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Abstract: Local scour around submarine pipelines can affect the stability of the pipeline. The 

accurate estimation of the scour around submarine pipelines has been a hot topic of research 

among marine engineers. This paper presents results from a numerical study of clear-water 

scour depth below a submarine pipeline for a range of the steady flow conditions. The flow 

field around the pipeline under scour equilibrium condition is numerically simulated by 

solving the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε 

turbulence closure. The flow discharge through the scour hole for various flow conditions is 

investigated. The results are used to establish the relationship between the flow discharge and 

the maximum scour depth. Incorporated with the Colebrook-White equation, the bed shear 

stress is obtained and an iterative method is proposed to predict the scour depth around the 

submarine pipeline. The calculated scour depths using the present method agree well with the 
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laboratory measurements, with the average absolute relative error being smaller than that 

using previous methods, indicating that the proposed method can be used to predict the 

clear-water scour around the submarine pipeline with satisfactory accuracy.    

  

Key Words: submarine pipeline; steady flow; scour depth; scour hole discharge 

 

Notation: 

ARER-absolute relative error of prediction 

D-pipeline diameter 

ds-maximum scour depth 

dc-scour depth at x=0 

d50-median sediment size 

Gk -the generation of k induced by the mean 

velocity gradients 

k-turbulent kinetic energy 

ks-surface roughness height 

m-power law velocity index 

p-pressure 

q0 -inflow discharge per unit width below 

the top of the pipeline 

qg-scour hole discharge per unit width 

(Re)s- the Reynolds number based on the 

scour depth 

s -the ratio of sediment density over water 

density 

Sij-mean strain rate tensor 

t-time 

ui-fluid velocity component, i=1,2. 

u0-average inflow velocity 

um-flow velocity at surface 

'

iu - fluctuation of flow velocity in i direction 

V- average flow velocity in the scour hole 

x-horizontal coordinate 

y-vertical coordinate 

y0-water depth 

yb-vertical bed position 

ε-turbulent dissipation rate 



 

 
 

 -friction coefficient 

-the fluid dynamic viscosity 

t-the turbulent eddy viscosity  

- fluid kinetic viscosity 

T -turbulent viscosity 

-the Shields number 

cr-critical Shields number 

-fluid density 

s- sediment density 

τb-bed shear stress 

τcr-critical bed shear stress 

 

1 Introduction 

Submarine pipelines are usually used to transport oil and gas from offshore to onshore. The 

installation of pipelines at the seabed will inevitably change the marine hydrodynamic 

environment, which usually enhances the sediment transport around the pipelines. This in turn 

causes scour around the pipeline, leading to the suspension of the pipeline. When the length 

of the suspended pipeline is over a critical value, vortex induced vibration (VIV) occurs 

which may cause the fatigue failure of the pipeline. Previous study shows that the scour 

profile/length is usually related to the scour depth (Yang et al. 2012). This means that the 

scour profile/length around a submarine pipeline can be estimated if the scour depth is known.  

Due to the practical engineering importance and applications of submarine pipelines, 

many studies have been conducted in the past decades to investigate the scour depth under the 

pipelines. Chao and Hennessy (1972) established a semi-theoretical model to predict the 

clear-water scour depth based on potential theory. They assumed that the maximum scour 

depth was reached when the flow induced bed shear stress was equal to the critical bed shear 

stress for the incipient motion of sediment. Using the scour hole discharge estimated by 



 

 
 

potential theory and the wall shear stress calculated by the Colebrook-White equation, they 

proposed a method (the C-H method) to predict the scour depth. However, as the flow 

discharge is overestimated, the calculated scour depth is always larger than the practical scour 

depth.  Kjeldsen et al. (1973) experimentally studied the relationship between the scour 

depth and the pipeline diameter as well as the flow velocity. They proposed an empirical 

equation to estimate the scour depth. However, they did not consider the effect of water depth 

and sediment size on scour. Ibrahim and Nalluri (1986) investigated the effect of the water 

depth, the pipeline size and the flow velocity on the scour depth. Jensen et al. (1990) 

conducted laboratory experiments to investigate the scour process. The flow velocity field 

over the scoured bed was measured and discussed when the equilibrium scour state was 

reached. Chiew (1991) developed an iterative method (Chiew method) to predict the scour 

