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Abstract
In electroencephalography (EEG) neurofeedback protocols, 

trainees receive feedback about the spectral power of the target 
brain wave oscillation and are tasked to increase or decrease this 
feedback signal compared to a predetermined threshold. In a recent 
computational analysis of a neurofeedback protocol it was shown that 
the placement of the threshold has a major impact on the learning 
rate and that placed too low or too high leads to no learning or even 
unlearning, respectively. However, the optimal threshold placement is 
not known in real-life scenarios. Here, these analyses were extended 
to assess whether an adaptive-mean threshold procedure could lead 
to faster learning curves. The results indicate that such a procedure is 
indeed superior to a fixed-mean procedure and that the distribution 
of asymptotic EEG power values converges to that obtained with 
the optimal-threshold procedure. Surprisingly, the adaptive-mean 
procedure leads to thresholds that are higher than the optimal one, 
which is explained through the increase in threshold lagging behind 
the increase in the likelihood of activation of the target neurons. To 
date, no computational model was used to compute the cost-efficiency 
of EEG neurofeedback procedures. The current simulation (within 
the specific reinforcement schedule) demonstrated a 35% reduction 
in training time, which could translate into sizeable financial savings. 
This study demonstrates the utility of computational methods in 
neurofeedback research and opens up further developments that 
tackle specific neurofeedback protocols to assess their real-life cost-
efficiency.
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Introduction
Neurofeedback is a brain training procedure in which 

trainees receive information about their brain activation. Here, 
we consider electroencephalography (EEG) neurofeedback. The 
aim of the training is to gain voluntary control over the spectral 
power of the brain waves. To do this, trainees’ brain signals are 
processed in real-time, computing the spectral power in the 
target frequency such as the alpha frequency (8-12 Hz). The 
power is then compared against a predetermined threshold, with 
positive or negative feedback given if the actual power is above or 
below that threshold. The feedback itself can be of any modality 
(visual, auditory, haptic) and could even involve parameters in a 
gaming environment, such as the speed of a car or the height of a 
levitating vase [1].

There is a long tradition using EEG neurofeedback with 
roots in the clinical practice. Research has been dominated 
by assessing the validity and efficacy of EEG neurofeedback 
training in alleviating symptoms associated with substance 
abuse [2], epilepsy [3], attention-deficit/hyperactivity disorder 
(ADHD; [4]), depression[5,6], post-traumatic stress disorder 
(PTSD; [7,8]), and many more neuropsychiatric, neurological, 
and neurodevelopmental disorders. In recent years, the impact 
of EEG neurofeedback on peak mental performance [9,10] has 
led to discussions regarding methodological rigour (for review 
see [11,12]) and questions about the theoretical mechanisms 
underlying neurofeedback learning [13,14,15,16].

Davelaar [14] developed a computational model consisting 
of spiking neurons that produce an EEG signal and was used 
to address the neural mechanisms involved in the initiation of 
learning in the context of neurofeedback. The model implemented 
the first stage of a larger multi-stage framework, with each stage 
commencing at a later time over the course of neurofeedback 
training. The first stage involves the selection of the medium spiny 
neurons (MSNs) in the striatum that are critical in nudging the 
thalamus into producing the target brain wave oscillation. These 
target MSNs were active probabilistically at the millisecond scale, 
whereas the power of the target frequency and thus the feedback 
was updated at the second scale, creating a credit-assignment 
problem – which neurons out of many were responsible for the 
reward. Davelaar incorporated recent advances in computational 
biology [17] to solve this problem and in doing so demonstrated 
the model’s ability to hone in on the target MSNs.

The model was analysed using the distribution of power 
values before and after training, which were very similar to actual 
empirical data. The analysis assessed the optimal placement 
for the predetermined threshold. To summarise, the analytical 
simulation involved drawing a sample that represents alpha 
frequency power from one of two distributions: the baseline 
and the target distribution. The baseline distribution was 
obtained during a pre-training EEG recording and is available 
in real-life situations. The target distribution was obtained 
when setting the target MSNs to be continuously active. This 
scenario is unlikely in reality and thus formed a case in the limit. 
Both distributions are shown in figure 1 together with vertical 
lines indicating the mean of the baseline distribution and the 
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optimal criterion that separates the two. Davelaar [14] showed 
that using the optimal criterion as the predetermined threshold 
for reward leads to the fastest learning curve with the highest 
asymptotic level of alpha frequency power. The simulation model 
provided insight in the temporal dynamics, such that the optimal 
learning involves first rejection (unlearning) of non-target MSNs 
followed by enhancing the likelihood of activating target MSNs.
In reality, information about the target distribution is absent 
and thus no optimal threshold can be defined before the training 
intervention commences. Here, a simulation study is presented 
that investigated the use of an adaptive threshold algorithm that 
is applicable in real-life scenarios.

Figure 1: Parent distributions for the simulation model. These distri-
butions were obtained using a spiking neuron model [14], with the 
baseline distribution (in blue) obtained prior to learning and the target 
distribution (in red) obtained by setting the target MSNs to be active 
continuously. The blue vertical line represents the mean of the baseline 
distribution, which is used with the fixed-mean procedure. The red ver-
tical line represents the optimal criterion that separates the two distri-
butions and is used with the optimal-threshold procedure.

