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Elastic positron-cadmium scattering at low energies
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The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-
formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium
were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation
of the e+-Cd system. The s-wave binding energy is estimated to be 126 ± 42 meV, with a scattering length of
Ascat = (14.2 ± 2.1)a0, while the threshold annihilation parameter, Zeff , was 93.9 ± 26.5. The p-wave phase shift
exhibits a weak shape resonance that results in a peak Zeff of 91 ± 17 at a collision energy of about 490 ± 50 meV.
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Calculations over the past decade have demonstrated that
positrons can form bound states with a wide range of neutral
atoms [1,2]. Apart from the intrinsic interest in the quantum
mechanics of these systems, the strong evidence for positron
binding to atoms has provided support for the hypothesis that
positron-molecule bound states associated with vibrationally
excited states are predominantly responsible for the massive
positron annihilation rates observed in many molecular-gas
experiments [3]. The experimental realization and identifica-
tion of positronic atoms and molecules is very difficult, so
evidence for their existence is best sought indirectly by means
of scattering experiments.

The first-principles calculation of positron-atom interac-
tions is a challenging proposition due to the tendency for
the atomic electrons to localize around the positron, forming
a composite structure somewhat akin to the positronium
(Ps) atom [1,4]. The configuration-interaction (CI) method
has been used to determine the energies of the positronic
magnesium (e+Mg) and positronic zinc (e+Zn) ground states.
In addition, their low-energy elastic and annihilation cross
sections have been extracted from the energies of physical
and low-energy pseudostates [5,6]. The presence of a Ps-like
cluster dramatically slows down the convergence of the CI
expansion with respect to the partial waves included in the
orbital basis [1,4]. For example, the prediction of the 2P o

excited state of e+Ca was performed with a CI basis of
dimension 900 000 [7,8]. Even then, the prediction of binding
was reliant on an extrapolation to the � → ∞ limit.

The recent calculation upon the positron-magnesium sys-
tem (e+-Mg), which supports an electronically stable 2Se

bound state, revealed the presence of a prominent p-wave-
shape resonance at 0.096 eV incident energy [5,6]. This
represented the first solid evidence that the positron-atom
interaction could lead to the formation of shape resonances.
Experimental searches for shape resonances in other atoms
with monochromatic (sub-50-meV) positron beams have
not yet been successful [9], despite the rich resonance
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structures that are present in electron-atom scattering ex-
periments [10]. Other calculations on the positron-copper
and positron-zinc systems (which both support a 2Se bound
state) revealed a structure in their low-energy annihilation
spectrum due to a weak resonance in their 2P o scattering
channels [6,11].

The reason for the strong structure in the e+-Mg system,
and the weaker structures in the e+-Cu and e+-Zn systems, is
the attractive polarization interaction between the atom and the
positron. The magnesium atom has a dipole polarizability, αd ,
of 71.35 a.u. [12–15] (an atomic unit corresponds to one a3

0),
while that of copper is 41.7 ± 3.4 a.u. [16] (there are other
estimates that lie toward the upper side of this [15]) and that
of zinc is 38.8 ± 0.8 a.u. [17]. The cadmium atom is a good
candidate to support a 2P o shape resonance since it has a dipole
polarizability between 44 and 50 a.u. [15,18–20] and is also
known to bind a positron [21,22].

The present paper reports on improved CI calculations
of the e+Cd bound state and the e+-Cd elastic scattering
and annihilation cross sections. The orbital basis sets are
larger, and thus estimates of the elastic and annihilation cross
sections are better than previous work [22]. The CI energies
of the bound and positive-energy pseudostates were used to
determine an effective positron-cadmium interaction and thus
estimate the cross section for elastic scattering below 2.2 eV.
This effective interaction is better characterized than that used
in Ref. [22] since four energies were used in its construction.
This approach has been validated on the e+-H and e+-Cu
scattering systems and was previously used to determine the
low-energy e+-Mg and e+-Zn elastic and annihilation cross
sections [5,6]. It is shown here that cadmium possesses a weak
p-wave-shape resonance, as seen in the elastic (total) scattering
cross section and more visibly in the low-energy dependence
of the annihilation parameter, Zeff(k).

