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Configuration-interaction calculations of PsH ande¿Be
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The configuration-interaction~CI! method is applied to the study of the positronium-hydride~PsH! and
positronic-beryllium (e1Be) systems. The binding energy and other properties are slowly convergent with
respect to the angular momentum of the orbitals used to construct the CI basis states. The largest calculations
recover 94% and 80% of the binding energy against dissociation when compared with existing calculations of
PsH ande1Be. Extrapolating using CI convergence trends improves these results to 99% and 98%, respec-
tively. Convergence is not so good for the electron-positron annihilation rates, but the extrapolated annihilation
rates were within 10% of the best calculations. Two different schemes have been used to construct the CI basis,
and it is found that it is possible to discard roughly half the CI basis with almost no degradation in the binding
energy and the annihilation rate. These investigations demonstrate the feasibility of using single particle
orbitals centred on the nucleus to represent positronic systems with two valence electrons.
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I. INTRODUCTION

The existence of positron and positronium atomic bou
states has over recent years become increasingly well e
lished, and remains one of the more interesting proble
within the field of positron atomic physics@1,2#.

Since the theoretical demonstration that positronium
dride was bound in 1951@3#, a variety of computationa
methods have been used to study positron (e1) and positro-
nium ~Ps! binding to atoms with varying degrees of succe
So far, the two most successful approaches have been
stochastic variational method~SVM! @4,5# and the quantum
Monte Carlo methods@6,7#. These methods owe their su
cess to the fact that the interactions between pairs of part
are treated on an equal footing. This makes them particul
suitable for treating positron binding systems with th
strong electron-positron correlations@4#. However, for vari-
ous reasons, it is increasingly tedious to apply the SVM a
its fixed-core variant@8# to heavier systems. For exampl
calculations upone1Zn @9# and KPs@10# each took almost
one year of computer time, and even then the binding e
gies and annihilation rates were far from converged. The
fore, we decided to study the application of th
configuration-interaction~CI! method to positron binding
atomic states in order to determine whether it would ma
these heavier systems more accessible to investigation.

Although the CI method is one of the most common
used methods in the calculation of atomic structures, it
not been applied to positronic systems on a large scale.
first CI calculation upon positronium hydride~PsH! did dem-
onstrate the stability of the system, but only yielded 0.3
@11# of the three-body binding energy. This was improved
35% by Strasburger and Chojnacki@12# and more recently to
85% @13# in a precursor to the present calculation. The m
problem in applying the CI method to positron binding sy
tems arises from the attractive electron-positron interac
that leads to the formation of a Ps cluster~i.e. something akin
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to a positronium atom!. The accurate representation of a
cluster using only single-particle orbitals centered on
nucleus requires the inclusion of terms with high angu
momenta@14#.

The first large-scale CI calculation upon a positronic at
was undertaken by Mitroy and Ryzhikh upone1Cu @14#.
While this calculation was able to replicate an earlier pred
tion of positron binding, the binding energy was mu
smaller than the previous estimate computed with the fix
core SVM~FCSVM! @15#. The CI basis was constructed wit
an ad hocset of orbitals and it was clear that a converg
binding energy would require a systematic approach to b
the generation of single-particle orbitals and the CI ba
This was first achieved by Dzuba and coworkers@16,17# who
used aB-spline basis for their converged CI calculatio
upon positronic copper and silver. An alternative approa
was adopted by Bromleyet al. @13,18# who used a mixed
Slater and Laguerre-type orbital basis to investigate a var
of systems containing two valence electrons and a posit
While the basis can be increased systematically, the la
dimensionality associated with a system containing two e
trons meant that these calculations gave energies far f
convergence. Even so, the systemse1Ca, e1Cd, and CuPs
were all shown to be electrically stable@13,18#.

In the present paper, the CI method is applied to the c
culation of PsH and positronic-beryllium (e1Be) ground
states. Since accurate binding energies and wave funct
have been reported for both of these systems@8,19#, they
represent an ideal computational laboratory with which
study the suitability of the CI method. Another reason f
investigating these systems is that they have completely
ferent structures. The PsH system consists of a reason
well-defined Ps atom bound to a H atom, somewhat simila
to a light isotope of the H2 molecule@20#. Positronic beryl-
lium, however, finds the positron orbiting a polarized neut
Be atom at a relatively large distance from the nucleus@8#.
Although there are convergence difficulties associated w
treating the Ps cluster, the present results indicate that
possible to compute energies and annihilation rates that
close enough to convergence to be useful. The extrapol
©2001 The American Physical Society05-1
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M. W. J. BROMLEY AND J. MITROY PHYSICAL REVIEW A65 012505
binding energies are within 2% of the best previously co
puted values, while the annihilation rates are within 10%
the expected values.