Methods
The model from the second simulation study of Davelaar 

[14] was used without modification. See the paper of details. The 
probability of the target MSN to be active is 0.001, which changes 
during the training period based on feedback. When the target 
neuron is active, an EEG power sample is drawn from the target 
distribution, otherwise it is drawn from the baseline distribution. 
When the sample is larger or smaller than the threshold, the 
synaptic strength of the active neurons is incremented or 
decremented by 0.1, respectively. The values are normalised 
before assessing whether the target neuron will be active on the 
next iteration. 

The current model simulated three threshold procedures. In 
the optimal-threshold procedure, the optimal criterion (= 78) 
was used throughout the training period and was included here 
as it produces the learning curve that needs to be approximated 
or bettered. However, the optimal criterion procedure requires 
unknown information. A more realistic procedure is the fixed-
mean procedure, which uses the mean of the baseline distribution 

(= 64.98). This procedure was included as it is the simplest 
threshold that can be implemented in neurofeedback software. 
The focus here is on the simplest adaptive-mean procedure, which 
is setting the threshold to the mean of the baseline distribution 
in the first instance and then replacing it every 1000 iterations 
with the mean of the preceding 1000 EEG power values. This type 
of adaptive procedure does not take much memory overhead 
and has the feature of tracking the threshold across learning. 
All simulations were run for 10000 iterations and repeated100 
times. Epochs were created by averaging across 100 iterations to 
produce 100 epochs. Each block contained 1000 iterations (or 10 
epochs).

Results and discussion
Figure 2 presents the results of the simulation. The top 

panel shows neural learning curves for the three algorithms 
averaged across 100 simulation repetitions. The optimal-
threshold procedure led to the fastest learning curve with the 
highest asymptotic value, whereas the fixed-mean procedure 
produced the slowest learning curve with the lowest asymptote, 
replicating [14]. Although the adaptive-mean procedure led to 
an intermediate learning rate, the asymptotic level was identical 
to that of the optimal-threshold procedure. This indicates that 
there is no loss of reaching the maximum possible value when 
using the adaptive-mean procedure. The middle panel presents 
the standard deviations of the EEG power values of the top panel. 
Of interest here is that the standard deviations towards the end 
of the simulations have converged. In other words, after 10000 
iterations the model did indeed stabilise to the final asymptotic 
distribution for all threshold procedures. Finally, in the bottom 
panel, the actual thresholds are plotted for every block (equals 
1000 iterations). The adaptive-mean procedure led to thresholds 
that are much higher than the optimal threshold. A separate fixed-
mean simulation was run (not shown) using the higher threshold 
(= 84.73), but it did not converge, as shown by [14], as at high 
threshold levels, the model is more likely to decrease the synaptic 
connections to the target MSN. In 50% of the simulation runs, the 
target MSN was completely unlearned before the end of the run. 
The threshold update lags behind the increase in the likelihood 
of target activation, therefore the synaptic connections are not 
unlearned. The simulations were also run using an adaptive-
median procedure (not shown). The results were qualitatively 
similar with the difference that the lower value of the median 
compared to the mean led the adaptive-mean procedure to be 
superior.

What does this mean in practical terms? From the neural 
learning curves it is clear that there is a speed-up with the 
adaptive-mean over the fixed-mean procedure. To quantify this 
speed-up, the asymptotic value with the fixed-mean procedure 
was reached after 65 epochs using the adaptive-mean procedure, 
which represents a 35% reduction in time. Putting it in a real-
world perspective, just over four people could be helped using 
adaptive-mean neurofeedback compared with three using the 
fixed-mean procedure. In financial terms, a 35% drop in costs may 
mean getting the insurance to cover these reduced costs or having 
to pay the full 100%. The threshold algorithm implemented in the 
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Figure 2: Simulation results. Top panel: Neural learning curves over 100 epochs. With the adaptive-mean procedure the learning curve converges to 
that obtained using the optimal-threshold procedure. Middle panel: Standard deviations of the neural learning curves in the top panel. The curves 
show that with all three threshold procedures the simulation model has reached it asymptotic distribution. Bottom panel: Threshold setting per 
block. Using the adaptive-mean procedure leads to thresholds that are higher than the optimal one, without leading to unlearning. The black lines 
in the top panel show the speed-up obtained using the adaptive-mean over the fixed-mean procedure, which in this simulation (within this specific 
reinforcement schedule) is a 35% reduction in training time.

neurofeedback software can thus be seen as a critical component 
in the cost-efficiency analysis.

Concretely, a practical implementation of the above findings 
could be as follows. First, conduct a baseline EEG recording and 
set the initial threshold at the mean of the baseline distribution. 
Second, change the threshold to the mean of the values of 
the preceding training block (note: this is for within-session 
threshold adjustment). Third, stop the training session when 
the allocated time has passed or three consecutive blocks have 
produced similar means and standard deviations. This latter can 
provide additional cost-savings.

The procedure as described here is discretised, as the values 
are updated after every block. Continuous algorithms can also be 
developed using either moving windows or running averaging. 
It should be noted that the results presented apply only for the 
specific reinforcement schedule used here, i.e., mirrored binary 
reward values for either side of the threshold. Different schedules, 
such as reward proportional to distance from threshold, absence 
of negative rewards, or cumulative reward (e.g., counter) will lead 
to different learning profiles. The present analysis demonstrated 
the utility of computational methods in evaluating threshold 
algorithms to optimise neurofeedback learning. Future work 
could tackle specific neurofeedback protocols with physiological 
realistic computational models to evaluate the cost-efficiency of 
different thresholding procedures across different reinforcement 
schedules.
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