There have been a number of theoretical analyses of the
positron-cadmium system by other groups. Optical potential
calculations neglecting Ps formation have been reported at
energies from 40 to 150 eV [23] and from 6.4 to 300 eV [24].
A relativistic polarized orbital calculation [25] also reported
cross sections for positron-cadmium scattering. This calcu-
lation, despite only allowing for dipole excitation, suggested
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that the positron could be bound to cadmium with a binding
energy of 0.000 056 hartree. Another prediction of positron
binding had been obtained with many-body perturbation
theory (MBPT) [26]. The MBPT calculation had a binding
energy of 0.0129 hartree [26], which is significantly larger
than an explicit CI calculation, which gave a binding energy
of ≈0.0061 hartree [21,22]. The MBPT calculation is believed
to significantly overestimate the strength of the positron-atom
interaction [1].

I. STRUCTURE AND PROPERTIES
OF NEUTRAL CADMIUM

The semiempirical Hamiltonian used in the present large-
scale CI calculations is identical to that used previously for
e+Cd [22]. In brief, the model Hamiltonian for the Cd2+ core
is initially based on a Hartree-Fock (HF) wave function for
the neutral Cd ground state. One- and two-body semiempirical
polarization potentials are then added whose cutoff parameters
are tuned to reproduce the Cd+ atomic spectrum using statis-
tical averaging of the fine-structure doublets. The effective
Hamiltonian for a system with two valence electrons would be
written as

H =
2∑

i=1

[
−1

2
∇2

i + Vdir(ri) + Vexc(ri) + Vp1(ri)

]

+ 1

r12
+ Vp2(ri,r2). (1)

The Vdir and Vexc potentials represent the direct and exchange
interactions with the core electrons. They are computed
without approximation using core wave functions calculated
with the HF method [13,27]. The one-body polarization
interaction Vp1(r) is semiempirical in nature and can be
written in its most general form as an �-dependent potential,
that is,

Vp1(r) = −
∑
�m

αcoreg
2
� (r)

2r4
|�m〉〈�m|. (2)

The coefficient, αcore = 4.971 a.u. [28], is the static dipole po-
larizability of the Cd2+ core, and g2

� (r) = [1 − exp(−r6/ρ6
� )]

is a cutoff function that eliminates the 1/r4 singularity at the
origin. The cutoff parameters, ρ�, were tuned to reproduce the
binding energies of the Cd+ single-electron valence states.
The two-electron, or dielectronic, polarization potential is
written as

Vp2(ri ,rj ) = −αcore

r3
i r3

j

(ri · rj )g(ri)g(rj ). (3)

The two-body cutoff parameter, g(r), was chosen to be the
average of the ρ�’s, which are given in Ref. [22].

While the Hamiltonian is the same as that used in Ref. [22],
the single-electron basis is significantly larger. The number
of single-electron orbitals per partial wave used here are
N�=0...4 = 19,18,18,16,16. This generates nearly double the
number of two-electron configurations compared to that used
previously [22]. The properties of the present two-electron
model of Cd were close to converging. An earlier calculation
including orbitals with � = 10 revealed a 0.02-a.u. change
in the dipole polarizability when � was increased from 3
to 10 [22]. Table I provides a summary of some relevant
properties of the cadmium ground state including the dipole
polarizability.

There is some uncertainty about the dipole polarizability
of neutral Cd. The present calculation gives 50.03 a.u., while
one experiment gave 49.6 ± 1.6 a.u. [18]. However, another
measurement by the same group gave 45.3 ± 0.2 a.u. [19]. A
relativistic calculation using a core potential and semiempirical
polarization potential similar in style to the present work gave
44.63 a.u. [20]. These smaller estimates of the Cd polarizability
are to be preferred for reasons outlined previously [22].

The present semiempirical method has been shown to
describe the long-range properties of many atoms such as
Mg and Ca to an accuracy of a couple of percentage points
[13]. However, there appears to be some degradation in
accuracy for the Cd system. The most important parameter
is the polarizability, and the present calculation appears to
overestimate this by about 10%. The present model of the Cd
atom is adequate to describe positron scattering, and some
discussion of the uncertainty that arises from an imperfect
model is presented later.

