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Local available energetics of multicomponent
compressible stratified fluids
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We extend the local theory of available potential energy (APE) to a general multicompo-
nent compressible stratified fluid, accounting for the effects of diabatic sinks and sources.
As for simple compressible fluids, the total potential energy density of a fluid parcel
is the sum of its available elastic energy (AEE) and APE density. These respectively
represent the adiabatic compression/expansion work needed to bring it from its reference
pressure to its actual pressure and the work against buoyancy forces required to move
it from its reference state position to its actual position. Our expression for the APE
density is new and derived using only elementary manipulations of the equations of
motion; it is significantly simpler than existing published expressions, while also being
more transparently linked to the relevant form of APE density for the Boussinesq and
hydrostatic primitive equations. Our new framework is used to clarify the links between
some aspects of the energetics of Boussinesq and real fluids, as well as to shed light on
the physical basis underlying the choice of reference state(s) in local APE theory.

1. Introduction

The concept of available potential energy (APE), first developed by Lorenz (1955)
and Margules (1903), aims to quantify the part of the total potential energy (PE) of
a stratified fluid that is available for (reversible) conversions with kinetic energy (KE).
In Lorenz’s view, any realisable state of a stratified fluid is viewed as an adiabatic re-
arrangement of some notional rest state, whose background potential energy PEr is ‘inert’
or ‘unavailable’ in some sense, thus motivating the partition PE = APE + PEr. From
a fundamental viewpoint, the concept of APE provides a natural solution to a number
of outstanding problems plaguing the standard PE. Indeed, in contrast to the latter:
1) APE is independent of the arbitrary reference level defining geopotential height and
of the unknowable constants generally entering the construction of internal energy; 2)
APE is naturally positive definite and at least quadratic in perturbations, thus allowing
it to be meaningfully partitioned into mean and eddy components; 3) APE does not
suffer from the ‘cooling’ paradox, which occurs when a given forcing acts as a sink of
potential energy (such as high-latitude cooling in the oceans), but nevertheless results
in the creation of kinetic energy owing to such a forcing being a source of APE; 4) the
APE budget naturally yields a prediction for the thermodynamic efficiency of the system
considered that appears to be physically much more meaningful than that predicted
by the entropy budget, as discussed by Tailleux (2010). This is particularly important
for understanding how to define and quantify the power input due to surface buoyancy
fluxes in the ocean for instance. It is no surprise, therefore, that Lorenz APE theory
has been and still primarily remains the main tool for discussing the energy cycle of the
atmosphere and oceans, e.g., Peixoto & Oort (1992)
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2 R. Tailleux

A longstanding difficulty with Lorenz APE theory, however, is that it is only global in
nature. This is an important drawback complicating its use in local or regional studies
of energetics, which has historically prompted much research effort into identifying a
suitable local extension, the main attempts being reviewed in Tailleux (2013a). The
most successful attempts, and most clearly related to Lorenz APE theory, are the local
frameworks proposed by Andrews (1981) for a simple compressible stratified fluid and
by Holliday & McIntyre (1981) for a Boussinesq fluid with a linear equation of state;
these attempts, along with other related older formulations, were subsequently unified
within the context of Hamiltonian theory by Shepherd (1993). Yet, despite having been
established over 35 years ago, it is only relatively recently that local theories of APE
have started to receive attention in the context of stratified turbulence (Roullet & Klein
2009; Molemaker & McWilliams 2010; Scotti & White 2014; Winters & Barkan 2013),
ocean energetics (Scotti et al. 2006; Tailleux 2013b; Roullet et al. 2014; Saenz et al.

2015; Zemskova et al. 2015; MacCready & Giddings 2016), and atmospheric energetics
(Kucharski 1997; Kucharski & Thorpe 2000; Peng et al. 2015; Novak & Tailleux 2018).
Despite all recent advances and increased interest, however, a satisfactory generalisa-

