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The Kohn variational method is used with a configuration-interaction-type wave function to determine the
J=0 andJ=1 phase shifts and annihilation parameterZeff for positron-hydrogenic ion scattering. The phase
shifts are within 1–2% of the best previous calculations. The values ofZeff are small and do not exceed unity
for any of the momenta considered. At thermal energiesZeff is minute with a value of order 10−50 occurring for
He+ at k=0.05a0

−1. In addition to the variational calculations, analytic expressions for the phase shift and
annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate
the dynamics of positron collisions with positive ions.

DOI: 10.1103/PhysRevA.69.052702 PACS number(s): 34.85.1x, 34.10.1x, 78.70.Bj

I. INTRODUCTION

The scattering of positrons from atomic ions is not a prob-
lem that has received much attention. There are a variety of
reasons for this. On the experimental side, the difficulties in
working with positron beams are well known and there has
never been an experiment upon such a system. From the
theoretical side, the asymptotic form of the wave function
involves Coulomb waves which have more complicated ana-
lytic forms than plane waves. For example, some methods
used in the momentum space solutions of the Lippmann-
Schwinger equation for positron-hydrogen scattering[1,2]
are not easily adapted to the positron-He+ system.

When it comes to calculations of the positron-He+ system,
one can literally count the different calculations on one hand.
The first published calculations treated electron-positron cor-
relations realistically, but were not large enough to achieve
convergence[3]. More recently, Bransdenet al. [4] solved
the Lippmann-Schwinger equation in a mixed basis
of e+-He+ and Ps-He2+ channels to obtain relatively accurate
phase shifts for the positron-He+ system. Most recently, the
Harris-Nesbet variational method has been applied by Gien
to give phase shifts for positron scattering for the various
ions (He+, Li2+, Be3+, and B4+) in the elastic-scattering re-
gion [5,6].

In the present paper, the Kohn variational method is ap-
plied to the problem of positron scattering from hydrogenic
ions. Unlike some other applications of the Kohn method to
simple systems[5,7,8], the present approach does not include
basis functions with interelectronic coordinates and instead
uses a basis of functions all centered on the nucleus. The use
of such a configuration-interaction(CI) -type basis does en-
tail some large-scale calculations, but the issues involved in
doing these calculations at low energies have been effec-
tively solved[9]. The only changes that had to be made to
the program used for the positron-hydrogen system were the
replacement of the long-range spherical Bessel function type

basis functions with Coulomb functions. Besides presenting
s- andp-wave phase shifts, an analysis of positron annihila-
tion during the collision is also presented. Initially, the Cou-
lomb wave Born approximation(CWBA) is used to show
that the positron annihilation rate is largely dominated by the
ability of the positron to tunnel through the repulsive Cou-
lomb interaction. The annihilation parameterZeff is then
computed using the wave functions obtained from the varia-
tional calculation.

II. DETAILS OF THE CALCULATION

A. The scattering Hamiltonian

The interaction Hamiltonian for positron-hydrogen-like
ions is written as

H = −
1

2
¹0

2 +
Z

r0
−

1

2
¹1

2 −
Z

r1
−

1

r01
. s1d

Since the target system only contains one electron, the
asymptotic potential exerted on the positron at long distances
from the nucleus issZ−1d / r0.

B. The Kohn variational method and trial wave function

The Kohn variational method[10–12] is a commonly
used method to solve the Schrödinger equation for low-
energy-scattering problems. The CI-Kohn formalism pre-
sented here closely follows that outlined in Ref.[9], which
was based on the exposition in the monograph of Burke and
Joachain[13].

The CI-type trial wave function adopted for the present
Kohn variational calculations has the form

uC;JMJl = a0uFs;JMJl + a1uFc;JMJl + o
i,j

cij uFi j ;JMJl,

s2d

where the first two terms involve continuum functions that
are equal to the regular and irregular Coulomb functions, at
large distances from the origin. The three types of functions
are written as
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uFi j ;JMJl = o
mi,mj

k,imi, jmjuJMJlfisr 1df jsr 0d, s3d

uFs;JMJl = o
mg.s.,m

k,g.s.mg.s.,muJMJlfg.s.sr 1dussr 0d, s4d

uFc;JMJl = o
mg.s.,m

k,g.s.mg.s.,muJMJlfg.ssr 1ducsr 0d. s5d

In these expressions,fisr 1d andf jsr 0d are short-range square
integrable functions with orbital angular momenta,i and, j.
The function,fg.s.sr 1d is the ground-statesg.s.d wave func-
tion of the target ion, whileussr 0d and ucsr 0d are the con-
tinuum functions. Considerations of spin have been omitted
from the wave function since they exert no impact upon the
scattering wave function. Since the target ion ground state
has,g.s.=0, considerations of angular-momentum conserva-
tion require that,=J. The radial parts of the positron con-
tinuum functions have the form

ussr0d = FJsh,kr0d, s6d

ucsr0d = f1 − exps− br0dg2J+1GJsh,kr0d. s7d

For hydrogenlike ionsh=sZ−1d /k. For neutral atomsh=0,
and the Coulomb functions are reduced to spherical Bessel
functions: FJs0,krd=krjJskrd and GJs0,krd=−krnJskrd. The
f1−exps−br0dg2J+1 factor is used to make the irregular
solutionucsr0d go to zero asr0→0. The factorb was gen-
erally set to 2.0 for the present calculations. The scattering
lengths and annihilation parameterZeff were insensitive to
the precise value chosen forb. The short-range functions
fisr 1d and f jsr 0d are written as a linear combination of
Laguerre-type orbitalssLTOsd. All the basis functions so
far, exceptuFs;JMJl and uFc;JMJl, are identical in func-
tional form to the basis functions used in earlier CI-Kohn
calculations of positron-hydrogen and positron-copper
scatteringf9g.

The asymptotic form of the scattering wave functions can
be written with a number of different normalizations[14]
depending on the form adopted fora0 anda1. These condi-
tions are

a0 = cost − atsin t, s8d

a1 = sin t + at cost, s9d

at = tan sdt − td, s10d

wheredt is the phase shift of the trial wave function andt
P f0,p /2g. Whent=0, at reduces to tansdtd, which is just
the K-matrix element. The choicet=p /2 gives at
=cotsdtd, which is just the reciprocal ofK-matrix element.
sThe choicet=p /2 is sometimes called the inverse Kohn
methodf15g.d

Besides the normalizing condition, there is one other area
where there is flexibility in the choice of the continuum func-
tions. This concerns whether the functionsus anduc are or-
thogonalized to the short-rangeL2 radial basis functions. Ei-

ther choice is permissible, but we chose to orthogonalize
since this simplified the evaluation of the matrix elements.

The generalized Kohn functionalav=tansdv−td is given
by

av = at − 2kCtuH − EuCtl. s11d

Applying the Kohn condition that the Kohn functional is
stationary with respect to the linear variational parameters in
the trial wave function leads to the linear equations

] av

] at
= 0, s12d

] av

] ci
= 0, i = 1,2, . . . ,NSR, s13d

whereNSR is the total number of short-range basis functions.
These equations are solved to determineat andci. The error
in av upon solving the set ofsNSR+1d linear equations is of
second order with respect to variations in the trial wave func-
tion.

Besides the phase shift, the annihilation parameterZeff is
also calculated. The spin-averaged annihilation parameter
can be written as[16–18]

Zeff = NE d3r0d
3r1uCsr 0,r 1du2dsr 0 − r 1d, s14d

whereCsr 0,r 1d is the total wave function of the system. In
the plane-wave Born approximation, the positron wave func-
tion is written as a plane wave and the annihilation parameter
is equal to the number of atomic electrons, i.e.,Zeff=Ne.

The partial-wave contributions to Eq.(14),

Zeff = o
J=0

`

Zeff
sJd, s15d

can be written as

Zeff
sJd = Nk o

i,j=1

NCI

cicj E rfai
srdrfaj

srdfpi
srdfpj

srddr

3 o
k=kmin

kmax

s2k + 1dkfai
fpi

;JiCksr̂ 1d ·Cksr̂ 0difaj
fpj

;Jl,

s16d

whereNCI=sNSR+2d is total number of basis functions. The
functionsfai

srd, fpi
srd, etc., are the radial parts of the single

electron and positron orbitals. The coefficientsa0 anda1 of
the two continuum basis functions are evaluated fromat fus-
ing Eq. s10dg for a specific value oft. The factorNk is
defined as

Nk =
1

ksa0
2 + a1

2d
. s17d
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The L2 basis was constructed by populating all the pos-
sible configurations that could be formed by letting the elec-
tron and positron populate all the orbitals subject to the se-
lection rules,

max s,i,, jd ø Lmax, s18d

u,i − , ju ø J, s19d

s− 1d,i+, j = s− 1dJ. s20d

In these expressions, j is the positron angular momentum
and ,i is the electron angular momentum. It is necessary to
choose a basis with a large value ofLmax in order to obtain
results close to convergence. It is known that the attractive
interaction between the electron and positron leads to local-
ization of the atomic electrons in the vicinity of the positron
f19,20g. The formation of something akin to a virtual Ps
cluster leads to very slow convergence with,. The conver-
gence ofZeff with respect toLmax is typically much slower
than the phase shift.