TABLE I. Calculations of the atomic structure of neutral Cd with the maximum angular momentum of the orbitals included (Lint). The
number of configurations is given in the NCI column. The E column is the 1Se ground-state energy relative to the energy of the Cd2+ core
(energies are given in hartrees). For the primary 1Se to 1P o transition, �E is the energy difference, while fif is the oscillator strength. The
dipole polarizability, αd , is given in atomic units and includes a contribution from the core. For comparison, the rows marked with a asterisk (*)
correspond to two results: Lint = 3 and 10 from Ref. [22]. The experimental results for the energies, oscillator strengths, and polarizabilities
are taken from various sources [18,19,29–31] and, where available, their uncertainties in the last digits are given in parentheses.

Lint NCI E �E fif αd

3 668 −0.939 3428 0.186 7173 1.5141 49.934
4 804 −0.939 5156 0.186 4624 1.5143 50.027
3∗ 361 −0.939 1903 0.186 2284 1.511 50.07
10∗ 613 −0.939 4978 0.186 2830 1.513 50.09
Theory [20] 44.63
Exp. [18,29–31] −0.951 880 0.199 078 1.30(10) 49.6(16)
Exp. [19] 45.31(20)
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II. CONFIGURATION INTERACTION CALCULATIONS
OF e+Cd

The e+Cd CI wave function consists of a linear combi-
nation of three-particle states which are antisymmetric in the
interchange of the two electrons,

|�; LT ST 〉a =
∑

i

ci |�i ; LT ST 〉a. (4)

Each antisymmetrized state is constructed as a linear combina-
tion of coupled but not antisymmetrized states. Two electrons
(particles 1 and 2) are coupled first to each other, and then the
positron (particle 0) is coupled to form a state with net angular
and spin angular momenta, LT and ST . The antisymmetric
states are written as

|�i ; [ab]LISI pLT ST 〉a
= Nab(|[a1b2]LISI p0〉 + (−1)�|[b1a2]LISI p0〉), (5)

where the subscript by each orbital denotes the electron
occupying that particular orbital, Nab = 1/

√
2(1 + δab) and

� = �a + �b + LI + SI .
The CI basis was constructed by letting the two electrons

and the positron form all the possible configuration with a
total angular momentum of LT , with the two electrons in a
spin-singlet state, subject to the selection rules,

max(�0,�1,�2) � Lmax, (6)

min(�1,�2) � Lint, (7)

(−1)(�0+�1+�2) ≡ +1 or − 1. (8)

Here, �0, �1, and �2 are respectively the orbital angular
momenta of the positron and the two electrons. The even [odd]
parity states require (−1)(�0+�1+�2) ≡ +1 [−1].

The Hamiltonian for the e+Cd 2Se state was diagonalized
in a CI basis including orbitals up to Lmax = 12. There were
a minimum of sixteen radial basis functions for each �. There
were nineteen � = 0 positron orbitals. The largest 2Se calcu-
lation was performed with Lmax = 12 and Lint = 4. The Lint

parameter does not have to be large since it is mainly concerned
with describing the more quickly converging electron-electron
correlations [12]. The CI basis for the 2P o symmetry included
a minimum of sixteen radial basis functions for each �.
There were twenty � = 1 positron orbitals. The largest 2P o

calculation was performed with Lmax = 10 and Lint = 3. The
overall dimensionalities in the 2Se calculation are about an
order of magnitude larger than the previous calculation [22]
but were severely impeded by anomalously slow convergence
of the (iterative) Davidson diagonalization algorithm [32].

One difficulty present in all CI calculations of positron-atom
interactions is the slow convergence of the energy with Lmax

[1,33,34]. It is necessary to perform a series of calculations
with successively larger values of the maximum � of the single-
particle orbitals in order to extrapolate to the Lmax → ∞ limit.
Justification of the procedure to handle this problem can be
found elsewhere [34–37]. The present calculation is reliant on
an asymptotic analysis that utilizes the result that successive
increments, �EL = 〈E〉L − 〈E〉L−1, and can be written as an
inverse power series [35,36], viz.

