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The existence and structure of positronic atoms with a total angular momentum of L=1 is studied with the
configuration interaction method. Evidence is presented that there is a 2Po state of e+Ca and 2,4Po states of
e+Be�3Po� that are electronically stable with binding energies of 45 meV and 2.6 meV, respectively. These
predictions rely on the use of an asymptotic series analysis to estimate the angular L→� limit of the energy.
Incorporating corrections that compensate for the finite range of the radial basis increased the binding energies
of e+Ca and e+Be to 71 meV and 42 meV, respectively.
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I. INTRODUCTION

The existence of positron-atom bound states is now firmly
established and about ten atoms have been identified as being
able to bind a positron �1�. Beside their intrinsic interest, the
knowledge that positrons can form bound states has been
crucial to recent developments in understanding the very
large annihilation rates that occur when positrons annihilate
with various molecules in the gas phase �2–9�. One common
feature of the atomic calculations is that binding only occurs
to atoms with an ionization energy close to 6.80 eV �the Ps
binding energy� and the binding energies are largest for those
atoms with ionization energies closest to 6.80 eV �1�.

The existence of positronic bound states with nonzero an-
gular momentum was an open question until the recent iden-
tification of the 2Po state of e+Ca as electronically stable
�10�. There are two types of excited state that can be consid-
ered. In one case, the positron is bound to an excited state of
the parent atom. An example of such a state �with zero or-
bital angular momentum� is the metastable e+He�3Se� state
�11�. The other type of state could be regarded as a positron,
in an excited orbital, bound to the ground state of the parent
atom. The recently discovered 2Po state e+Ca can be re-
garded as such a state since it has the same dissociation
channel as the lower lying 2Se e+Ca ground state �10�.

The present article describes some very large configura-
tion interaction �CI� calculations of the 2Po states of e+Ca
and e+Sr that indicate the presence of a 2Po bound state for
e+Ca with a binding energy of 45 meV. The situation for
e+Sr is less clear and the best that can be said is that there
may be a 2Po state that is just bound with a binding energy of
5 meV or smaller. Since the ionization energies of the Ca
and Sr atoms are less than 6.80 eV, the thresholds for a
stable positron complex are those of the �Ca+�4s� ,Sr+�5s��
+Ps�1s� dissociation channels.

The other state that is investigated is the 2,4Po state of
e+Be with the metastable Be 2s2p3Po state being the domi-

nant configuration of the parent atom. The resulting e+Be
state is stable with a binding energy of at least 2.6 meV with
respect to the Be+�2p�+Ps�1s� dissociation channel.

II. DESCRIPTION OF THE CALCULATIONS

A. The model Hamiltonian

The CI method as applied to positron-atomic systems with
two valence electrons and a positron has been discussed pre-
viously �12–14�, but a short description is worthwhile. The
model Hamiltonian is initially based on a Hartree-Fock �HF�
wave function for the neutral-atom ground state. One- and
two-body semiempirical polarization potentials are added to
the potential field of the HF core and the parameters of the
core-polarization potentials defined by reference to the spec-
trum of the singly ionized parent atom �12,13�.

All calculations were done in the frozen-core approxima-
tion. The effective Hamiltonian for the system with two va-
lence electrons and a positron was
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1
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The potential, Vdir, represents the direct part of the interac-
tion with the HF electron core. It is attractive for electrons
and repulsive for the positron. The exchange potential �Vexc�
between the valence electrons and the HF core was com-
puted without approximation.

The one-body polarization potentials �Vp1� are semiempir-
ical in nature and are derived from an analysis of the singly
ionized parent atoms. They have the functional form
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Vp1�r� = − �
�m

�dg�
2�r�

2r4 � � m���m� . �2�

The factor �d is the static dipole polarizability of the core
and g�

2�r� is a cutoff function designed to make the polariza-
tion potential finite at the origin. The same cutoff function
has been adopted for both the positron and electrons due to
lack of information that can be used to tune the positron
cutoff. This will tend to lead to an underestimation of the
strength of the positron polarization potential since the
electron-atom polarization potential is weaker than the
positron-atom polarization potential for closed shell targets
�1,15,16�. The error should be small since the core polariz-
abilities for all the systems studied are at least 30 times
smaller than the valence polarizabilities. In this work, g�

2�r�
was defined to be

g�
2�r� = 1 − exp�− r6/��

6� , �3�

where �� is an adjustable parameter. The two-body polariza-
tion potential �Vp2� is defined as

Vp2�ri,r j� =
�d

ri
3rj

3 �ri · r j�gp2�ri�gp2�rj� , �4�

where gp2�r� is chosen to have a cutoff parameter obtained
by averaging the ��. The core dipole polarizabilities and the
�� were set to the values in Refs. �12,13�. This model has
been used to describe many of the features of neutral Be, Ca,
and Sr to quite high accuracy �12,13,17�. All energies re-
ported here are given relative to the energy of each doubly
ionized core.

