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Abstract: In our recently proposed stochastic version of discretized kinetic theory, the exchange of
wealth in a society is modelled through a large system of Langevin equations. The deterministic
part of the equations is based on non-linear transition probabilities between income classes. The noise
terms can be additive, multiplicative or mixed, both with white or Ornstein–Uhlenbeck spectrum.
The most important measured correlations are those between Gini inequality index G and social
mobility M, between total income and G, and between M and total income. We describe numerical
results concerning these correlations and a quantity which gives average stochastic deviations from
the equilibrium solutions in dependence on the noise amplitude.
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1. Introduction

Wealth exchange models [1,2] are used in the context of economic theory and econophysics [3,4] to
describe in a simplified way the individual economic interactions occurring in a society. In particular,
they allow to predict emerging collective features like the income distribution, the Gini index or the
Pareto exponent. Most of these models have equilibrium solutions, but it is also well known that
economic systems are never exactly at equilibrium. Hence, fluctuations should also be taken into
account in the models. This is in some sense done in economic agent-based models [5,6] which are
essentially computer simulations of economic systems based on a population sample. By their very
nature they include statistical fluctuations which depend on the size of the sample. In this paper,
we shall focus instead on models based on discretized kinetic theory [7,8]. These models are
expressed in mathematical form through large systems of non-linear ordinary differential equations
which describe transitions of individuals of a society between income classes. The transitions are the
consequence of economic interactions which occur with certain probabilities defined by the model and
depend on several parameters. Interaction terms can be of degree 2 in the class population densities
(direct interactions) or of degree 3 (indirect interactions, used to model redistribution processes).
These kinetic models are well established, and have also been tested on networks and for the
description of taxation, welfare, tax evasion and tax audits (see e.g., [9,10]).

We have described in [11,12] the complex mathematical procedure needed to introduce stochastic
noise into the system and leading to a consistent set of kinetic Langevin equations. The main
difficulty in building up this procedure lies in the presence of dynamical constraints which, differently
from cases typically treated in the literature, refer to several equations. The stochastic variations of
the populations must respect, both in the additive and multiplicative case, the condition that the total
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population is conserved. In analogy with statistical mechanics, we speak of a “canonical” system
(with non-conserved total income), when the total income µ is free to fluctuate and speak of a
“micro-canonical” system when the total income is fixed; this requires a second constraint on the
stochastic variations. It is also possible to consider a “mixed noise”, such that at each step of the time
evolution of the system the stochastic variation is a linear combination with random coefficients of an
additive and a multiplicative variation.

In this paper, we present extensive statistical results, almost all relative to a stochastic model with
multiplicative noise. They concern quantities which are of major interest for real world economies and
whose values today constitute a widespread object of concern [13,14]. Most significant among these
quantities is certainly the correlation between economic inequality and social mobility, respectively
measured in our model by a parameter G which expresses the Gini index and by a suitably defined
indicator M. The model displays for this correlation, in correspondence with a range of values of the
Gini index compatible with those of industrialized countries, negative values (Section 2). This is in
agreement with empirical data [15,16]. In Section 3 we investigate the dependence of the correlation
RGM on G. In Section 4 we briefly discuss the case of Ornstein–Uhlenbeck noise. We also give an
estimate of the average deviations of the population from equilibrium as a function δav of the noise
amplitude Γ (Section 5). Finally, Section 6 contains some conclusions and comments on possible future
extensions of the work.