�EL ≈ AE(
L + 1

2

)4 + BE(
L + 1

2

)5
+ CE(

L + 1
2

)6 + · · · . (9)

The Lmax → ∞ limits have been determined by fitting sets
of 〈E〉L values to an asymptotic series with one, two, or
three terms. The factors AE , BE, and CE for the three-term
expansion are determined at a particular Lmax from four
successive energies (〈E〉L−3, 〈E〉L−2, 〈E〉L−1, and 〈E〉L). The
series is summed to ∞ once the linear factors have been
determined. Calculations of the annihilation rate are handled
in a similar way, but the leading power in the inverse power
series is two. The efficacy of these procedures in handling
positronic problems has been demonstrated elsewhere [34].

A summary of e+Cd expectation values taken to the
Lmax → ∞ limit are given in Table II. The binding energy
ε for each symmetry is calculated with respect to the energy
of the Cd ground state using the basis for that symmetry. The

TABLE II. Results of CI calculations for e+Cd with total orbital angular momentum LT = 0 and LT = 1 vs Lmax. The two lowest eigenstates
computed in each symmetry are given (denoted by M). The total number of electron and positron orbitals, and resulting configurations, are
denoted by Ne, Np , and NCI. The three-body energy (in hartrees) of the e+Cd system, relative to the energy of the Cd2+ core, is denoted by
〈E〉Lmax , while ε = |E(e+Cd)| − |E(Cd)| gives the binding energy against dissociation into e++Cd. Both 〈re〉 and 〈rp〉, are given in a0. The
valence 
v and core 
c annihilation rates are given in units of 109 sec−1. The results in the ∞ rows are from various Lmax → ∞ extrapolations
as discussed in the text. The results in the row labeled with an asterisk (*) are taken from an earlier calculation [22].

LT M Lmax Ne Np NCI 〈E〉Lmax 〈ε〉Lmax 〈re〉Lmax 〈rp〉Lmax 〈r2
ep〉Lmax 〈
c〉Lmax 〈
v〉Lmax

0 1 9 167 160 398 864 −0.944 508 209 0.004 992 569 3.099 718 9.175 120 113.621 0.035 097 0.289 868
0 1 10 183 176 463 632 −0.944 738 485 0.005 222 845 3.104 804 9.070 876 110.498 0.035 663 0.310 873
0 1 11 199 192 528 400 −0.944 914 359 0.005 398 719 3.109 054 8.983 412 108.020 0.036 149 0.329 395
0 1 12 215 208 593 168 −0.945 050 398 0.005 534 757 3.112 366 8.923 587 106.298 0.036 478 0.344 965
0 1 ∞ −0.945 688 025 0.006 172 384 3.131 605 8.741 339 100.722 0.037 458 0.524 294
0∗ 1 ∞ −0.945 291 0.006 100 3.1284 8.7819 – 0.037 73 0.5273
0 2 12 215 208 593 168 −0.937 163 752 −0.002 351 889 2.991 739 33.536 157 1231.460 0.003 169 0.026 248
0 2 ∞ −0.937 177 494 −0.002 338 147 – – – – –
1 1 10 183 180 901 816 −0.932 692 278 −0.006 650 529 3.000 202 19.747 390 438.675 0.001 215 0.015 984
1 1 ∞ −0.932 790 051 −0.006 552 756 3.002 587 19.293 332 412.082 0.001 254 0.031 316
1 2 10 183 180 901 816 −0.921 287 707 −0.018 055 100 3.057 062 16.904 543 379.403 0.006 010 0.091 969
1 2 ∞ −0.921 814 129 −0.017 528 678 – – – – –
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overall binding energy of the 2Se ground state was 0.006 172
hartree, while the first pseudostate was located at an energy of
0.002 532 hartree above the elastic scattering threshold. The
energies of the two lowest pseudostates of 2P o symmetry were
0.003 989 and 0.012 012 hartree above threshold, respectively.

Extrapolated expectation values are not given for some of
the operators in Table II. The extrapolation was unreliable for
these specific state-operator combinations.