The slow convergence of the phase shift and annihilation
rate with increasingLmax means an extrapolation technique
must be used to estimate theLmax→` limit. Making the
assumption that the successive increments to an physical ob-
servableXL scale as 1/Lp for sufficiently largeL, one can
write

X` = lim
Lmax→`

SXLmax
+ D o

L=Lmax+1

`
1

LpD . s21d

The power series is easy to evaluate, the coefficientD is
defined as

D = sXLmax
− XLmax−1dsLmaxdp, s22d

and the exponentp can be derived from

S Lmax

Lmax− 1
Dp

=
XLmax−1 − XLmax−2

XLmax
− XLmax−1

. s23d

Recently Gribakin and Ludlowf21g using second-order per-
turbation theory to study bound positron-atom complexes
showed that the energy exponentpE was 4, while the expo-
nent for the annihilation rate,pG, was 2. Translating these
results to the scattering region suggests thatpd should be 4
while pZ should be 2. In practice, the exponents obtained in
large-scale calculations are usually slightly smaller than the
expected valuesf9,22,23g.

One criticism of the present ansatz is that the single-
center trial wave function does not explicitly include the
electron-positron coordinate. However, this deficiency is rec-
tified by the use of high, components in the wave function.
For example, positron-hydrogen phase shifts computed with
the CI-Kohn formalism agree with the best variational phase
shifts to an accuracy of 10−3 rad [9]. The accuracy achieved
for Zeff is not quite as good, but even here agreement at the
5% level was achieved[9].

III. THE COULOMB WAVE BORN APPROXIMATION

The CWBA is the simplest of all approximations used in
the paper. The expression for the phase shiftdJ is

tan dJ = −
2

k
E

0

`

FJ
2sh,kr0de−2Zr0S 1

r0
+ ZDdr0, s24d

where the regular Coulomb function is defined as usual in
terms of the confluent hypergeometric functionf24g

FJsh,kr0d =
2Je−s1/2dph

s2J + 1d!
uGsJ + 1 + ihdue−ikr0skr0dJ+1

3MsJ + 1 − ih,2J + 2,2ikr0d. s25d

In order to evaluate the integrals we use the identityf25g

V =E
0

`

e−lxxg−1Msa,g,kxdMsa8,g,k8xddx

= Gsgdla+a8−gsl − kd−asl − k8d−a8

32F1Sa,a8;g;
kk8

sl − kdsl − k8d
D , s26d

and make use of parametric differentiation to develop

E
0

`

e−lxxgMsa,g,kxdMsa8,g,k8xddx= −
dV

dl
. s27d

Finally, making use of

Sm + i

m − i
Dim

= e−2m arctans1/md, s28d

wherem=Z/k leads to

tan dJ = −
1

2k
Wshd

e2h arctans1/md

s1 + m2dJ+2 o
n=0

`

3
1 + m2sn + J + 2 +h/md

n ! sn + 2J + 1d ! s1 + m2dn

1

h2p
s=0

n+J

ss2 + h2d,

s29d

with Wshd=2ph / se2ph−1d.
For the CWBA, Eq.(14) collapses to

Zeff =E d3r0d
3r1ucksr 0df1ssr 1du2dsr 0 − r 1d. s30d

Using the partial-wave decomposition for the three-
dimensional Coulomb scattering functionswith sl set to the
Coulomb phase shiftd

cksr 0d =
1

kr0
o
l=0

`

s2l + 1di leislFlsh,kr0dPlsk̂ · r 0̂d s31d

and the standard expansion for the delta function

POSITRON SCATTERING AND ANNIHILATION FROM… PHYSICAL REVIEW A 69, 052702(2004)

052702-3



dsr 0 − r 1d =
1

4pr1
2dsr0 − r1do

k=0

`

s2k + 1dCksr̂ 1d ·Cksr̂ 0d,

s32d

one obtains

Zeff
sJd =

4Z3

k2 s2J + 1dE
0

`

FJ
2sh,kr0de−2Zr0dr0. s33d

Using the reduced variablex=kr0, this simplifies to

Zeff
sJd = 4m3s2J + 1dE

0

`

FJ
2sh,xde−mxdx. s34d

Once Eq.(25) is inserted into Eq.(34) and use is made of
Eqs.(27) and (28) one gets

Zeff
sJd = s2J + 1dWshd

e2h arctans1/md

s1 + m2dJ+2 m4

3o
n=0

`
n + J + 1 +h/m

n ! sn + 2J + 1d ! s1 + m2dn

1

h2p
s=0

n+J

ss2 + h2d.

s35d

The CWBA estimates of the phase shift andZeff are given
in Tables III–X for selected values ofk. The values ofk have
been chosen so that entries of differentZ are often given at
the same values ofh. These estimates of thedJ andZeff

sJd were
computed independently with two different methods. First of
all, Eqs.(29) and(35) were evaluated by summing the power
series. In addition, Eqs.(24) and (33) were integrated using
Gaussian quadratures. The two methods gave numerical re-
sults in agreement to better than ten significant digits.

Figure 1 plots the CWBA estimate of the totalZeff versus
the scaled momentum 1/h=k/ sZ−1d for Z=2,3,5,9, and̀ .
For no species doesZeff exceed 1.0 at any momentum con-
sidered. The increase inZeff with k reflects the fact that a
positron is better able to tunnel through the repulsive Cou-
lomb field at higher energies. Figure 1 does not show values
of Zeff below 1/h=0.4a0

−1 since Zeff becomes minute at
smallerk values and therefore it would be difficult to sepa-

rate the curves for differentZ on the plot. To put the minute
size for He+ into perspective,Zeff

s0d=1.66310−52 and Zeff
s1d

=3.10310−53 at k=0.05a0
−1. The vanishingly small size of

Zeff
sJd is easily explained in terms of physical considerations.

The classical turning radius for aJ=0 positron incident upon
He+ at k=0.05a0

−1 is sZ−1d /k2=400a0. For the positron to
annihilate with the electron it has to tunnel almost 400a0
through a Coulomb barrier that gets increasingly more repul-
sive as it approaches the nucleus. The rapid variation ofZeff
at small values of 1/h seen in Fig. 1 reflects the change in
the size of classical forbidden region, and therefore a change
in the tunneling distance, as the energy changes. The steadily
decreasing amplitude of the positron wave function close to
the origin due to tunneling is reflected mathematically by the
Wshd factor in Eq.(35).

It is also noted that the size ofZeff at constant 1/h in-
creases monotonically withZ for the range of momentum
considered. This is discussed in more detail later.

Figure 2 plots thes-wave annihilation parameterZeff
s0d ver-

sus 1/h for Z=2,3,5,9, and̀ . When 1/h is fixed, there is
a tendency forZeff

s0d to increase monotonically withZ. How-
ever, the curves tend to intersect at 1/h<1.5 and for 1/h.2
(not depicted on the graph) Zeff

s0d decreases monotonically
with Z.

A. Analytic expressions forZeff when h=0

The expressions forZeff
sJd reduce to much simpler forms for

positron-hydrogen scattering. In this caseh=0, Eq.(35) for
s-wave scattering becomes

Zeff
s0d =

m2

1 + m2 . s36d

For p-wave scattering, analytic evaluation is still possible but
the answer is somewhat more complicated:

Zeff
s1d =

3m2

s1 + m2d2 + 6m4Fln S m2

1 + m2D +
1

1 + m2 +
1

2s1 + m2d2G .

s37d

These expressions are only presented for completeness since
no calculations are presented for hydrogen.

FIG. 1. The CWBA annihilation parameterZeff vs the scaled
momentumk/ sZ−1d (in units of a0

−1) for Z=2,3,5,9, and̀ . The
size ofZeff increases monotonically withZ for the range of momen-
tum considered.

