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Configuration-interaction calculations of PsH ande*Be
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The configuration-interactiofCl) method is applied to the study of the positronium-hydri@sH and
positronic-beryllium €"Be) systems. The binding energy and other properties are slowly convergent with
respect to the angular momentum of the orbitals used to construct the CI basis states. The largest calculations
recover 94% and 80% of the binding energy against dissociation when compared with existing calculations of
PsH ande® Be. Extrapolating using Cl convergence trends improves these results to 99% and 98%, respec-
tively. Convergence is not so good for the electron-positron annihilation rates, but the extrapolated annihilation
rates were within 10% of the best calculations. Two different schemes have been used to construct the Cl basis,
and it is found that it is possible to discard roughly half the CI basis with almost no degradation in the binding
energy and the annihilation rate. These investigations demonstrate the feasibility of using single particle
orbitals centred on the nucleus to represent positronic systems with two valence electrons.
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I. INTRODUCTION to a positronium atom The accurate representation of a Ps
cluster using only single-particle orbitals centered on the
The existence of positron and positronium atomic bounchucleus requires the inclusion of terms with high angular
states has over recent years become increasingly well estafromenta[14].
lished, and remains one of the more interesting problems The first large-scale Cl calculation upon a positronic atom
within the field of positron atomic physid4,2]. was undertaken by Mitroy and Ryzhikh upei Cu [14].
Since the theoretical demonstration that positronium hyiwhile this calculation was able to replicate an earlier predic-
dride was bound in 19513], a variety of computational tion of positron binding, the binding energy was much
methods have been used to study positreh)(and positro-  smaller than the previous estimate computed with the fixed-
nium (P9 binding to atoms with varying degrees of successcore SVM(FCSVM) [15]. The Cl basis was constructed with
So far, the two most successful approaches have been tl@ ad hocset of orbitals and it was clear that a converged
stochastic variational methd@®VM) [4,5] and the quantum binding energy would require a systematic approach to both
Monte Carlo method$6,7]. These methods owe their suc- the generation of single-particle orbitals and the CI basis.
cess to the fact that the interactions between pairs of particlebnis was first achieved by Dzuba and coworKd8,17] who
are treated on an equal footing. This makes them particularlysed aB-spline basis for their converged Cl calculations
suitable for treating positron binding systems with theirupon positronic copper and silver. An alternative approach
strong electron-positron correlatiofg]. However, for vari-  was adopted by Bromlegt al. [13,18 who used a mixed
ous reasons, it is increasingly tedious to apply the SVM andslater and Laguerre-type orbital basis to investigate a variety
its fixed-core varian{8] to heavier systems. For example, of systems containing two valence electrons and a positron.
calculations upore®Zn [9] and KPs[10] each took almost While the basis can be increased systematically, the larger
one year of computer time, and even then the binding enedimensionality associated with a system containing two elec-
gies and annihilation rates were far from converged. Theretrons meant that these calculations gave energies far from
fore, we decided to study the application of theconvergence. Even so, the systeeia, e” Cd, and CuPs
configuration-interaction(Cl) method to positron binding were all shown to be electrically stat&3,18.
atomic states in order to determine whether it would make In the present paper, the Cl method is applied to the cal-
these heavier systems more accessible to investigation.  culation of PsH and positronic-berylliume{Be) ground
Although the CI method is one of the most commonly states. Since accurate binding energies and wave functions
used methods in the calculation of atomic structures, it hakave been reported for both of these syst¢B149], they
not been applied to positronic systems on a large scale. Thepresent an ideal computational laboratory with which to
first Cl calculation upon positronium hydridesH did dem-  study the suitability of the CI method. Another reason for
onstrate the stability of the system, but only yielded 0.3%investigating these systems is that they have completely dif-
[11] of the three-body binding energy. This was improved toferent structures. The PsH system consists of a reasonably
35% by Strasburger and Chojna¢k?] and more recently to  well-defined Ps atom bound & H atom, somewhat similar
85% [13] in a precursor to the present calculation. The mainto a light isotope of the Kimolecule[20]. Positronic beryl-
problem in applying the Cl method to positron binding sys-lium, however, finds the positron orbiting a polarized neutral
tems arises from the attractive electron-positron interactiolBe atom at a relatively large distance from the nuclggis
that leads to the formation of a Ps clustiee. something akin  Although there are convergence difficulties associated with
treating the Ps cluster, the present results indicate that it is
possible to compute energies and annihilation rates that are
*Electronic address: jxm107@rsphysse.anu.edu.au close enough to convergence to be useful. The extrapolated
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binding energies are within 2% of the best previously com- S (Ng+1+1)!
puted values, while the annihilation rates are within 10% Oﬂ—ga—l—)l(Z)\ar): n—T—DI(21+2)!
the expected values. “« ' '

XM(—[n,—1—1], 2+2,2\,r). (2.6
Il. TECHNICAL DETAILS
The Laguerre functions were not computed using the power-
The CI method is one of the standard approaches for conseries expression for the confluent hypergeometric function.
puting atomic structureg21], so only a brief description is Rather, the recursion relation
given here. The atomic wave function is taken to be a linear

combination of states created by multiplying atomic states to (n+1)Lo,1(X)=(2n+ a+1—X)L;(X) 2.7
single-particle positron states with the usual Clebsch-Gordan
coupling coefficients, was used with_3'"?(x) andL2'*?(x) as starting values.