tion of Andrews (1981)’s local APE theory to a multicomponent compressible stratified
fluid accounting for diabatic sources and sinks has remained out of reach. Yet, such a
generalisation is essential for the development of any rigorous theoretical understanding
of the role played by salinity or humidity, as well as of turbulent mixing, in the oceanic
and atmospheric energy cycles. Bannon (2003) attempted such a generalisation by means
of Shepherd (1993)’s Hamiltonian framework, but his theory only pertains to an ideal
fluid whose constituents are all independent of horizontal position in the reference state,
thus excluding the possibility of density compensation (Tailleux et al. 2005), a key aspect
of real fluids. Recently, Peng et al. (2015) have proposed a local APE theory for a moist
atmosphere, but it is not exact and limited to the anelastic approximation. How to
achieve such a generalisation by means of elementary manipulation of the full Navier-
Stokes equations is the main aim of the present paper, and is derived in Section 2.
Section 3 discusses the effects of diabatic sources and sinks and the links between the
energy conversions taking place in real and Boussinesq fluids. Section 4 reviews and
discusses the physical issues underlying the construction of the reference state(s) in local
APE theories. Section 5 summarises and discusses the results.

2. Available energetics of a stratified compressible binary fluid

We start by revisiting Andrews (1981)’s construction of potential energy (PE) density
so as to generalise it easily to multi-component compressible stratified fluids. As in
Andrews (1981) or Bannon (2003), we define the PE density of a stratified fluid as the
sum of its Available Elastic Energy (AEE) density and APE density. As showed below,
this can be achieved without loss of generality by restricting attention to the case of a
binary fluid, that is, one whose equation of state for density depends on composition S
(referred to as ‘salinity’ hereafter) in addition to specific entropy η and pressure p, all
quantities being functions of spatial position (x, y, z) and time t. A full set of governing
equations in Earth rotating frame is:

ρ
Dv

Dt
+ 2Ω × ρv +∇p = −ρ∇Φ+ ρF, (2.1)

∇ · v =
1

υ

Dυ

Dt
, (2.2)

D(η, S)

Dt
= (η̇, Ṡ), (2.3)
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υ = υ(η, S, p). (2.4)

Here, v = (u, v, w) is the velocity field, Ω is Earth rotation vector, Φ(z) = g0z is the
geopotential (g0 is gravitational acceleration), z is height increasing positively upwards,
υ = 1/ρ is the specific volume, ρ is density, F is frictional force, while η̇ and Ṡ represent
diabatic sources of entropy and salt.
We first address the case of an ideal fluid, thus setting F = η̇ = Ṡ = 0 in (2.1-2.4). In

this case, a standard expression for the total energy budget is:

ρ
D

Dt

(
v2

2
+ Φ+ e

)

+∇ · (pv) = 0, (2.5)

where e = e(η, S, p) = h(η, S, p) − pυ is the specific internal energy and h the specific
enthalpy. In order to obtain an expression for the PE density of the fluid considered, one
first needs to identify suitably defined reference specific volume υ0(z) and pressure p0(z)
profiles functions of z only and in mechanical (hydrostatic) equilibrium:

υ0(z)
∂p0
∂z

(z) = −
∂Φ

∂z
(z). (2.6)

A discussion of the physical issues pertaining to the construction of the reference state
is deferred to Section 4. The next key step is to assign to each fluid parcel a reference
position zr(η, S) in that reference state. This can be done most generally by regarding zr
as the particular depth at which the specific volume of the fluid parcel moved adiabatically
to that level matches that of the reference state. Mathematically, this is equivalent to
defining zr as a solution of the so-called Level of Neutral Buoyancy (LNB) equation

υ(η, S, pr) = υ0(zr), (2.7)

similarly as in Tailleux (2013b), where pr(η, S) = p0(zr(η, S)). Depending on how the
reference specific volume υ0(z) is defined, Eq. (2.7) may have no solution, one solution,
or even multiple solutions. In the former case, zr should be defined either at the top or
bottom of the domain depending on the buoyancy of the fluid parcel in the actual state
(Tailleux 2013b). The latter case is rarely encountered in the ocean (Saenz et al. 2015)
but is commonplace in a moist atmosphere (Wong et al. 2016; Harris & Tailleux 2018).
How to select the solution in this case is still poorly understood, however.
Following Andrews (1981), we next use the following identity

∇ · (p0v) = v · ∇p0 −
p0
ρ

Dρ

Dt
= ρ

D

Dt

(
p0
ρ

)

, (2.8)

to rewrite the standard energy budget (2.5) in terms of the perturbation pressure p− p0
as follows:

ρ
D

Dt

(
v2

2
+ B

)

+∇ · [(p− p0)v] = 0, (2.9)

where the quantity

B(z, S, η, p) = Φ(z) + e(η, S, p) +
p0(z)