FIG. 2. The CWBA annihilation parameterZeff
s0d vs the scaled

momentumk/ sZ−1d (in units of a0
−1) for Z=2,3,5,9, and̀ .
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B. The k\0 limit for Zeff
„J…

The behavior ofZeff
sJd for positive ions at low values ofk

can be written as

Zeff
sJd . WshdFaJsnd + bJsnd

k2

sZ − 1d2 + Osk4dG , s38d

wheren=sZ−1d /Z and

aJsnd = s2J + 1de2nn2Jo
n=0

`
n + J + 1 +n

n ! sn + 2J + 1d!
n2n, s39d

bJsnd = s2J + 1de2nn2Jo
n=0

`
n + J + 1 +n

n ! sn + 2J + 1d!
n2n

3F sn + Jdsn + J + 1ds2n + 2J + 1d
6

− sn + J + 2dn2 −
2

3
n3G . s40d

Some typical values ofaJ and bJ are listed in Table I. The
interesting feature of this analysis is that thes, p, and d
waves have terms in the power-series expansion ofZeff

sJd in
the same order ofk2. However, thes-wave coefficient
a0snd is larger than thep-wave coefficienta1snd, which is
in turn larger than thed-wave coefficienta2snd. Although
values have not been tabulated, the higher partial waves
also have terms of the same order in the power-series
expansion.

The energy dependence ofZeff
sJdskd is to a very large extent

determined by the reciprocal of the scaled momentumh
=sZ−1d /k through theWshd factor.

C. The Z\` limit for Zeff
„J…

The limit for Zeff
sJd as Z→` is well defined, provided the

limit is taken under the constraint thath=sZ−1d /k remains
constant. It is possible to show that

Zeff
sJdshd . L0sJ,hd +

L1sJ,hd
Z − 1

+ O„sZ − 1d−2
…. s41d

The coefficientL0sJ,hd only depends onh as m→h and
Z→`:

L0sJ,hd = s2J + 1dWshd
e2h arctans1/hd

s1 + h2dJ+2 h2

3o
n=0

`
n + J + 2

n ! sn + 2J + 1d!
1

s1 + h2dn

3p
s=0

n+J

ss2 + h2d. s42d

The leading correctionL1sJ,hd is

L1sJ,hd = 4s2J + 1dWshd
e2h arctans1/hd

s1 + h2dJ+2 h2o
n=0

` Fn + J + 7/4

−
h2

1 + h2

sn + J + 2dsn + J + 3d
2

G
3

1

n ! sn + 2J + 1d!
1

s1 + h2dnp
s=0

n+J

ss2 + h2d. s43d

It is also possible to writeL0sJ,hd andL1sJ,hd in terms of
the integrals derived from Eq.s34d sm→hd as

L0sJ,hd = 4h3s2J + 1dE
0

`

FJ
2sh,xde−2hxdx s44d

and

L1sJ,hd = 3L0sJ,hd − 8h4s2J + 1dE
0

`

xFJ
2sh,xde−2hxdx.

s45d

The coefficientsL0sJ,hd andL1sJ,hd are tabulated in Table
II for a series ofh values forJ=0,1, and 2. It isnoticeable
that the relative size of theL1sJ,hd /L0sJ,hd ratio decreases
ask/ sZ−1d increases. The series in Eq.s41d is more quickly
convergent at larger values ofk.

D. Computation of the Coulomb functions

The asymptotic scattering functions are regular and ir-
regular Coulomb functions. Since all integrations are done
numerically this meant that computer programs to calculate
Coulomb functions were needed, and the more accurate the
functions the better. The necessary values of the Coulomb
function were computed with two complementary ap-
proaches[26,27].

TABLE I. The coefficients of the power-series expansion ink2/ sZ−1d2, Eq. (38) of Zeff
sJd.

Z n a0 a1 a2 b0 b1 b2

2 0.500 4.9778 0.9262 0.02613 −2.0254 0.4641 0.1147

3 0.666̇ 8.8109 2.6115 0.1257 −7.2369 0.08679 0.4830

5 0.800 14.0408 5.4829 0.3670 −18.2063 −2.6695 1.1924

9 0.888̇ 19.2296 8.7363 0.7046 −32.5939 −7.9946 1.9504

` 1.00 28.5973 15.2720 1.5112 −65.6166 −23.6940 3.1152
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The program of Seaton[26] evaluates the Coulomb func-
tions by direct evaluation of the power series. As can be
expected, such an approach is accurate close to the origin
where relatively few terms are required in the power series.
At larger values ofkr, round-off and series truncation errors
in the oscillating terms of the power series become more
important and start to limit the accuracy.

The program of Barnett uses an approach based on con-
tinued fractions[27]. This continued fraction algorithm is
known to be accurate at distances larger than the classical
turning point,

rc
J =

Z − 1 +ÎsZ − 1d2 + JsJ + 1dk2

k2 . s46d

Inside the classical turning point round-off errors have a
negative impact upon the reliability of the continued fraction
calculation.

There is one aspect about the Seaton program that war-
rants specific mention. Although this program is stated to be
a double precision(i.e., 15 digits) program, the program as
published cannot be guaranteed to be this accurate over a
variety of architectures. In our initial calculations upon a
32-bit INTEL based Linux workstation it was noticed that
the Coulomb functions were only accurate to seven signifi-
cant digits. The Seaton code did not pay enough attention to
the explicit definition of data types to ensure they would be
double precision under different architectures(note that the

Seaton program was initially developed on the 64-bit
ALPHA architecture). Accordingly, various sundry program
modifications entailing less than 60 min of editing time had
to be made before the program performed to its expected
accuracy.

Figures 3 and 4 show a comparison between the contin-
ued fraction(CF) and power-series(PS) evaluations of the
Coulomb functions. DenotingFJ

CF, GJ
CF andFJ

PS, GJ
PS as the

two different computational implementations of the regular
and irregular Coulomb functions, the quantities plotted are
uF0

CF−F0
PSu / uF0

PSu anduG0
CF−G0

PSu / uG0
PSu. A plot of the relative

differencesuF1
CF−F1

PSu / uF1
PSu and uG1

CF−G1
PSu / uG1

PSu for the J
=1 Coulomb function were not shown since they were al-
most identical to that forJ=0.

The increasing degree of inaccuracy inFJ
CF andGJ

CF at the
smallest values ofr is readily apparent. There is a complete
failure in FJ

CF at the smallest values ofr, but this is not
shown in the figures. There is an extended region ofr be-
tween 1a0 and 5a0 where both algorithms are working with
close to machine precision. This region straddles the classi-
cal turning radius which for the kinematic conditions shown
in the figures is 2.0a0 for s-wave scattering. Larger fluctua-
tions betweenFJ

CF andFJ
PS occur forr .5a0 when round-off

errors inFJ
PS become more important.

For the calculations reported in this paper, the PS method
was used forr ø rc

J/2 while the CF fraction method was used
for r . rc

J/2. A correct choice of the appropriate algorithm
was important for smallk and highZ. Some calculations

FIG. 3. The relative differenceuF0
CF−F0

PSu / uF0
PSu between the

Coulomb functions calculated by the continued fraction and power-
series algorithms as a function ofr. The present curves were plotted
for sZ−1d=1 andk=1.0a0

−1.

TABLE II. The coefficients of the power-series expansion in 1/sZ−1d, Eq. (41) of Zeff
sJd. The numbers in square brackets denote powers

of 10, therefore a[b] means a310b.

J=0 J=1 J=2

1/h L0 L1 L0 L1 L0 L1

0.25 0.7610f−8g −0.2466f−7g 0.4250f−8g −0.1937f−7g 0.5133f−9g −0.3200f−8g
0.50 0.7566f−3g −0.1819f−2g 0.4750f−3g −0.1742f−2g 0.8588f−4g −0.4501f−3g
0.75 0.2039f−1g −0.2981f−1g 0.1493f−1g −0.3952f−1g 0.3973f−2g −0.1623f−1g
1.00 0.7371f−1g −0.4740f−1g 0.6328f−1g −0.1102 0.2300f−1g −0.6985f−1g
1.25 0.1255 −0.9403f−3g 0.1250 −0.1272 0.5788f−1g −0.1261

1.50 0.1528 0.7098f−1g 0.1736 −0.7995f−1g 0.9702f−1g −0.1457

FIG. 4. The relative differenceuG0
CF−G0

PSu / uG0
PSu between the

irregular Coulomb functions calculated by the continued fraction
and power-series algorithms as a function ofr. The present curves
were plotted usingsZ−1d=1 andk=1.0a0

−1.
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with different choices of the PS to CF transition radius were
made, and it was found that symmetry of the Kohn matrix
could be destroyed by an inappropriate choice. Even with the
best possible choice of the PS to CF transition, calculations
at smallk were quite exacting and numerical inaccuracies in
the phase shift of up to 1% could easily be present for the
smallest values ofk given in the tables for each ion. How-
ever, the annihilation parameterZeff

sJd was not very sensitive to
the exact choice of the PS to CF transition radius.