Besides its good linear dependence properties, the La-
guerre basis has the advantage that the basis can be charac-
terized by a single exponential parameter. This made it easy
to optimize the PsH energy with respect to variations in the
Atom Laguerre basis.

SMS>CDi (LiS) ¢;(ro)- Although a Laguerre basis does have the property that
most of the matrix elements can be evaluated analytically,
2. this was not done and all matrix elements were computed
numerically using tabulations of the orbitals on a radial
r-space grid. The details of the procedures used to evaluate
the two-particle coulomb integrals may be found in the Ap-
endix.
Two different approaches were used for the construction
of the CI basis. In the first, all the possille=0 configura-
tions that could be formed by letting the two electrons and
(1) =P(r)Y,m(F). 2.2 positron populate all the single-particle orbitals with
<L ax Were included in the basis. The convergence of the

The specific details of the calculation were slightly differ- binding energy and other system properties could then be

ent for PsH and* Be, so we will first describe the details of studied as a function df 5, thus permitting extrapolation

1
><<SiMs,§Mj

In this expressiond°™(L;S)) is an antisymmetric atomic
wave function with good. and S quantum numbers. The
function ¢;(ro) is a single-positron orbital. The single-
particle orbitals that make up the total wave function areP
written as a product of a radial function and a spherical har-
monic,

the PsH calculation, and thes Be. to theL ax—oe limit.
The second approach used to construct the Cl basis rec-
A. Technical details for details for PsH ognizes the fact that the electron-positron correlations are

much stronger than the electron-electron correlations. It is
the electron-positron correlations that largely mandate the
inclusion of orbitals with large values df An additional

The Hamiltonian for the PsH atom consisting Nf= 2
electrons and a positron was

1 1 1 Ne Ne 1 Ne g parametet ;,; was defined and used to restrict the size of the
=——Vo+2 ——V +__2 2 — N Cl basis with a selection rule. Suppokgand |, are the
ro =1t 51y =itio orbital angular momentum of the two electrons in a given Cl
(2.3 basis function, then the rule
In this expression, the; refer to the electron coordinates min(ly,l15)<Ln (2.9

while r refers to the positron coordinate.

The single-particle orbital basis was constructed from arwas used to reduce the size of the Cl bésiste, a basis with
orthogonal Laguerre basis. The dimension of such a basis;,;= L .4 had no restrictions upon orbital occupahcyhis
can be made arbitrarily large without any linear dependenceule can be motivated by writing the CI expansion in a close-
problems arising. The Laguerre basis functions are definedoupling-type expansion, written heuristically as

by
Yo =Nyt T Lexp(—A,NLE D (20,1), (2.9 I‘I’;LS>=% Cim® (1) dm(r2,70) ]

where the normalization constant is

=2i ci,j¢ﬁ<rl>§ [¢(r)di(ro)]y. (2.9

N \/(2xa>2'*3<na—l—1>! 25
o (I+n,+1)! ' ' One electron and positron are coupled to form a state with
. (2|+2) net angular momenturd, which is then coupled to the sec-
The functionL ;" "/, (2\ ,r) is an associated Laguerre poly- ond electron(occupying a single-particle state with angular

nomial that Can be defined in terms of a confluent hypergeomomentumJ). Suppose it is wished to include a state analo-
metric function[22] as gous to the Ps ground state with center of mass angular mo-
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mentum zero coupled the rest of the system. Then the partial

wave expansion of¢PS(ro—r,) would be written as
ik [¢i(r2) di(ro) Js=0 with the net angular momentum of
the coupled orbital product equal to zero. Thus, lthg pa-
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I—max )p_ X'—max_l

I-max_ 1

X, (2.13

|

max

rameter is equivalent to the maximum orbital angular mo-There is a considerable degree of uncertainty attached to the

mentum of the Ps-type stater H-type statgthat would be

extrapolation since the asymptotic form lip,, (i.e., p) is

included in a close-coupling expansion involving products ofnot known. However, the error in making the extrapolation

H-type and Ps-type states.