2. Simulations for a Fixed Value of the Initial Total Income and Gini Index

2.1. Langevin Equation. Deterministic Solutions

We consider a population of individuals divided into a finite number n of classes, each one
characterized by its average income rj with 0 < r1 ≤ r2 ≤ . . . ≤ rn. Let xj(t) for 1 ≤ j ≤ n denote the
fraction at time t of individuals in the j-th class. In previous work, see e.g., [8], assuming different
economic behaviors of individuals belonging to different classes, two of us constructed a model for
the time evolution of x(t) = (x1(t), ..., xn(t)) in correspondence to a whole of economic exchanges.
The model (actually describing also taxation and redistribution processes) was formulated as a
system of ordinary differential equations, in fact “deterministic” in the xj variables. In contrast,
the discretized Langevin equations we are dealing with here take the form

dxi =

(
n

∑
h,k=1

Ci
hkxhxk − xi

n

∑
k=1

xk

)
dt + Γηi

√
dt, (1)

where dxi represents the variation, in the time interval dt, of the population xi of the income class i.
The total population is normalized to 1, ∑j=1...n xj(t) = 1 for all t ≥ 0. We emphasize here that
this normalization, valid at t = 0, holds true for all t ≥ 0 as a consequence of the specific choice of
the elements entering into the Equation (1). We take the class incomes ri linearly growing in i
(see example below), even though other choices are also possible. The deterministic variation of dxi
(the part proportional to dt) can be easily recognized by setting Γ = 0. It contains the coefficients Ci

hk
which define the model by fixing the inter-class transition probabilities and account for the above
mentioned behavioral heterogeneity. More precisely, Ci

hk is the probability that an individual of income
class h will belong to class i after an encounter with an individual of class k. These coefficients are
required to satisfy the identity ∑n

i=1 Ci
hk = 1 for any h, k ∈ {1, ..., n} and are taken in this paper as

in [8]. Note that the transition probability fluxes are proportional to the products xhxk of the class
population densities because pairwise monetary exchanges are here considered. The noise vector with
components ηi also must respect the constraints mentioned above. These are implemented through
suitable linear transformations applied, at each step in the time evolution, to a vector of stochastic
variables with standard Gaussian distributions, see e.g., [12]. The results reported in this paper are all
obtained with multiplicative noise, except the plot in Figure 1, which is obtained with mixed noise.
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Figure 1. Dependence of the correlation RGM on the Gini index with mixed noise in a range which
extends far below the usual values of G. Each dot represents the average of 80 realizations with
2500 steps. There are 480 dots in total.

We take as initial condition an equilibrium configuration of the deterministic system with a
certain total income µ = ∑n

i=1 rixi. Such an equilibrium can be obtained with high accuracy through a
Runge–Kutta integration of the deterministic equations over a very long interval (typically 104 or 105 steps).
We recall here that in the deterministic case the equilibrium configuration does not depend on the
initial conditions, but only on the total income.

We recall next, before proceeding, the definitions of the quantities which are investigated in
the paper.

The Gini index, commonly used as a measure of inequality of wealth or income, can range from
0 (complete equality) to 1 (maximal inequality). It can be calculated based on the Lorenz curve,
which plots on the axis of ordinates the cumulative percentage of the total income of a population
earned by the bottom percentage of individuals, represented on the axis of abscissas. In comparison
with it, the 45 degree line represents perfect equality of incomes. The Gini index is defined as the
ratio of the area between the Lorenz curve and the 45 degree line and the total area under this line.
In our discrete approach, we calculated the area under the Lorenz curve as a sum of trapezia.
In the deterministic case, when total income conservation holds true, we calculate the Gini index
G at equilibrium. In the stochastic case, when total income changes in time, there are no equilibrium
solutions and we rather get a time-series for the Gini index.

The social mobility coefficient M we use here is essentially a weighted average, over the classes,
of the probability for an individual to be promoted to the upper class in the unit time. It is computed
using an expression first introduced in [17], which can be found e.g., in [11,12] and which we do not
report here because it would require a longer definition of symbols entering in the Ci

hk.
Empirical evidence shows a clear correlation between these two quantities. Namely it is found

that mobility reduces when inequality rises, thus implying a negative correlation between G and
M [15,16,18]. This correlation, nicknamed the “Great Gatsby Curve” [19], is important since it means
that the increase of inequality (as presently observed in several countries) tends to be a self-reinforcing
phenomenon, unless it is complemented by suitable social policies. It should also be stressed that
this correlation holds for societies at near equilibrium, while it may be different in phases of strong
economic growth [20].