IV. THE SCATTERING OF POSITRONS FROM He +

A sequence of calculations of different sophistication
were performed to give insight into the collision dynamics.
These calculation were as follows.

(i) The CWBA as described in the preceding section.
(ii ) The one-state close-coupling approximation CC(1)

with the electron target states restricted to be the He+ 1s.
(iii ) The three-state close-coupling approximation CC(3)

with the electron target states restricted to be the He+ 1s, 2s,
and 2p states.

(iv) The three-state close-coupling approximation CCs3d
with the electron target states restricted to be the He+ 1s, 2s,
and 2p states. The2p pseudostate is constructed to recover
all of the ground-state dipole polarizability 0.28125a0

3.
(v) The CI-Kohn calculation withLmax=8. This is the

largest explicit calculation that was performed and included
short-range functions up toLmax=8. The details of the calcu-
lations were slightly different fors-wave andp-wave calcu-
lations. A very large number of short-range functions, e.g.,
about 45, are needed for the positron channels that are dipole
coupled to the entrance channel. For theJ=0 partial wave,
this is the,=1 positron channel. For theJ=1 partial wave,
one needs the large basis for the,=0 and ,=2 positron
orbitals. TheJ=1 calculation extended the partial-wave ex-
pansion toLmax=9 in order to compensate for a more slowly

convergingZeff
s1d. The exponents of the LTO basis were opti-

mized manually for all the systems by maximizing the phase
shift at a momentum ofk=sZ−1d. These calculations are
referred to as the CIKOHN8 (or CIKOHN9) calculations.

(vi) The calculation withLmax→`. The limit is deter-
mined by using Eqs.(21)–(23) in conjunction with the three
calculations with the largest values ofLmax. These calcula-
tions are referred to as the CIKOHN` calculations.

The validity of the programs were tested by a number of
checks. First of all, the results of the CC(1) calculation were
compared with phase shifts and annihilation parameters com-
puted by a direct integration of the Schrödinger equation by
the Numerov method. Next, calculations of electron-He+

scattering in the static-exchange approximation were com-
pared with independent calculations in the same model[28].
Calculations were also performed at two values oft, t=0,
and t=p /2. The computed phase shifts andZeff agreed to
about five significant digits for all combinations ofZ andk
reported in the tables with the exception of the lowestk for
each ion. Even here, values ofZeff were in agreement to five
digits and the differences between the two phase shifts never
exceeded 1%. Finally, the algebra related to the inclusion of
the Coulomb functions was tested by using this part of the
program(with h=0) to reproduce previous calculations of
positron-hydrogen scattering[9].

The phase shifts andZeff for the J=0 and 1 partial waves
are listed in Tables III and IV. The present phase shifts are
compared with those of Bransden, Noble, and Whitehead
(BNW) [4] and the Harris-Nesbet variational results of Gien
[5,6]. The results of the Gien E6PS basis are presented. In
some instances the BNW and Gien phase shifts are interpo-
lated from their published values. As expected, the phase
shifts become more positive as the flexibility of the channel
space is increased. The CC(1) phase shifts are most negative,
while theLmax=8 phase shifts are the largest. The extrapola-
tion corrections to the phase shifts are generally small,

TABLE III. The phase shiftsdJ (in radians) for positron scattering from He+. The columnk reports momentum ina0
−1. The numbers in

square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3̄d CIKOHN8
a CIKOHN` BNW Gien (E6PS) Model

J=0

0.25 −0.753f−10g −0.704f−10g 0.1221f−4g 0.1852f−4g 0.1852f−4g 0.1852f−4g 0.1862f−5g
0.50 −0.2032f−4g −0.1876f−4g 0.4405f−3g 0.6864f−3g 0.7160f−3g 0.7163f−3g 0.7244f−3g
0.75 −0.1219f−2g −0.1112f−2g 0.1909f−2g 0.3826f−2g 0.4793f−2g 0.4810f−2g 0.473f−2g 0.478f−2g 0.4880f−2g
1.00 −0.8791f−2g −0.7869f−2g −0.4418f−3g 0.5430f−2g 0.1023f−1g 0.1031f−1g 0.105f−1g 0.103f−1g 0.1030f−1g
1.25 −0.2703f−1g −0.2371f−1g −0.1277f−1g −0.2343f−2g 0.8374f−2g 0.8554f−2g 0.725f−2g 0.846f−2g 0.7585f−2g
1.50 −0.5429f−1g −0.4691f−1g −0.3439f−1g −0.2070f−1g −0.4375f−2g −0.4133f−2g −0.661f−2g −0.426f−2g −0.7747f−2g

J=1

0.25 −0.424f−11g −0.361f−11g 0.1112f−4g 0.1691f−4g 0.1691f−4g 0.1691f−4g 0.1664f−4g
0.50 −0.1316f−5g −0.1295f−5g 0.2964f−3g 0.4523f−3g 0.4607f−3g 0.4607f−3g 0.4651f−3g
0.75 −0.9537f−4g −0.9361f−4g 0.1444f−2g 0.2303f−2g 0.2545f−2g 0.2548f−2g 0.254f−2g 0.253f−2g 0.2567f−2g
1.00 −0.8408f−3g −0.8219f−3g 0.2924f−2g 0.5339f−2g 0.6668f−2g 0.6688f−2g 0.664f−2g 0.665f−2g 0.6649f−2g
1.25 −0.3135f−2g −0.3048f−2g 0.3082f−2g 0.7772f−2g 0.1132f−1g 0.1138f−1g 0.111f−1g 0.113f−1g 0.1103f−1g
1.50 −0.7507f−2g −0.7255f−2g 0.8326f−3g 0.8099f−2g 0.1463f−1g 0.1474f−1g 0.142f−1g 0.146f−1g 0.1344f−1g
aLmax was set to 9 forJ=1.
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thereby indicating that the convergence of the phase shift
with Lmax is satisfactory.

The agreement of the CIKOHǸphase shifts with the
BNW and Giens-wave phase shifts is generally very good.
In some instances the BNW phase shifts are a bit smaller
than the Gien phase shifts, in these cases the CIKOHN`

phase shifts are in better agreement with the Gien phase
shifts. The overall comparison with the Gien results and pre-
vious experience on the positron-hydrogen system[9] sug-
gest that CIKOHǸ phase shifts are accurate to about 1%.
Any residual error will probably lead to the exact phase
shifts being underestimated. For most momenta the
CIKOHN` phase shifts are more positive than those of Gien
and in these cases it is likely that the present phase shifts are
slightly more accurate.

The CIKOHǸ p-wave phase shifts are also in reasonable
agreement with the variational phase shifts of Gien[5,6].
The size of theLmax→` correction is less than 1% at all
momenta listed in Table III. The tendency for the CIKOHN`

phase shifts to be slightly larger than those of Gien can be
taken as an indication that the present phase shifts are
slightly more precise.

The uncertainties in the phase shifts are largest at small
momenta for two distinct reasons. First, the relative contri-
butions of the polarization interactions to the phase shifts are
largest at these momenta. Although the number of short-
range basis functions used to describe the positron channel
associated with dipole excitations was large, the long range
of the dipole interaction does slow convergence. It is pos-
sible that incompleteness of the radial basis could lead to
errors of order 1%. The other area of uncertainty lies in the
accuracy of the regular and irregular Coulomb functions. The
numerical procedures used to compute to these functions are
most slowly convergent and most susceptible to round-off
errors at small values ofk.

Some interesting trends are seen when one examines the
CCs1d→CCs3d→CCs3d→CIKOHN8→CIKOHN` phase

shifts. First, the phase shift increases monotonically as the
sophistication of the calculation increases. Second, the
CCs3d phase shift is very close to CIKOHǸphase shift at
the lowest momentum. As the momentum increases the dif-
ferences between these two calculations increases. At the
lowest momentum, the positron is less likely to penetrate
close to the nucleus, and therefore the dominant atomic ef-
fect is thead/ s2r4d dipole polarization potential. Since the
CCs3d model gives the dipole polarizability exactly, it is ex-
pected to give an accurate phase shift very close to threshold.
As the energy increases, the positron has a larger probability
of penetrating closer to the nucleus and therefore short-range
electron-positron correlations become more important.

