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The possibility of generating vortices during matter-wave propagation through microstructures is examined.
Vortices can arise solely due to wave interference in low-density ultracold atom clouds, and do not require any
atom–atom(nonlinear) interactions. The properties of these “interference vortices” are understood from a
simple two-mode model in a straight waveguide. This model is then applied to vortex creation in a circular
bend since a circular waveguide bend is one of the simplest atom optical elements that can induce mode
excitations. Time-independent and time-dependent analyses are used to investigate vortex creation and dynam-
ics in these systems.
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I. INTRODUCTION

Vortices in quantum mechanics have been known since its
early days, tracing back to Dirac’s seminal paper on wave-
function holes and their vortices[1]. They have been pre-
dicted and observed in diverse fields of wave related physics
(see Ref.[2] for an introduction), some examples of note are
quantum chemistry reaction pathways[3], liquid helium as a
consequence of superfluidity[4], ballistic electron transport
through waveguides[5], and dilute atomic Bose-Einstein
condensates(BECs) [6].

The recent advent of the atom chip, i.e., integrated atom
optics above microchip surfaces[7], along with the recent
demonstrations of BEC creation and propagation all on-chip
[8] are creating further opportunities to perform precision
wave-function engineering on the microscopic scale. In-
spired by the vortex studies of ballistic electron transport
through hard-walled waveguides[5,9,10], we examine the
possibility of generating vortices during atomic matter-wave
propagation through microstructures.

One mechanism for the formation of vortices is simple
wave interference. Hirschfelder and collaborators, for ex-
ample, examined vortex creation around wave-function holes
for plane-wave scattering from 2-D potentials such as par-
tially and totally reflecting walls[11,12]. In the present pa-
per, the fundamental mechanism for generating what we call
interference vortices(also known as optical vortices[13]) is
examined using two simple geometries. We first explore the
simplest conditions for vortices to occur in a straight wave-
guide by superposing plane waves that occupy different
transverse modes. We then examine plane-wave and wave-
packet propagation through a simple microstructure, the cir-
cular waveguide bend, essentially using the bend as a means
to create multimoded low-density ultracold matter waves and
thus vortices.

None of the vortices discussed here require atom–atom
interactions, and will occur even for low densities. In fact,
our investigations explicitly assume that atom–atom interac-

tions are negligible. Vortices are familiar in systems with
nonlinear interactions. Ruostekoskiet al. [14], as a theoreti-
cal example, found vortices in an expanding BEC reflecting
from the hard walls of a two-dimensional(2D) circular box.
Indeed, there are a variety of ways that vortices can be pro-
duced in nonlinear optics(see Ref. [15] and references
therein). The present interference vortices, however, do not
demand the presence of a nonlinear interaction and do not
have a critical velocity for vortex formation beyond the re-
quirement of exciting transverse modes.

We chose to revisit[16,17] the circular bend geometry as
it is a simple geometry that can easily be explored using both
time-independent and wave-packet calculations. Further-
more, similar studies of ballistic electron transport have
yielded intriguing vortex physics. In particular, the curved
electron waveguide produces effects such as reversal of the
flux direction around the wave-function holes as the energy
crosses the resonance[10,18,19]. These effects were also ex-
tensively examined in plane-wave propagation through an
L-shaped bend(intended to mimic chemical reaction path-
ways) [3].

These electron gas studies rarely consider wave packets.
Given that BECs are the most likely source for atom optics,
our interest was whether interference vortices could even be
observed during wave-packet propagation, or whether they
would simply be washed out by the continuum of velocities
in a wave packet. We show that interference vortices are
observed in wave packets and that their dynamics can be
understood in terms of a simple two-mode model.

II. VORTICES IN SUPERPOSITIONS OF PLANE WAVES

A simple system that exhibits interference vortices is a
two-mode model of plane waves travelling down a straight
waveguide. The model considered here constrains the two
plane waves to have the same total energy, and thus the ex-
cited mode always has a lower velocity than the ground
mode. This constraint is consistent with the physics of waves
propagating through generic microstructures in that when a
wave is excited by a static potential the total energy of the
excited component remains conserved. The results of the
simple model are later used to explain the dynamics of inter-
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ference vortices in a multimoded wave packet.
To examine vortices in general, it is useful to turn to the

hydrodynamical representation of the wave function[12],

csr ,td = Îrsr ,tdeiusr ,td/", s1d

where both the local densityrsr ,td= ucsr ,tdu2 and the local
phase usr ,td /"=arctanhImfcsr ,tdg /Refcsr ,tdgj are real
quantities. The local velocityvWsr ,td is related to the local

flux jWsr ,td, and is given by

vWsr ,td =
jWsr ,td
rsr ,td

=
"

m
ImF¹W csr ,td

csr ,td
G . s2d

We use primarily the local phase throughout this paper since
the probability density typically varies over orders of mag-
nitude across the waveguide(and thus so does the local flux).
Also, the local velocity can be large in regions of small prob-
ability density, making it difficult to plot a vector field that
sufficiently highlights any spatial dependence.

