Hubbard and D. G. Schlom, J. Mater. Res. **11**, 2757 (1996).
- <sup>18</sup>G. Peto, G. Molnar, Z. E. Horvath, Cs. S. Daroczi, E. Zsoldos, and J. Gyulai, Surf. Sci. **578**, 142 (2005).
- <sup>19</sup>N. Frangis, J. Van Landuyt, G. Kaltsas, A. Travlos, and A. G. Nassiopoulos, J. Cryst. Growth **172**, 175 (1997).
- <sup>20</sup>E. Koutentaki and N. Frangis, Phys. Status Solidi B 239, 330 (2003).