The annihilation parameter generally shows a tendency to
increase in magnitude as the sophistication of the calculation
is improved. One salient feature is the stronger contribution
made by the extrapolation correction to final values ofZeff

sJd.
The size of the correction was about 15% forZeff

s0d. The
p-wave annihilation parameterZeff

s1d is more slowly conver-
gent and therefore the calculations were done withLmax in-
creased to 9. Even so, the correction constitutes 18% of the
final value ofZeff

s1d at k=1.0a0
−1. If it is assumed that the ex-

trapolation correction itself has an uncertainty of 20%, then
the net uncertainty inZeff

s1d could be about 4%.
The most notable feature of the energy dependence ofZeff

s0d

is its extremely small size of 4310−9 at k=0.25a0
−1. This

translates to an annihilation cross section of 6310−15pa0
2.

The small cross section is basically due toWshd which im-
pedes the ability of the positron to tunnel through the repul-
sive Coulomb potential. As the energy decreases further the
annihilation rate becomes minute, and at close to thermal
energies, i.e.,k=0.05a0

−1, considerations based on the CWBA
suggest thatZeff

s0d should be of order 10−51.
The slower convergence ofZeff

s1d was also present for
positron-hydrogen scattering[9]. The slow convergence of
Zeff

sJd is known to result from the strong localization of the

TABLE IV. The annihilation parameter,Zeff
sJd for positron scattering from He+. The columnk reports momentum ina0

−1. The numbers in
square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8
a CIKOHN` Model

J=0

0.25 0.1484f−8g 0.1332f−8g 0.1635f−8g 0.1850f−8g 0.3171f−8g 0.3856f−8g 0.3548f−8g
0.50 0.1977f−3g 0.1756f−3g 0.2119f−3g 0.2394f−3g 0.4176f−3g 0.5026f−3g 0.4715f−3g
0.75 0.7753f−2g 0.6735f−2g 0.8027f−2g 0.9200f−2g 0.1607f−1g 0.1904f−1g 0.1834f−1g
1.00 0.4085f−1g 0.3429f−1g 0.4015f−1g 0.4654f−1g 0.8134f−1g 0.9472f−1g 0.9405f−1g
1.25 0.9744f−1g 0.7886f−1g 0.9033f−1g 0.1051 0.1829 0.2093 0.2142

1.50 0.1577 0.1241 0.1392 0.1613 0.2782 0.3134 0.3299

J=1

0.25 0.2916f−9g 0.2845f−9g 0.3911f−9g 0.4259f−9g 0.7632f−9g 0.9531f−9g 0.8840f−9g
0.50 0.4495f−4g 0.4379f−4g 0.5818f−4g 0.6321f−4g 0.1166f−3g 0.1450f−3g 0.1365f−3g
0.75 0.2144f−2g 0.2079f−2g 0.2701f−2g 0.3009f−2g 0.5548f−2g 0.6795f−2g 0.6529f−2g
1.00 0.1394f−1g 0.1342f−1g 0.1701f−1g 0.1944f−1g 0.3586f−1g 0.4315f−1g 0.4240f−1g
1.25 0.4077f−1g 0.3883f−1g 0.4809f−1g 0.5621f−1g 0.1038 0.1226 0.1230

1.50 0.7955f−1g 0.7494f−1g 0.9096f−1g 0.1084 0.2003 0.2327 0.2364

aLmax was set to 9 forJ=1.
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electron and positron clouds in the vicinity of each other. The
presence of the additional centrifugal barrier for theJ=1
partial-wave results in the region of the maximum electron-
positron overlap being further from the nucleus, and thus the
maximum angular momentum of the nuclear centered
partial-wave expansion of the scattering wave function needs
to be increased.

Comment on the extrapolation correction

The major source of uncertainty in the annihilation pa-
rameter is the contribution from the extrapolation correction.
In order to do this reliably it is necessary to computeD and
pZ precisely. This in turn requires calculations for a series of
Lmax that are close to exact. Fortunately, the two major con-
tributions leading to errors from a given calculation tend to
cancel each other.

The first source of error is that the value ofpZ does tend
to change withLmax. The asymptotic valuepZ=2 is usually
approached from below asLmax increases[23]. Typically, pZ
is about 1.80 for most of the calculations reported here.
Therefore, this leads to the correction being overestimated.

Another source of error is of course the radial basis. In
order to compute the successive increments withLmax ex-
actly one needs a radial basis that is complete. Since the
increments represent thedifferencebetween two calculations,
any incompleteness in the basis is amplified. We have no-
ticed thatpZ tends to decrease as the dimension of the radial
basis is increased. The radial basis used in the present calcu-
lations are large, but not complete. This meanspZ tends to be
overestimated for any specific calculation with a finite basis.
This has been noticed in earlier CI-Kohn calculations of the
e+Cu system[23]. Therefore truncation of the radial basis
results in the extrapolation correction being underestimated.

It is noticeable that the relative size of theLmax→` cor-
rection forZeff

sJd is largest at the smallest momentum. Previous
calculations on neutral targets also had relatively larger
Lmax→` corrections closer to threshold[9]. This is true for
the multiply charged ions as well(refer to Tables VI, VIII,
and X). Part of the reason may be due to the fact that the
radial basis was optimized atk=sZ−1d. A poorer optimiza-
tion of the LTO exponents for the higher, values at low
momenta leads to the successive increments toZeff

sJd decaying
too quickly. If this is the case, thenZeff

sJd could be systemati-
cally too large by a couple of percent at the smallest mo-
menta.

On the other hand, the relative contribution of theLmax
→` correction to the phase shift is smallest at small mo-
menta. The repulsive potential prevents the positron from
tunneling into the electron charge cloud, and therefore short-
range electron-positron correlations are relatively less impor-
tant in the scattering process(the small size ofZeff

sJd is consis-
tent with this explanation).

V. POSITRON SCATTERING FROM MULTIPLY
CHARGED IONS

Tables V–X give the phase shifts and annihilation param-
eters for multiply charged hydrogenic ions Li2+, Be4+, and
F8+. The calculations performed used basis sets which were
very similar in size to those performed for the He+ system.
The exponents of the LTO basis for each ion were reopti-
mized atk=sZ−1d.

The comparison with the phase shifts of Gien[6] for Li2+

and B4+ is generally very good with agreement at the 1–2%
level being typical. Once again, the CIKOHN` phase shifts
are slightly more positive than those of Gien, which suggests
that they may be slightly more accurate.

TABLE V. The phase shiftsdJ in radians for positron scattering from Li2+. The columnk reports momentum ina0
−1. The numbers in

square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8
a CIKOHN` Gien (E6PS) Model

J=0

0.50 −0.1099f−9g −0.1085f−9g 0.9746f−5g 0.1482f−4g 0.1483f−4g 0.1483f−4g 0.1513f−4g
1.00 −0.2789f−4g −0.2678f−4g 0.3206f−3g 0.5093f−3g 0.5389f−3g 0.5391f−3g 0.5502f−3g
1.50 −0.1536f−2g −0.1458f−2g 0.5074f−3g 0.1841f−2g 0.2565f−2g 0.2575f−2g 0.256f−2g 0.2692f−2g
2.00 −0.1006f−1g −0.9392f−2g −0.5311f−2g −0.1747f−2g 0.1174f−2g 0.1213f−2g 0.116f−2g 0.1225f−2g
2.40 −0.2389f−1g −0.2203f−1g −0.1691f−1g −0.1171f−1g −0.6595f−2g −0.6533f−2g −0.662f−2g −0.7593f−2g
2.50 −0.2814f−1g −0.2588f−1g −0.2061f−1g −0.1510f−1g −0.9462f−2g −0.9396f−2g −0.1078f−1g
3.00 −0.5189f−1g −0.4729f−1g −0.4191f−1g −0.3539f−1g −0.2757f−1g −0.2749f−1g −0.3189f−1g

J=1

0.50 −0.101f−10g −0.120f−10g 0.8867f−5g 0.1349f−4g 0.1349f−4g 0.1349f−4g 0.1357f−4g
1.00 −0.2920f−5g −0.2894f−5g 0.2271f−3g 0.3486f−3g 0.3595f−3g 0.3596f−3g 0.3647f−3g
1.50 −0.1905f−3g −0.1883f−3g 0.9096f−3g 0.1561f−2g 0.1796f−2g 0.1799f−2g 0.179f−2g 0.1837f−2g
2.00 −0.1491f−2g −0.1467f−2g 0.9243f−3g 0.2660f−2g 0.3713f−2g 0.3731f−2g 0.370f−2g 0.3770f−2g
2.40 −0.4052f−2g −0.3971f−2g −0.6278f−3g 0.2216f−2g 0.4309f−2g 0.4344f−2g 0.429f−2g 0.4118f−2g
2.50 −0.4928f−2g −0.4825f−2g −0.1270f−2g 0.1863f−2g 0.4245f−2g 0.4285f−2g 0.3913f−2g
3.00 −0.1054f−1g −0.1027f−1g −0.5930f−2g −0.8801f−3g 0.2538f−2g 0.2598f−2g 0.7832f−3g
aLmax was set to 9 forJ=1.
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The following ordering CCs1d,CWBA,CCs3d
,CIKOHN`,CIKOHN` of the magnitude ofZeff

sJd is rigor-
ously obeyed by all the results given in Tables IV–X. This
ordering is a measure of the variational flexibility of the pos-
itron basis in allowing the positron to approach the nucleus
and overlap with the electron. It is also noticed that the rela-
tive difference between the CWBAZeff and the CIKOHǸ
estimates ofZeff decreased asZ increased. This is readily
seen in Figs. 5 and 6 which are discussed in more detail later.