ρ(η, S, p)
(2.10)

is a hybrid function of thermodynamic coordinates and height, reminiscent of the
non-kinetic energy part of the classical Bernoulli head. The introduction of B proves
determinant, for it turns out that the quantity

Π = B − B(zr, S, η, pr) = Φ(z)− Φ(zr) + e(η, S, p)− e(η, S, pr) +
p0(z)

ρ
−

pr
ρr

, (2.11)
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obtained as the difference between B and its value in the reference state naturally happens
to be positive definite and our sought-for PE density. The quantity Π + v2/2 is then
Shepherd (1993)’s ‘pseudo-energy’, and obeys the following conservation law:

ρ
D

Dt

(
v2

2
+Π

)

+∇ · [(p− p0)v] = 0. (2.12)

To prove its positive definite character, it is useful to rewrite Π in terms of the enthalpies
h(η, S, p) = e(η, S, p) + p/ρ and h(η, S, pr) = e(η, S, pr) + pr/ρr as follows:

Π = Φ(z)− Φ(zr) + h(η, S, p)− h(η, S, pr) +
p0(z)− p

ρ
, (2.13)

as this naturally yields the decomposition Π = Π1 +Π2 where

Π1 = h(η, S, p)− h(η, S, p0(z)) +
p0(z)− p

ρ
, (2.14)

Π2 = Φ(z)− Φ(zr)− h(η, S, pr) + h(η, S, p0(z)). (2.15)

The quantity Π1 is the so-called Available Elastic Energy (AEE) density previously
derived by Andrews (1981) or Bannon (2003), and may be rewritten as follows:

Π1 =

∫ p

p0(z)

[υ(η, S, p′)− υ(η, S, p)] dp′ =

∫ p

p0(z)

∫ p

p′

1

ρ2c2s
(η, S, p′′) dp′′dp′, (2.16)

where the identities dh = Tdη + µdS + υdp and υp = −(ρ2c2s)
−1 have been used. The

result Π1 > 0 follows from the ρ and cs being both strictly positive quantities. For small
pressure perturbation p′ = p−p0,Π1 reduces to the well known quadratic approximation:

Π1 ≈
(p− p0(z))

2

2ρ2c2s
(2.17)

as noted by Andrews (1981) and Shepherd (1993) among others. Physically,Π1 represents
the work required to bring the reference pressure p0(z) of a fluid parcel to its actual
pressure p by means of an adiabatic compression (p > p0) or expansion (p < p0). Andrews
(1981) argues that such a term vanishes in the incompressible limit cs → +∞, thus
justifying its absence in Boussinesq fluids.
The quantity Π2 is the APE density of the fluid and the only part of the PE density

generally retained in incompressible Boussinesq fluids. Physically, it is equivalent to
Andrews (1981)’sΠ2, but mathematically, Eq. (2.15) is actually much simpler. Moreover,
in contrast to Andrews (1981) or Bannon (2003)’s constructions, it does not require
the introduction of purely depth-dependent reference profiles for specific entropy and
salinity, which is overly restrictive in real fluids. In order to clarify the link between
the APE density of a compressible fluid with that of the Boussinesq or hydrostatic
primitive equations, we make use of (2.6) and of the change of variables p′ = p0(z

′),
dp′ = −ρ0(z

′)g0dz
′, to rewrite Π2 in the following mathematically equivalent ways:

Π2 = −

∫ z

zr

υ0(z
′)
dp0
dz

(z′) dz′ +

∫ p0(z)

p0(zr)

υ(η, S, p′) dp′

=

∫ p0(z)

p0(zr)

[υ(η, S, p′)− υ̂0(p
′)] dp′ = g0

∫ z

zr

[ρ(η, S, p0(z
′))− ρ0(z

′)]