Consider now for example a system with 10 classes (n = 10), class incomes ri = 10i, and the
coefficients Ci

hk as in [8]. In order to set the income equal to 30 we can initially put all the population into
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class 3, i.e., set x3 = 1 and all the other xi equal to zero. To set the income equal to 29, one can assign
x2 = 0.1, x3 = 0.9 and all the rest zero, and so on.

The asymptotic equilibrium configuration with µ = 30 is

{xi} = {0.372, 0.197, 0.121, 0.0836, 0.0623, 0.0487, 0.0393, 0.0326, 0.0277, 0.0145}

(see histogram in Figure 2) and has Gini index Geq = 0.410 and mobility coefficient M = 5.58× 10−4.

0.0

0.1

0.2

0.3

x_i

Figure 2. Histogram of a typical deterministic equilibrium configuration, with 10 income classes
(see details in the text). The bars represent the populations x1, . . . , x10.

Since the equilibrium configuration depends only on the total income, a biunivocal relation
between Geq and µ is defined, which in a reasonable range of Geq is almost linear; one has for instance,
in the interval 0.35 ≤ Geq ≤ 0.41, Geq = −0.1594 + 0.03712µ− 0.0006µ2 (see Figure 3; the relation
between Meq and µ is also shown, although it is not of immediate interest for this work).

Figure 3. Behavior of the Gini index G and the social mobility M as functions of the total income µ for
the deterministic model, at equilibrium. The asymptotic equilibrium of the deterministic equations
does not depend on the detailed initial conditions xi(0) (class populations), but only on the total
income µ = µ(0) = ∑i rixi(0) (µ is conserved in the deterministic evolution). This plot is obtained by
taking several values of µ(0) as explained in Section 2.1, letting the system evolve deterministically
and computing G and M in the equilibrium state. The relation between G and µ allows to determine a
range of values of µ which corresponds to a range of realistic values of G.

2.2. Stochastic Time-Series

In the discretized Langevin Equation (1) we typically set dt = 0.1 or dt = 1 and let the system
evolve in time-series of 5000 steps, repeated for NR realizations; NR varies between 50 and 6000,
depending on the scope. (The choices for dt and the number of steps are based on our previous
experience with the relaxation time of the deterministic system.) In the following we shall also
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compare results obtained through time-series of 10,000 integration steps and NR/2 realizations,
or time-series of 2500 steps and 2NR realizations; in principle the results should coincide in the
ergodic limit and in fact the averages are very close, but we have found that correlation estimators
obtained with the time-series of 5000 or 2500 steps tend to display smaller fluctuations. After each
integration step the values of G and M are computed. Both quantities are non-trivial functions of
the populations xi. They fluctuate around their equilibrium value according to a Wiener process
(see example in Figure 4), as can be checked by evaluating the Hurst exponent of their time-series,
which is very close to 0.5. The time auto-correlation function of G is remarkably linear (Figure 5).
The same is true for the auto-correlation of µ and M, though not reported here. (We recall the
definition of the Hurst exponent in this context: in a time-series with N points, the expectation value of
the ratio between the range ρ(N) of the series and its standard deviation σ(N) is proportional to NH

as N → ∞, where H is the Hurst exponent).

Figure 4. Example of time-series of G and µ in the canonical case, with multiplicative white noise of
amplitude Γ = 0.01. The time steps in the series are 40,000, with a sampling each 100 steps.

Figure 5. Time auto-correlation of G in the time-series of Figure 4. T denotes the number of time steps.

At the end of each time-series we compute the equal time correlation estimators (Pearson
coefficients) between G and M, G and µ, M and µ. The sign and amplitude of the correlations
vary quite strongly in the single realizations. For instance, by performing a very large number of
realizations (6000 or 12,000) we find for the results of the G-M correlation in each realization the
histograms in Figures 6 and 7.
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Figure 6. Histogram of the correlation RGM in 6000 realizations of 5000 steps, with multiplicative
noise of amplitude Γ = 0.001.