There was another consistent variation ofZeff
sJd with Z. The

relative size of the extrapolation correction became less im-
portant asZ increased. As the nuclear charge increases, the

electron distribution will be closer to the nucleus. Therefore
the region where electron-positron correlations are important
is located closer to the origin and consequently the conver-
gence of the partial-wave expansion is faster.

Heuristic description of phase-shift behavior

The s-wave phase shifts initially increase as the energy
increases from threshold. This is simply explained by con-
sideration of the effective potential for positron-ion scatter-
ing.

The residual interaction [after subtraction of the
asymptoticsZ−1d / r potential] consists of two parts. At long

TABLE VI. The annihilation parameter,Zeff
sJd for positron scattering from Li2+. The columnk reports momentum ina0

−1. The numbers in
square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3̄d CIKOHN8
a CIKOHN` Model

J=0

0.50 0.2560f−8g 0.2433f−8g 0.2829f−8g 0.3018f−8g 0.4298f−8g 0.4890f−8g 0.4539f−8g
1.00 0.3182f−3g 0.2995f−3g 0.3420f−3g 0.3684f−3g 0.5235f−3g 0.5894f−3g 0.5612f−3g
1.50 0.1130f−1g 0.1042f−1g 0.1169f−1g 0.1277f−1g 0.1810f−1g 0.2008f−1g 0.1965f−1g
2.00 0.5323f−1g 0.4767f−1g 0.5243f−1g 0.5774f−1g 0.8159f−1g 0.8913f−1g 0.8982f−1g
2.40 0.1015 0.8882f−1g 0.9632f−1g 0.1062 0.1494 0.1614 0.1662

2.50 0.1136 0.9898f−1g 0.1070 0.1179 0.1657 0.1786 0.1847

3.00 0.1659 0.1423 0.1523 0.1671 0.2337 0.2492 0.2626

J=1

0.50 0.7991f−9g 0.7888f−9g 0.9987f−9g 0.1039f−8g 0.1468f−8g 0.1706f−8g 0.1638f−8g
1.00 0.1138f−3g 0.1121f−3g 0.1366f−3g 0.1434f−3g 0.2080f−3g 0.2432f−3g 0.2334f−3g
1.50 0.4844f−2g 0.4750f−2g 0.5635f−2g 0.6075f−2g 0.8802f−2g 0.1012f−1g 0.9923f−2g
2.00 0.2765f−1g 0.2691f−1g 0.3118f−1g 0.3440f−1g 0.4979f−1g 0.5625f−1g 0.5632f−1g
2.40 0.6110f−1g 0.5899f−1g 0.6739f−1g 0.7549f−1g 0.1093 0.1218 0.1233

2.50 0.7087f−1g 0.6830f−1g 0.7780f−1g 0.8747f−1g 0.1266 0.1407 0.1472

3.00 0.1222 0.1167 0.1318 0.1526 0.2195 0.2407 0.2426

aLmax was set to 9 forJ=1.

TABLE VII. The phase shiftsdJ in radians for positron scattering from B4+. The columnk reports momentum ina0
−1. The numbers in

square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8 CIKOHN` Gien (E6PS) Model

J=0

1.00 −0.1184f−9g −0.1208f−9g 0.5029f−5g 0.7651f−5g 0.7653f−5g 0.7653f−5g 0.7872f−5g
2.00 −0.2809f−4g −0.2754f−4g 0.1457f−3g 0.2414f−3g 0.2589f−3g 0.2591f−3g 0.253f−3g 0.2662f−3g
3.00 −0.1416f−2g −0.1377f−2g −0.5023f−3g 0.1244f−3g 0.4722f−3g 0.4761f−3g 0.466f−3g 0.4983f−3g
4.00 −0.8485f−2g −0.8153f−2g −0.6527f−2g −0.5022f−2g −0.3801f−2g −0.3788f−2g −0.386f−2g −0.4174f−2g
5.00 −0.2193f−1g −0.2088f−1g −0.1887f−1g −0.1677f−1g −0.1459f−1g −0.1458f−1g −0.1634f−1g
6.00 −0.3787f−1g −0.3590f−1g −0.3412f−1g −0.3271f−1g −0.2907f−1g −0.2905f−1g −0.3218f−1g

J=1

1.00 −0.146f−10g −0.157f−10g 0.6228f−5g 0.6931f−5g 0.6936f−5g 0.6936f−5g 0.7060f−5g
2.00 −0.3901f−5g −0.3882f−5g 0.1565f−3g 0.1750f−3g 0.1823f−3g 0.1823f−3g 0.176f−3g 0.1861f−3g
3.00 −0.2295f−3g −0.2280f−3g 0.5505f−3g 0.6176f−3g 0.7476f−2g 0.7492f−3g 0.741f−3g 0.7712f−3g
4.00 −0.1613f−2g −0.1597f−2g 0.1931f−3g 0.2747f−3g 0.7766f−3g 0.7835f−3g 0.755f−3g 0.7213f−3g
5.00 −0.4834f−2g −0.4768f−2g −0.1876f−2g −0.1782f−2g −0.7065f−3g −0.6930f−3g −0.1451f−2g
6.00 −0.9506f−2g −0.9348f−2g −0.5576f−2g −0.4556f−2g −0.5067f−2g −0.5052f−2g −0.5838f−2g
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distances there is the adiabatic polarization potential which is
written asV,−ad/ s2r4d. The polarization potential is largest
at the edge of the ground-state charge distribution. Then
there is the increased nuclear repulsion that is seen whenever
the positron is inside the electron charge distribution.

The attractive interaction is the more important term at
low energies. The asymptoticsZ−1d / r repulsion acts to keep
the incident positron away from the interior region of the
target. Therefore, the increased nuclear repulsion has a small
impact on the phase shift since the amplitude of the scatter-
ing wave function is small here. However, as the kinetic
energy of the positron increases, it is more likely to tunnel
through the Coulomb barrier into the inner region of the
atom. When this occurs, the increased nuclear repulsion
starts to have an impact and the phase shift then becomes
negative.

The maximum positive value of the phase shift is quite
small for all the systems considered. This is not surprising
since the polarizabilityad=4.5/Z4 is small for Zù2. Since
the polarizability decreases asZ increases it would be ex-
pected that the magnitude of the phase shift at its maximum
positive value should decrease asZ increases, and this is
what happens.