B. The trial wave function

The trial wave function adopted for the variational calcu-
lations consists of a linear combination of states which are
antisymmetric in the interchange of the two electrons,

��;LS�a = �
i

ci��i;LS�A. �5�

Each antisymmetrized state is constructed as a linear combi-
nation of coupled states. Two electrons �particles 1 and 2� are
coupled first to each other, then the positron �particle 0� is
coupled to form a state with total angular and spin angular
momentum, L and S,

��i;�a1b2�LISIp0LS� = �
ma,mb,mp,MLI

�a,�b,�p,MSI

��ama�bmb�LIMLI
�

	 �LIMLI
�pmp�LML�

	 �SIMSI
1
2
�p�SMS��a1�ama�a�

	 �b2�bmb�b��p0�pmp�p� . �6�

The subscript by each orbital denotes the electron occupying
that particular orbital. The antisymmetric states are written as

��i;�ab�LISIpLS�A =
1

	2�1 + 
ab�
���a1b2�LISIp0�

+ �− 1�la+lb+LI+SI��a2b1�LISIp0�� .

�7�

The CI basis was constructed by letting the two electrons
and the positron form all the possible total angular momen-
tum LT=1 configurations, with the two electrons in a spin-
singlet state �for Ca and Sr�, subject to the selection rules,

max��0,�1,�2� � J , �8�

min��1,�2� � Lint, �9�

�− 1���0+�1+�2� = − 1. �10�

In these rules �0, �1, and �2 are respectively the orbital an-
gular momenta of the positron and the two electrons. We
define �E�J to be the energy of the calculation with a maxi-
mum orbital angular momentum of J.

The main technical problem afflicting CI calculations of
positron-atom interactions is the slow convergence of the
energy with J �1,14,18,19�. One way to determine the
J→� energy, �E��, is to make use of an asymptotic analysis.
It has been shown that successive increments, �EJ= �E�J

− �E�J−1, to the energy can be written as an inverse power
series �14,20–23�, viz.,

�EJ 

AE

�J + 1
2�4 +

BE

�J + 1
2�5 +

CE

�J + 1
2�6 + ¯ . �11�

The J→� limit has been determined by fitting sets of �E�J

values to asymptotic series with either 1, 2, or 3 terms. The
linear factors, AE, BE, and CE for the three-term expansion
are determined at a particular J from four successive energies
��E�J−3, �E�J−2, �E�J−1, and �E�J�. Once the linear factors have
been determined it is trivial to sum the series to � and thus
obtain the variational limit. Application of asymptotic series
analysis to helium has resulted in CI calculations reproduc-
ing the ground-state energy to an accuracy of �10−8 hartree
�23,24�.

III. THE 2Po STATE OF e+Ca

The ionization potential of Ca is 0.2247 hartree �25�, so
the condition for stability of a e+Ca state is that its energy be
less than that of the Ca+�4s�+Ps�1s� threshold. The threshold
for binding is −0.686 286 53 hartree since the energy of the
Ca+�4s� state is −0.436 286 53 hartree in the present model
potential �relative to the energy of the doubly ionized Ca2+

core�.
The Hamiltonian for the e+Ca 2Po state was diagonalized

in a CI basis constructed from a very large number of single
particle orbitals, including orbitals up to �=14. The two elec-
trons were in a spin singlet state. There was a minimum of
14 radial basis functions for each �. The largest calculation
was performed with J=14, Lint=3, and the CI basis had a
dimension of 874 888. The parameter Lint does not have to be
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large since it is mainly concerned with electron-electron cor-
relations �13�. The resulting Hamiltonian matrix was diago-
nalized with the Davidson algorithm �26�, and a total of
10 000 iterations were required for some of the most slowly
convergent cases.

The energy and other expectation values of the e+Ca 2Po

state as a function of J is given in Table I. The binding
energy is defined as ��J=−�E�J−0.686 286 53. None of the
explicit calculations listed in Table I formally bind the posi-
tron.

Figure 1 shows the running estimates of �E�� with the
J→� extrapolations as a function of J. The two-term and
three-term extrapolations both give energies below the disso-
ciation threshold and indicate that the e+Ca 2Po state is elec-
tronically stable. The three-term extrapolation seems to have
stabilized at a binding energy of 
0.001 35 hartree. The two-

term binding energy is slightly smaller but does seem to be
approaching the three-term estimate. The one-term estimate
of �E�� is also absolutely bound, although its binding energy
is somewhat smaller. The precise estimates of �E�� evaluated
at J=14 for the different extrapolations are given in Table I.

With a very small binding energy it is desirable to look at
the areas of uncertainty in the model and computation to
determine whether they could invalidate the prediction of
binding. The impact of variations in the core polarization
potentials have been discussed previously �10�, and are un-
likely to invalidate the prediction of the bound state.