Consider a superposition of two plane waves freely propa-
gating in thez direction, with transverse confinement inx
provided by a simple harmonic oscillator potential(SHO)
centered atx=0:

csx,zd = a0w0sxdeiv0z + a1w1sxdeiv1z, s3d

wherewnsxd are the normalized SHO eigenfunctions andan

are the mixing coefficients. This wave function is an energy
eigenstate, so the total energyE available to each mode is a
constantvn=Î2sE−End. Oscillator units are used throughout
this paper(i.e., "=1, massm=1, and the SHO frequency
v=1). These units give an oscillator widthb=1. To provide
the typical scale of the SI units involved here, a cloud of
23Na atoms trapped with a frequency ofv=2p397 Hz [20]
corresponds to an oscillator width ofb<2.13mm. The
propagation velocityvz=v0=Î2 osc. units(i.e., at the first
mode threshold for transverse excitation,E=1.5 osc. units)
equates tovz=1.84 mm/s and a kinetic energy of 38.71mK.

Figure 1 shows the spatial dependence of an equal super-
position of two plane waves in the ground and first excited
SHO modessa0

2=a1
2=1/2d. The total energyE=1.51 was

chosen to be slightly above the first excited threshold. The
phase fronts(i.e., lines of constant phase[21]) disappear at
each hole in the wave function(i.e., where the probability
density drops to zero), giving rise to a vortex and a 2p phase
change in a closed loop around each hole. A surprising con-

sequence is that a small amount of flux travels backwards
along the waveguide even though both of the plane waves
are travelling forward.

The longitudinal spacing of the oscillations depends on
the total energyE. In the appendix of Ref.[17], we derived
expressions for the spatial oscillations of expectation values
for superpositions of plane waves such as those seen in Fig.
1. It was shown, in particular, that transverse oscillations of
the probability density have a spatial period in the propaga-
tion directiongz=2p /Dvz

due to the interference of the dif-
ferent velocity componentsDvz

=v0−v1. In the present ex-
ample Dvz

=Î2.02−Î0.02, giving gz=4.91. Increasing the
total energy decreasesDvz

, thus increasinggz. This relation is
utilized throughout this paper.

The dependence on the relative mode population is shown
in Fig. 2 as the flux in thez direction atz=0 with fixed E
=1.51. The flux is shown since the velocity is undefined at
the wave function holes. A two-mode wave function given
by Eq. (3) with real, but nonzero coefficientsa0 anda1 such
that a1

2=1−a0
2, has holes located at

sxh,zhd = S−
a0

Î2a1

,
np

Dvz

D for unu = 0,2, . . . ,

FIG. 1. (Color online) Superposition of equal
amounts of two plane waves in the ground and
first excited SHO transverse modes(in x). The
waves propagate freely in the positivez direction
with the same total energyE=1.51. The local ve-
locity vWsx,zd is shown in(a) as a vector field, and
(b) shows the local phaseusx,zd along with con-
tours of the probability densityucsx,zdu2. Each
contour corresponds to an order of magnitude
change in density.

FIG. 2. The local flux in thez direction of a superposition of two
plane waves with equal total energy. The flux is plotted forz=0 to
demonstrate the dependence of the flux ona0

2 (the values are indi-
cated in the figure). The values range from a puren=0 mode(a0

2

=1, a1
2=0) to a puren=1 mode(a0

2=0, a1
2=1).
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sxh,zhd = S a0

Î2a1

,
np

Dvz

D for unu = 1,3, . . . . s4d

Note that the only effect of allowinga0 anda1 to be complex
is a shift of d /Dvz

in the positionszh of the holes by the
relative phased betweena0 and a1. There are also outer
stagnation points at which both the flux and velocity are
zero, but the probability density is nonzero. Forz=0 this
point occurs atxs=−sa0v0d /Î2a1v1, which is outside of thez
range shown in both Figs. 1 and 2. It does mean, however,
that jzsx,z=0d is only negative in a region bounded by
xs,x,xh. The dependence of the outer stagnation point on
v0/v1 means that the spatial area where backflow occurs is
dependent on both the total energy and the relative mode
population.

The transition ofa0 in Fig. 2 between 1 and 0 mimics the
vortex behavior in a wave packet. As a precursor to the
wave-packet calculations shown in the next section, consider
the following. A propagating wave packet(with a small en-
ergy spread) in a superposition ofn=0 andn=1 modes with
the same average total energy finds then=1 component trav-
eling slower than then=0, which will eventually result in a
pure n=1 component trailing behind the puren=0 compo-
nent. If the relative population of the two modes changes, so
does the location of the vortices. As the two wave-packet
components separate—corresponding toa0 decreasing from
1 to 0 in the language used above—the vortices start out at
xh= ±` and end atxh=0 [see Eq.(4)]. In the limit of small
but nonzeroa0, the vortices form a line close to the center of
the waveguide called a “vortex street”[2,18] and have alter-
nating flux rotation. Throughout the separation of the wave-
packet components, the longitudinal location of these vorti-
ces remains constant atzh= ±np /Dvz

since the total energy is
fixed.