can be kept to a reasonable size by making, as large as

The secular equations that arise with three active particlepossible. Suppose 80% of the energy is given by explicit
typically have dimensions exceeding 10000 and, thereforezalculation, and also suppose that the error in the extrapola-
the sparse matrix diagonalization was performed with an ittion correction(of the remaining contribution to the enejgy
erative algorithm. The program of Stathopolous and Fischeis 20%, then the net error in the energy will be 4%. For PsH

[23], which uses the Davidson algorithf24] was used to

the net error in the extrapolated energy turned out to be about

perform the diagonalizations. The largest calculations peri%. The annihilation rate is much more slowly convergent
formed had dimensionalities of nearly 100000. Typically with L, and here the error is 10%.
240 iterations were required to diagonalize the PsH Hamil-

tonian while about 800 iterations were required to diagonal-

ize thee™Be Hamiltonian.

Various expectation values were computed to provide in-

B. Technical details fore*Be

Many aspects of the calculation fef Be and PsH are the

formation about the structure of the PsH ground state. Théame, so only those aspects of the calculations that are dif-
mean distance of the electron and positron from the nucleufgrent will be mentioned.

are denoted byr.) and(r). The mean of the square of the
distance between the electron and positr{or§p>, was also
computed.

The positronic atom will decay by electron-positron anni-

hilation and the Z annihilation rate is computed to give an
estimate of the lifetime(Note that the % rate also gives

information about the tendency for the electron and positron

to form a Ps cluster.The annihilation rate for the 2 decay
summed over all possible final stafgb—-27 is

I=4mca®agN(W(ry, . .. Iy ;To)|OF 8(ry,—To)l

X\I,(rlv CEE ere;r0)>

=4w0a4aSNef d3r|©§,e\lf(rl, RN S YR 1
(2.10

The operatof)ﬂe is a projection operator that selects spin-0

combinations of thé\, electron and the positron.
Thel ax— 2 limit was estimated using a simple extrapo-

The calculations foe™ Be were done in a fixed-core ap-
proximation. The effective Hamiltonian for the system with
Ne=2 valence electrons and a positron was

N N
e 1 e

H=— EVS_; 5Vi2+2‘1 [Vair (1) + Vexd 1) +Vpi(1)]

Ne

_Vdir(r0)+vp1(r0)+2 P
I<] i

Ne

s

i=1Tio

Ne
> Vpo(ri 1)

i<j
N

+2‘,1 Va(Ti,To). (2.14

For thee™ Be system, the direct potentisly;, represents
the interaction with the € B&?" core which is derived from
a Hartree-Fock wave function and is the same for the elec-
tron and the positrorfalthough opposite in signThe ex-
change potentiaV/,,. between the valence electrons and the
Hartree-Fock core was also computed exactly.

The one-body polarization potentigl,; is a semiempir-
ical polarization potential derived from an analysis of the
spectrum of the parent atom or ion. It has the functional form

lation technique. Making the assumption that successive in-

crements X, ) to any expectation valug X)) scale as 1/°
for sufficiently largeL, it is possible to write

max *®

> X +A >

L
(X)=lim
»| L=0 L=Lrmaxtl

Lmax—

LP/)

(2.11

The power series is easy to evaluate, the coefficieris
defined as

A (212

meax(LmaX)pv

and the exponer can be derived from

agg?(r)

Vpa(r)=— ot (2.15

The factorey is the static dipole polarizability of the core
andg?(r) is a cutoff function designed to make the polariza-
tion potential finite at the origin. The same cutoff function
has been adopted for both the positron and the electron. In
this work, g?(r) was defined to be

g?(r)=1—exp(—rbp"), (2.16

where p is an adjustable cutoff parameter. The two-body
polarization potential {,,,) is defined as
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TABLE I. Results of Cl calculations for PsH up to a giveR,,,. The total number of electron and positron orbitals are denoted by
andN,, with the Laguerre-type orbital exponents in theolumn. The three-body energy of the PsH in Hartree system is denotégshy
while e gives binding energy against dissociation intoHPs. The mean electron-nucleus distaicg, the mean positron-nucleus distance
(rp), and the mean electron-positron distan(mép) are given ina, andacz,. The spin-averaged2annihilation ratd” is given in 1§ s 1.
The results in the rowe are from anL ,,,,— extrapolation.