Research on atomic systems[9,20,29–31] has shown that
there is a dynamical connection between the size of the low-
energy phase shifts and the annihilation parameter. An attrac-
tive interaction leads to the amplitude of the wave function
being larger close to the origin, and therefore can be ex-
pected to increase the annihilation parameter. However, the
maximum positive value of the phase shift obtained in all the
calculations was no larger than 0.015 rad. The small size of
the phase shift suggests that the effective polarization poten-

TABLE VIII. The annihilation parameterZeff
sJd for positron scattering from B4+. The columnk reports momentum ina0

−1. The numbers in
square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8 CIKOHN` Model

J=0

1.00 0.3965f−8g 0.3873f−8g 0.4275f−8g 0.4413f−8g 0.5416f−8g 0.5838f−8g 0.5490f−8g
2.00 0.4567f−3g 0.4432f−3g 0.4812f−3g 0.5021f−3g 0.6150f−3g 0.6583f−3g 0.6293f−3g
3.00 0.1468f−1g 0.1404f−1g 0.1500f−1g 0.1582f−1g 0.1931f−1g 0.2045f−1g 0.1997f−1g
4.00 0.6242f−1g 0.5849f−1g 0.6165f−1g 0.6531f−1g 0.7946f−1g 0.8330f−1g 0.8305f−1g
5.00 0.1214 0.1119 0.1168 0.1237 0.1500 0.1559 0.1582

6.00 0.1640 0.1502 0.1545 0.1577 0.1969 0.2033 0.2118

J=1

1.00 0.1626f−8g 0.1616f−8g 0.1821f−8g 0.1876f−8g 0.2329f−8g 0.2561f−8g 0.2433f−8g
2.00 0.2129f−3g 0.2113f−3g 0.2391f−3g 0.2451f−3g 0.3037f−3g 0.3314f−3g 0.3184f−3g
3.00 0.8109f−2g 0.8016f−2g 0.9139f−2g 0.9291f−2g 0.1149f−1g 0.1239f−1g 0.1210f−1g
4.00 0.4122f−1g 0.4049f−1g 0.4657f−1g 0.4695f−1g 0.5795f−1g 0.6174f−1g 0.6110f−1g
5.00 0.9486f−1g 0.9257f−1g 0.1079 0.1084 0.1346 0.1420 0.1395

6.00 0.1489 0.1446 0.1697 0.1792 0.1989 0.2081 0.2174

TABLE IX. The phase shiftsdJ in radians for positron scattering from F8+. The columnk reports momentum ina0
−1. The numbers in

square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8 CIKOHN` Model

J=0

2.00 −0.958f−10g −0.940f−10g 0.1941f−5g 0.2952f−5g 0.2954f−5g 0.2954f−5g 0.3011f−5g
4.00 −0.2152f−4g −0.2131f−4g 0.4289f−4g 0.7884f−4g 0.8600f−4g 0.8605f−4g 0.8956f−4g
6.00 −0.1015f−2g −0.9996f−3g −0.6980f−3g −0.4745f−3g −0.3501f−3g −0.3489f−3g −0.3470f−3g
8.00 −0.5709f−2g −0.5585f−2g −0.5056f−2g −0.4555f−2g −0.4152f−2g −0.4148f−2g −0.4366f−2g

10.00 −0.1401f−1g −0.1363f−1g −0.1310f−1g −0.1238f−1g −0.1175f−1g −0.1175f−1g −0.1242f−1g
12.00 −0.2323f−1g −0.2257f−1g −0.2183f−1g −0.2114f−1g −0.2182f−1g −0.2181f−1g −0.2162f−1g

J=1

2.00 −0.139f−10g −0.135f−10g 0.1756f−5g 0.2647f−5g 0.2650f−5g 0.2650f−5g 0.2702f−5g
4.00 −0.3486f−5g −0.3477f−5g 0.4020f−4g 0.6376f−4g 0.6692f−4g 0.6693f−4g 0.6904f−4g
6.00 −0.1900f−3g −0.1893f−3g −0.3236f−5g 0.1175f−3g 0.1675f−3g 0.1680f−3g 0.1787f−3g
8.00 −0.1240f−2g −0.1233f−2g −0.8712f−3g −0.5771f−3g −0.4015f−3g −0.3994f−3g −0.4429f−3g

10.00 −0.3487f−2g −0.3459f−2g −0.2871f−2g −0.2387f−2g −0.2190f−2g −0.2187f−2g −0.2435f−2g
12.00 −0.6510f−2g −0.6448f−2g −0.5263f−2g −0.4537f−2g −0.4804f−2g −0.4800f−2g −0.5436f−2g
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tial has a relatively minor influence upon the size of the
annihilation parameter. This point will be verified later.

VI. MODEL POTENTIAL DESCRIPTION

In this section a model potential description of the
positron-ion collision is presented using the method of
Mitroy and co-workers[29,32]. The effective Hamiltonian
for the positron moving in the field of the ion is approxi-
mated by the model potential,

H = − 1
2¹0

2 + Vdirsr 0d + Vpolsr 0d. s47d

The repulsive direct potentialVdir is computed from the
ground-state wave function of the target ion. The polariza-
tion potential is given the form

Vpolsr 0d = −
adf1 − exps− r6/r6dg

2r4 , s48d

wheread=4.5/Z4a0
3 for the hydrogenic ions.

The adjustable parameterr is fixed by tuning the model
potential phase shift to give a reasonable fit to the CIKOHN`

phase shifts. Values ofr are given in Table XI. The phase
shifts from the model potential calculation are tabulated in
Tables III, V, VII, and IX. The model potential phase shifts
track the CIKOHǸ phase shifts reasonably well although
there is a tendency for the model potential phase shifts to be
slightly too negative at the largest momenta.

The annihilation of positrons in the model is written as
[29]

Zeff
sJd =E d3rGJr1ssr duFJsr du2, s49d

where r1ssr d is the electron density of the 1s ground state
andFJsr d is the positron scattering function for the scatter-
ing wave function with angular momentumJ. The enhance-
ment factorGJ is introduced to take into consideration the
impact that electron-positron correlations have in increasing
the annihilation rate. In previous works, a common value of
J was adopted for all partial waves. A different enhancement
factor was adopted for the different partial waves because
calculations revealed thatG1 was consistently bigger than
G0. This is understandable since the centrifugal barrier will
lead to p-wave annihilation occurring at larger values ofr
than s-wave annihilation. Therefore, the nuclear Coulomb
potential Z/ r will have less impact in disrupting electron-
positron localization. Enhancement factors are often used in
the calculation of the annihilation rate of positrons in
condensed-matter systemsf33–35g.

The valence enhancement factorGJ is computed by the
simple identity

GJ =
Zeff

sJdKohn

Zeff
sJdmodel, s50d

whereZeff
sJdKohn is the annihilation rate of the positron with

the valence orbitals as given by theCIKOHN` calculation
andZeff

sJdmodel is the annihilation rate predicted by the model
potential calculation withGJ=1. Values ofGJ are listed in
Table XI. The model potential phase shifts andZeff

sJd are
listed in Tables III–X. The deviation from theCIKOHN`

values ofZeff
sJd does not exceed 10% for any of the entries in

Tables IV, VI, VIII, and X. This is an impressive result

TABLE X. The annihilation parameter,Zeff
sJd for positron scattering from F8+. The columnk reports momentum ina0

−1. The numbers in
square brackets denote powers of 10.

k CWBA CC(1) CC(3) CCs3d CIKOHN8 CIKOHN` Model

J=0

2.00 0.5302f−8g 0.5244f−8g 0.5556f−8g 0.5639f−8g 0.6306f−8g 0.6585f−8g 0.6303f−8g
4.00 0.5749f−3g 0.5664f−3g 0.5933f−3g 0.6072f−3g 0.6777f−3g 0.7030f−3g 0.6813f−3g
6.00 0.1715f−1g 0.1674f−1g 0.1735f−1g 0.1787f−1g 0.1990f−1g 0.2050f−1g 0.2015f−1g
8.00 0.6787f−1g 0.6546f−1g 0.6732f−1g 0.6951f−1g 0.7721f−1g 0.7911f−1g 0.7873f−1g

10.00 0.1243 0.1188 0.1214 0.1258 0.1389 0.1417 0.1427

12.00 0.1599 0.1526 0.1548 0.1603 0.1727 0.1755 0.1831

J=1

2.00 0.2525f−8g 0.2517f−8g 0.2736f−8g 0.2738f−8g 0.3079f−8g 0.3253f−8g 0.3175f−8g
4.00 0.3097f−3g 0.3084f−3g 0.3300f−3g 0.3351f−3g 0.3762f−3g 0.3940f−3g 0.3892f−3g
6.00 0.1086f−1g 0.1079f−1g 0.1139f−1g 0.1172f−1g 0.1313f−1g 0.1365f−1g 0.1362f−1g
8.00 0.5095f−1g 0.5042f−1g 0.5276f−1g 0.5479f−1g 0.6133f−1g 0.6334f−1g 0.6363f−1g

10.00 0.1094 0.1078 0.1134 0.1187 0.1308 0.1341 0.1360

12.00 0.1622 0.1594 0.1704 0.1858 0.1950 0.1994 0.2009

TABLE XI. The parameters of the model potential.

Ion rsa0d G0 G1

He+ 1.218 2.52 3.00

Li2+ 0.837 1.83 2.05

B4+ 0.540 1.41 1.50

F8+ 0.310 1.20 1.26
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when one considers that the calculations for F8+ go up to
about1000 eVpositron energy.