III. GENERATING PHASE SHIFTS FROM THE
PSEUDOSTATE METHOD

A. The effective potential

The scattering phase shifts were derived from the energies
in Table II by constructing an effective operator that gave
exactly the same binding energies and then using that operator
to compute the phase shifts. This effective potential of the
target can be written formally as

Vopt(r) = Vdir(r) + Vpol(r). (10)

The potential Vdir is the direct interaction between the target
and projectile. This can be approximated by the direct inter-
action between the projectile and the target HF ground-state
wave function, �HF, which can have a slightly different density
from the CI ground state, �gs [6].

The polarization potential Vpol(r) is semiempirical in
nature, with the form [5,22,38,39]

Vpol(r) = −αdg
2
d (r)

2r4
− AQg2

Q(r)

2r6
. (11)

The αd is the static dipole polarizability of the neutral
atomic target [5,22,38,39]. The cutoff functions are defined
as g2

d = [1 − exp(−r6/ρ6)] while g2
Q = [1 − exp(−r8/ρ8)].

The second term has a functional form similar to that expected
for a quadrupole polarization; however, the AQ parameter was
treated as an adjustable parameter. The actual parameters of
the specific potentials used for LT = 0 and LT = 1 are listed
in Table III. These parameters were fixed to the two lowest
energy states for LT = 0 and LT = 1.

B. Phase shifts and elastic scattering

The low-energy s-wave phase shifts were computed with
the effective s-wave potential as given in Table III. The phase
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FIG. 1. The s-, p-, and d-wave phase shifts for elastic scattering of
positrons from cadmium in the energy region below the Ps-formation
threshold at k ≈ 0.4a−1

0 . The dashed curves were all computed with a
weaker polarization potential to estimate the uncertainty in the phase
shifts.

shifts for LT � 1 were all computed with the p-wave potential.
The phase shifts are plotted in Fig. 1. The LT = 0 and LT = 1
phase shifts are in opposite quadrants for k < 0.156a−1

0 .
One consequence of this is that the differential cross section
will be larger at backward angles than at forward angles
from threshold to k = 0.156a−1

0 [22]. A measurement of the
differential cross section in this energy region would provide
strong circumstantial evidence that positrons can form bound
states with the cadmium atom.

The LT = 1 phase shift increases quickly until k ≈ 0.3a−1
0 .

This structure can be regarded as a weak shape resonance
caused by the strong polarization potential between the
positron and the atom. The main difference from earlier work
[22] lies in the LT = 1 phase shift. The present phase shift
achieves a peak value of 1.260 rad at k = 0.31a−1

0 . The earlier
model potential calculation gave a maximum phase shift of
0.89 rad at k ≈ 0.40a−1

0 [22].
The elastic scattering cross section shown in Fig. 2 shows

evidence of the strongly rising p-wave phase shift in the form
of a plateau at k ≈ 0.15a−1

0 . The scattering length of 12.1a0

results in a large threshold cross section of 1840a2
0 . The present

scattering length is 4% larger than the previous estimate based

TABLE III. Parameter definitions of the Vpol effective polarization potentials used to describe s-wave and p-wave scattering for the e+-Cd
system [as per Eq. (11)]. The s-wave potentials were tuned to the properties of the 2Se ground state and the lowest energy pseudostate, while
the p-wave potentials were tuned to the two lowest energy p-wave pseudostates. The annihilation enhancement parameters that were used
are given in the Gc and Gv columns. The binding energy ε (in hartrees) is positive for bound states and negative for pseudostates. The mean
positron radius and scattering length, Ascat, are in units of a0. The core and valence annihilation rates for the lowest energy state are given
in units of 109 s−1. The rows denoted by the asterisks (*) correspond to calculations with weakened polarization potentials to estimate the
uncertainty in the calculations.