Limax Ne Np A Ncont Epst € (re) <rp> <r§p> r

0 13 12 1.52 1092 —0.6913342 Unbound 2.118 3.866 24.51 0.3739
1 24 23 1.75 3457 —0.747047 1 Unbound 2.085 3.501 17.17 0.7802
2 34 33 2.02 7837 —0.766 168 8 0.016 1688 2.121 3.447 15.66 1.0752
3 43 42 2.12 13660 —-0.7750785 0.0250785 2.156 3.458 15.21 1.2820
4 51 50 2.25 20836 —0.7798445 0.0298445 2.184 3.482 15.08 1.4306
5 59 58 2.40 29900 —0.7826297 0.0326297 2.206 3.506 15.06 1.5414
6 67 66 2.60 41620 —0.7843610 0.0343610 2.223 3.527 15.08 1.6265
7 75 74 2.85 56 044 —0.7854880 0.0354880 2.236 3.543 15.11 1.6937
8 83 82 3.05 73956 —0.786 2481 0.036 2481 2.245 3.557 15.14 1.7475
9 91 90 3.25 95324 —-0.786776 1 0.036 7761 2.252 3.567 15.16 1.7913
oo —0.7887952 0.0377952 2.298 3.644 16.50 2.2792
SVM [27] —0.789196 1 0.0391961 2.311 3.662 15.58 2.4691

ay Ill. RESULTS FOR PsH
Vpalrinr)= r??(ri-r,-)g(ri)g(rj). (217 The condition for binding is that the energy of the PsH
. state be lower than the energy of the 1} Ps(1s) disso-
ciation channel. The binding energy for a particular basis is

The parameters of the core-polarization potential were the. o~ fined as = (0.50+ 0.25)~ E(PsH) and binding oc-

same as those used in an earlier FCSVM calculaftis. . o
. RO k curs whene is positive.

The dipole polarizability.aq was set to 0'052% while p The formalism and numerics of the Cl program were ini-

=0.95,. It should be noted that the present polarization prog

potential is not exactly the same as that used in the FCSVI\}Iially va_lidated by reproducing the results Qf a previou_s Cl
calculation; in the FCSVM calculation the cutoff function Calculation of PsH by Strasburger and Chojnddd]. Their

g(r) was approximated by a linear combination of Gauss_best Cl calculation gave a total energy ©f0.763 693 86

ians. There was no need to make this additional approximaJartree[29]. The present program with exactly the same
tion in the present work. Gauss!an_-t_ype orbltal ba3|s_ was able to reproduce _thls energy
The starting point for the calculation was a Hartree-Fockto all significant flggres. Being aple to use a Gaussu'?m, Slater,
calculation of the Be 422s? ground state that defined the OF @ Laguerre basigand even mix the types of basis func-
wave function for the B&" core. The Hartree-Fock 1s orbit- tions) was a consequence of the decision to perform all inte-
als were expressed as a linear combination of Slater-typ@rations using numerical quadrature.
orbitals (STO), and therefore it was sensible to use a linear Table | gives energies and expectation values for a series
combination of STOs and Laguerre-type orbitédl§0O) to  of calculations on PsH with no restrictions upon orbital oc-
describe the radial dependence of ihe0 electrons. The cupancy(i.e., Li,t=L a4 . The number of Laguerre orbitals
procedure used to define the electron orbitals was twofoldof a particular type and their respective exponents are also
First, additional single-particle orbitals were added to thelisted in the table. The largest calculation included single-
basis so that the set of orbitals completely spanned the spagarticle orbitals up toL,,,=9. The Laguerre exponents
defined by the STO set. Then additional LT@&th a com-  were optimized by hand, and it was found the best energy
mon scaling parametex,) were used to enlarge the orbital occurred when the electron and positron exponents were the
basis. It should be emphasized that the mixed basis was ongame. That the electron and positron orbits should be the
used for thd =0 electron orbitals, the>0 electron orbitals same for large values dfis understandable since thél
and all the positron orbitals used a pure Laguerre basis. A 1)/(2r?) centrifugal barrier dominates the nuclear attrac-
Gram-Schmidt orthogonalization of the entire orbital set wagion or repulsion for largé. (A slight improvement over the
performed to ensure that all the electron and positron orbitalpresent calculation could be achieved by letting the electron

were orthonormal. and positron exponents for tHe=0 and|=1 orbitals be
Another distinction betweea”Be and PsH occurs in cal-  slightly different, but this was not done.
culation of the annihilation rate. They2annihilations for the The most notable feature of Table | is the slow conver-

core and valence electrons were computed separately. Thgnce of the binding energy and annihilation rate wigh,.
annihilation rate with the core electrons only is dendfgd  Even though the largest calculation had a dimension of
while T" is used to denote the net annihilation rate of the95 324, only 93.8% of the binding energy was achie(tbe
positron with all the electrons. latest estimates of the PsH binding enef9] are expected
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FIG. 1. PsH binding energy for a sequence of calculations ~ FIG. 2. PsH annihilation ratel{( in units of 16 s™*) for a

with different values ofL;,, and L,,. The close to converged Sequence of calculations with different values.gf; andL 5. The
SVM energy is also shown for comparison purposes. close to converged SVM annihilation rate is also shown for com-

parison purposes.