II. TECHNICAL DETAILS

The CI method is one of the standard approaches for c
puting atomic structures@21#, so only a brief description is
given here. The atomic wave function is taken to be a lin
combination of states created by multiplying atomic state
single-particle positron states with the usual Clebsch-Gor
coupling coefficients,

uC;LS&5(
i , j

ci , j^LiM i l jmj uLML&

3K SiMSi

1

2
m jUSMSL F i

Atom~LiSi !f j~r0!.

~2.1!

In this expressionF i
Atom(LiSi) is an antisymmetric atomic

wave function with goodL and S quantum numbers. The
function f j (r0) is a single-positron orbital. The single
particle orbitals that make up the total wave function a
written as a product of a radial function and a spherical h
monic,

f~r !5P~r !Ylm~ r̂ !. ~2.2!

The specific details of the calculation were slightly diffe
ent for PsH ande1Be, so we will first describe the details o
the PsH calculation, and thene1Be.

A. Technical details for details for PsH

The Hamiltonian for the PsH atom consisting ofNe52
electrons and a positron was

H52
1

2
¹0

21(
i 51

Ne

2
1

2
¹ i

21
1

r 0
2(

i 51

Ne 1

r i
1(

i , j

Ne 1

r i j
2(

i 51

Ne 1

r i0
.

~2.3!

In this expression, ther i refer to the electron coordinate
while r0 refers to the positron coordinate.

The single-particle orbital basis was constructed from
orthogonal Laguerre basis. The dimension of such a b
can be made arbitrarily large without any linear depende
problems arising. The Laguerre basis functions are defi
by

xa~r !5Nar l 11 exp~2lar !Lna2 l 21
(2l 12) ~2lar !, ~2.4!

where the normalization constant is

Na5A~2la!2l 13~na2 l 21!!

~ l 1na11!!
. ~2.5!

The functionLna2 l 21
(2l 12) (2lar ) is an associated Laguerre pol

nomial that can be defined in terms of a confluent hyperg
metric function@22# as
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Lna2 l 21
(2l 12) ~2lar !5

~na1 l 11!!

~na2 l 21!! ~2l 12!!

3M ~2@na2 l 21#, 2l 12,2lar !. ~2.6!

The Laguerre functions were not computed using the pow
series expression for the confluent hypergeometric funct
Rather, the recursion relation

~n11!Ln11
a ~x!5~2n1a112x!Ln

a~x! ~2.7!

was used withL0
2l 12(x) andL1

2l 12(x) as starting values.
Besides its good linear dependence properties, the

guerre basis has the advantage that the basis can be ch
terized by a single exponential parameter. This made it e
to optimize the PsH energy with respect to variations in
Laguerre basis.

Although a Laguerre basis does have the property
most of the matrix elements can be evaluated analytica
this was not done and all matrix elements were compu
numerically using tabulations of the orbitals on a rad
r-space grid. The details of the procedures used to eval
the two-particle coulomb integrals may be found in the A
pendix.

Two different approaches were used for the construct
of the CI basis. In the first, all the possibleL50 configura-
tions that could be formed by letting the two electrons a
positron populate all the single-particle orbitals withl
<Lmax were included in the basis. The convergence of
binding energy and other system properties could then
studied as a function ofLmax, thus permitting extrapolation
to theLmax→` limit.

The second approach used to construct the CI basis
ognizes the fact that the electron-positron correlations
much stronger than the electron-electron correlations. I
the electron-positron correlations that largely mandate
inclusion of orbitals with large values ofl. An additional
parameterLint was defined and used to restrict the size of
CI basis with a selection rule. Supposel 1 and l 2 are the
orbital angular momentum of the two electrons in a given
basis function, then the rule

min~ l 1 ,l 2!<Lint ~2.8!

was used to reduce the size of the CI basis~note, a basis with
Lint5Lmax had no restrictions upon orbital occupancy!. This
rule can be motivated by writing the CI expansion in a clo
coupling-type expansion, written heuristically as

uC;LS&5(
im

ci ,mf i
J~r1!@fm

Ps~r2 ,r0!#J

5(
i

ci , jf i
J~r1!(

jk
@f j~r2!fk~r0!#J . ~2.9!

One electron and positron are coupled to form a state w
net angular momentumJ, which is then coupled to the sec
ond electron~occupying a single-particle state with angul
momentumJ). Suppose it is wished to include a state ana
gous to the Ps ground state with center of mass angular
5-2
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CONFIGURATION-INTERACTION CALCULATIONS OF . . . PHYSICAL REVIEW A 65 012505
mentum zero coupled the rest of the system. Then the pa
wave expansion offPs(r02r2) would be written as
( jk @f j (r2)fk(r0)#J50 with the net angular momentum o
the coupled orbital product equal to zero. Thus, theLint pa-
rameter is equivalent to the maximum orbital angular m
mentum of the Ps-type state~or H-type state! that would be
included in a close-coupling expansion involving products
H-type and Ps-type states.