depth underneath the pipeline based on the C-H method. In his study, the curves of scour hole 

discharge, which had a relationship with the relative water depth, based on the experiment 

results were used to replace the potential theory. As such, the predicted scour depth was more 

accurate than that estimated by the C-H method. However, the effect of the scour depth on 

scour hole discharge was not considered. Moncada-M and Aguirre-Pe (1999) proposed two 

equations, which were based on the Froude number, to calculate the scour depth and width 

respectively. Recently, Yang et al. (2012) proposed a power law formula to describe the 

velocity distribution in the scour hole. They used this formula to calculate the wall shear 

stress based on the open channel hydraulics theory. However, the velocity distribution in the 

scour hole is more complicated due to the different roughnesses of the seabed and pipelines, 

thus, the power law may not be applicable in the scour hole.  



 

 
 

With the development of computational technology, numerical methods have been 

applied to simulate the scouring process below the submarine pipeline. Brors (1999) applied 

the Taylor-Galerkin Finite Element Method (FEM) to solve the two dimensional RANS 

equations, while sediment transport was calculated using the Finite Difference Method (FDM). 

The simulated scour evolution was in agreement with the experimental results. However, as 

indicated by Brors (1999), the considerable computational time was an issue. Liang et al. 

(2004, 2005) applied the sub-grid-scale (SGS) model and k-ε model to simulate the scour 

evolution. . In their simulation, the dynamic mesh technology was applied to capture the bed 

scour evolution. Different time steps for the flow field calculation and sediment transport 

calculation were applied to improve the computational efficiency. Their simulation results 

agreed satisfactorily with the experimental measurements. The scour evolution process was 

also simulated by Zhao and Fernando (2007) who employed the Euler-Euler multiphase 

model. However, the computational time was very high. Though these studies demonstrate 

some features of the scour process below the pipelines, the scour equilibrium process received 

much less research. In particular, the application of the numerical methods to simulate the two 

or three-dimensional scour equilibrium process is still limited. This is partially due to the 

considerable computational resources required. 

In practical engineering, the semi-theoretical C-H method is often used for its simplicity, 

to quickly assess the scour state, while the numerical methods are rarely used, mainly due to 

the high requirement for computing resources. However as aforementioned, the C-H method 

often overestimates the scour depth due to the overestimation of the flow discharge based on 

invisicid fluid potential theory.  This provides the motivation for this study, which aims to 



 

 
 

propose a more accurate and efficient prediction method to estimate the scour around the 

submarine pipelines. It is expected that such accurate and efficient estimation of the scour 

characteristics around the submarine pipeline may help offshore engineers to assess the 

stability of the submarine pipeline due to the potential scour around it, thus propose better 

protective and preventive measures. In this study, owing to the fact that the non-dimensional 

equilibrium scour profile has a self- similar form, the scour beds at the various maximum 

scour depths can be established. The flow field around the submarine pipeline is simulated by 

solving the Reynolds-Averaged Navier-Stokes (RANS) equations and the standard k-ε 

turbulence model. The velocity distributions in the scour hole and the scour hole discharge are 

then obtained. An empirical formula, which relates the relative scour hole discharge to 

relative scour depth, is proposed. Incorporating this formula with the Colebrook-White 

equation, the flow induced bed shear stress can be calculated. The maximum scour depth is 

then obtained by continuously increasing the scour depth until the calculated bed shear stress 

is equal to the critical bed shear stress for incipient motion of the bed sediment.  

 

2 Prediction Method 

The present prediction method is developed based on the C-H method and Chiew’s 

method. The key point of the present method is to accurately predict the  scour hole 

discharge, taking into consideration the effect of scour depth. 

 

The C-H method calculates the scour hole discharge qg based on the potential flow theory:  
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where ds is the maximum scour depth; D is the diameter of the pipeline; u is the flow velocity 

and 0q  refers to the inflow discharge per unit width below the top of the pipeline, which can 

be calculated as  
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where m is the power law velocity index; y0 is the water depth; um is the flow velocity at the 

water surface. 