Table XII gives the totalZeff at the common values of 1/h
for the four different ions. The CIKOHǸcalculations ofZeff

sJd

are used for theJ=0 andJ=1 partial waves. The contribu-
tions from J=2,3, and 4used Eq.(49) with GJ=G1. An
estimate of the importance of the higherJ values can be
gauged by comparison of Table XII withZeff

sJd given in Tables
IV, VI, VIII, and X. The difference between the sum ofZeff

s0d

andZeff
s1d andZeff in Table XII is due to the contribution from

the higher partial waves. The relative contribution from the
higher partial waves is largest at the highest momentum, but
even here it does not exceed 25%. The partial-wave sum for
Zeff converges quickly withJ and theJ=4 term makes a
contribution of 1% or less.

VII. ON THE NATURE OF ANNIHILATION
ENHANCEMENT

The electron-positron interaction modifies the scattering
wave function in two respects.

(i) The attractive polarization potential leads to positive
phase shifts at threshold. This implies an increase in the pos-
itron charge density in the vicinity of the target electron
charge distribution. This will be referred to as theoverlap
enhancement and there are a number of studies of positron-
atom scattering showing the correlation between a large scat-
tering length and a large thresholdZeff. As an aside, it is
worth remarking that it is the vanishingly small overlap be-
tween the electron and positron wave functions for positive
ions at thermal energies that leads to the minuteZeff at these
energies.

(ii ) The attractive nature of the electron-positron interac-
tion leads to a localization of the positron in the vicinity of
the electron. This effect will be called theclusteringeffect
and is well known in condensed-matter systems[33,34],
positron-atom scattering systems[20,29,30,36], and
positron-atom bound states[19,37].

The Li2+ model potential calculation atk=2.0 has been
repeated with the polarization potential set to zero. When this
is done, the phase shifts change fromd0=0.116310−2 rad to
d0=−0.939310−2 rad and fromd1=0.376310−2 rad to d1
=−0.147310−2 rad. The phase shifts have changed sign al-

though the absolute changes are small. However, the annihi-
lation parameters changed fromZeff

s0d=0.0883 to Zeff
s0d

=0.0858 and fromZeff
s1d=0.0495 toZeff

s1d=0.0484. The net de-
crease in the annihilation parameter is about 4% for thes
wave and 2% for thep wave. Although the polarization po-
tential does increase the positron density in the vicinity of
the nucleus(e.g., the positive phase shifts) it has a minimal
effect upon the annihilation rate. The minor increase caused
by the overlap effect demonstrates that the cluster effect is
the dominant cause of the annihilation enhancement for pos-
itron scattering from positive ions.

This partly explains the ability of the model with a simple
scaling factor to reproduce the more sophisticated variational
calculation. In effect, the relative unimportance of overlap
enhancement in increasing the annihilation parameter means
that it is not sensitive to the fine details of the polarization
potential. The rapid variation in the annihilation parameter as
the positron energy approaches threshold is largely driven by
kinematic factors related to the ability of the positron to tun-
nel into the repulsive Coulomb barrier.

There are some numerical regularities present in Table XI.
The productsGJ−1dsZ−1d is almost constant for all the dif-
ferent ions. The product is approximately equal to 1.5 forJ
=0 and approximately equal to 2.0 forJ=2. The values ofr
scale roughly as 1/Z. Since the specific value ofr does not
have much impact onZeff

sJd, it should be possible to apply the
present model to predict values ofZeff

sJd for other ions. The
choicesr<2.5/Z, andG0<1+1.50/sZ−1d and GJ=G1<1
+2.0/sZ−1d would seem to be reasonable.

Figure 5 plotsZeff
s0d versusZ at constanth. The CWBA

result increases monotonically fromZ=2 to Z=9. This can
be easily explained by reference to the relative size of the
classical turning radiusrc to the mean orbital radiuskrl
=1.5/Z of the ground-state hydrogenic ion at constanth. At
Z=2 the ratioZrc/1.5 is 8/3, which decreases to 4/3 asZ
→`. The tendency for the positron to penetrate deeper into
the electron cloud asZ increases(h constant) explains the
tendency forZeff

s0d to increase. However, the CIKOHǸcal-
culation shows a tendency to decrease asZ increases. The
ability of electron-positron correlations to increase the anni-
hilation rate diminishes asZ increases. The stronger Cou-
lomb field of the target inhibits electron-positron localization
and thereforeZeff enhancement due to the clustering effect
will decrease.

TABLE XII. The total Zeff for a number of ions at different
values of 1/h=k/ sZ−1d. The CIKOHǸ values are used forZeff

s0d

andZeff
s1d; and the higher partial-wave contributions fromJ=2, 3, and

4 are taken from the model potential using the parametersr andG1

of Table XI. The numbers in square brackets denote powers of 10.

1/h He+ Li2+ B4+ F8+

0.25 0.484f−8g 0.670f−8g 0.861f−8g 0.102f−7g
0.50 0.655f−3g 0.835f−3g 0.103f−2g 0.116f−2g
0.75 0.264f−1g 0.318f−1g 0.355f−1g 0.378f−1g
1.00 0.144 0.159 0.166 0.168

1.25 0.357 0.369 0.365 0.353

1.50 0.613 0.606 0.552 0.528

FIG. 5. Thes-wave annihilation parameterZeff
s0d at h=1.0 as a

function of Z for various approximations:P, CWBA; m, CC(1);

. , CCs3̄d; j , CIKOHN`. The horizontal line across the right axis
denotes theZ=` value for the CWBA.
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The plot of Zeff
s1d versusZ shown in Fig. 6 shows some

differences in qualitative behavior from thes-wave plot. The
p-wave CWBA plot is reminiscent of thes-wave plot;Zeff

s1d

increases monotonically fromZ=2 to Z=9. Once again, the
relative size of the classical turning radius to the mean or-
bital radius, i.e.,Zrc/1.5 decreases asZ increases at constant
h. But, unlike the case forJ=0, the CIKOHǸ result shows
a tendency to increase with increasingZ. This is a conse-
quence of the centrifugal barrier which acts to suppress the
ability of the positron to penetrate into the electron cloud.
The relative importance of the centrifugal barrier is stronger
at smaller values ofZ. Therefore, thep-wave CWBA value
increases by a factor of 3.6 fromZ=2 to Z=9 while the
corresponding increase in thes-wave CWBA value ofZeff

sJd

was only a factor of 1.5. The tendency for thep-wave
CWBA to increase more quickly with increasingZ over-
whelms the tendency for the clustering effect to decrease
with increasingZ and the net effect is aZeff

s1d that decreases
with increasingZ.

VIII. CONCLUSIONS

The Kohn variational method using nuclear centered basis
functions has been applied to the calculation of the phase
shifts and annihilation parameters for positron scattering
from hydrogenlike ions. The phase shifts agree very well
with those of a previous variational calculation by Gien[5,6]
for those ions and momenta common to both calculations
and demonstrate that the CI-Kohn approach is capable of
obtaining phase shifts comparable in accuracy to calculations

which explicitly include the electron-positron distance in the
scattering wave function. Indeed, we believe that the present
phase shifts are marginally more accurate than those of Gien
since they are slightly more positive. Besides giving close to
converged phase shifts, results are also presented for a num-
ber of less sophisticated models which restrict the allowable
excitations of the target electron. Such calculations are useful
as benchmarks in developing alternative methods to compute
positron-ion scattering.

In common with other positron scattering calculations
with a single-center basis it is found that the convergence is
slow with respect to the maximum orbital angular momenta
of the basis states included in the partial-wave expansion of
the wave function. The convergence problems were not as
severe as for neutral systems since the region of strong
electron-positron localization occurs closer to the origin. It is
found that convergence of the annihilation parameter is
slower for p-wave than fors-wave scattering. This is com-
patible with earlier calculations for neutrals and suggests the
electron-positron localization occurs further from the origin
due to the presence of the centrifugal barrier.

However, extrapolations in angular momentum were
needed in order to mopup the last 0.1–2% of the phase shift
and the last 5–20% of the annihilation parameter. While the
extrapolation correction is probably the largest source of er-
ror in the tabulated phase shifts and annihilation parameters,
it should be noted that a 20% error in theZeff

sJd extrapolation
correction would only lead to a 4% error in the final value of
Zeff

sJd.
One of the more interesting results of the present work is

the importance of cluster enhancement of the positron anni-
hilation rate even for strong Coulomb fields. Even for the
heavily ionized F8+ system, there is still a 20% enhancement.
The annihilation parameter at thermal energies is micro-
scopically small due to the diminishing amplitude of the pos-
itron wave function as it tunnels through the repulsive Cou-
lomb barrier. This means that losses due to annihilation do
not have to be considered in cooling schemes involving posi-
tive ions and positrons[38–41].
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