The secular equations that arise with three active parti
typically have dimensions exceeding 10 000 and, theref
the sparse matrix diagonalization was performed with an
erative algorithm. The program of Stathopolous and Fisc
@23#, which uses the Davidson algorithm@24# was used to
perform the diagonalizations. The largest calculations p
formed had dimensionalities of nearly 100 000. Typica
240 iterations were required to diagonalize the PsH Ham
tonian while about 800 iterations were required to diagon
ize thee1Be Hamiltonian.

Various expectation values were computed to provide
formation about the structure of the PsH ground state.
mean distance of the electron and positron from the nuc
are denoted bŷr e& and^r p&. The mean of the square of th
distance between the electron and positron,^r ep

2 &, was also
computed.

The positronic atom will decay by electron-positron an
hilation and the 2g annihilation rate is computed to give a
estimate of the lifetime.~Note that the 2g rate also gives
information about the tendency for the electron and posit
to form a Ps cluster.! The annihilation rate for the 2g decay
summed over all possible final states@25–27# is

G54pca4a0
2Ne^C~r1 , . . . ,rNe

;r0!uÔNe

s d~rNe
2r0!u

3C~r1 , . . . ,rNe
;r0!&

54pca4a0
2NeE d3tuÔNe

s C~r1 , . . . ,rNe
;rNe

!u2.

~2.10!

The operatorÔNe

s is a projection operator that selects spin

combinations of theNe electron and the positron.
TheLmax→` limit was estimated using a simple extrap

lation technique. Making the assumption that successive
crements (XL) to any expectation value (^X&) scale as 1/Lp

for sufficiently largeL, it is possible to write

^X&5 lim
Lmax→`

S (
L50

Lmax

XL1D (
L5Lmax11

`
1

LpD . ~2.11!

The power series is easy to evaluate, the coefficientD is
defined as

D5XLmax
~Lmax!

p, ~2.12!

and the exponentp can be derived from
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Lmax21D p

5
XLmax21

XLmax

. ~2.13!

There is a considerable degree of uncertainty attached to
extrapolation since the asymptotic form inLmax ~i.e., p) is
not known. However, the error in making the extrapolati
can be kept to a reasonable size by makingLmax as large as
possible. Suppose 80% of the energy is given by expl
calculation, and also suppose that the error in the extrap
tion correction~of the remaining contribution to the energy!
is 20%, then the net error in the energy will be 4%. For P
the net error in the extrapolated energy turned out to be ab
1%. The annihilation rate is much more slowly converge
with Lmax and here the error is 10%.

B. Technical details for e¿Be

Many aspects of the calculation fore1Be and PsH are the
same, so only those aspects of the calculations that are
ferent will be mentioned.

The calculations fore1Be were done in a fixed-core ap
proximation. The effective Hamiltonian for the system wi
Ne52 valence electrons and a positron was

H52
1

2
¹0

22(
i 51

Ne 1

2
¹ i

21(
i 51

Ne

@Vdir~r i !1Vexc~r i !1Vp1~r i !#

2Vdir~r0!1Vp1~r0!1(
i , j

Ne 1

r i j
2(

i 51

Ne 1

r i0
2(

i , j

Ne

Vp2~r i ,r j !

1(
i 51

Ne

Vp2~r i ,r0!. ~2.14!

For thee1Be system, the direct potentialVdir represents
the interaction with the 1s2 Be21 core which is derived from
a Hartree-Fock wave function and is the same for the e
tron and the positron~although opposite in sign!. The ex-
change potentialVexc between the valence electrons and t
Hartree-Fock core was also computed exactly.

The one-body polarization potentialVp1 is a semiempir-
ical polarization potential derived from an analysis of t
spectrum of the parent atom or ion. It has the functional fo

Vp1~r !52
adg2~r !

2r 4
. ~2.15!

The factorad is the static dipole polarizability of the cor
andg2(r ) is a cutoff function designed to make the polariz
tion potential finite at the origin. The same cutoff functio
has been adopted for both the positron and the electron
this work,g2(r ) was defined to be

g2~r !512exp~2r 6/r6!, ~2.16!

where r is an adjustable cutoff parameter. The two-bo
polarization potential (Vp2) is defined as
5-3
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TABLE I. Results of CI calculations for PsH up to a givenLmax. The total number of electron and positron orbitals are denoted byNe

andNp , with the Laguerre-type orbital exponents in thel column. The three-body energy of the PsH in Hartree system is denoted byEPsH,
while « gives binding energy against dissociation into H1 Ps. The mean electron-nucleus distance^r e&, the mean positron-nucleus distanc
^r p&, and the mean electron-positron distance^r ep

2 & are given ina0 anda0
2 . The spin-averaged 2g annihilation rateG is given in 109 s21.

The results in the roẁ are from anLmax→` extrapolation.

