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Abstract  37 

Wild fish populations are currently experiencing unprecedented pressures, which are 38 

projected to intensify in the coming decades. Developing a thorough understanding 39 

of the influences of both biotic and abiotic factors on fish populations is a salient 40 

issue in contemporary fish conservation and management. During the 50th 41 

Anniversary of the Fisheries Society of the British Isles, University of Exeter, 2017, 42 

scientists from diverse research backgrounds gathered to discuss key topics under 43 

the broad umbrella of ‘Understanding Fish Populations’. Below, the output of one 44 

such discussion group is detailed, focusing on tools used to investigate natural fish 45 

populations. Five main groups of approaches were identified: (i) Tagging and 46 

telemetry; (ii) Molecular tools; (iii) Survey tools; (iv) Statistical and modelling tools; 47 

and (v) Tissue analyses. The appraisal covered current challenges and potential 48 

solutions for each of these topics. In addition, three key themes were identified as 49 

applicable across all tool-based applications. These included data management, 50 

public engagement, and fisheries policy and governance. The continued innovation 51 

of tools and capacity to integrate interdisciplinary approaches into the future 52 

assessment and management of fish populations is highlighted as an important 53 

focus for the next 50 years of fisheries research.  54 

Key words: archaeology, genetics, modelling, surveys, stable isotopes, telemetry 55 
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Introduction 57 

Approximately 30% of fish species have been overexploited (FAO, 2014), 58 

representing significant losses to biodiversity, ecosystem services and 59 

socioeconomic contributions (Worm et al., 2009). In light of the increasing challenges 60 

presented by climate change and other natural and anthropogenic stressors (Gordon 61 

et al., 2018), an improved understanding of fish populations is critical to facilitate 62 

effective management and conservation initiatives. During the summer of 2017, the 63 

Fisheries Society of the British Isles (FSBI) held its 50th Anniversary Symposium 64 

under the broad umbrella of ‘Understanding Fish Populations’. To highlight key 65 

knowledge gaps and opportunities, we detail the outcome of a working group 66 

convened at the symposium, which was tasked with considering the theme of ‘Tools 67 

for understanding fish populations’. The scope of the discussion spanned diverse 68 

areas including spatial ecology and migration patterns, genetics and evolutionary 69 

biology, physiology, trophic ecology, and developmental and population biology. In 70 

this article, we consider major advances in the use of tools across broad areas of 71 

fish biology, and identify knowledge gaps and potential solutions in each area in 72 

order to guide and inform future research, and to better understand and protect wild 73 

fish populations. 74 

 75 

Tagging and telemetry 76 

A significant problem hampering the study of fish, marine benthic species in 77 

particular, is that of determining their geographical locations at fine scales, over long 78 

durations. Tagging and telemetry involves the application of external and or internal 79 
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tags or devices to manually or passively track fish movement (Cooke et al., 2013). 80 

Both forms can be particularly challenging in the marine environment, though manual 81 

tracking can work well at feeding grounds and at spawning aggregations (e.g. 82 

Murchie et al., 2015), while passive tracking has valuable applications along known 83 

migration routes (Dahlgren et al., 2016), for example, as anadromous/catadromous 84 

species migrate in and out of river estuaries (Lauridsen et al., 2017). Suites of tools 85 

exist for such tasks (e.g. acoustic transmitters, PIT and Floy™ tags, radio, archival, 86 

etc.) and have been routinely used to understand the spatial ecology of a range of 87 

fish taxa (Bograd et al., 2010). With technological improvements in tags and tracking 88 

equipment, the field has grown vastly in recent decades (see reviews by Pine et al., 89 

2003; Jepsen et al., 2015). We briefly highlight some of the tags and telemetry 90 

options commonly used by researchers along with a discussion of some of the 91 

limitations and challenges associated with these tools.  92 

Archival data storage tags (DSTs), which collect data on both the internal and/or 93 

external environments of fish are the only method available to assess internal states 94 

(e.g. bioenergetics, Cooke et al., 2016). However, DSTs currently only provide 95 

information on the environment experienced by the tagged fish if the tag is 96 

recovered, meaning these data are lost if recapture rates are low, often the case in 97 

fish tagging surveys. Communication History Acoustic Tags (so called ‘CHATs’), 98 

which transmit data to nearby transponder receivers are a promising alternative. 99 

Since there have been relatively few uses of this tag type (Voegeli et al., 2001; Hight 100 

& Lowe, 2007), there is potential for development in this area. Pop-off DSTs are also 101 

becoming available and will no doubt prove very useful once problems associated 102 

with size and recoverability are resolved. 103 

Commented [JP1]: DSTs are perhaps the only tool to 

look at internal states, and recovery is possible for 

territorial species or those that converge in one 

place. A good reference here would be  

Cooke, S. J., Brownscombe, J. W., Raby, G. D., Broell, 

F., Hinch, S. G., Clark, T. D., & Semmens, J. M. (2016). 