to be accurate to six significant digitsThe convergence of
the annihilation rate was even worse, with only 72.5% of thewhile L;,; was increased in size from 0 to 9. The rapid con-
SVM annihilation ratg27] being achieved by the,,,=9  vergence with respect to,,,, is readily apparent in Fig. 1.
calculation. The slow convergence of the PsH binding energy The most startling aspect of Table Il is the stabilityTof
with L a4, and the even slower convergenceofis consis-  for all values ofL;,, from 0 to 9. This is not entirely unex-
tent with previous CI calculations on this and other positronpected since the underlying idea behind thg, selection
binding system$13,14,16. The slow convergence ef and  procedure was to start with a calculation that gave the best
I with Ly is further illustrated in Figs. 1 and 2. possible description of a single electron-positron paithin
Equations(2.11) and(2.12 have been used to extrapolate the constraints of the orbital basi€ven thel;,,=0 calcu-
the expectation values reported in Table | to thg,x—%  lation will do a good job of representing the Ps cluster and
limit. The extrapolated binding energy is about 1% smallerdescribing its interaction with the rest of the system. Figure 2
than the expected value of 0.0389196 hartree while the armalso illustrates the tendency fdr to be insensitive to the
nihilation rate is 10% smaller than the SVM annihilation value ofL;,.
rate. The extrapolate¢t.) and(r,) are also quite reliable. ~ Other properties of the system also show a degree of sta-
The extrapolation of(rgp> was not reliable. However, an bility with respect to the variations ih;,;. The mean posi-
inspection of the sequence (]fep> values in Table Il sug- tron distance(r,) decreases by 2% whdn,, is increased
gests this expectation value has not yet reached ithom O to 1, but thereafter it changes by less than 0.5%. As
asymptotic region. expected, the energy shows a monotonic decrease,as
Table 1l shows the impact that configuration selectionincreases and also shows a reasonably quick pattern of con-
through use of thé;,; parameter can have in restricting the vergence. The energy of the,,=2 calculation is within
size of the calculation without any major degradation in thel.5% of thel;,;=9 energy even though it only includes 40%
quality of results. The data presented in Table Il were comof the configurations.
puted with the samé ,,,=9 single-particle orbital basis The quick convergence for all properties with respect to

TABLE II. Results of a sequence of Cl calculations with increasing for the Ps-H system. The
configurations were constructed from the ful},,,=9 orbital list. The organization of the table columns is
the same as for Table I.

Lint Nconf Epsh € <re> <rp> <rép> r
0 10010 —0.7750339 0.0250339 2.340 3.666 15.48 1.7864
1 23276 —0.7849295 0.0349295 2.263 3.584 15.29 1.7811
2 37926 —0.786 2379 0.036 2379 2.255 3.572 15.20 1.7869
3 51660 —0.786567 4 0.0365674 2.254 3.569 15.18 1.7893
4 63492 —0.7866818 0.0366818 2.253 3.568 15.17 1.7903
5 73788 —0.7867302 0.036 7302 2.253 3.567 15.17 1.7910
6 82548 —0.786 7536 0.036 7536 2.253 3.567 15.17 1.7911
7 89196 —0.786766 0 0.036 766 0 2.253 3.567 15.17 1.7912
8 93 668 —0.786 7729 0.036 7729 2.253 3.567 15.16 1.7913
9 95 324 —-0.786776 1 0.036 7761 2.253 3.567 15.16 1.7913
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L, suggests that the most efficient way to do a calculation imeutral Be is greater than 0.25 hartré®342 603 hartree
to pick a moderately sized value t&f,,, say 2 or 3, then [34]), the positron binding energyis calculated by the iden-
increasd. 5, Systematically to the largest possible value. Totity
further test this hypothesis, calculations were performed con-
strainingL;,;= 3, and then increasing,,,, Systematically up e=E(Be)—E(e"Be), 4.1
to 9. This gave extrapolated binding energies and annihila-
tion rates very close to the full,,,,=L;,: calculations. For where E(Be) is the two-electron binding energy of neutral
example, the extrapolated binding energy was 0.038 58 haberyllium. E(Be) for a givenL ., was computed using a
tree, less than 1% smaller than the extrapolated energy frosubset of the basis used fef Be, i.e., the positron orbitals
the full Cl expansion(0.038 79 hartree while the extrapo- are omitted and exactly the same set of electron orbitals are
lated annihilation rate was 2.280.0° s, within 0.1% of  included. In effect, the: should be regarded as the energy
the rate obtained from the full calculation. associated with the binding of a positron to a particular
model of Be. There are, of course, some uncertainties asso-
ciated with using a neutral Be binding energy that is not the
One of the areas of recent activity in positron physics is inlowest possible energy, but it will be seen that this procedure
the scattering of positronium from atoms. In particular, therdeads to a calculation scheme that probably gives the most
has been a lot of interest on the positronium-hydrogen scasensible estimates of the positron binding energy.
tering problen{30—33. Accurate estimates of the PsH scat-  Table Il for e Be illustrates the convergence of the en-
tering lengths have only been obtained very recef@®  ergy, annihilation rate, and other system properties as a func-
despite Ps-H being such an apparently simple scattering sysen of L,.{=Lin). Table Il for e"Be is the analog of
tem. The determination of the scattering length was achievedable | for PsH. Table Ill does contain an additional column
by using a rather unorthodox modification of the SVM to of results, the two electron energy of neutral Be, E.Be)
scattering problems. The SVM technique is currently re-as a function oL ,,,, Which is needed for determination of
stricted in scope to the scattering length region and, theres for each model Be atom. Once again, the binding energy
fore, a more general solution of the PsH scattering problenand the annihilation rate converge slowly to their asymptotic
will probably be achieved with more traditional scattering values.
techniques based upon the close-coupli@¢) ansatz. Somewhat surprisingly, the convergence of the binding
The present calculations can give insight into the size oknergy and annihilation rate with,,,, is slower fore™Be
calculation required to obtain a converged solution with athan for PsH. AtL ,,,,= 10, the ClI calculation has recovered
close-coupling-type scattering wave function. For examplepnly 80% of the expected binding energy and about 60% of
the Lin=0, Lpna=9) calculation achieved 68.4% of the the annihilation rate. This occurs even though the mean ra-
(Lint=9, Lmax=9) PsH binding energy. The;,;=0 cal- dius for the positron, about 4Q, is well outside the Be
culation would be roughly equivalent to a CC-type calcula-charge cloud. A plausible explanation for this slow conver-