Lmax Ne Np l Ncon f EPsH « ^r e& ^r p& ^r ep
2 & G

0 13 12 1.52 1092 20.691 334 2 Unbound 2.118 3.866 24.51 0.3739
1 24 23 1.75 3457 20.747 047 1 Unbound 2.085 3.501 17.17 0.7802
2 34 33 2.02 7837 20.766 168 8 0.016 168 8 2.121 3.447 15.66 1.0752
3 43 42 2.12 13 660 20.775 078 5 0.025 078 5 2.156 3.458 15.21 1.2820
4 51 50 2.25 20 836 20.779 844 5 0.029 844 5 2.184 3.482 15.08 1.4306
5 59 58 2.40 29 900 20.782 629 7 0.032 629 7 2.206 3.506 15.06 1.5414
6 67 66 2.60 41 620 20.784 361 0 0.034 361 0 2.223 3.527 15.08 1.6265
7 75 74 2.85 56 044 20.785 488 0 0.035 488 0 2.236 3.543 15.11 1.6937
8 83 82 3.05 73 956 20.786 248 1 0.036 248 1 2.245 3.557 15.14 1.7475
9 91 90 3.25 95 324 20.786 776 1 0.036 776 1 2.252 3.567 15.16 1.7913
` 20.788 795 2 0.037 795 2 2.298 3.644 16.50 2.2792
SVM @27# 20.789 196 1 0.039 196 1 2.311 3.662 15.58 2.4691
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Vp2~r i ,r j !5
ad

r i
3r j

3 ~r i•r j !g~r i !g~r j !. ~2.17!

The parameters of the core-polarization potential were
same as those used in an earlier FCSVM calculation@28#.
The dipole polarizability,ad was set to 0.0523a0

3 while r
50.95a0. It should be noted that the present polarizati
potential is not exactly the same as that used in the FCS
calculation; in the FCSVM calculation the cutoff functio
g(r ) was approximated by a linear combination of Gau
ians. There was no need to make this additional approxi
tion in the present work.

The starting point for the calculation was a Hartree-Fo
calculation of the Be 1s22s2 ground state that defined th
wave function for the Be21 core. The Hartree-Fock 1s orbi
als were expressed as a linear combination of Slater-
orbitals ~STO!, and therefore it was sensible to use a line
combination of STOs and Laguerre-type orbitals~LTO! to
describe the radial dependence of thel 50 electrons. The
procedure used to define the electron orbitals was twof
First, additional single-particle orbitals were added to
basis so that the set of orbitals completely spanned the s
defined by the STO set. Then additional LTOs~with a com-
mon scaling parameterla) were used to enlarge the orbit
basis. It should be emphasized that the mixed basis was
used for thel 50 electron orbitals, thel .0 electron orbitals
and all the positron orbitals used a pure Laguerre basi
Gram-Schmidt orthogonalization of the entire orbital set w
performed to ensure that all the electron and positron orb
were orthonormal.

Another distinction betweene1Be and PsH occurs in cal
culation of the annihilation rate. The 2g annihilations for the
core and valence electrons were computed separately.
annihilation rate with the core electrons only is denotedGc ,
while G is used to denote the net annihilation rate of t
positron with all the electrons.
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III. RESULTS FOR PsH

The condition for binding is that the energy of the Ps
state be lower than the energy of the H(1s)1Ps(1s) disso-
ciation channel. The binding energy for a particular basis
thus defined as«5(0.5010.25)2E(PsH) and binding oc-
curs when« is positive.

The formalism and numerics of the CI program were i
tially validated by reproducing the results of a previous
calculation of PsH by Strasburger and Chojnacki@12#. Their
best CI calculation gave a total energy of20.763 693 86
Hartree @29#. The present program with exactly the sam
Gaussian-type orbital basis was able to reproduce this en
to all significant figures. Being able to use a Gaussian, Sla
or a Laguerre basis~and even mix the types of basis fun
tions! was a consequence of the decision to perform all in
grations using numerical quadrature.

Table I gives energies and expectation values for a se
of calculations on PsH with no restrictions upon orbital o
cupancy~i.e., Lint5Lmax). The number of Laguerre orbital
of a particular type and their respective exponents are
listed in the table. The largest calculation included sing
particle orbitals up toLmax59. The Laguerre exponent
were optimized by hand, and it was found the best ene
occurred when the electron and positron exponents were
same. That the electron and positron orbits should be
same for large values ofl is understandable since thel ( l
11)/(2r 2) centrifugal barrier dominates the nuclear attra
tion or repulsion for largel. ~A slight improvement over the
present calculation could be achieved by letting the elect
and positron exponents for thel 50 and l 51 orbitals be
slightly different, but this was not done.!