L αd AQ ρ Gc Gv ε 〈rp〉 〈
c〉 〈
v〉 Ascat

0 50.1 900.0 3.936 2.5 17.3 0.006 163 8.70 0.007 38 0.5273 12.1
0∗ 45.1 810.0 3.936 2.5 17.3 0.003 133 10.70 0.005 33 0.3676 16.3
1 50.1 500.0 3.349 2.5 17.0 −0.006 560 19.5 0.004 54 0.031 32 –
1∗ 45.1 450.0 3.349 2.5 17.0 −0.006 809 20.1 0.002 96 0.018 16 –
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FIG. 2. The elastic scattering cross section for e+-Cd scattering
as a function of k (in units of a−1

0 ) as calculated with the Vpol potential
in the energy region below the Ps-formation threshold at k ≈ 0.4a−1

0 .
The solid line shows the total cross section while the dotted and
dot-dashed curves show the LT = 0 and LT = 1 partial cross sections.
The dashed curve (denoted by the asterisk) is the elastic scattering
cross section as computed with a weaker polarization potential to
estimate the uncertainty in the cross section.

on a smaller CI wave function and a one-parameter polarization
potential [22].

C. Positron annihilation

Besides obtaining the phase shifts in the low-energy region,
it is also possible to determine the annihilation parameter, Zeff

[40–42]. The fundamental idea is to compare exact and model
potential calculations of Zeff and so fix the enhancement factor,
G [39,43,44]. Enhancement factors were first introduced in the
calculation of the annihilation rate of positrons in condensed
matter systems [45–47]. They incorporate the tendency for at-
tractive electron-positron correlations to increase the electron
density in the immediate vicinity of the positron.

It has been shown that model potential calculations of
s-wave positron scattering from hydrogen and helium that
were tuned to give the correct phase shift at a reference energy
also reproduced the low-energy behavior of Zeff(k) up to a
multiplying constant (i.e., G) [39]. The annihilation parameter
for the model potential wave function follows the model of
Mitroy and Ivanov [39] and is written as

Zeff =
∫

d3r[Gvρv(r) + Gcρc(r)]|�opt(r)|2, (12)

where ρc(r) and ρv(r) are the electron densities associated with
the core and valence electrons of the target atom and �opt(r)
is the positron scattering function obtained in the tuned model
potential.

For the core orbitals, Gc is set to 2.5 due to reasons outlined
in Ref. [39]. The valence enhancement factor Gv is computed
by the simple ratio

Gv = 
CI
v


model
v

, (13)

where 
CI
v is the annihilation rate of the positron with the

valence orbitals as given by the CI calculation and 
model
v is

 0

50

100

 0  0.1  0.2  0.3  0.4

Z
ef

f

k (units of a 0
-1 )

s-wave

p-wave

Total

Total (*)

FIG. 3. The annihilation parameter, Zeff , for e+-Cd scattering as
a function of k (in units of a−1

0 ) as calculated with the Vpol potential
in the energy region below the Ps-formation threshold at k ≈ 0.4a−1

0 .
The dotted and dot-dashed curves show the LT = 0 and LT = 1
partial contributions to Zeff (the solid line). The dashed curve (denoted
by the asterisk) is the Zeff as computed with a weaker polarization
potential to estimate the uncertainty in Zeff .

the valence annihilation rate predicted by the model potential
calculation with G = 1. The values adopted here are shown in
Table III. This procedure reproduces the Zeff(k) dependence
in e+-Cu scattering as explicitly computed by the CI-Kohn
variational scattering method [6].

Figure 3 shows the annihilation parameter for k � 0.4a−1
0 .

The threshold value of Zeff was 67.4, about 15% smaller than
a previous estimate of 80.1 [22]. The most notable feature is
the peak in Zeff at k ≈ 0.18a−1

0 . This peak is a consequence of
the structure in the p-wave phase shift. The value of Zeff at the
maximum was 108. The previous calculation only exhibited a
weak peak of 46.3 at k ≈ 0.2a−1

0 [22].

D. Uncertainties

As discussed in a previous work [22], it is likely that the
present model of Cd overestimates the neutral Cd polarizabil-
ity. The calculations of Ye and Wang [20] gave a polarizability
of 44.63 a.u. An estimate has been made of the tendency for
the present CI calculation to overestimate the binding energy
by repeating the effective potential calculations with slightly
different potentials. To do this, the values of αd and AQ in
Table III were reduced by 10%, and the calculations of the
phase shifts, cross section, and annihilation parameter were
repeated. The values of ρ and Gv were not changed.