Implications for PsH scattering calculations

tion with a basis written schematically as gence inL,ax iS now advanced. One of the distinguishing
features of all positron binding systems is the attractive
|wy=> ciH(ns)Ps(nl)FPS(R) electron-positron interaction that leads to the formation of a
i

positronium cluster. This cluster can be expected to occur

wherever the electron and positron charge clouds overlap. In
+> cH(n)Ps(ns)FPS(R), (3.1) thecase ot " Be this overlap will occur in the outer valence

i region, e.g., at a radius of about 3a# So although the

overlap of the positron and electron charge clouds is smaller
3n e*Be than in PsH, the pile of the electron charge cloud
around the positron is just as strong as in the region of over-
lap. Therefore, this localization of the electron charge cloud
Around the positron plays an important part in binding the

be in its g_round sta)eachie\{ed 99.4% of .the PsH binging ositron to the atom, and probably contributes just as much
energy. Given that the relative accuracy in the PsH blndmgfo the strength of the annihilation rate éi Be as it does in
energy scales in the same way as the threshold cross secti H

it is clear that further improvements in the present group o
close-coupling calculations will need to be made before the
are able to obtain more accurate cross sections. Using Tab
Il as a rough guide, inclusion of H states with=1 will be
required to achieve cross sections accurate at the 5% lev
while H-type states with.=2 will be needed to achieve
accuracy at the 1-2 % level.

whereFfs(R) describes the motion of the Ps center of mas
with orbital angular momenturh The R-matrix calculation
of Campbellet al. [31] using a wave function similar to this
(their CC calculation restricted the hydrogen state to alway

Another notable feature of Table Il is the result that the
ositron does not bind to Be until,, is equal to 3. This
fidicates that the dipole part of the polarization potential is
GﬂOt able to bind a positron to beryllium. This result has been
oticed previously in berylliun{13] and it has been sug-
gested that this is a general feature of positron binding sys-
tems[35].

IV RESULTS FOR e*Be The data in Table IV were computed for an orbital basis
with L, ,,= 10 while theL;,,, parameter was increased in size

The e*Be system consists of a positron weakly bound tofrom 0 to 10. This once again shows the importance of giv-
a polarized beryllium atom. Since the ionization potential ofing preferential treatment to electron-positron as opposed to
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TABLE llI. Results of CI calculations foe™ Be for orbital bases with giveh,,,.. The total number of electron and positron orbitals are
denoted byN, andN, with the Laguerre-type orbital exponents in theolumn. The organization of the rest of the table is the same as
Table I, except the columBg, gives the two-body energy of the model neutral beryllium atom. Theolumn gives the total= core +
valencg annihilation rateiin 10° s~1) while I', gives the annihilation ratén 10° s~1) with the core electrons only. The results in the row
o are from anL . extrapolation.