 

Chiew (1991) proposed a curve based on experimental results to interpolate the scour 

hole discharge. To facilitate the calculation of the scour hole discharge, Dey and Singh (2007) 

fitted Chiew’s curve using the following equation:  

        0 . 2 1 30

0

0 . 7 8 1 ( )
g m

q y

q D

                          (3) 

It can be seen that Eq. (3) only considers the effect of pipeline diameter and water depth on 

the scour hole discharge. The effect of the scour depth on the scour hole discharge was not 

considered; which will be taken into account in this study.  

As discussed previously, the potential flow theory (equation (1)) often overestimates the 

scour hole discharge and scour depth due to its potential flow assumption. In this study, the 

turbulent model is employed to obtain more accurate flow field, thus to improve the 

prediction of the scour hole discharge as well as the scour depth.  

 



 

 
 

2.1 Numerical Model 

2.1.1 Governing Equations 

The governing equations for the flow around the submarine pipeline are the continuity 

equation and the momentum equation:  
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where iu  is the flow velocity component in i direction; p is the pressure;   is the fluid 

density;  is the fluid kinetic viscosity;  is the fluctuation of flow velocity in i direction; 

ijS  is the mean strain rate tensor; ,
' '

i ju u  is Reynold’s stress tensor. and can be 

calculated by: 
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where is the turbulence viscosity; ij  is the Kronecker delta; k is the turbulent kinetic 

energy. The turbulent kinetic energy k and its dissipation rate ε can be simulated using the 

standard k-ε turbulence model:  
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ε equation： 
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where   is the fluid dynamic viscosity; t is the turbulent eddy viscosity; Gk is the 
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generation of k induced by the mean velocity gradients.  and Gk can be calculated by: 
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The constants in the k-εmodel are taken from Rodi (1993): Cμ=0.09, C1ε=1.44, C2ε =1.92, 

σk=1.0, and σε=1.03.  

 

2.1.2 Numerical schemes and validation case 

Given the complex geometry considered, the computational domain is discretized using 

the unstructured meshes generated from mesh generation software ICEM in order to 

accurately fit the physical solid boundaries (Guo et al., 2014). This allows for local 

refinement of the concerned regions (e.g. near the pipeline and sandy bed) with small meshes 

and has the advantage of flexibly assigning meshes in the computational domain (Jing et al. 

2009; Guo et al., 2012). In particular, near the seabed and pipe, a boundary layer mesh with a 

dimensionless nearest mesh size on the wall of between 30 and 500 is found to be optimum. 

The governing equations and turbulence equations are discretized by the finite volume 

method (FVM). The established SIMPLEC algorithm is used for pressure-velocity coupling. 

The momentum equation is solved by the QUICK scheme. The maximum residual number for 

convergence is taken as 10
-5

 and the time step is set as 0.005s. 

The numerical model for flow simulation is validated using the laboratory experiments 

conducted by Jensen et al. (1990). The experiments were carried out in a 10 m (length) x 0.3 

m (width) x 0.3 m (depth) flume. Water depth y0 was kept as a constant of 0.23m. The 

diameter of the pipe tested was D=0.03m. The velocity field was measured when the 

t



 

 
 

equilibrium scour was reached. More details of the experiments can be found in Jensen et al. 

(1990).  

The computational domain is shown in Figure 1 in which a Cartesian coordinate system is 

established. The bottom profile is the same as the equilibrium scour bed measured by Jensen 

et al (1990) in which the maximum scour depth ds/D=0.679. The distance from the upstream 

boundary and the downstream boundary to the center of the pipeline is the same and is equal 

to 20D. 

At the inlet boundary, the vertical velocity profiles are specified using a power law 

function (Coles, 1956; Yang et al. 2012):  

0

( ) ( )m

m

y
u y u

y
                              (12) 

where mu  is the upstream flow velocity at y=y0 (see Figure 1) and is specified using the 

experimental measurements; y is the vertical distance from the bed; m is the index number 

and is taken as 1/6 (Yang et al., 2012). Upstream flow velocity at the free water surface um is 

related to the average velocity by um=u0(m+1), where u0 is the upstream average flow 

velocity (Yang et al., 2012). 