When this was done, the e+Cd binding energy decreased
from 0.0062 to 0.0031 hartree while the scattering length
increased to 16.3a0. The binding energy of 0.0031 hartree
is smaller than the e+Zn binding energy of 0.0037 hartree [6].
Since Zn has an αd = 38.8 ± 0.8 a.u. [17], which is 20% lower
than the present Cd model, this indicates that the αd = 45.1 a.u.
calculation underestimates the strength of the polarization
potential.

The change in the phase shifts from the use of the alternate
optical potential is depicted as the dashed curves in Fig. 1.
In particular, the structure in the p-wave phase shift is less
pronounced, and the maximum value achieved was 1.05 rad at
k = 0.35a−1

0 .
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The impact on the cross section and Zeff are depicted as
the dashed curves in Figs. 2 and 3. Only the total elastic cross
section and the total Zeff are shown. The zero-energy cross
section is larger, while the shoulder in the elastic cross section
is no longer obvious. The peak in Zeff is still present but is not
as prominent, and it has moved to a higher energy.

The present best estimates are taken to be midway between
the results of the actual and the 10% reduced polarization
potentials. The calculations with a polarizability of 50.1 a.u.
overestimate the strength of the polarization interaction. The
model potential calculations with a polarizability of 45.1 a.u.
underestimate the strength of the attractive polarization po-
tential. The best estimates are simply chosen to lie midway
between these upper and lower bounds, as no additional
constraints are currently available that would skew the best
estimate in one direction or the other.

The e+Cd binding energy should thus be taken to be
ε = 0.46 ± 0.15 hartree (126 ± 42 meV) with a scattering
length of Ascat = 14.2 ± 2.1a0. At threshold, the elastic scat-
tering cross section σ = 2595 ± 755a2

0 while Zeff = 93.9 ±
26.5. The weak p-wave-shape resonance manifests, at a
collision energy of 0.49 ± 0.05 eV, a peak Zeff = 91 ± 17.

IV. CONCLUSION

The CI method using a semiempirical core potential for the
core-valence interactions [48] is applied to compute the energy
and structure of the lowest two e+Cd eigenstates in both the
2Se and 2P o symmetries. The close-to-threshold phase shifts
are then extracted using the energies of the bound states or
the positive energy pseudostates to tune an optical potential.
The present estimates of the cross section are an improvement
on previous work [22]. Using additional pseudostate energies
to define the optical potential resulted in more reliable phase
shifts and cross sections.

Structures related to a weak p-wave-shape resonance exist
in both the elastic cross section and Zeff . There is a shoulder in

the elastic cross section at an energy of about 0.41 ± 0.11 eV.
The annihilation parameter has a local peak of 91 ± 17 at an
energy of 0.49 ± 0.05 eV. These results are a major departure
from the behavior of a previous calculation of low-energy
e+-Cd scattering [22], where no such structure was observed.
A graphical comparison of the (strong) Vpol calculation against
those of e+-Mg, e+-Cu, and e+-Zn was recently published
[2], clearly showing that e+-Mg exhibits the strongest known
resonance.

The present results also show that the e+Cd p-wave
cross section stays below π/2 for k < 0.143 ± 0.013a−1

0
(E < 289 ± 59 meV). At these energies, there is a backward-
peaked differential cross section whose measurement would
give strong, albeit indirect, evidence of positron binding
to cadmium. The present results thus remain consistent
with the conclusions from a previous e+-Cd scattering
calculation [22].

The most likely source of error comes from the definition
of the effective potential of the Cd2+ core. Our nonrelativistic
model only includes relativistic effects indirectly, and it
is possible that this leads to an overestimation of the Cd
polarizability and thus the strength of e+-Cd polarization
potential. The uncertainty analysis reveals that the positron
remains bound under a 10% reduction in the strength of
the polarization interaction. However, the prominence of the
p-wave resonance in the Zeff spectrum is diminished, while
the shoulder in the elastic cross section is not quite as
obvious.
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