ρ(η, S, p0(z′))
dz′, (2.18)

where υ̂0(p) = υ0(Z0(p)), Z0(p) being the inverse function of p0(z) satisfying p0(Z0(p)) =
p. Eq. (2.18) are classical expressions for the work against buoyancy forces required to
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move a fluid parcel from its reference position at pressure pr = p0(zr) to its actual position
at pressure p0(z) by means of an adiabatic and isohaline process. It is easily seen that the
APE density for a Boussinesq fluid derived by Holliday & McIntyre (1981) or Tailleux
(2013c) can be recovered: 1) by replacing the denominator ρ(η, S, p) in the last term of
(2.18) by the constant reference Boussinesq density ρ00; 2) by replacing everywhere the
reference pressure p0(z) by the Boussinesq pressure p00(z) = −ρ00g0z. As to the APE
density for a hydrostatic dry atmosphere discussed by Novak & Tailleux (2018), it is
simply recovered from the first term in (2.18) by replacing the upper bound p0 by the
hydrostatic pressure p itself. As a result, Tailleux (2013b)’s arguments may be used to
prove the positive definite character of Π , as well as its small amplitude approximation
Π2 ≈ N2

r (z − zr)
2/2, with N2

r given by

N2
r = −

g0
ρr

[
dρ0
dz

(zr) +
ρrg0

c2s(S, η, pr)

]

. (2.19)

Note here that in a binary or multi-component fluid, the possibility of density compen-
sation means that only the reference density and pressure profiles may be assumed to
be functions of z alone; all other quantities, including N2

r , must in general depend on
horizontal position as well. To conclude, let us remark that Π is ‘local’ only in the sense
of being definable at any location, since it possesses some degree of non-locality due to
being defined relative to a ‘globally-defined’ reference state. For this reason, Π is best
viewed as a sophisticated form of density variance, which — like other standard statistical
quantities such as ‘anomalies’ — is also nonlocal in some sense.

3. Energy conversions in presence of diabatic sinks and sources

We now turn to the issue of how diabatic sinks and sources of (η, S) affect the
evolution of the PE density. To that end, we re-introduce the diabatic terms (η̇, Ṡ) in the
equations for (η, S). Because the reference state may be altered by diabatic effects, we
assume from now on that the specific volume and pressure reference profiles υ0(z, t) and
p0(z, t) also depend on time (Winters et al. 1995). The LNB equation (2.7) thus becomes
υ[η, S, p0(zr, t)] = υ0(zr, t) and now defines zr = zr(η, S, t) as a time-dependent material
function of (η, S). Evolution equations for Π1 and Π2 are obtained by taking the material
derivatives of (2.14) and (2.15). Adding an evolution equation for the kinetic energy
Ek = v2/2 (obtained in the usual way) yields the following description of energetics:

ρ
DEk

Dt
+∇ · [(p− p0)v] = −∇ · (p0v) +

p

υ

Dυ

Dt
− ρ

DΦ

Dt
+ ρF · v, (3.1)

ρ
DΠ1

Dt
= ∇ · (p0v)−

p

υ

Dυ

Dt
+ ρΠ̇1 +

(

1−
ρ

ρh

)
∂p0
∂t

(z, t) +
ρ0
ρh

ρ
DΦ

Dt
, (3.2)

ρ
DΠ2

Dt
= ρ

DΦ

Dt
+ ρΠ̇2 −

ρ0
ρh

ρ
DΦ

Dt
+

ρ

ρh

∂p0
∂t

(z, t)−
ρ

ρr

∂p0
∂t

(zr, t). (3.3)

In (3.2) and (3.3), the local diabatic production terms Π̇1 and Π̇2 are defined by

Π̇1 = (T − Th)η̇ + (µ− µh)Ṡ, Π̇2 = (Th − Tr)η̇ + (µh − µr)Ṡ, (3.4)

where T and µ denote in-situ temperature and relative chemical potential respectively.
Moreover, the suffix ‘h’ indicates a variable estimated at the pressure p0(z, t), e.g., Th =
T (η, S, p0(z, t)), while the suffix ‘r’ indicates a variable estimated at the pressure pr =
p0(zr, t), e.g., Tr = T (η, S, pr) = T (η, S, p0(zr, t)). Adding (3.2) and (3.3) yields the
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Energy Conversion ‘Standard’ view ‘Boussinesq’ view

C(Π1, Ek)
p

υ
Dυ
Dt

−∇ · (p0v)
p

υ
Dυ
Dt

− ρDΦ
Dt

−∇ · (p0v)

C(Ek,Π2) ρDΦ
Dt

0

C(Π2,Π1)
ρ0
ρh

ρDΦ
Dt

(

ρ0
ρh

− 1
)

ρDΦ
Dt

Table 1. The two different possible approaches to defining the energy conversions between Ek,
Π1 and Π2 in a turbulent multi-component compressible stratified fluid discussed in this paper.