There is a useful experimental spinoff of the present
plane-wave analysis for high-energy wave packets consisting
predominantly ofn=0 andn=1 modes. At high energies,E
@E1, a time-of-flight spatial snapshot of the wave packet
would show the two modes propagating with approximately
the same velocityvz<Î2E. In this case, the transverse oscil-
lation occurs over a length scalegz much larger than the
oscillator width. In fact, such transverse oscillations have
already been observed in a BEC after propagation through a
waveguide perturbation[20]. Measuringgz (which is inde-
pendent of the relative mode population) would give not only
Dvz

, but when combined with the time-of-flight velocity
(which at high energies is independent of the mode) would
also give the transverse trapping potential frequencyv.

It may also be useful to note that while the flux profiles
shown in Fig. 2 are dependent on the energy, the location of
the probability density maxima in thez=0 cross section are
only dependent on the relative mode population. Measure-
ments of the transverse probability density profile such as the
peak-to-peak amplitude shown in Ref.[20] can, at least in
the low-density limit, give the relative population of then
=0 and n=1 modes along one transverse direction(given
that the snapshot is a projection of the 3D density down to
2D). Note that a measurement of the transverse hole position

[xh of Eq. (4)] is also independent of energy and can give the
relative mode population. It may be difficult to resolve the
exact hole location, however, so the peak-to-peak amplitude
may be preferred for determining the population.

III. DETAILS OF THE CIRCULAR BEND CALCULATIONS

There are a number of atom chip wire configurations that
can create curved waveguides[7,22], but we follow the an-
satz adopted in Refs.[16,17]. That is, we assume a multiple
wire configuration that does not require external bias fields
applied in the plane of the microchip surface[23], so that the
curved waveguide reduces to an effective 2D problem(as-
suming densities such that atom–atom interactions can be
neglected).

We consider an idealized trapping potential for a circular
bend of radiusr0 and anglef0. The guiding potential is
quadratic near the minimum, so SHO potentials are used
here,

V = 5
1
2mv2sx − r0d2, zø 0,
1
2mv2sr − r0d2, 0 ø f ø f0,
1
2mv2sx − r0d2, zù 0.

s5d

The two straight leads are described by Cartesian coordi-
nates; and the circular bend, by polar coordinates. The po-
tential for a tight sr0=10d, f0=180° bend, which is used
throughout the remainder of this paper, is shown in Fig. 3.
Such a tight, large angle bend emphasizes the effects of the
bend.

Calculations using two different methods are used to ex-
amine vortices in the bends. First, since the 2D guiding po-
tential of Eq. (5) is separable in each region, so is the
Schrödinger equation, and time-independent interface match-
ing calculations can be utilized. In this approach, wave trans-
mission, reflection, and mode mixing are all a result of
matching multimode plane waves at the boundaries between
regions. This method has been described for waveguides
with 2D [24,25] and 3D circular bends[16], and no further
discussion is given here.

Second, time-dependent wave-packet calculations were
performed using a split-operator Crank-Nicolson method

FIG. 3. Potential energy surface of a tightsr0=10d, 180° circu-
lar bend. Both the energy and coordinates are given in oscillator
units. The coordinates are converted to the coordinate system of the
incoming lead located atx.0, z,0, and this convention is used in
the remainder of the paper.

MANIFESTATIONS OF VORTICES DURING ULTRACOLD-… PHYSICAL REVIEW A 70, 013605(2004)

013605-3



with finite differences[17]. An implementation on a uniform
Cartesian grid(equally spaced in both thex andz directions)
was adopted here instead of the hybrid nonuniform Cartesian
and polar grid approach used in[17]. The computational
overhead in including grid points that have largeVsx,zd is
not an impediment for ther0=10, 180° bend considered
here. As the specific details of the present method follow
from those outlined in Ref.[17], the interested reader is di-
rected there.

The initial wave packet is a Gaussian centered atsx,zd
=sx0,z0d, with spatial widthsDx and Dz and initial velocity
v̄z:

Csx,z,t = 0d = N0 eiv̄zz e−sx − x0d2/2Dx
2

e−sz − z0d2/2Dz
2
. s6d

For an initial wave function centered at the SHO minimum,
x0=r0, to be in the ground state of the SHO potential re-
quiresDx=1. Cigar-shaped wave packetssDz@Dxd are used
in the time-dependent calculations, which correspond to the
experimental initial state in which the transverse trapping
frequencies are significantly larger than the longitudinal trap-
ping. The initial wave function is normalized using a mid-
point integration rule[17], such thatoi,jdxdzuCsxi ,zj ,t=0du2
=1, wheredx anddz are the grid spacings in each direction.
Other expectations values were also determined using this
integration rule.