The lack of completeness in the finite dimension radial
basis is also not an issue since this is expected to lead to the
binding energy being underestimated. Previous CI investiga-
tions have revealed that accurate prediction of the �EJ en-
ergy increments required a larger basis as J increases
�14,23�. This results in the typical CI partial wave expansion,
with a fixed dimension radial basis for the different L values,
having an inherent tendency to underestimate the binding
energy �14,23�. There will be more discussion about this
point later.

The choice of Lint=3 leads to some underestimation in the
binding energy. Table I gives the energy for the J=14, Lint
=2 calculation. A one-term form of Eq. �11� is used to ex-
trapolate the J=14 energy to the Lint→� limit. The resultant
e+Ca energy was E=−0.683 884 76 hartree, a decrease of
0.000 32 hartree. Adding this to the three-term �E�� energy
would result in a total binding energy of ��=0.001 67 har-
tree, an increase of about 24%. This energy can be regarded
as giving a better estimate than 0.001 35 hartree.

The spin-averaged valence annihilation rate is the most
important of the other expectation values listed in Table I.
The convergence in J is even worse than the energy since the
successive increments to � scale as 1 /J2 as J increases. The
extrapolation to the J→� limits were done using a series
almost the same as Eq. �11�, but with the first term starting as

TABLE I. Results of CI calculations for the e+Ca 2Po state as a function of J, and for Lint=3. The total number of configurations is
denoted by NCI while the number of electron and positron orbitals are denoted by Ne and Np. The three-body energy of the state, relative to
the energy of the Ca2+ core, is given in hartree. The threshold for binding is −0.686 286 53 hartree, and ��J gives the binding energy against
dissociation into Ps+Ca+�4s�. The mean electron-nucleus distance �re� and the mean positron-nucleus distance �rp� are given in units of a0.
The ��v� and ��c� columns give the valence and core annihilation rates, respectively �in units of 109 s−1�. The entries in the row labeled 14*

were computed with Lint=2. The extrapolated results used Eq. �11� to estimate the J→� corrections. The largest values of �X�J were used
in the extrapolations.

J Ne Np NCI �E�J ��J �re� �rp� ��c� ��v�

10 158 154 576184 −0.67981518 −0.00647135 4.70225 7.62604 0.0062905 0.655314

11 172 168 650860 −0.68106444 −0.00522209 4.74800 7.63988 0.0061615 0.705043

12 186 182 725536 −0.68207134 −0.00421520 4.78940 7.66182 0.0060370 0.749092

13 200 196 800212 −0.68289035 −0.00339618 4.82683 7.68815 0.0059205 0.788275

14 214 210 874888 −0.68356185 −0.00272468 4.86006 7.71578 0.0058158 0.823311

14* 214 210 556192 −0.68313606 −0.00315047 4.86933 7.74778 0.0056885 0.816812

J→� extrapolations

one-term Eq. �11� −0.68648706 0.0002005 5.00481 7.83614 0.005359 1.31422

two-term Eq. �11� −0.68739784 0.0011113 5.08759 7.96357 0.005079 1.41897

three-term Eq. �11� −0.68763826 0.0013517 5.11457 8.02355 0.005021 1.42395
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FIG. 1. The binding energy �units of hartree� of the 2Po state of
e+Ca as a function of J. The directly calculated energy is shown as
the solid line while the J→� limits using Eq. �11� with one, two, or
three terms are shown as the dashed lines. The Ca+�4s�+Ps�1s�
dissociation threshold is shown as the horizontal solid line.
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A� / �J+1/2�2. The running estimates of ���� are shown in
Fig. 2. The estimate using three-terms in Eq. �11� should be
the best. However, the three-term curve in Fig. 2 shows fluc-
tuations for J�10 that are caused by the imprecision in the
eigenvector obtained from the Davidson algorithm. Similar
fluctuations �although smaller in magnitude� were present in
an investigation of the convergence of the electron-electron 

function for the helium ground state �23�.

The trends shown in Fig. 2 indicate that a converged cal-
culation would give an annihilation rate of �
1.5
	109 s−1. The large value of the annihilation rate suggests
that a large fraction of the wave function consists of the
positron attached to the electron in a Ps�1s� cluster.

Table I also gives other expectations such as the mean
positron and electronic distances, and the core annihilation
rate. The J→� limits are once again computed using an
asymptotic series. The leading term of the asymptotic series
for these other operators have not yet been established by
perturbation theory, but a leading-order term of
A / �J+1/2�4 is assumed to be valid in the present analysis.
For the most part the J→� corrections lead to 5% changes
in the expectation values.

The mean positron radius, �rp� is estimated to be about
8.0a0. The system is compact despite its small binding en-
ergy �the e+Ca 2Se ground state with a binding energy ten
times larger has �rp�
6.9a0 �27��. The large r form of the
wave function must have a Ca+�4s�+Ps�1s� structure with
the Ps�1s� center of mass being in an L=1 state with respect
to the residual ion. The centrifugal barrier associated with the
nonzero angular momentum acts to confine the positron
probability distribution.