The outlet boundary is set as outflow boundary condition in which a static pressure at the 

outlet boundary is specified (Guo, 2014). The variation of water surface is small and can be 

ignored. The symmetric condition is set at the upper boundary. In this paper, the flow field 

around the submarine pipeline is simulated and the equilibrium scour profile is used to 

estimate the scour hole discharge at the equilibrium scour bed. As such, the sandy bed is set as 

a wall boundary condition where no slip condition is applied. The surface roughness height ks 

is set as 2.5d50 and the standard wall function law is used to estimate the velocity parallel to 

the slope bed at the first cell (Launder and Spalding 1974).  

After the numerical model is validated, the effect of the scour depth on the scour hole 



 

 
 

discharge can be investigated by simulating the flow field around the submarine pipeline for a 

range of the fixed scour profiles described by (Dey and Singh 2008):  

2 3

0 1 2 3( ) ( ) ( )b

s s s s

y x x x
a a a a

d d d d
                         (13) 

where a0,a1,a2 and a3 are parameters and taken as -0.931,-0.178,0.124, and -0.01 respectively 

(Dey and Singh 2008). Differentiating Eq.(13) and setting it equal to zero yields the location 

x/ds=0.8 where the maximum scour depth takes place. Equation (13) shows that at the section 

crossing the central axis of the pipeline, the scour depth cd is 0.931 sd . This demonstrates 

that if dc is known, the maximum scour depth can be estimated. 

As the scour profiles for different maximum scour depths are known, the flow fields 

around the submarine pipeline over the scoured beds can be computed using the validated 

numerical model. The mesh strategy, solution methods and boundary conditions are kept the 

same as the validating case. The computational cases are: relative water depth y0/D=3, 5, 9; 

upstream incoming average flow velocity u0=0.1, 0.2, 0.3, 0.4, 0.5 m/s; the maximum scour 

depth ds/D=0.4~1.7; pipe diameter D=0.03m and 0.1m. The sediment size d50 =0.1, 0.3, 1.0 

and 3.0mm. 

 

2.2 Prediction of scour depth 

When the scour hole discharge is obtained from the numerical simulations, a fitted 

formula based on numerical results is proposed for convenience to calculate the scour hole 

discharge. The average flow velocity V in the scour hole at the section crossing the central 

axis of the pipeline (i.e. x/D=0) can be expressed as:  

/g cV q d                                    (14) 



 

 
 

 

Using the average flow velocity V, the bed shear stress can be estimated as:  

2

8
b V


                                     (15) 

where  is the friction coefficient, which can be obtained using the Colebrook-White 

equation ( Dey and Singh, 2007):  

1 2.51
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where (Re)s is the Reynolds number based on the scour depth, (Re) c
s

Vd


 , ν is fluid 

viscosity.  

The dimensionless bed shear stress, the Shields number  is employed (Shields 1936) to 

predict the incipient of the sediment movement: 
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where s is the ratio of the sediment density over water density, d50 is the median sediment size 

of which 50% by weight is finer. The critical Shields number θcr for the incipient motion of 

sediment can be estimated as (Solusby and Whitehouse 1997): 
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where D* is the dimensionless sediment diameter, defined as:   
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Using these equations, the scour depth can be predicted using the following iterative 

procedure: 

(1). Assuming a value of scour depth dc and to calculate ds=1.074dc. 





 

 
 

(2). Using the fitted formula to calculate the scour hole discharge gq . The average flow 

velocity V is then calculated using Eq.(14).  

(3). Solving Eq.(16) by iteration to obtain . The bed shear stress b is then computed using 

Eq.(15). 

(4). Using Eq.(18) to calculate cr ,and then calculate the critical bed shear stress cr  using 

Eq.(17).  

(5). Repeating steps 1 to 4 until 

error
cr

crb 





         (20) 

where error is the computational accuracy. The scour depth dc is then the true value. 

(6).The maximum scour depth ds is now calculated as ds=1.074dc.  

It should be noted that in Step (2), if the scour hole discharge is calculated using Eq.(1) or 

Eq.(3) instead of the fitted formula based on numerical results of this study, the scour depth 

obtained will be the results using the C-H method (Eq.(1)) or the Chiew method (Eq.(3)). 