The emphasis of the bend calculations shown in the next
section is on energies so that only the first couple of excited
modes are energetically accessible, greatly reducing the de-
mands on the spatial grid compared to the grids required for
the high-velocity wave packets seen in[17]. The grid spac-
ings dx=dz and time-stepdt were chosen here so that varia-
tions in kTlstd+kVlstd remained at levels less than 1 part in
106. The extent of the spatial grid was always chosen so that
the edges are never reached by the wave packet over the
propagation time of interest.

IV. CIRCULAR BEND CALCULATIONS

This section uses the bend shown in Fig. 3, i.e., a tight
180° bend with the SHO potential centered atr0=10. The
tight circular bend is a useful geometry to use to create the
mode excitations(and thus vortices) since we could examine
the transmission probabilities and vortex behavior exactly
with the time-independent calculations before embarking on
wave-packet calculations.

The transmission probabilitiesTnf,ni
of plane waves tra-

versing the circular bend are shown in Fig. 4 to show the
ground state transmission and mode conversion from the
ground state to higher transverse modes. Generally, there is
minimal reflection except for a complete reflection spike due
to a Feshbach resonance just below the first mode threshold
at E=1.5 [16].

Based on the results shown in Fig. 4, two sets of circular
bend calculations are presented in this section. For the first
set, vortices in multimoded waves are examined at the peaks
of T1,0, namely energies ofE=2.225 andE=3.57. These val-
ues were chosen to create a significant population of then
=1 mode while minimizing the population ofn.1 modes,

which makes the analysis simpler. Importantly, a tight bend
means that significant mode excitation can occur at very low
energies. Larger bends generally require larger propagation
energies to obtain the same degree of excitation, but the in-
terface matching method encounters convergence difficulties
at higher energies due to the coupling to strongly closed
modes[16,26]. In the time-dependent calculations, we use
cigar shaped wave packets with average energies of 2.225
and 3.57 for comparison. Elongated Gaussian wave packet
have a small velocity spread(Dz=10 impliesDvz=0.1), and
the vortex dynamics are not obscured by wildly differing
velocity components.

For the second set of calculations, waves with total energy
E<1.5 are used to explore the behavior of vortices in waves
near the first excited mode threshold and the related Fesh-
bach resonance. The tight 180° circular bend maximizes the
width of the Feshbach resonance which is probed here using
very energetically narrow wave packets(Dz=100 implies
Dvz=0.01).

A. Vortices in multimode wave propagation

The cleanest examples of interference vortices will be
found when only the lowest two modes are populated. A tight
circular bend approaches this ideal atE=2.225 where there
are only two open modes and a significant excited mode
probability and atE=3.57 where there are four open modes
but only smalln=2 andn=3 transmission probabilities. Spe-
cifically, the plane-wave calculations atE=2.225 give trans-
mission probabilities ofT0,0=0.899 779 andT1,0=0.100 214.
At E=3.57, there is significant mode transfer from the
ground to the first excited state:T0,0=0.615 295, T1,0
=0.373 943,T2,0=0.010 731, andT3,0=2.7310−5. At both
energies the total reflection probabilities are less than 10−5.

The local phase and probability density contours of plane
waves for these two energies are shown in Fig. 5, where the
plane wave is incident in the top lead, and the transmitted
waves exit in the bottom lead. For both energies, the vortices
are located at the dents in the probability density contours.
As was shown in Fig. 1, the phase fronts disappear at these

FIG. 4. Transmission probabilitiesTnf,ni
of a r0=10, f0=180°

bend. The probabilities are shown for incoming waves in the ground
stateni =0 transmitted into thenf =0,1, and 2 modes as a function
of total energyE. The nf =3 andnf =4 modes are not shown since
their Tnf,ni

<0 for these energies. Inset: spatial periodgz of super-
positions ofn=0 andn=1 plane waves as a function of total energy.
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holes so that the total phase accumulated in a small closed
loop about these holes is 2p, i.e., a vortex.

There are two length scales in the propagation direction to
consider. First, the distance between the phase fronts in the
incoming lead is determined by then=0 wavelengthlz
=2p /vz where, for the two energies in Fig. 5,lz=3.38 and
lz=2.53. Second, in the outgoing leads, the spatial oscilla-
tions inz repeat everygz=2p /Dvz

(gz=9.6 andgz=14.2). As
the energy increases,lz decreases whilegz increases. The
inset of Fig. 4 shows the dependence ofgz across the energy
range in question.