The electron and positron probability densities are de-
picted in Fig. 3. As expected, the peak of positron density is
outside the electron density peak. One expects the electron
and positron densities to approach each other as r→� since
the lowest energy breakup is into the Ca++Ps�1s� channel.
However, the positron density is significantly larger than the
electron density at r=12a0. This indicates a considerable de-
gree of polarization in the Ps cluster which seems to be ori-
entated with the electron closest to the nucleus.

IV. THE 2Po STATE OF e+Sr

Since the ionization potential of strontium is 0.2093 har-
tree �28�, the lowest-energy dissociation channel is that of
Sr+�5s�+Ps�1s�. The calculations carried out on the e+Sr 2Po

state �with the two electrons in a spin singlet state� were very
similar to those discussed for e+Ca. The only difference in
the dimensionality was that there was an additional �=2
electron orbital. Even the exponents of the Laguerre orbitals
were almost identical.

The energies for the sequence of calculations are given in
Table II. The current sequence of calculation does not result
in binding even when the J→� extrapolation are included.
Figure 4 shows the running estimates of ��� as a function of
J. The three-term extrapolation asymptotes to an energy that
is 0.001 77 hartree away from binding. The system still re-
mains unbound when the Lint→� correction of 0.000 37 har-
tree is added to the energy.

An unbound system would be expected to have an ���

that asymptotes to zero. The present calculation does not
asymptote to zero, and this indicates that the basis is not
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FIG. 2. The annihilation rate �in units of 109 s−1� of the 2Po state
of e+Ca as a function of J. The directly calculated annihilation rate
is shown as the solid line while the J→� limits using Eq. �11� with
one, two, or three terms are shown as the dashed lines.
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FIG. 3. Electron and positron probability densities (��r�) as a
function of r. The electron density is normalized to 2 while the
positron density is normalized to 1.

TABLE II. Results of CI calculations for the 2Po state of e+Sr
for a series of J, with fixed Lint=3. The threshold for binding is
−0.655 349 76 hartree, and ��J gives the binding energy against
dissociation into Ps+Sr+�5s�. Other aspects of the table are similar
to those of Table I.

J Ne Np NCI �E�J ��J

10 159 154 590590 −0.64373343 −0.01161633

11 173 168 666834 −0.64528075 −0.01006902

12 187 182 743078 −0.64653069 −0.00881908

13 201 196 819322 −0.64755027 −0.00779949

14 215 210 895566 −0.64838906 −0.00696071

14* 215 210 576870 −0.64790288 −0.00744688

J→� extrapolations

one-term Eq. �11� −0.65204302 −0.0033067

two-term Eq. �11� −0.65322302 −0.0021267

three-term Eq. �11� −0.65356839 −0.0017714
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large enough to properly represent the Sr++Ps�1s� dissocia-
tion channel at =0. Usage of a finite dimension, and con-
sequently a finite-range basis results in the diagonalization of
the Hamiltonian in a soft sided box. The question of whether
enlargement of the radial basis would result in a bound state
is addressed later.

V. POSITRON BINDING TO THE Be 3Po STATE

The ionization potential of the Be�3Po� state is 6.598 eV
and, therefore, it had been earlier identified as a state that
could possible bind a positron �1,29,30�. The 2s2p 3Po states
are metastable with the 3P2

o and 3P0
o states having lifetimes

exceeding an hour �31,32�. Recently, a large CI calculation
�334 248 configurations� attempted to determine whether a
positron could be bound to the Be�3Po� state �29�. The results
of this calculation are best described as inconclusive. There
are two different spin states of the positronic complex,
namely 2Po and 4Po, due to the triplet nature of the two
electron parent, and the annihilation rates reported in Table
III are spin averaged.

In the present calculation the dimension of the radial basis
has been increased to 14 Laguerre-type orbitals �LTOs� per �
and the results of the CI calculations are tabulated in Table
III as a function of J. Once again, none of the explicit CI
calculations give an energy that is below the Be+�2s�
+Ps�1s� threshold. The largest calculation gave an energy
that was 0.001 62 hartree away from threshold.

A demonstration of binding is again reliant on the
asymptotic analysis. Figure 5 shows the running estimates of
��� as a function of J. Only the three-term extrapolation
gives evidence of binding, and even here binding is not
achieved until J=12. The final three-term estimate of the
binding energy is only 8.64	10−5 hartree, i.e., 2.4 meV.

System limitations prevented us from performing a larger
calculation, and thus establishing more firmly the stability of
e+Be�3Po�. It is worth noting that the inclusion of the two
extra LTOs per � �from the calculation in �29�� was respon-
sible for increasing ���� at J=12 by 0.000 151 hartree.

The difference between the Lint=2 and Lint=3 energies is
very small, 2.76	10−5 hartree. The two electrons are in a
triplet state and the energy is known to converge as
AE / �J+1/2�6 for such configurations �33�. The Lint→� en-
ergy correction was 9.1	10−6 hartree. When this was added
to ��� the resultant binding energy was increased to 9.55
	10−5 hartree, i.e., 2.6 meV.