 

3 Results and discussions 

3.1 Flow field 

Figure 2 shows the typical streamlines around the pipeline for 0u =0.2m/s over the 

equilibrium scoured bed at a certain time. It is seen that flow is split into two parts with one 

flowing through the scour hole and another flowing over the pipeline. A vortex is seen to be 

generated in the lee-wake region. To investigate the details of the flow structure within the 

scour hole and to verify the accuracy of the numerical simulation, Figure 3 compares the 

simulated (solid lines) and measured (open circles, Jensen et al. 1990) vertical velocity 





 

 
 

profiles in the x direction at five different cross sections: x/D=-3,-1, 0,1 and 3; representing 

the upstream, right cross and downstream of the pipe. At the section of x/D=-3, the velocity 

profile is similar to that at the inlet, showing that the effect of the pipe and the scour hole on 

the far upstream flow velocity field is insignificant. The section of x/D=-1 is in front of the 

pipe where the flow velocity increases with the vertical distance from the bed. A relatively 

sharp increase of the flow velocity is seen to take place in the scour hole, i.e. y ≤ 0 m. The 

flow velocity then increases slightly with the height for 0.00-0.03 m, mainly due to the 

blocking effect of the pipe. This is followed by a gradual increase of the flow velocity with 

the distance from the sand bed. At the section crossing the central axis of the pipe, i.e. x/D=0, 

a sharp increase of the flow velocity with the vertical distance from the sand bed takes place 

both in the scour hole and above the pipe. The flow velocity then reaches the maximum value 

near the bottom of the pipe as well as immediately above the pipe. The flow velocity above 

the pipe is similar to that of the open channel flow while the velocity below the pipe (e.g. in 

the scour hole) decreases sharply and reaches zero at the scour hole bottom. The section of 

x/D=1 is in the lee-wake region where the existence of the negative flow velocity indicates 

that a pair of vortices are generated by water flowing around the pipe (see also Figure 2). No 

backflow is found at the section of x/D=3, indicating that the vortices disappear at that 

distance away from the pipe downstream. An S-shaped velocity profile is found in the lee side 

for x/D=1 and x/D=3. Figure 3 also shows that the simulated vertical flow velocity profiles 

agree reasonably well with the experimental measurements, demonstrating the accuracy of the 

numerical models for simulating such flows.  

 



 

 
 

3.2 Effect of sediment size 

To investigate the effect of sediment size on the scour hole discharge and the bed shear 

stress, simulations are performed for d50 =0.1mm，0.3mm，1mm and 3mm. The simulated flow 

velocity distribution in the scour hole for various sediments is used to obtain the scour hole 

discharge per unit width ( gq ) by integrating the flow velocity over the scour depth. The 

results are plotted in Figure 4 in which the scour hole discharge per unit width qg is 

normalized using the inflow discharge per unit width q0. It is seen that the sediment size has 

little effect on the relative scour hole discharge in the simulation range.  

The bed shear stress is calculated from the numerical simulations with the standard 

wall function for d50 =0.1mm，0.3mm，1mm and 3mm; two scour depth ds/D=0.7 and 1.0 and 

u0=0.2m/s. The results are plotted in Figure 5. It is seen from Figure 5 that the bed shear stress 

increases significantly with the increase of the sediment size. This may be ascribed to the fact 

that the larger sediment particles generate a larger flow velocity gradient near the bed, leading 

to the sharp increase of the bed shear stress. Figure 5 also demonstrates that the scour hole 

depth has great impact on the bed shear stress. In general, the smaller scour hole depth 

generates a larger bed shear stress. This is because that the smaller scour hole depth has 

greater blocking impact to the flow, thus producing a greater velocity gradient near the scour 

hole bed and resulting in a greater bed shear stress.  

 

3.3 Scour hole discharge 

     As analyzed above, the effect of the sediment size on the scour hole discharge is 

negligible. As such, it is possible to develop a formula from the numerical simulation to 



 

 
 

calculate the scour hole discharge and compare with the results obtained by using the 

potential flow theory (the C-H method, equation (1)) and Chiew’s method (equation (3)). To 

this end, fourteen maximum scour depths and two water depths are simulated. Figure 6 shows 

the comparison of the scour hole discharge obtained by present numerical model and by Eq.(1) 

and Eq.(3). It is seen that the scour hole discharge calculated from Eq. (1) is larger than that 

from present numerical model. This is because that the potential flow theory assumes an ideal 

fluid in which the viscosity of the fluid is not considered. Consequently, the potential flow 

theory will produce  larger values of velocity and discharge in the scour hole. The scour hole 

discharge calculated by Eq. (3) does not change with the scour depth as the equation is only a 

function of the relative water depth and does not include the effect of the scour depth. The 

present numerical simulation results in Figure 6 also reveal that the water depth has little 

effect on the scour hole discharge. This may be ascribed to the fact that the flow above the 

pipe (beyond the scour hole) has negligible impact on the flow field (thus discharge) in the 

scour hole. Consequently, a best fit equation from the results generated by present numerical 

model can be obtained by ignoring the effect of water depth. Conducting the best fit for the 

simulated results yields:  