Lmax Ne Np )\e )\p Nconf Ee*Be EBe € <re> <rp> 1-‘c r

0 9 12 122 045 540 —0.9683467 —0.9699289 Unbound 2.652 29.255 0.000036 0.0002
1 18 21 145 0.90 1809 —1.0099076 —1.0111469 Unbound 2.573 26.527 0.000092 0.0022
2 26 29 160 152 4113 —1.0110241 -1.0116326 Unbound 2579 21.478 0.000359 0.0163
3 34 37 175 175 7649 —1.0118697 -—-1.0117576 0.000112 2591 17.086 0.000791 0.0491
4 42 45 200 2.00 13073 —1.0125986 —1.0118026 0.000796 2.603 14.344 0.001188 0.0904
5 50 53 220 220 20481 —-1.0131663 —1.0118223 0.001344 2.614 12.827 0.001470 0.1291
6 58 61 240 240 30577 —1.0135838 —1.0118322 0.001752 2.622 11.970 0.001656 0.1617
7 66 69 265 265 43393 —1.0138850 —1.0118376 0.002047 2.629 11.452 0.001780 0.1883
8 74 77 280 2.80 59697 —-1.0141024 -1.0118409 0.002262 2.633 11.121 0.001863 0.2097
9 82 85 295 295 79457 —1.0142605 -—1.0118428 0.002418 2.637 10.898 0.001921 0.2270
10 90 93 310 310 103505 —1.0143769 —1.0118441 0.002533 2.639 10.746 0.001962 0.2411
0 —1.0149307 -—1.0118477 0.003083 2.653 10.244 0.002112 0.3733
FCSVM [8] —1.015100 —1.011 953 0.003147 2.654 9.842 0.00222 0.418

the electron-electron correlations. Some interesting trendgigrtree-Fock forma|ism45.6ag [36], which decreased to
are apparent in the tabulation of the binding energyersus 37 23 [37] in a valence Cl-type calculation with effective
Line. First, although there is a small downward creep incore polarization potentials. The use of a structure model that
E(Be) andE(e"Be) for Linx=4, ¢ hardly changes at all. overestimates the polarizability leads to an excessively
The decrease ifE(e"Be) that occurs forL;,,=4 arises strong attractive interaction between the positron and the
mainly as a consequence of an improved description of thatom.

neutral Be atom, and is not the result of a stronger positron- The other expectation values listed in Table IV also show
atom attraction. Another noticeable feature is the excessively discontinuity betweeh;,;=0 and the other values &f,,; .
large positron binding energy fdr;,;=0. This arises be- Calculations withL;,;=1 show moderate variations in the
cause thd.;,; structure model of the neutral Be atom doesexpectation values that range from 5% to 15%. All of the
not take into consideration thes2+2p? configuration mix-  expectation values are within 1% of their final values at
ing that has a major influence on the structure of neutral;,,=3.

beryllium. Restricting the basis tb;,;=0 means the posi- We have also verified that doing a seriesLgf,=3 cal-
tron interacts with a Be atom which is described by a waveculations for a succession &f;,, values still leads to ex-
function which is only marginally better than the Hartree-trapolated binding energies and annihilation rates close to
Fock wave function. Such wave functions are known to prethose of the fullL;,;=L,ax calculations found in Table III.
dict dipole polarizabilitiesyy that are too large. For example, For example, the extrapolated binding energy of thg

agq for the neutral Be atom calculated within the restricted=3 series of calculations was 0.003 052 {1.011 757 6

TABLE V. Results of a sequence of Cl calculations with increading for e*Be. The configurations
were constructed from the full,,,,,= 10 orbital list. The organization of the table columns is the same as

Table II.

Lint Ncont Eetge Ege € <re> <rp> L. r

0 6453 —0.9827399 -0.9699289 0.0128111 2.803 6.859 0.003875 0.5508
1 17217 —1.0133511 -1.0111469 0.0020423 2.636 11.207 0.001812 0.2231
2 29553 -—1.0140734 -—-1.0116326 0.0024408 2.638 10.871 0.001918 0.2356
3 43201 —1.0142539 -—-1.0117576 0.0024963 2.639 10.796 0.001944 0.2388
4 57137 —-1.0143183 —1.0118026 0.0025157 2.639 10.770 0.001954 0.2400
5 69825 —1.0143464 —1.0118223 0.0025241 2.639 10.758 0.001958 0.2405
6 80977 —-1.0143604 —1.0118322 0.0025282 2.639 10.753 0.001960 0.2408
7 90081 —1.0143681 -—1.0118376 0.0025305 2.639 10.749 0.001961 0.2409
8 97137 -—-1.0143726 —1.0118408 0.0025318 2.639 10.747 0.001961 0.2410
9 101633 —1.0143754 -—1.0118429 0.0025325 2.639 10.746 0.001962 0.2411
10 103505 -1.0143769 —1.0118441 0.0025328 2.639 10.746 0.001962 0.2411
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+1.014 801 0) hartree, within 1% of the full CI result. The rk
corresponding extrapolated;,,=3 annihilation rate was Rk(1,2,3,4:< Pi(ry)o(ry) ﬁ 1//3(r1)¢,//4(r4)> ,
0.03719<10° s %, which was within 1% of that of the full rs
ClI calculation. (A1)
wherer _=min(r,,r,) andr. =max(,,r,). This integral can
V. SUMMARY AND FUTURE PERSPECTIVES be written as