Even though the binding energy is very small, the reliabil-
ity of the prediction is high since the underlying model po-
tential is very accurate. The main area of uncertainty in the
model potential lies in the definition of the core-polarization
potential. However, the Be2+ core polarizability of 0.0523a0

3

�12,17� is very small and therefore variations in the polariza-
tion potential will not have much of an impact on the ener-
gies. The polarization potential used in the present work is
capable of reproducing the neutral Be static dipole and quad-
rupole polarizabilities to an accuracy of 0.1% �17�.

The �rp�� and ��c�� estimates are not that reliable. The
typical behavior of �rp�J for systems with an A+Ps dissocia-
tion limit �where A is a single electron atom or positive ion�
is for �rp�J to initially decrease as J increases from 1, and
then to start increasing again at some higher J value �this
behavior is seen in the 2Se states of e+Ca, PsH, CuPs, and
e+Sr �12,27,34��. Since �rp�J is still decreasing at J=14 it
seems probable that �rp�J is not yet in the asymptotic region.
The core annihilation is determined by the radial distribution
of the positron, and this affects the reliability of ��c��.

VI. ZERO-POINT ENERGY CORRECTIONS

Since the basis being used is of finite dimension, it also
has a finite range. Consequently, the diagonalization of the
Hamiltonian is performed in what is effectively a soft-sided
box which will have a zero-point energy �ZPE�. It is neces-
sary to determine this ZPE in order to obtain better estimates
of the binding energies, and in the case of e+Sr, determine
whether the system is bound or not. We note that Dzuba et
al. �19,35� examined the application of ZPE energy correc-
tions to e+Cu and e+Ag.

The ideas used here are based in effective range theory
and quantum defect theory �36–38�. Essentially, the impact
of the interactions that lead to binding on the large r form of
the wave function can be represented by a couple of short-
range parameters. Once these parameters have been deter-
mined, it is a simple matter to extend the range of the wave
function to �.

The first step in the procedure was to determine the effec-
tive range of the asymptotic part of the CI basis. This is done
by an initial CI calculation of the electron and positron basis
sets. The complete single particle orbital basis, as used for
the three-particle CI calculation, is used to form a two-
particle electron-positron basis coupled to have L=1. The
basis is diagonalized for the free positronium Hamiltonian

HPs = −
1

2
�0

2 −
1

2
�1

2 −
1

r01
. �12�

The resulting energy, which is computed using an asymptotic
analysis to obtain the J→� limit, is termed E0.
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FIG. 4. The binding energy of the e+Sr system as a function of
J. The directly calculated energy is shown as the solid line while the
��� limits using Eq. �11� are shown as the dashed lines. The
Sr+�5s�+Ps�1s� dissociation threshold is at ��=0.
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The next step involved treating Ps as a point particle with
mass M =2me. The L=1 Hamiltonian for the free Ps center of
mass,

H = −
1

2M
�M

2 , �13�

was diagonalized in a hard-walled finite-sized cavity of ra-
dius R to give Ebox. The box radius Rbox was then tuned until
Ebox=E0+0.250.

The third step involved using a Hamiltonian with a semi-
empirical model potential to represent the interaction of Ps in
an L=1 state with the atomic ion. This Hamiltonian was
defined as

Hmp = −
1

2M
�M

2 −
36R2

2�R6 + 66�
−

V0

1 + exp�2r − 14�
. �14�

This potential has the correct long-range interaction between
positronium and a charged particle since the polarizability of

the Ps ground state is 36a0
3. The energy expectation of this

Hamiltonian is denoted Emp and the wave function �mp. The
strength of the short-range part of the interaction, V0 was
tuned until the energy shift of the semiempirical Hamil-
tonian, i.e., E1−Ebox, was the same as CI−E0, where CI is
the binding energy of the three-body positronic atom.

The rather complicated form of Eq. �14� was adopted to
ensure the radial expectation of the model potential wave
function ��mp �R ��mp�=Rmp was roughly compatible with
that of the three-body CI wave function. Calculations with
simpler forms of Eq. �14� �i.e., there was no short-range term
and the cutoff parameter in the polarization potential was
tuned to the energy� gave Rmp
6 a0 which was very small
for such a weakly bound Ps complex. The Ps radial expecta-
tion values for the CI wave function was taken as

RPs =
1

2
�rp� +

1

2
�2�re� − �rion�� , �15�

where �rion� is the mean electron radius of the one electron
ion that binds the Ps, e.g., Ca+�4s�. The data in Tables I–III
gave RPs
9 a0.