The holes in Fig. 5(a) are located further from the center
of the waveguide than in Fig. 5(b) due to the differences in
their excited mode populations, as predicted by the two-
mode model in Eq.(4). The probability density also oscil-
lates less regularly in the outgoing leads for Fig. 5(b) than
for Fig. 5(a) due to the presence of about 1% of then=2
mode(a two-mode calculation forE=3.57 shows more regu-
larity). In both cases, vortices also appear within the bend
due to a small amount of excitation ton=1 as the wave
propagates across the entrance lead-bend interface. The
eigenmodes within the bend are asymmetric with respect to
the center of the SHO[16], and thus the vortices on the
inside of the bend are located closer to the SHO center than
the vortices on the outside of the bend. Crossing the exit lead
interface creates additional mode excitation in the exit lead
and more pronounced vortices.

Having observed vortices for plane waves, a natural ques-
tion is whether they will be visible for a wave packet, or
whether the velocity spread completely smears them out.
Figure 6 shows the time-dependent behavior of cigar-shaped
sDz=10d wave packets with average energies equal to those

used in the time-independent calculations(initial average ve-
locities v̄z=1.857 andv̄z=2.4779) propagating out of the
same circular bend.

Each wave packet starts atz=−100 entirely in the ground
state(a0=1 anda1=0 in the language used above). Per Eq.
(4), the holes form at the sides of the wave packet as the
excited mode becomes populated by the bend. In fact, to be
visible in the plots we can estimate thatua1u2 must be at least
1/9 for the holes to be within four oscillator units of the
SHO center. The holes then migrate towards the center of the
waveguide as the wave packet propagates and the local
population inn=1 increases. Due to the difference in kinetic
energy between the two modes, then=1 mode increasingly
lags behind, favoringn=0 at the leading edge andn=1 at the
trailing edge, i.e., the ratioa0/a1 gradually changes across
the length of the wave packet. As shown in Fig. 2 and pre-
dicted by Eq.(4), the transverse position of the vortices goes
from ` to 0 asa0/a1 goes to 0, and we see this happen
dynamically in a wave packet.

The parallel phase fronts in Fig. 6 show that the leading
edge of the wave packet indeed consists of a nearly puren
=0 mode, seen as the parallel phase fronts in Figs. 6(a) and
6(h). That the trailing edge consists of nearly puren=1 is
most clearly seen as thep alternating phase between each

side of the SHO center in Fig. 6(d). For Ē=3.57, the veloci-

ties of the n=0 and n=1 modes are closer than forĒ
=2.225, so the separation of the modes is not so dramatic as

for Ē=2.225 as each wave packet exits the bend. The snap-
shots in time for Figs. 6(e)–6(h) were chosen especially to
highlight the transverse motion of the vortices from the
edges towards the center of the waveguide as the wave
packet propagates.

FIG. 5. (Color online) Local phase and prob-
ability density contours for plane waves incident
in the top lead:(a) E=2.225 and(b) E=3.57. Vor-
tices occur at the density contour indentations
where the lines of constant phase disappear. Each
density contour corresponds to an order of mag-
nitude change in density. The phase convention is
the same as in Fig. 1.

FIG. 6. (Color online) Local phase and prob-
ability density contours of wave packets exiting a
r0=10,f0=180° circular bend(the lead-bend in-
terface is atz=0). Two calculations are shown at
four snapshots roughly equally spaced in time:

(a)–(d) show aĒ=2.225 wave packet as time in-
creases(t=82.7, 88.8, 94.9, and 101.05), while

(e)–(h) show aĒ=3.57 wave packet as time in-
creases(t=53.9, 56.15, 58.4, and 60.65).
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It should be emphasized that although the wave packets
are traveling forwards in the exit leads, there are small re-
gions next to the holes that have backwards flowing flux(and
not just relative to the wave-packet group velocity). For su-
perpositions ofn=0 andn=1 modes, these regions are to-
wards the edge of the waveguide from the vortex. In a pre-
vious paper[17], we saw that under certain situations the
Ehrenfest trajectory(i.e., the trajectory of a classical particle
with initial conditions chosen to match the average position
and average velocity of a wave packet) follows the probabil-
ity density of multimoded wave packets as they traverse a
circular bend. In the wave-packet snapshots seen in Fig. 3 of
that paper, there are minima in the wave-function probability
density as the wave packet exits a circular bend. Vortices
were not discussed there since the wave-function dynamics
are complicated by having significant population ofn.1

modes—due toĒ=5 (the transmission probabilities in Fig.
4). Multimoded oscillations were also seen in the split poten-
tial waveguide calculations of Jääskeläinen[27], but were
not commented on in terms of the possible existence of vor-
tices.