The most notable feature of Table I is the slow conv
gence of the binding energy and annihilation rate withLmax.
Even though the largest calculation had a dimension
95 324, only 93.8% of the binding energy was achieved~the
latest estimates of the PsH binding energy@19# are expected
5-4
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to be accurate to six significant digits!. The convergence o
the annihilation rate was even worse, with only 72.5% of
SVM annihilation rate@27# being achieved by theLmax59
calculation. The slow convergence of the PsH binding ene
with Lmax, and the even slower convergence ofG, is consis-
tent with previous CI calculations on this and other positr
binding systems@13,14,16#. The slow convergence of« and
G with Lmax is further illustrated in Figs. 1 and 2.

Equations~2.11! and~2.12! have been used to extrapola
the expectation values reported in Table I to theLmax→`
limit. The extrapolated binding energy is about 1% sma
than the expected value of 0.038 919 6 hartree while the
nihilation rate is 10% smaller than the SVM annihilatio
rate. The extrapolated̂r e& and ^r p& are also quite reliable
The extrapolation of̂ r ep

2 & was not reliable. However, a
inspection of the sequence of^r ep

2 & values in Table II sug-
gests this expectation value has not yet reached
asymptotic region.

Table II shows the impact that configuration selecti
through use of theLint parameter can have in restricting th
size of the calculation without any major degradation in
quality of results. The data presented in Table II were co
puted with the sameLmax59 single-particle orbital basis

FIG. 1. PsH binding energy« for a sequence of calculation
with different values ofLint and Lmax. The close to converged
SVM energy is also shown for comparison purposes.
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while Lint was increased in size from 0 to 9. The rapid co
vergence with respect toLint is readily apparent in Fig. 1.

The most startling aspect of Table II is the stability ofG
for all values ofLint from 0 to 9. This is not entirely unex
pected since the underlying idea behind theLint selection
procedure was to start with a calculation that gave the b
possible description of a single electron-positron pair~within
the constraints of the orbital basis!. Even theLint50 calcu-
lation will do a good job of representing the Ps cluster a
describing its interaction with the rest of the system. Figur
also illustrates the tendency forG to be insensitive to the
value ofLint .

Other properties of the system also show a degree of
bility with respect to the variations inLint . The mean posi-
tron distancê r p& decreases by 2% whenLint is increased
from 0 to 1, but thereafter it changes by less than 0.5%.
expected, the energy shows a monotonic decrease asLint
increases and also shows a reasonably quick pattern of
vergence. The energy of theLint52 calculation is within
1.5% of theLint59 energy even though it only includes 40
of the configurations.

The quick convergence for all properties with respect

FIG. 2. PsH annihilation rate (G in units of 109 s21) for a
sequence of calculations with different values ofLint andLmax. The
close to converged SVM annihilation rate is also shown for co
parison purposes.
is

TABLE II. Results of a sequence of CI calculations with increasingLint for the Ps-H system. The

configurations were constructed from the fullLmax59 orbital list. The organization of the table columns
the same as for Table I.

Lint Ncon f EPsH « ^r e& ^r p& ^r ep
2 & G

0 10 010 20.775 033 9 0.025 033 9 2.340 3.666 15.48 1.7864
1 23 276 20.784 929 5 0.034 929 5 2.263 3.584 15.29 1.7811
2 37 926 20.786 237 9 0.036 237 9 2.255 3.572 15.20 1.7869
3 51 660 20.786 567 4 0.036 567 4 2.254 3.569 15.18 1.7893
4 63 492 20.786 681 8 0.036 681 8 2.253 3.568 15.17 1.7903
5 73 788 20.786 730 2 0.036 730 2 2.253 3.567 15.17 1.7910
6 82 548 20.786 753 6 0.036 753 6 2.253 3.567 15.17 1.7911
7 89 196 20.786 766 0 0.036 766 0 2.253 3.567 15.17 1.7912
8 93 668 20.786 772 9 0.036 772 9 2.253 3.567 15.16 1.7913
9 95 324 20.786 776 1 0.036 776 1 2.253 3.567 15.16 1.7913
5-5
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Lint suggests that the most efficient way to do a calculatio
to pick a moderately sized value ofLint , say 2 or 3, then
increaseLmax systematically to the largest possible value.
further test this hypothesis, calculations were performed c
strainingLint53, and then increasingLmax systematically up
to 9. This gave extrapolated binding energies and annih
tion rates very close to the fullLmax5Lint calculations. For
example, the extrapolated binding energy was 0.038 58
tree, less than 1% smaller than the extrapolated energy f
the full CI expansion~0.038 79 hartree!, while the extrapo-
lated annihilation rate was 2.2803109 s21, within 0.1% of
the rate obtained from the full calculation.

Implications for PsH scattering calculations

One of the areas of recent activity in positron physics is
the scattering of positronium from atoms. In particular, th
has been a lot of interest on the positronium-hydrogen s
tering problem@30–33#. Accurate estimates of the PsH sca
tering lengths have only been obtained very recently@32#
despite Ps-H being such an apparently simple scattering
tem. The determination of the scattering length was achie
by using a rather unorthodox modification of the SVM
scattering problems. The SVM technique is currently
stricted in scope to the scattering length region and, th
fore, a more general solution of the PsH scattering prob
will probably be achieved with more traditional scatteri
techniques based upon the close-coupling~CC! ansatz.