Once each model potential was constructed, it was a
simple matter to determine the energy as R→�. The results
of these calculations upon e+Ca, e+Sr, and e+Be are summa-
rized in Table IV. The binding energy of the e+Ca 2Po state is
now 0.002 60 hartree, i.e., 71 meV. The very small binding
energy of the e+Be 2Po state has increased to 0.001 75 har-
tree, i.e., 42 meV. The ZPE correction is largest for e+Be
since this is the orbital basis with the smallest radial exten-
sion. The e+Sr 2Po state becomes bound, with a binding en-
ergy of 0.000 20 hartree �5.4 meV� once the ZPE analysis is
performed.

The uncertainties associated with this process are of the
order of 40%. Numerical experimentation with other forms
of the short-range potentials gave significant variations in the
final energy. The quoted uncertainty is a reflection of those
variations. States with a small Rmp tend to give a smaller
ZPE energy correction than states with a larger Rmp. The

TABLE III. Results of CI calculations for e+Be�3Po� for a series of J, with fixed Lint=3. The three-body energy of the e+-Be�3Po� system,
relative to the energy of the Be2+ core, is denoted by �E�J �in hartree�. The threshold for binding is −0.919 208 15 hartree, and ��J gives the
binding energy against dissociation into Ps+Be+�2s�. Other aspects of the table design identical to Table I.

J Ne Np NCI �E�J ��J �re� �rp� �c �v

10 155 154 546252 −0.91631571 −0.00289245 3.04262 9.48204 0.0011911 0.294592

11 169 168 617988 −0.91671760 −0.00249055 3.08253 9.30895 0.0011977 0.324838

12 183 182 689724 −0.91705780 −0.00215035 3.11971 9.18345 0.0011985 0.352413

13 197 196 761460 −0.91734642 −0.00186174 3.15408 9.09058 0.0011960 0.377551

14 211 210 833196 −0.91759179 −0.00161636 3.18556 9.02154 0.0011915 0.400439

14* 211 210 515284 −0.91756437 −0.00164378 3.18605 9.02290 0.0011903 0.400400

J→� extrapolations

one-term Eq. �11� −0.91866071 −0.0005474 3.32270 8.72078 0.001172 0.72114

two-term Eq. �11� −0.91912365 −0.0000850 3.41455 8.73278 0.001130 0.82847

three-term Eq. �11� −0.91928460 0.0000865 3.46732 8.78791 0.001103 0.81860
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〈ε〉∞ 3-term2Po e+Be(3Po)

J

FIG. 5. The binding energy �in hartree� of the 2Po state of e+Be
as a function of J. The directly calculated energy is shown as the
solid line while the J→� limits are shown as dashed lines. The
Be+�2s�+Ps�1s� dissociation threshold is shown as the horizontal
solid line.
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system that was most affected by these uncertainties was
e+Sr, which was unbound for some tuning potentials.

VII. MOTIVATION IN TERMS OF THE (m2+, 2e−, e+)
SYSTEM

The �m2+, 2e−, e+� system can be regarded as an analog of
the e+A system where A corresponds to a member of the
group II or IIB iso–electronic series �39,40�. In particular,
any group II or IIB atoms is described by the �m2+, 2e−�
system with the same ionization potential. It is instructive to
look at the stability properties of the 2Po symmetry of the
�m2+, 2e−, e+� system.

Table V gives the lowest-energy fragmentation channels
for the �m2+, 2e−, e+� system as a function of the
Xm=m2+ /me mass ratio. The L=1 angular momentum is car-
ried by the relative motion of the different two-body breakup
channels.

At the smallest values of Xm, namely, Xm�0.006 039, the
lowest energy dissociation channel is that into the m2++Ps−

fragments. However, the attractive Coulomb interaction be-
tween the two fragments can support an infinite number of
electronically stable bound states. Accordingly, one con-
cludes that the �m2+, 2e−, e+� system has a 2Po bound state
for Xm�0.006 039.

An estimate of the binding energy of the lowest energy
2Po state can be deduced by regarding the Ps− fragment as a
negative point charge of mass 3me �and internal energy equal
to E�Ps−��. The binding energy of the m2+ particle to the Ps−

system in a 1s or 2p state is given by

1s 
 2
3Xm

3 + Xm
; Xm � 0.006 039, �16�

2p 

1

2

3Xm

3 + Xm
; Xm � 0.006 039. �17�

At values of Xm above 0.006 039, the lowest-energy dis-
sociation channel is �m2+ ,e−�+Ps. The energy of the m2+-Ps−

system relative to the dissociation limit is

 

1

2

3Xm

3 + Xm
+ 0.012 005 07 −

2Xm

1 + Xm
. �18�

The binding energy given by Eq. �18� is positive for Xm
�0.008. This critical value of Xm corresponds to a �m2+, 2e−�
ionization energy of about 0.012 hartree. So although there is
a range of Xm admitting a stable 2Po state, the range is too
restricted to explain the stability of the e+Ca 2Po state.