There are already experimental observations of transverse
oscillations occurring after propagating BECs past an ob-
stacle[20]. While taking probability density snapshots may
show that wave-function holes have formed(which could be
verified by examining the density along a transverse line),
the real question may be whether velocity and/or phase sen-
sitive imaging of propagating wave packets can be under-
taken. This point was recently discussed in Ref.[28] for
vortices in BECs, and there are a variety of well-established
optics techniques that may enable the observation of interfer-
ence vortices.

B. Probing a Feshbach resonance

The circular bend modes have lower propagation thresh-
olds than the lead modes, giving rise to a Feshbach reso-

nance in the bend[3,16]. The resonance occurs at energies
where the excited mode can propagate inside the bend but
not in the leads. and causes 100% reflection when the energy
of the incoming wave is exactly at the energy of the quasi-
bound state. Plane-wave studies of vortices in hard-walled
waveguides have shown that at such resonances there can be
a dramatic reversal in direction of vortex rotation with only a
small change in energy[3,10,18]. In the language of scatter-
ing theory, this reversal is just a consequence of the usualp
phase jump in the scattering phase shift at a resonance. We
show local phase changes across the resonance for plane-
waves incident on the bend, and compare these results to the
dynamics of wave packets that energetically probe the Fesh-
bach resonance.

1. Reflection probabilities at resonance

Previously, we demonstrated that a circular bend with
SHO transverse confinement exhibits complete reflection due
to a Feshbach resonance[16]. The specific results for ar0
=10, f0=180° bend are presented here to provide guidance.
The first excited mode threshold in this bend occurs atE
=1.498 705 9, corresponding to a lead velocity ofvz
=1.413 298 2. The position of the Feshbach resonance peak
is vz=1.413 903 1 and its width is only 0.000 001 7(in ve-
locity). The reflection probabilities for plane waves in this
velocity region are shown in Fig. 7.

The diamonds in Fig. 7 show the total reflection probabili-
ties of elongated wave packets(Dz=100 andDvz=0.01) with
initial velocities near the first excited mode threshold atvz
=Î2. Taking into account the velocity spread of the wave
packet (which roughly translates into a convolution of the
time-independent results), the time-independent and time-
dependent results are consistent. Snapshots of the probability
density after wave-packet propagation through the bend are
shown in Fig. 8 forv̄z=1.40,1.41,1.42, and 1.43. The initial
location of all four wave packets was in the top lead atz0=

FIG. 7. Probability of a plane wave being reflected by ar0

=10, f0=180° circular bend as a function of incoming velocity
(near then=1 lead mode threshold atvz=Î2, i.e., E=1.5). The
plane-wave reflection probabilitiesR0,0 and R1,0 are the solid and
dotted lines, respectively. The diamonds are the total reflection
probability RWP=R0,0+R1,0 from wave-packet calculations. For the
wave packets, the velocity denotes the average velocityv̄z of the
incident wave packet with fixed velocity spreadDvz=0.01. The
inset highlights the resonance and threshold behavior.

FIG. 8. Probability density of wave packets propagating with
initial velocities v̄z<Î2 near then=1 threshold. The wave packets
enter from the top lead with(a) v̄z=1.40, (b) v̄z=1.41, (c) v̄z

=1.42, and(d) v̄z=1.43. The snapshots are taken at roughly the
same average wave-packet position[i.e., at times of(a) t=1374.5,
(b) t=1364.5,(c) t=1355,(d) t=1345.5]. Each line corresponds to
an order of magnitude decrease inuCsx,y,tdu2. The position of the
waveguide is indicated by the thin dotted lines.
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−1000. The local phase of the wave packet is not shown in
Fig. 8 simply due to the huge disparity in the length scales of
the wave packet compared to its wavelengthsl<4.4d.

As all four wave-packet velocities straddle both the lead
and bendn=1 thresholds, a small amount of reflection is
seen in both then=0 andn=1 modes. Then=1 component
of the wave function slowly exits the bend since it has a
velocity barely above zero. There is a tiny amount ofn=0
reflection, but it cannot unequivocally be attributed to the
Feshbach resonance as the time-independent calculations
showR0,0<10−3–10−4 on both sides of the mode threshold
at vz=Î2. The fraction of velocity components in the wave
packet in the resonance is also of the order 10−4. So, even
though the Feshbach resonance results in 100% reflection,
the width of the resonance is so small, it is almost impossible
to observe a dip in the transmission to zero with a wave
packet that has a finite energy spread. In the present example,
the transmission shows less than a 1% dip in the transmis-
sion. To see a significant effect, a wave-packet velocity
spread comparable to the resonance width is required, imply-
ing a wave packet on the order of 106 oscillator units in
length. Using the23Na numbers from Sec. II, this would
require an initial wave packet of width 2mm and length 2 m,
clearly an experimental challenge.

2. Vortex reversal across resonance energies

Although detailed measurements of the Feshbach reso-
nance are unlikely, there remains the possibility of using vor-
tices to simply detect whether a Feshbach resonance is
present. For example, Fig. 9 shows the local phase of plane
waves propagating with energies near the first mode thresh-
old.