following equation for Π

ρ
DΠ

Dt
= ∇ · (p0v) + ρ

DΦ

Dt
−

p

υ

Dυ

Dt
︸ ︷︷ ︸

C(Ek,Π)

+ρΠ̇ +
∂p0
∂t

(z, t)−
ρ

ρr

∂p0
∂t

(zr, t), (3.5)

where the local diabatic production/destruction term Π̇ is defined by:

Π̇ = (T − Tr)η̇ + (µ− µr)Ṡ. (3.6)

Note that because the diabatic terms Ṡ and η̇ couple Π to the background potential
energy energy Br = Φ(zr) + e(η, S, pr) + pr/ρr, the pseudo-energy Ek +Π is no longer a
conservative quantity.
We now discuss the nature of the energy conversions between Ek,Π1 andΠ2 implied by

(3.1-3.3) in order to understand its link with Boussinesq energetics. As is well known, such
an exercise is prone to conceptual difficulties, because there is no universally agreed way to
define energy conversions, which can often be defined in several plausible mathematically
equivalent ways. In the present case, for instance, there appears to be two natural such
ways — synthesised in Table 1 — which we refer to as the ‘standard’ and ‘Boussinesq’
conversions. The standard conversions are those that naturally follow from the energy
budget written as (3.1-3.3), and consists in regarding the work of compression/expansion
as a conversion between KE and AEE and the term ρg0w as a conversion between KE
and APE. In this standard view, ‘large’ conversions are permitted to occur between all
the different energy reservoirs. The Boussinesq view, on the other hand, exploits the
tendency for the standard energy conversions to compensate each other, thus suggesting
to recombine the terms of (3.2) and (3.3) as follows:

ρ
DΠ1

Dt
= ∇ · (p0v) + ρ

DΦ

Dt
−

p

υ

Dυ

Dt
︸ ︷︷ ︸

C(Ek,Π1)

+ρΠ̇1 −

(

1−
ρ0
ρh

)

ρ
DΦ

Dt
︸ ︷︷ ︸

C(Π1,Π2)

+N.L, (3.7)

ρ
DΠ2

Dt
=

(

1−
ρ0
ρh

)

ρ
DΦ

Dt
︸ ︷︷ ︸

C(Π1,Π2)

+ρΠ̇2 +N.L., (3.8)

where the acronym N.L. denotes the non-local terms proportional to the various ∂p0/∂t
partial derivatives. The Boussinesq re-organisation has the key advantage of transforming
C(Π1, Π2) into a density flux anomaly, without actually introducing any form of average.
This makes it arguably more relevant/useful to the study of turbulent stratified fluids
than the standard view. Physically, (3.7-3.8) no longer allow for any direct conversion
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between kinetic energy and the APE density Π2, so that conversion between KE and
Π2 appears to be indirect and mediated via Π1. As one referee put it, Π1 becomes
a ‘pass-through’ energy reservoir. The usefulness of this property becomes evident in
the incompressible limit cs → +∞. Indeed, in this case, Π1 vanishes but the energy
conversions in the right-hand side of (3.7) do not. As a consequence, (3.7) becomes a
diagnostic equation imposing the following balance to hold approximately at all times:

∇ · (p0v) + ρ
DΦ

Dt
−

p

υ

Dυ

Dt
︸ ︷︷ ︸

C(Ek,Π1)

+ρΠ̇1 −

(

1−
ρ0
ρh

)

ρ
DΦ

Dt
︸ ︷︷ ︸

C(Π1,Π2)

+N.L ≈ 0. (3.9)

If ρΠ̇1 and N.L. can be neglected in (3.9), the above balance reduces to C(Π1, Π2) ≈
C(Ek, Π1), which formally allows one to regard the density flux anomaly C(Π1, Π2) as a
conversion between KE and Π2, precisely as in Boussinesq energetics. Any kinetic energy
converted into Π1 is instantaneously converted into Π2 and conversely. To establish that
such a view is valid and physically meaningful, one presumably would need to prove
that such conversions are primarily achieved by sound waves, as these are the only ones
capable of transmitting information at infinite speed in the limit cs → +∞, but this is a
challenging technical issue that we regard to be beyond the scope of this paper.