The �m2+, 2e−� system, however, is not an exact analog of
the calcium atom. The chief difference is that the 4p state of
Ca+ is much closer in energy to the Ca+ 4s ground state than
the 2p state of �m2+, e−� is to the �m2+, e−� 1s ground state. A
crude correction can be made by replacing Eq. �18� with

 

3

2

3Xm

3 + Xm
+ 0.012 005 07 −

2Xm

1 + Xm
. �19�

The prefactor of 3 /2 arises due to the fact that the ratio of the
4s :4p energies of Ca+ is almost 3 /4. The binding energy
given becomes negative for Xm�0.024. The range of bind-
ing has been extended, but the ionization energy of the �m2+,
2e−� system with Xm=0.024, namely 0.036 hartree, is still
much smaller than that of Ca, 0.225 hartree.

In qualitative terms, this extended range indicates the
mechanism for binding. The relatively small energy penalty
associated with one of the electrons having nonzero angular
momentum means that it does not act to severely inhibit the
formation of the Ps− cluster which is believed to be the struc-
ture responsible for binding positrons to divalent atoms with
small ionization potentials �39�. It is noted that the 3d level
of Ca+ is more tightly bound than the 4p level and configu-
rations involving the 3d orbital might play some part in bind-
ing the positron.

VIII. PERSPECTIVES FOR EXPERIMENTAL DETECTION

The possibilities for experimental verification are best il-
lustrated by reference to the energy-level diagram of e+Ca
and related species shown in Fig. 6. One possible method
would be by collision between a Ps beam and neutral cal-
cium. The following reactions involving charge transfers are
possible �the binding energy of e+Ca is taken as 0.019 12
hartree �27��

Ps + Ca = Ps + Ca E � 0, �20�

Ps + Ca = e+Ca�2Se� + e−; E � 5.619 eV, �21�

Ps + Ca = e+Ca�2Po� + e−; E � 6.041 eV, �22�

Ps + Ca = Ca+ + e− + Ps; E � 6.114 eV, �23�

Ps + Ca = Ca− + e+; E � 6.781 eV, �24�

TABLE IV. The key parameters for the zero-point energy cor-
rection analysis described in the text. The entry in the R→� row
gives the final energy with the ZPE energy correction. The uncer-
tainty in R→� assumes a ±40% uncertainty in the ZPE correction.

Parameter e+Ca e+Sr e+Be

E0+0.250 0.0184 0.0180 0.0204

CI 1.67	10−3 −1.40	10−3 9.55	10−5

Rbox 16.54 16.75 15.74

V0 0.04843 0.04284 0.04607

R→� 2.60�24�	10−3 20�64�	10−5 1.55�58�	10−3

TABLE V. The �m2+ ,2e− ,e+� system dissociation limits and en-
ergies for different ranges of the Xm=m2+ /me mass ratio. These
limits and mass ratios do not depend on the total angular momen-
tum of the system.

Dissociation
products

Threshold
energy

Xm=m2+ /me

mass limits

�m2+ ,2e−�+e+ E�m2+ ,2e−� Xm�0.2907

�m2+ ,e−�+Ps −2Xm

1+Xm
−0.25 0.006 039�Xm�0.2907

m2++Ps− −0.262 005 07 Xm�0.006 039
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Ps + Ca = Ca + e− + e−; E � 6.803 eV. �25�

The key to a successful experiment would be to discriminate
between electrons ejected during the formation of positronic
calcium and those formed by more mundane reactions. The
residual electron left after the formation of positron calcium
would have a well-defined energy, while those arising from
the ionization of calcium, or fragmentation of Ps would have
an energy spread.

Existing technology for positronium beams gives beams
with a minimum energy of about 10 eV and an energy spread
of about 6 eV full width at half maximum �FWHM� �41�.
The existing energy resolution would make the unambiguous
detection of the 2Se state of e+Ca questionable. Improve-
ments in beam technology would be needed to detect the
formation of the 2Se state. One would look to lower the mini-
mum energy to 5 eV and reduce the energy width of the
beam by a factor of 5–10. Other positronic atoms amenable
to detection by this method would be those with the larger
binding energies, e.g., e+Mg and e+Sr �27�. It would be more
difficult to detect the 2Pe state with this method since it has
an energy threshold that lies within 0.1 eV of the Ca ioniza-
tion threshold.

The existence of the 2Po e+Ca state also means that opti-
cal detection of positronic calcium is now a possibility. A
dipole transition is allowed between the 2Se and 2Po states so
detection of a photon with an energy of approximately
0.42 eV �the energy of the e+Ca ground state relative to the
Ca2+ core is −0.705 216 hartree �27�� could be used to flag
the formation of positronic calcium.

IX. SUMMARY

The present calculations indicate that positronic calcium
has a 2Po excited state with a binding energy of 45 meV.
While the present prediction of binding is reliant on an
asymptotic analysis to estimate the J→� limit of the orbital
basis, the evidence in support of the existence of the excited
state is very strong. Indeed, making allowance for ZPE en-
ergy corrections gave an estimated binding energy of
71 meV.