The vz=1.41 andvz=1.42 plane waves[Figs. 9(a) and
9(d), respectively], lie energetically on either side of both

lead and bendn=1 thresholds, with thevz=1.42 calculation
displaying similar local phase characteristics to those seen in
Fig. 5. For vz=1.41 case, below both the lead and bend
thresholds, mostly smooth, laminar flow through the wave-
guide is observed(since T0,0=0.999 950). The presence of
evanescent modes in both calculations is seen as a perturba-
tion of both the local phase and probability densities near the
lead-bend interfaces. In fact, the presence of evanescent
modes in Fig. 9(a) is enough to create vortices near the in-
terfaces.

The two calculations with vz=1.413 902 4 andvz
=1.413 904 0[Figs. 9(b) and 9(c)] are just below and above
the resonance and were chosen as the energies at which
roughly 50% of the incoming flux is reflected. The single
probability density contour shown is dominated by then=1
transverse wave function associated with the Feshbach reso-
nance. In the leads, the resonant wave function is evanescent
and thus has a slow exponential decay, but then=0 transmit-
ted and reflected plane waves will eventually dominate far
from the bend. Since the wave functions within the bend
consist mostly of a slowly propagatingn=1 mode with a
very large wavelength, the phase evolves slowly around the
bend.

Along the bend midpoint(f=90°, i.e., x=0) the local
phaseusx,zd abruptly changes from 1.361p to 0.361p in Fig.
9(b), and from 1.849p to 0.849p in Fig. 9(c). In both cases
there is a rapid phase change ofp across the SHO minima,
which appears consistent with a puren=1 mode with a long
wavelength. There is, however, a tiny fraction of the ground
mode present, and a close examination of the flux direction
(not shown here, but see the figures in Refs.[10,19]) reveals
that there are a number of vortices along then=1 valley.
Each vortex is separated by a distance ofgz/2<2.2, which
comprises a vortex street within the bend that extends out
into the leads due to the long exponential tail of the evanes-
cent mode[18]. A tiny change invz across the resonance
results in a large change in local phase(between the two
cases shown here approximatelyp /2) which corresponds to
a reversal in the direction of the flux around the vortices.

The phase forvz=1.42 is shown in Fig. 9(d). Previous
studies of vortices in circular bends[10,18,19] implied that
the Feshbach resonance was responsible for the creation of
vortices, so it was initially surprising that vortices still ap-
peared in the exit lead for a velocity so far from resonance.
In fact, it was trying to understand why we observed inter-
ference vortices in thevz=1.42 calculation that motivated
much of the present paper.

The local phase for av̄z=1.41 wave packet is shown in
Fig. 10 for four snapshots in time. Figure 10(a) shows the
wave packet entering from the top lead att=505, while Fig.
10(b) shows the wave packet exiting att=804 as a superpo-
sition of then=0 andn=1 modes with a series of vortices
forming near the exit lead interface. Att=878.5[Fig. 10(c)]
the n=0 component has largely left the bend, but a small
residual amount remains, interfering with then=1 compo-
nent in/near the bend resulting in a vortex street. The final
snapshot in Fig. 10(d) for t=1719.5 shows a smalln=1 com-
ponent slowly leaving the bend.

There are a number of processes that can manifest at large
propagation times. For instance, then=1 components slowly

FIG. 9. (Color online) Local phase and probability density con-
tours of four plane-wave solutions incident in the top lead with
energies near the first excited mode thresholds. The velocities(a)
vz=1.41 and(d) vz=1.42 are located on either side of both lead and
bend n=1 thresholds, while(b) vz=1.413 902 4 and(c) vz

=1.413 904 0 straddle either side of the reflection resonance. The
resonant part of the wave function dominates in(b) and (c).
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leaving the bend cannot be from a Feshbach resonance(en-
ergetically forbidden). Any transmitted or reflectedn=1
wave packet must instead simply be from part of the initial
wave packet that had an energy above then=1 threshold.
The long-lived n=1 Feshbach resonance state will also
slowly decay inton=0 plane waves and maintain vortices in
and near the bend. At times betweent=878.5 andt=1719.5
[Figs. 10(c) and 10(d)] the probability density and local
phase slowly evolve while each vortex slowly moves into the
waveguide center. Furthermore, we observe no change in the
direction of flux rotation around a given vortex during the
slow decay of remaining wavefunction out from the bend.