The present calculations can give insight into the size
calculation required to obtain a converged solution with
close-coupling-type scattering wave function. For examp
the (Lint50, Lmax59) calculation achieved 68.4% of th
(Lint59, Lmax59) PsH binding energy. TheLint50 cal-
culation would be roughly equivalent to a CC-type calcu
tion with a basis written schematically as

uC&5(
i

ciH~ns!Ps~nl !Fl
Ps~R!

1(
i

ciH~nl !Ps~ns!Fl
Ps~R!, ~3.1!

whereFl
Ps(R) describes the motion of the Ps center of ma

with orbital angular momentuml. The R-matrix calculation
of Campbellet al. @31# using a wave function similar to thi
~their CC calculation restricted the hydrogen state to alw
be in its ground state! achieved 59.4% of the PsH bindin
energy. Given that the relative accuracy in the PsH bind
energy scales in the same way as the threshold cross se
it is clear that further improvements in the present group
close-coupling calculations will need to be made before t
are able to obtain more accurate cross sections. Using T
II as a rough guide, inclusion of H states withL51 will be
required to achieve cross sections accurate at the 5% le
while H-type states withL52 will be needed to achieve
accuracy at the 1–2 % level.

IV. RESULTS FOR e¿Be

The e1Be system consists of a positron weakly bound
a polarized beryllium atom. Since the ionization potential
01250
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neutral Be is greater than 0.25 hartree~0.342 603 hartree
@34#!, the positron binding energy« is calculated by the iden
tity

«5E~Be!2E~e1Be! , ~4.1!

whereE(Be) is the two-electron binding energy of neutr
beryllium. E(Be) for a givenLmax was computed using a
subset of the basis used fore1Be, i.e., the positron orbitals
are omitted and exactly the same set of electron orbitals
included. In effect, the« should be regarded as the ener
associated with the binding of a positron to a particu
model of Be. There are, of course, some uncertainties a
ciated with using a neutral Be binding energy that is not
lowest possible energy, but it will be seen that this proced
leads to a calculation scheme that probably gives the m
sensible estimates of the positron binding energy.

Table III for e1Be illustrates the convergence of the e
ergy, annihilation rate, and other system properties as a fu
tion of Lmax(5Lint). Table III for e1Be is the analog of
Table I for PsH. Table III does contain an additional colum
of results, the two electron energy of neutral Be, i.e.,E(Be)
as a function ofLmax, which is needed for determination o
« for each model Be atom. Once again, the binding ene
and the annihilation rate converge slowly to their asympto
values.

Somewhat surprisingly, the convergence of the bind
energy and annihilation rate withLmax is slower fore1Be
than for PsH. AtLmax510, the CI calculation has recovere
only 80% of the expected binding energy and about 60%
the annihilation rate. This occurs even though the mean
dius for the positron, about 10a0, is well outside the Be
charge cloud. A plausible explanation for this slow conv
gence inLmax is now advanced. One of the distinguishin
features of all positron binding systems is the attract
electron-positron interaction that leads to the formation o
positronium cluster. This cluster can be expected to oc
wherever the electron and positron charge clouds overlap
the case ofe1Be this overlap will occur in the outer valenc
region, e.g., at a radius of about 3–4a0. So although the
overlap of the positron and electron charge clouds is sma
in e1Be than in PsH, the pile of the electron charge clo
around the positron is just as strong as in the region of ov
lap. Therefore, this localization of the electron charge clo
around the positron plays an important part in binding
positron to the atom, and probably contributes just as m
to the strength of the annihilation rate ine1Be as it does in
PsH.

Another notable feature of Table III is the result that t
positron does not bind to Be untilLmax is equal to 3. This
indicates that the dipole part of the polarization potentia
not able to bind a positron to beryllium. This result has be
noticed previously in beryllium@13# and it has been sug
gested that this is a general feature of positron binding s
tems@35#.

The data in Table IV were computed for an orbital ba
with Lmax510 while theLint parameter was increased in siz
from 0 to 10. This once again shows the importance of g
ing preferential treatment to electron-positron as oppose
5-6
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TABLE III. Results of CI calculations fore1Be for orbital bases with givenLmax. The total number of electron and positron orbitals a
denoted byNe andNp , with the Laguerre-type orbital exponents in thel column. The organization of the rest of the table is the same
Table I, except the columnEBe gives the two-body energy of the model neutral beryllium atom. TheG column gives the total~5 core1
valence! annihilation rate~in 109 s21) while Gc gives the annihilation rate~in 109 s21) with the core electrons only. The results in the ro
` are from anLmax→` extrapolation.