The explicit calculation of the 2Po state of e+Sr did not
give any conclusive evidence of binding. Incorporating a

ZPE correction resulted in a bound state with a binding en-
ergy of 5.4 meV. However, the uncertainties associated with
the ZPE correction mean that no definite conclusion about
binding can be made.

The binding energy of the 2Po state of e+Be is very small,
being only 2.6 meV. The position of this state with respect to
other states of Be, Be−, and the Be++Ps�1s� threshold is
shown in Fig. 7. The small binding energy means that the
electronic stability of this state is less firmly established than
for e+Ca. However, the small core polarizability of 0.0523a0

3

means the wave function is less sensitive to imperfections in
the exact definition of the polarization potential. Incorporat-
ing the ZPE correction increased the binding energy to an
estimated value of 42 meV. It would take only a modest
increase in the calculation size �say from 14 LTOs to 16
LTOs per �� to firmly establish the electronic stability of this
state.
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APPENDIX: EVALUATION OF THE HAMILTONIAN

The Hamiltonian can be written most generally as the sum
of three one-body operators and three two-body operators:

H = T + V = T1 + T2 + T0 + V12 + V10 + V20. �A1�

1. ONE-BODY OPERATORS

The Hamiltonian matrix elements for the one-body opera-
tors TIJ can be written

TIJ = ��a�b�LS�A�p;LTST�T��c�d�L�S��A�q;LTST�

= 2
p,q
L,L�
S,S�NabNcd�
b,d
�a,�c
��a�T1��c�

+ 
a,c
�b,�d
��b�T2��d�
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+ �− 1��c+�d+L�+S�
b,c
�a,�d
��a�T1��d�

+ �− 1��a+�b+L+S
a,d
�b,�c
��b�T2��c��

+ 
a,c
b,d
L,L�
�p,�q
��p�T0��q� . �A2�

The two phase factors, arising from electron antisymmetriza-
tion have the same phase due to the fact that L=L� must be
true for the scalar one-body operators, T1 and T2, to have
nonzero matrix elements.

2. THE TWO-BODY OPERATORS

The two-body operators consist of one electron-electron
operator and two electron-positron operators. The V12
electron-electron matrix element is easily written by treating
the positron as a spectator, e.g.,

VIJ = ��a�b�LS�A�p;LTST�V12��c�d�L�S��A�q;LTST�

= 
p,q
L,L�
S,S�NabNcd���a�b�LS��V12��c�d�L�S���

+ �− 1��c+�d+L�+S���a�b�LS��V12��d�c�L�S���� .

�A3�

These matrix elements are reduced to using standard tech-
niques, e.g.,

��a�b�L��V12��c�d�L�� = �
k

ck��a,�b,�c,�d,L�Rk�a,b,c,d� ,

�A4�

where the radial integral is

Rk�a,b,c,d� =� r1
2dr1� r2

2dr2�a�r1��b�r2�

	
r�

k

r�
k+1�c�r1��d�r2� , �A5�

and r�=min�r1 ,r0� and r�=max�r1 ,r0�. The angular factor
is

ck��a,�b,�c,�d,L� = �− 1��a+�c+L�â�b̂�ĉ�d̂la lb L

ld lc k
�

	��a k �c

0 0 0
���b k �d

0 0 0
� . �A6�

The electron-electron interaction conserves the intermediate
two-electron L and S.

The V10 and V20 operators have a more complicated struc-
ture. The two-electron spin S is conserved �i.e., S=S�� but
the electron-positron operator can change the two-electron
angular momentum. Adopting the notation,

��a�b�LS��p;LTST�V10��c�d�L�S��q;LTST�

= �abLp�V10�cdL�q� . �A7�

The matrix element for V10 is written

�V10� = 
bdNabNcd�abLp�V10�cdL�q�

+ �− 1��c+�d+L�+S
bcNabNcd�ab�L��p�V10�dcL�q�

+ �− 1��a+�b+L+S
adNabNcd�baLp�V10�cdL�q�

+ �− 1��a+�b+L+�c+�d+L�
acNabNcd�baLp�V10�dcL�q� .

�A8�

The V20 operator gives an expression identical to �V10� since
the wave function is antisymmetric with respect to electron
interchange.

The reduction of the first term of Eq. �A8� is

�abLp�V10�cdL�q�

= �
k

Rk�a,p,c,q�
bd

	 ��a�b�LS��p;LTST�C1
k · C0

k��c�d�L�S��q;LTST� ,

�A9�

where Rk�a , p ,c ,q� is the radial integral. The angular integral
is

��a�b�LS��p;LTST�C1
k · C0

k��c�d�L�S���q;LTST� = 
S,S�
b,d�− 1��b+�p+�q+LT
L̂L�̂�â�ĉ�p̂�q̂ L �p LT

�q L� k
��a L �b

L� �c k
�

	��a k �c

0 0 0
���p k �q

0 0 0
� . �A10�

Reduction of the other terms of Eq. �A8� is trivial given the reduction of the first term.
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