4. Issues pertaining to the choice of reference state

How to define and construct the APE reference state has been a continuing source of
confusion and difficulty in APE theory since its inception. To date, the issue remains
controversial and outstanding. Here, we briefly review and discuss two well known key
difficulties in subsections 4.1 and 4.2 below. The first one pertains to the possible use
of ‘non-resting’ reference states. The second one pertains to the apparent arbitrariness
of the reference state in local APE theory and whether it implies the possibility to use
reference states other than those originally proposed by Lorenz (1955).

4.1. Resting versus non-resting reference states

The standard form of APE is commonly understood to originate from horizontal
variations in the density field, and therefore naturally defined relative to a ‘resting’
reference state function of z only (asides possible temporal dependence). A common
objection, however, is that in presence of rotation, idealised fluid flow configurations
such as steady and stable zonal flows or vortices may have a large fraction of their APE
actually locked up by geostrophic or higher order type of balance and therefore seemingly
unavailable. Such examples have prompted a few authors to look for a generalisation of
APE accounting for momentum constraints, e.g., Codoban & Shepherd (2003); Andrews
(2006). Whether such an approach is necessarily the ‘right’ one is not clear, however.
Indeed, the alternative and much simpler approach advocated here considers that the
definition of APE should not depend on the presence of rotation and flow stability, and
that the potential energy density Πe defined relative to a non-resting reference state
should be regarded as a form of ‘eddy’ potential energy in a mean/eddy decomposition
Π = Πe +Πm + δΠ of the total potential energy density Π . Such an approach is easily
implemented in the present framework by noting that the construction of Π outlined in
Section 2 applies equally well to reference pressure and specific volume pm(x, y, z) and
υm(x, y, z) that also depend on horizontal position. As a result, the above components
of the partition of Π can be explicitly defined by

Πe = Φ(z)− Φ(zrm) + e(η, S, p)− e(η, S, prm) +
pm(x, y, z)

ρ
−

prm
ρrm

, (4.1)
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Πm = Φ(zrm)− Φ(zr) + e(η, S, prm)− e(η, S, pr) +
p0(zrm)

ρrm
−

pr
ρr

, (4.2)

δΠ =
p0(z)− pm(x, y, z)

ρ
+

pm(x, y, zrm)− p0(zrm)

ρrm
. (4.3)

In Eqs. (4.1-4.3), pr = pr(η, S), ρr = ρr(η, S) and zr = zr(η, S) have the same meaning
as in Section 2 and are functions of the materially conserved variables (η, S) only,
whereas zrm is the reference depth solution of the LNB equation for the non-resting state
υ(η, S, p(x, y, zrm)) = υm(x, y, zrm), with prm = pm(x, y, zrm). Physically, Πe represents
the ‘eddy’ potential energy density of a fluid parcel relative to the ‘non-resting’ mean
state, whereas Πm represents the potential energy density of the fluid parcel in its mean
equilibrium position relative to its ‘resting’ equilibrium position. Note that the above
mean/eddy partition ofΠ does not explicitly depend on the introduction of any particular
averaging operator, and is valid for arbitrarily defined ’non-resting’ and ’resting’ reference
state (pm, υm) and (p0, υ0); from a mathematical viewpoint, it is the counterpart of the

mean/eddy partitioning of the kinetic energy as v
2

2 =
v
2

m

2 +
v
2

e

2 +vm ·ve, which also does
not require the introduction of any particular averaging operator. The interaction term
δΠ can a priori takes on both signs, and is the counterpart of the interaction vm · ve.
Physically, the expectation is that if (pm, υm) correspond to a steady and stable zonal

flow or vortex, rotation should inhibit conversions between Πm and Πe. To confirm this,
let use derive the evolution equations for v2/2 +Πe, Πm and δΠ in the usual manner:

ρ
D

Dt

(
v2

2
+Πe

)

+∇ · {[p− pm(x, y, z)]v} = −
ρu · ∇hprm

ρrm
, (4.4)

ρ
DΠm

Dt
+∇ ·

{
ρ[prm − p0(zrm)]v

ρrm

}

=
ρu · ∇hprm

ρrm
, (4.5)

ρ
D(δΠ)

Dt
= ∇ ·

{[

p0(z)− pm(x, y, z) +
ρ(prm − p0(zrm))