Figure 7. Histogram of RGM in 12,000 realizations of 2500 steps. Compare with Figure 6.

These histograms are neither Gaussian nor symmetric. If we regard the values of RGM for each
realization as random variables themselves, assuming they are independent we may expect that the
averages of RGM over a certain number NR of realizations obey the central limit theorem, and thus
have a Gaussian distribution with a standard deviation given by the standard deviation of the single
realizations divided by

√
NR − 1. In order to check this, we made NS = 200 series of simulations,

each one comprising NR = 50 realizations of 5000 steps. We obtained in this case σaverages = 0.0524 and
σ/
√

NS − 1 = 0.0531, which displays a close agreement. The corresponding histogram is reasonably
symmetric and Gaussian.

3. Dependence of the Correlations on the Total Income and on G

In the previous sections we have discussed the statistical properties of the correlations RGM, RGµ

and RMµ in the case of multiplicative noise. The behavior of the correlations was evaluated for a fixed
initial value µ of the total income. As reported in [12], however, the value of the correlations has a clear
dependence on µ (all other model parameters being fixed). Since there is a biunivocal relation between
µ and Geq, we can also say that the correlations depend on Geq; this choice of variable is actually
better, since Geq has a direct economic meaning, while the value of µ depends on the definition of the
income classes and on an arbitrary reference unit. Numerical evaluations of the correlations (see [12])
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show that in a suitable range of values of µ and Geq the RGM correlation is approximately linear in
µ and remains negative, thus confirming the general validity of the empirical “Great Gatsby” rule
mentioned in Section 2.1. On the other hand, the correlation RGµ is approximately linear in µ but
changes sign, showing that the question whether in economics “a raising tide lifts all boats” does not
have an absolute answer. Finally, the correlation RMµ is seen to be always very close to 1, confirming
the strong linkage between mobility and total income; note that in a physical analogy the total income
can be identified with the total energy and thus with the temperature in the canonical case.

Note that for values of G much smaller than usual, even the RGM correlation can become positive:
see Figure 1, obtained with the mixed noise introduced in [21] and extending to the (unrealistic) value of
G = 0.25. In order to obtain a meaningful diagram, one needs to generate a large number of distinct
initial conditions for the stochastic equations, each one having a different value of µ. For instance,
in Figure 1 there are 480 initial conditions, one for each result represented by a red dot. Every result is
the average of 80 realizations starting from those initial conditions.

4. Langevin Equation with Ornstein–Uhlenbeck Noise and Dependence of the Correlations
on Γ and τ

It is straightforward to replace the white noise ηi, used in the Langevin equation until now, with an
Ornstein–Uhlenbeck noise yi having memory time τ. To this end, an integration step of the discretized
OU stochastic equation is added to each integration step of the Langevin equation. The full integration
step, including multiplicative noise normalization, looks as follows:

dyi =

(
1− dt

τ

)
yi +

√
2dt
τ

ηi (2)

y1
i = xiyi (3)

N =
n

∑
k=1

y1
k (4)

y2
i = y1

i − Nxi (5)

dxi =

(
n

∑
h,k=1

Ci
hkxhxk − xi

n

∑
k=1

xk

)
dt + Γy2

i

√
dt. (6)

The correlations can now be computed in dependence both on Γ and τ. The plots of Figures 8–10
are obtained, where each dot represents the average of 50 realizations. A 3D polynomial fit confirms
that the correlations have a very weak dependence on Γ and τ. Note that the largest values of Γ
correspond to a very strong noise. The noise amplitude can be related to economic data by considering
that for Γ = 0.001 the corresponding fluctuations of the total income µ in the stochastic realizations
are of the order of 0.1%, thus quite realistic for a society at near equilibrium. The model is robust
with respect to an increase in the noise amplitude. For instance, a tenfold increase of Γ leads to a
proportional increase in the fluctuations of µ, while the values of the correlations RGM, RGµ and
RMµ are substantially unchanged. For Γ up to 0.032, also with OU noise with memory time τ = 32,
the fluctuations of µ can be of the order of 50% or more.
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Figure 8. Correlation RGM for Ornstein-Uhlenbeck noise in dependence on noise amplitude Γ and
memory time τ. Each dot is the average of 50 realizations with 5000 steps.