The configuration-interaction method has been used to
compute the wave functions and energies for PsHeargle. s Z5(r)
The calculation of positron binding for positronic beryllium Rk(1,2-3,4=J Y1) ha(1)| = + 1Y) |dr,
also confirms the earlier prediction of binding by the SVM 0 r
and FCSVM method§4]. (A2)
The present results give insight into the business of per-
forming a Cl calculation into positronic systems with more where
than one valence electron. It is clear that electron-positron
correlations are difficult to treat with an orbital basis cen- r
tered on the nucleus. A very large orbital basis, with quite Zk(r)ZJ Y (U) ra(u)ukdu (A3)
large values of, needs to be used to describe the electron- 0
positron correlations with any degree of accuracy. Therefore,
it is desirable that a larger part of the computational effort beand
devoted to the treatment of electron-positron as opposed to
electron-electron correlations. This can be achieved by using = gy (U) iha(U)
the largest-possible single-orbital basis, whilst restricting the Yk(r)=f L ¥ du.
Cl expansion to exclude those configurations that would r u
have both electrons occupying orbitals with large valuels of
Furthermore, the application of extrapolation corrections torhe running integra¥*(r) is sometimes written as a subtrac-
the sequence of calculations can lead to estimates of thgon, i.e.,
binding energy that are accurate at the level of 2% and an-
nihilation rates that are accurate at the 10% level. Naturally,
such large extrapolations must be used with caution. YK(r) = “Yr(Wihs(u) [T a(u)Pa(u) du (A5)
The results of Tables Il and IV suggest that choosing 0 uk*l o uktl
L= 3 will give results almost the same as a full ClI calcu-
lation with no configuration selection. The inclusion of con-

1 (Ad)

in order to have all integrations in the outward direction.

figurations involving the simultaneous excitations of both . . .
. X .. However, this subtraction can lead to catastrophic errors for
electrons to states with>3 is not needed for a description . : .
large values ok. This occurs because slightly different nu-

oo : ) Y
of the p_osnronlc _ato_m or-ion that is accurate at the 1 2./°merical procedures are used to evaluate the definite integral,
level. With these insights, it is planned to undertake a serie

% k+1 ; :
of Cl calculations to give improved descriptions of the struch[%(u) ¢3(u)/uk+l]du and . the running integral
tures of a number of positronic atoms, wigiMg, e*Ca,  Jol#1(U)¥s(u)/u™ “]du [38]. This means the value of the
; Junning integral for large can be slightly different from the

e’Zn, e*Sr, e" Cd, and CuPs being the obvious candidates '\ " 'Y e
for investigation. deflnllte |n.tegral a.nd that the limiting valge w(r) asr goes
to « is slightly different from zero. This can lead to large
errors in the product®Y¥(r) when bothr andk are large
ACKNOWLEDGMENTS since a small error inY*(r) is multiplied by ther* factor.

. The form Eq.(A4) for the evaluation ofy*(r) is definitely
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Nuessler, Bronwyn Allan, Prasad Gunatunge, and Anthony;assian quadratures. The outer integration over rthe
Hornby for providing access to extra computing resources. _ [0Rma,] Was done with a composite Gauss rule. Typically

512 points constructed from 32 segments were used in this
integration. The inner integrations of Eq#3) and (A4) to
propagateZ*(r;) to ZX(r;,,) (and similarly forY*) were
The necessity to include orbitals of relatively higher an-also done with a Gauss rule, typically a six-point rule was
gular momentum meant that some technical difficulties thatised. This algorithm was capable of generating Slater inte-
do not normally occur in ordinary atomic structure calcula-grals with even high values d¢ftoo close to machine accu-
tion had to be identified and overcome. Difficulties arose inracy. For example, th&&=48 Slater integral withi= i,
the evaluation of the electron-electron and electron-positror 3= W,=r%exp(—4r) was done as a test. Analytic evalu-
coulomb interaction matrix element. The basic integral thaiation gaveR*®=0.012 991536 122 998 1 while the Gaussian
has to be done is the Slater integral, quadrature gav®*®=0.012 991536 122 998 2.
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