ρrm

]

v

}

, (4.6)

where ∇h denotes the horizontal part of the gradient operator. It is easily verified that
summing (4.4-4.6) recovers (2.5). Eqs. (4.4-4.5) show that the conversion betweenΠm and
Πe is controlled by the product of the horizontal velocity times the horizontal gradient of
prm, which vanishes for a steady geostrophically balance state u ∝ f−1

0 k×∇hprm, where
f0 denotes the local rotation rate, and k the unit vector pointing upwards. Therefore, as
far as we can judge, the inhibiting effects of rotation can be understood in the context
of the mean/eddy decomposition of Π (see Scotti & White (2014) and Novak & Tailleux
(2018) for different ways of performing such a decomposition), and does not therefore
seem to require a definition of APE accounting for momentum constraints. Obviously,
this is a subtle and complicated issue that will warrant extensive discussion in a separate
and forthcoming dedicated paper.

4.2. On the arbitrariness of the reference state

The apparent arbitrariness of the reference state in local APE theory, first noted by
Andrews (1981) and Shepherd (1993), has been exploited by a few authors to use reference
states easier or more convenient to compute than Lorenz reference state, such as the
horizontally-averaged density field (Tailleux 2013b) or an analytic profile (Peng et al.

2015). Because the choice of reference state affects the magnitude of the APE reservoir,
as well as the rates at which it is created, stored and destroyed (Wong et al. 2016), the
present state of affairs is obviously unsatisfactory and will remain so until the physical
basis for how to specify it is identified. The key role played by B in the construction
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of Π suggests that the reference pressure p0(z) or p0(z, t) should be chosen so as to
approximate the actual pressure field p(x, y, z, t) as accurately as feasible. If least square
were the relevant principle, one would have a physical basis for arguing that the reference
density field ρ0(z, t) should be defined as the horizontally averaged density ρ(z, t) rather
than in terms of Lorenz reference state. Such an approach would also ensure that Π
vanishes identically in a state of rest, a desirable property of Π that is not necessarily
satisfied with Peng et al. (2015)’s analytically specified reference state. Clarifying this
issue once and for all therefore remains a key priority for future research.

5. Conclusions

In this paper, we succeeded in extending Andrews (1981)’s local concept of potential
energy density Π to a multi-component compressible stratified fluid and in deriving
evolution equations for the attendant energy cycle accounting for diabatic sinks and
sources. In contrast to the previous approaches by Bannon (2003) and Andrews (1981),
our construction of APE density stands out by its simplicity and economy, as well as by its
considerably more transparent link to the APE density of the Boussinesq and hydrostatic
primitive equations. The key step making our approach so simple is the introduction of
the quantity B(z, η, S, p) = Φ(z) + e(η, S, p) + p0(z)υ(η, S, p), which is just the standard
potential energy plus the term p0/ρ. Indeed, all one has to do is to subtract the reference
value of B to obtain Π = B(z, η, S, p) − B(zr, η, S, p0(zr)), a quantity that is naturally
positive definite, in contrast to the integrand of Lorenz (1955) globally defined APE.
Such an approach can be done for any arbitrary resting or non-resting reference state,
which points to new ways to rigorously partition Π into mean and eddy components or
to think about the role played by rotation on occasionally inhibiting a large fraction of
the total APE. Nevertheless, the exact physical principle(s) underlying the specification
of the reference state(s) remain an outstanding issue in need of further research.
As in Andrews (1981) and Bannon (2003), the total potential energy density of a fluid

parcel is the sum of its available elastic energy (AEE) and APE density, of which only the
latter subsists in sound-proof systems of equations such as the Boussinesq or hydrostatic
primitive equations. This can be formally justified by noting that AEE vanishes in the
limit cs → +∞, as pointed out by Andrews (1981). However, although AEE vanishes in
the incompressible limit, this is not in general the case for the individual terms entering
its evolution equation. As a result, the AEE evolution equation becomes a diagnostic
equation in the limit cs → +∞, which turns out to be key for establishing a formal link
between the energetics of Boussinesq and real fluids.
The present results are important, for they provide for the time the tools needed

to tackle many outstanding issues in the field, ranging from elucidating the role of
salt and humidity in the oceanic and atmospheric energy cycles, to the development of
new energetically and thermodynamically consistent mixing parameterisations for use in
numerical oceanic and atmospheric models, as we hope to demonstrate in future studies.
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