There is no definitive evidence that any of this phase
and/or vortex behavior in thev̄z=1.41 wave packet is due
solely to the Feshbach resonance. There remains the possi-
bility that such effects are simply washed out by the velocity
spread of the wave packet since the spread is large compared
to the width of the Feshbach resonance. In contrast with the
accuracy of the time-independent calculations(typically all
energies converge to better than 1 part in 108), however, it is
unclear whether the present finite-difference calculations are
even be able to represent such energetically narrow energy
characteristics. For example, initial calculations of the very
weakly bound states of circular bends using imaginary time
propagation show a sensitive grid dependence with annoy-
ingly slow convergence in energy, even in spatial grids far
more dense those employed here.

V. SUMMARY

Vortices have been shown to occur in multimoded waves
of ultracold atoms propagating through waveguides in the
limit of non-interacting atoms. Using a simple model with
superpositions of forward propagating plane waves in

straight waveguides, the vortices are seen to be a basic con-
sequence of wave interference of the different modes. Given
the wide variety of experimental atom chip waveguide con-
figurations, our philosophy has again been to study a generic
system using transverse SHO potentials. Using plane waves
provides an analytic model that is simple to understand, and
that revealed the dependence of the wave-function holes and
backflow flux on the energy and mode population.

To generate multimoded waves using a realistic geometry,
we employed a circular waveguide bend that enabled the
energy dependence of the vortices to be examined using
time-independent plane-wave calculations. Armed with this
knowledge, we also performed wave-packet calculations to
examine the time dependence of the vortices. A wave packet
more closely reproduces the experimental conditions, as it is
likely that most atom optical devices will not be supplied by
atoms from a continuous source. Vortices were indeed seen
in the wave packets, which are related to the sloshing of
multimoded wave packets as they propagate along a wave-
guide. In a nutshell, the vortices form at the edges of the
wave packet when mode excitation occurs, then smoothly
migrate towards the center of the waveguide and form a
string of vortices. If modes higher thann=1 are involved,
then arrays of vortices can be formed, leading to multiple
vortex streets.

The present results also provide some insight into current
ultracold atom investigations, e.g., BEC propagation past a
spatial defect in the waveguide[20], where transverse oscil-
lations in the probability density have already been observed.
Interference vortices should be present in the low-density
limit and there is the possibility of directly detecting them
using techniques to measure the local velocity field or the
local phase across the wave packet. We have also suggested
that the probability density snapshots of low-density ultra-
cold atoms in a straight waveguide can provide information
about the structure of the wave. The longitudinal oscillations
give the relative velocity of the ground and excited modes
which, when combined with a the absolute velocity from a
time-of-flight measurement, gives the transverse binding fre-
quency. The transverse position of the vortices gives infor-
mation about the relative mode populations when only the
ground and first excited modes have significant population.

The main problem with observing interference vortices
with any method is that the regions of maximum backflow
velocity are also the regions where the probability density is
rather low. Experiments will probably observe the atom
cloud a distance from the perturbation that creates the mode
transfer, which will require high propagation velocities so
that the modes do not separate. A high velocity increases the
spatial length of the oscillations. Too high a velocity, how-
ever, and the outer stagnation point in the flux moves in
towards the vortex, making it difficult to spatially resolve the
backflow region. Another way to maximize the amount of
backwards propagating flux would be to propagate the waves
through perturbations such that only the ground and a sig-
nificant percentage of the first excited modes are populated.
While observing these interference vortices may prove to be
rather like trying to see a green flash at sunset simply due to
the small magnitude of the probability densities, these back-
wards propagating regions of a forward propagating multi-

FIG. 10. (Color online) Local phase of a wave packet with ini-
tial velocity vz=1.41 as it propagates through a tight circular bend.
Four snapshots in time are shown:(a) t=505, (b) t=804, (c) t
=878.5, and(d) t=1719.5. The probability density contours corre-
spond to an order of magnitude decrease inuCsx,y,tdu2, with the
cutoff chosen to be at 10−5 of the maximum density of the initial
wave function. Note that thevz=1.41 probability density att
=1364.5 was shown in Fig. 8.
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moded wave packet nonetheless exist in the limit of nonin-
teracting atoms.

On a fundamental tangent, while Feshbach resonances in
circular waveguide bends are easily explored with plane
waves, we were unable to find any definitive evidence of
Feshbach resonant behavior in wave packets with realistic
velocity spreads. The direct experimental observation of a
resonant dip in the wave transmission that was observed us-
ing bent electromagnetic waveguides[29] would be virtually
impossible to observe in the propagation of clouds of atoms
through a microstructured waveguide bend. Our interest was
driven by whether the dramatic local phase characteristics
seen in plane-wave calculations across resonance energies
would leave a measurable signature on a wave packet. We
saw no such evidence in the present calculations. Feshbach
resonances would be expected to occur in most microstruc-
tures where there is a potential well, and other geometries

may produce a broader resonance that could be more easily
explored than the circular waveguide bend.

The obvious extension of this research is examining the
formation of hydrodynamic vortices[6] during propagation
through microstructures, which could be generated via atom-
atom interactions, and would presumably critically depend
on the flow velocity.
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