Figure 9. Same as in Figure 8, for the correlation RGµ.

Figure 10. Same as in Figure 8, for the correlation RMµ.
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5. Fluctuations of the Populations in Dependence from Γ

Looking at the equilibrium populations, denoted by xi,eq, for certain model parameters and for
a certain µ, it is interesting to measure the average amplitude of the stochastic fluctuations xi − xi,eq
over several realizations in dependence on the noise amplitude Γ. A suitable measure appears to be
the following:

δav =

〈√√√√ n

∑
i=1

(xi − xi,eq)2

x2
i,eq

〉
. (7)

As can be seen in Figure 11, the dependence of δav on Γ is to a good approximation linear at least
up to Γ = 0.03, provided the averages are made on a large number of realizations.

0.005 0.010 0.015 0.020 0.025 0.030
Γ

0.05

0.10

0.15

0.20

δ_tot

Figure 11. Average deviation δav from deterministic equilibrium in dependence on the noise amplitude Γ,
for multiplicative white noise. Each dot is the average of 500 realizations with 5000 steps.

6. Conclusions

In this work we have investigated the properties of a system of nonlinear Langevin stochastic
equations which describe the evolution in time of the income distribution of an idealized society.
The individuals of this society interact through money exchanges which are in part deterministic
(in the sense that they have fixed transition probabilities) and in part random, being caused by a noise
source of the additive, multiplicative or “mixed” kind.

The noise frequency spectrum can be further characterized as white or colored
(Ohrnstein–Uhlenbeck noise).

By analysing the results of a large number of numerical simulations we have determined
the statistical distribution of the correlations RGM (Gini inequality index—social mobility),
RGµ (Gini—total income), RMµ (mobility—total income), in correspondence of given average values of
the total income. This distribution turns out to be asymmetrical, with a typically negative mean
value for RGM. On the other hand, the mean value of RMµ is always positive and close to 1, and that of
RGµ has variable sign, depending on the other parameters of the system.

The dependence of the correlations on the total income µ can be translated into a dependence on G,
by taking advantage of the deterministic relation between G and µ at equilibrium. We have computed
the RGM correlation also in a range of inequality values G which extends far below the usual range of
pre-redistribution G values typical of industrialized countries, namely G ≥ 0.35. In this extended
range the RGM correlation becomes negative; this means that when inequality is very low, an inequality
increase correlates with an increase in social mobility.
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In the case of a colored noise with amplitude Γ and memory time τ, the RGM correlation can be
computed and plotted as a function of those two parameters, in order to highlight possible transitions
between the two regimes RGM > 0 and RGM < 0 in the phase plane Γ − τ. No such transitions
appear to be present, however. The RGµ and RMµ correlations are also slightly affected by variations of
Γ and τ.

Finally, the average deviation of the system from the deterministic equilibrium turns out to be a
linear function of the noise amplitude, with high accuracy, in a wide range of values of the noise
amplitude. This shows that the system is stable with respect to the noise and does not exhibit any
tendency to run away from equilibrium, also in the presence of strong noise.

In a conceivable extension of the model, the total population may be allowed to vary. This would
remove one of the algebraic constraints and simplify the stochastic version. Immigration and
emigration phenomena, or demographic changes on a short or long term could in this way be
taken into account. It should be noticed, however, that the deterministic part of the present model
changes considerably in the case of a non-constant population, because some general properties of the
differential equations cease to be true. We will address these issues in future work.
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