2

0

0.1681( / ) 1.0556( / ) 0.0206 0.4 / 1.7
g

s s s

q
d D d D d D

q
            (21)  

 

3.4 Bed shear stress 

When the scour hole discharge is calculated using Eq.(21), the bed shear stress can be 

estimated using the Colebrook-White equation as detailed in Section 2.2. As discussed before, 

the bed shear stress can also be directly calculated using the standard wall function in the 



 

 
 

numerical model. Figure 7 shows the comparison of the bed shear stress obtained from the 

numerical simulation with the standard wall function and the Colebrook-White equation, 

respectively. It can be seen that for the case of the lower incoming flow velocity and smaller 

sediment particles, the bed shear stresses obtained by the two methods agree well with each 

other. When the sediment size and the flow velocity increase, the bed shear stress obtained 

from the numerical model is slightly larger than that obtained using the Colebrook-White 

equation. This study shows that, in general, the Colebrook-White equation can be used to 

calculate the bed shear stress with satisfactory accuracy.  

 

3.5 Comparison with experiments 

    The results of 92 laboratory experimental data sets from Dey and Singh (2008) are used 

to evaluate the accuracy of the proposed method. The ranges of the experimental parameters 

are: y0/D =3-7; u0=0.242-0.645 m/s; D=0.03-0.07 m; d50=0.48-3.0 mm; ds/D=0.7-1.66. 

Present method as well as the C-H method and  Chiew method is used to predict the scour 

depth. The predicted dimensionless scour depths using these three methods are compared with 

the measurements, as shown in Figures 8, 9 and 10, respectively. It is seen from Figure 8 that 

the C-H method significantly over-predicts the scour depth. All of the predicted scour depths 

are larger than the measured ones with most of the predicted scour depths being over 2.0 

times the measurements. This is mainly due to the fact that Eq.(1) was derived from the 

potential flow theory and significantly overestimates the scour hole discharge and the bed 

shear stress. Figure 9 shows that the majority of the predicted scour depths using Chiew’s 

method are larger than the measurements. On the other hand, Figure 10 shows that the 



 

 
 

predicted scour depth using the present method is in good agreement with the measured 

values, indicating that the present method can be used to predict the scour depth around the 

submarine pipeline with satisfactory accuracy. 

 

To compare the predicted scour depths using the three methods and the measurements in 

more detail, Table 1 lists the number of predicted cases falling in different error regions using 

the three methods for a wide range of sediment sizes. The absolute relative error in Table 1 is 

defined as ARER=|(predicted scour depth-measured scour depth)|/ measured scour depth. 

Table 1 reveals that there are only 4 cases (of 92 cases) whose ARER predicted using the 

present method is larger than 50%, while the numbers of cases using the C-H method and 

Chiew method are 89 and 12, respectively. In summary, the average absolute relative errors 

for all cases are 0.91, 0.24 and 0.18 by the C-H method, Chiew method and present method, 

respectively, showing that the present method is much more accurate than the other two 

methods.  

 

3.6 Engineering Application 

The present method is used to estimate the scour of Chengdao submarine pipeline in 

Shandong Province, China. The measured flow velocity is 0.65m/s, the water depth is 5m, the 

pipeline diameter is 0.5m and the sediment size is d50=0.05mm. Using these field data and the 

present method, the maximum scour depth estimated is about 1.64m. The surveyed maximum 

scour depth is about 1.33m, which is slightly smaller than that predicted by present method. 

This discrepancy may be ascribed to the fact that the field conditions are different from the 



 

 
 

laboratory conditions, which are the main common shortcomings of the physical model 

studies. For example, the relative water depth in the field is higher than that in laboratory 

conditions, and the incipient condition of sediment in the field is also higher than that in 

laboratory conditions; while the validation of the present method is based on laboratory 

conditions. These result in the discrepancy between the estimation and the field measurement. 