Lmax Ne Np le lp Ncon f Ee1Be EBe « ^r e& ^r p& Gc G

0 9 12 1.22 0.45 540 20.968 346 7 20.969 928 9 Unbound 2.652 29.255 0.000 036 0.000
1 18 21 1.45 0.90 1809 21.009 907 6 21.011 146 9 Unbound 2.573 26.527 0.000 092 0.002
2 26 29 1.60 1.52 4113 21.011 024 1 21.011 632 6 Unbound 2.579 21.478 0.000 359 0.016
3 34 37 1.75 1.75 7649 21.011 869 7 21.011 757 6 0.000 112 2.591 17.086 0.000 791 0.04
4 42 45 2.00 2.00 13073 21.012 598 6 21.011 802 6 0.000 796 2.603 14.344 0.001 188 0.09
5 50 53 2.20 2.20 20 481 21.013 166 3 21.011 822 3 0.001 344 2.614 12.827 0.001 470 0.12
6 58 61 2.40 2.40 30 577 21.013 583 8 21.011 832 2 0.001 752 2.622 11.970 0.001 656 0.16
7 66 69 2.65 2.65 43 393 21.013 885 0 21.011 837 6 0.002 047 2.629 11.452 0.001 780 0.18
8 74 77 2.80 2.80 59 697 21.014 102 4 21.011 840 9 0.002 262 2.633 11.121 0.001 863 0.20
9 82 85 2.95 2.95 79 457 21.014 260 5 21.011 842 8 0.002 418 2.637 10.898 0.001 921 0.22
10 90 93 3.10 3.10 103 505 21.014 376 9 21.011 844 1 0.002 533 2.639 10.746 0.001 962 0.24
` 21.014 930 7 21.011 847 7 0.003 083 2.653 10.244 0.002 112 0.37
FCSVM @8# 21.015 100 21.011 953 0.003 147 2.654 9.842 0.002 22 0.418
n
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the electron-electron correlations. Some interesting tre
are apparent in the tabulation of the binding energy« versus
Lint . First, although there is a small downward creep
E(Be) andE(e1Be) for Lint>4, « hardly changes at all
The decrease inE(e1Be) that occurs forLint>4 arises
mainly as a consequence of an improved description of
neutral Be atom, and is not the result of a stronger positr
atom attraction. Another noticeable feature is the excessi
large positron binding energy forLint50. This arises be-
cause theLint structure model of the neutral Be atom do
not take into consideration the 2s212p2 configuration mix-
ing that has a major influence on the structure of neu
beryllium. Restricting the basis toLint50 means the posi
tron interacts with a Be atom which is described by a wa
function which is only marginally better than the Hartre
Fock wave function. Such wave functions are known to p
dict dipole polarizabilitiesad that are too large. For example
ad for the neutral Be atom calculated within the restrict
01250
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e
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Hartree-Fock formalism545.62a0
3 @36#, which decreased to

37.29a0
3 @37# in a valence CI-type calculation with effectiv

core polarization potentials. The use of a structure model
overestimates the polarizability leads to an excessiv
strong attractive interaction between the positron and
atom.

The other expectation values listed in Table IV also sh
a discontinuity betweenLint50 and the other values ofLint .
Calculations withLint>1 show moderate variations in th
expectation values that range from 5% to 15%. All of t
expectation values are within 1% of their final values
Lint53.

We have also verified that doing a series ofLint53 cal-
culations for a succession ofLmax values still leads to ex-
trapolated binding energies and annihilation rates close
those of the fullLint5Lmax calculations found in Table III.
For example, the extrapolated binding energy of theLint
53 series of calculations was 0.003 052 (521.011 757 6
as

08
31
56
88
00
05
08
09
10
11
11
TABLE IV. Results of a sequence of CI calculations with increasingLint for e1Be. The configurations
were constructed from the fullLmax510 orbital list. The organization of the table columns is the same
Table II.

Lint Ncon f Ee1Be EBe « ^r e& ^r p& Gc G

0 6453 20.982 739 9 20.969 928 9 0.012 811 1 2.803 6.859 0.003 875 0.55
1 17 217 21.013 351 1 21.011 146 9 0.002 042 3 2.636 11.207 0.001 812 0.22
2 29 553 21.014 073 4 21.011 632 6 0.002 440 8 2.638 10.871 0.001 918 0.23
3 43 201 21.014 253 9 21.011 757 6 0.002 496 3 2.639 10.796 0.001 944 0.23
4 57 137 21.014 318 3 21.011 802 6 0.002 515 7 2.639 10.770 0.001 954 0.24
5 69 825 21.014 346 4 21.011 822 3 0.002 524 1 2.639 10.758 0.001 958 0.24
6 80 977 21.014 360 4 21.011 832 2 0.002 528 2 2.639 10.753 0.001 960 0.24
7 90 081 21.014 368 1 21.011 837 6 0.002 530 5 2.639 10.749 0.001 961 0.24
8 97 137 21.014 372 6 21.011 840 8 0.002 531 8 2.639 10.747 0.001 961 0.24
9 101 633 21.014 375 4 21.011 842 9 0.002 532 5 2.639 10.746 0.001 962 0.24
10 103 505 21.014 376 9 21.011 844 1 0.002 532 8 2.639 10.746 0.001 962 0.24
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11.014 801 0) hartree, within 1% of the full CI result. Th
corresponding extrapolatedLint53 annihilation rate was
0.037 193109 s21, which was within 1% of that of the full
CI calculation.