The prediction accuracy of the present method could be improved by including field data. 

Nevertheless, the slightly over prediction of the scour depth by this method is safe for 

submarine pipelines in terms of preventing its damage due to the fatigue failure caused by 

vortex induced vibration within the scour hole.  

 

4 Conclusions 

Numerical studies have been conducted to evaluate the scour hole discharge under steady 

flow condition. The scour hole discharge is determined by solving the RANS equations with a 

standard k-ε turbulence closure. The effect of the model parameters, including the relative 

scour depth ds/D, and the flow Re on the scour hole discharge are investigated numerically. A 

fitted formula which links the relative scour hole discharge qg/q0 and the relative scour depth 

ds/D is obtained. Using this formula, an iterative method is proposed to predict the maximum 

scour depth. The predicted maximum scour depth using the present method is in good 

agreement with the laboratory measurements of Dey and Singh (2008) as well as being more 

accurate than those using the methods of Chao and Hennessey (1972) and Chiew (1991).This 

demonstrates that the proposed method can be applied to accurately predict clear-water scour 

depth below submarine pipelines under steady flow conditions. Regarding the application of 



 

 
 

the present method to predict the scour depth in practical engineering, the present method 

may slightly overestimate the scour depth. This may be because that the critical bed shear 

stress used in the present method is based on laboratory conditions, which are different from 

those in real field. Further studies to include field measurements are required to improve the 

prediction accuracy.  
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Figure 1. Sketch of the computational domain 



 

 
 

 

Figure 2. Simulated flow streamlines for validating case: u0=0.2m/s 

 

 

Figure 3(a) 



 

 
 

 

Figure 3(b) 

 

Figure 3(c) 

 

Figure 3(d) 



 

 
 

 

Figure 3(e) 

Figure 3. Comparison of the simulated (solid lines) and measured (open circles, Jensen et al. 

1990) vertical velocity profiles at five cross sections along flow direction for u0=0.2m/s: 

(a) x/D=-3; (b) x/D=-1; (c) x/D=0; (d) x/D=1; (e) x/D=3; representing the upstream, 

right cross and downstream of the pipe 

 

 

Figure 4. Variation of the simulated relative scour hole discharge qg/q0 with the sediment size 

d50 for u0=0.2m/s and ds/D=0.7 



 

 
 

 

Figure 5. Variation of the simulated bed shear stress τb with the sediment size d50 for 

u0=0.2m/s and two scour depths indicated 

 

Figure 6. Comparison of the relative scour hole discharge using Eq(1), Eq(2) and Eq(20) 

 

 



 

 
 

Figure 7. Comparison of the bed shear stress predicted by the present method and the 

Colebrook-White equation 

 

Figure 8. Comparison between the predicted scour depth using the C-H method and the 

measurements   

 

Figure 9. Comparison between the predicted scour depth using the Chiew method and the 

measurements 



 

 
 

 

Figure 10. Comparison between the predicted scour depth using the present method and 

measurements 

 

Table 1.The distributions of absolute relative error of predicted scour depth using different 

methods. 

 

d50 

(mm) 
Methods 

No. 

ARER≤0.2 

No. 

0.2<ARER≤0.5 

No. 

0.5<ARER≤1.0 

No. 

1.0<ARER 
Average ARER 

0.45 

C-H - - 15 3 0.92 

Chiew 4 12 2 - 0.31 

Present 13 5 - - 0.14 

0.81 

C-H - - 15 4 0.82 

Chiew 15 4 - - 0.15 

Present 15 4 - - 0.13 

1.86 

C-H - - 13 6 0.83 

Chiew 15 4 - - 0.11 

Present 12 7 - - 0.16 

2.54 

C-H 1 - 8 7 1.24 

Chiew 9 2 3 2 0.37 

Present 10 2 3 1 0.30 

3.00 

C-H - 2 7 11 1.04 

Chiew 9 6 5 - 0.27 

Present 10 10 - - 0.20 

Total 

C-H 1 2 58 31 0.91 

Chiew 52 28 10 2 0.24 

Present 60 28 3 1 0.18 

 