V. SUMMARY AND FUTURE PERSPECTIVES

The configuration-interaction method has been used
compute the wave functions and energies for PsH ande1Be.
The calculation of positron binding for positronic berylliu
also confirms the earlier prediction of binding by the SV
and FCSVM methods@4#.

The present results give insight into the business of p
forming a CI calculation into positronic systems with mo
than one valence electron. It is clear that electron-posit
correlations are difficult to treat with an orbital basis ce
tered on the nucleus. A very large orbital basis, with qu
large values ofl, needs to be used to describe the electr
positron correlations with any degree of accuracy. Theref
it is desirable that a larger part of the computational effort
devoted to the treatment of electron-positron as oppose
electron-electron correlations. This can be achieved by u
the largest-possible single-orbital basis, whilst restricting
CI expansion to exclude those configurations that wo
have both electrons occupying orbitals with large values ol.
Furthermore, the application of extrapolation corrections
the sequence of calculations can lead to estimates of
binding energy that are accurate at the level of 2% and
nihilation rates that are accurate at the 10% level. Natura
such large extrapolations must be used with caution.

The results of Tables II and IV suggest that choos
Lint53 will give results almost the same as a full CI calc
lation with no configuration selection. The inclusion of co
figurations involving the simultaneous excitations of bo
electrons to states withl .3 is not needed for a descriptio
of the positronic atom or ion that is accurate at the 1–2
level. With these insights, it is planned to undertake a se
of CI calculations to give improved descriptions of the stru
tures of a number of positronic atoms, withe1Mg, e1Ca,
e1Zn, e1Sr, e1Cd, and CuPs being the obvious candida
for investigation.
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APPENDIX

The necessity to include orbitals of relatively higher a
gular momentum meant that some technical difficulties t
do not normally occur in ordinary atomic structure calcu
tion had to be identified and overcome. Difficulties arose
the evaluation of the electron-electron and electron-posi
coulomb interaction matrix element. The basic integral t
has to be done is the Slater integral,
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Rk~1,2,3,4!5K c1~r 1!c2~r 2!U r ,
k

r .
k11Uc3~r 1!c4~r 4!L ,

~A1!

wherer ,5min(r1,r2) and r .5max(r1,r2). This integral can
be written as

Rk~1,2,3,4!5E
0

`

c2~r !c4~r !FZk~r !

r k11
1r k11Yk~r !Gdr,

~A2!

where

Zk~r !5E
0

r

c1~u!c3~u!ukdu ~A3!

and

Yk~r !5E
r

`c1~u!c3~u!

uk11
du. ~A4!

The running integralYk(r ) is sometimes written as a subtra
tion, i.e.,

Yk~r !5E
0

`c1~u!c3~u!

uk11
du2E

0

r c1~u!c3~u!

uk11
du ~A5!

in order to have all integrations in the outward directio
However, this subtraction can lead to catastrophic errors
large values ofk. This occurs because slightly different nu
merical procedures are used to evaluate the definite inte
*0

`@c1(u)c3(u)/uk11#du and the running integra
*0

r @c1(u)c3(u)/uk11#du @38#. This means the value of th
running integral for larger can be slightly different from the
definite integral and that the limiting value ofYk(r ) asr goes
to ` is slightly different from zero. This can lead to larg
errors in the productr kYk(r ) when bothr and k are large
since a small error inYk(r ) is multiplied by ther k factor.
The form Eq.~A4! for the evaluation ofYk(r ) is definitely
preferred.

The actual integrations themselves were performed w
Gaussian quadratures. The outer integration over thr
P@0,Rmax# was done with a composite Gauss rule. Typica
512 points constructed from 32 segments were used in
integration. The inner integrations of Eqs.~A3! and ~A4! to
propagateZk(r i) to Zk(r i 11) ~and similarly for Yk) were
also done with a Gauss rule, typically a six-point rule w
used. This algorithm was capable of generating Slater in
grals with even high values ofk too close to machine accu
racy. For example, thek548 Slater integral withc15c2
5c35c45r 25exp(24r) was done as a test. Analytic evalu
ation gaveR4850.012 991 536 122 998 1 while the Gaussi
quadrature gaveR4850.012 991 536 122 998 2.
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