Remote bioenergetics measurements in wild fish: 

opportunities and challenges. Comparative 

Biochemistry and Physiology Part A: Molecular & 

Integrative Physiology, 202, 23-37.  
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Pop-up satellite archival tags (PSATs), which detach from the tagged fish after some 104 

time at sea and transmit telemetry data to overpassing satellites, are currently limited 105 

in terms of hardware, software and satellite reception. PSATs are large, so are 106 

limited in use for larger, often highly migratory individuals, and may also affect fish 107 

behaviour (Methling et al., 2011). Additionally, battery failure, antenna damage, or 108 

mechanical failure may limit registration or transmission of data (Hays et al., 2007; 109 

Musyl et al., 2011). PSAT technology is relatively new, so future reductions in size 110 

and weight and also improvement in reliability can be expected. In terms of software, 111 

PSATs currently only transmit limited amounts of data due to transmission costs and 112 

the short time that the receiving satellite is above the horizon. Future software 113 

development is required to reduce transmission costs, optimise data transmission 114 

and provide more flexibility for users to tailor controls, in order to provide higher 115 

resolution data at the desired temporal scale. An increase in the number of satellite 116 

platforms that can receive PSAT data would help to improve reception issues. 117 

Interference on frequencies selected for tags at certain geographical locations (see 118 

Musyl et al., 2011) also requires consideration. 119 

Acoustic telemetry offers autonomous, continuous monitoring (Heupel et al., 2006) 120 

and has the potential to significantly enhance our understanding of marine predator 121 

habitat use, activity patterns and resource partitioning (Hussey et al., 2015). Acoustic 122 

arrays have been used in many studies in elucidating fish movements (e.g. 123 

Papastamatiou et al., 2013; Lea et al., 2016), and transmitters have been used more 124 

innovatively to measure trophic interactions (Halfyard et al., 2017). Issues remain 125 

however, for example, in the significant cost and effort involved in deploying and 126 

maintaining acoustic arrays.  127 

Commented [JP2]:  

also the potential to measure trophic interactions eg  

Halfyard, E. A., Webber, D., Del Papa, J., Leadley, T., 

Kessel, S. T., Colborne, S. F. and Fisk, A. T. (2017), 

Evaluation of an acoustic telemetry transmitter 

designed to identify predation events. Methods Ecol 

Evol. doi:10.1111/2041-210X.12726  
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Organisations such as the Ocean Tracking Network (Whoriskey et al., 2015), (OTN; 128 

oceantrackingnetwork.org) and the Australian Animal Tracking Network both maintain 129 

acoustic infra-structure in the form of deployed receivers (arrays or curtains) in key 130 

ecological areas into which researchers are free to release tagged animals. These 131 

initiatives substantially reduce the cost and risk associated with acoustic tracking 132 

projects and similar approaches can be applied globally  (for example, a European 133 

tracking network is currently being developed). Furthermore, integration of 134 

standardised data repositories along with a comprehensive set of analytical tools to 135 

ensure rapid and sophisticated analysis of acoustic array data (Lea et al., 2016) 136 

would lead to new insights into the spatial ecology of fish. Further technological 137 

developments such as the use of AUVs to perform routine data download 138 

operations, or even complement fixed acoustic receivers (Davis et al., 2016), will 139 

make acoustic telemetry increasingly affordable and accessible to more researchers. 140 

Continued collaborations with established regional and international tracking 141 

networks, together with the ever-increasing sophistication, miniaturisation, durability 142 

and cost reduction of tags promises an increasingly important role for acoustic 143 

telemetry in our understanding of fish ecology.  144 

 145 

Molecular tools 146 

Population genetics and genomics 147 

Using genetic tools to understand fish genetic diversity and population structure has 148 

wide-ranging applications for evolutionary biology, and the conservation and 149 
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management of fish stocks. Until recently, molecular techniques such as 150 

mitochondrial sequencing and the analysis of microsatellite loci have been used 151 

most commonly to explore intra-specific variation in fish and many other organisms 152 

(e.g. Ferguson & Danzmann, 1998; Chistiakov et al., 2006). More recently, however, 153 

the increased availability and cost efficiency of high-throughput sequencing, which is 154 

capable of producing millions of sequencing reads (e.g. RADseq, RNAseq), has 155 

revolutionised the fields of population and conservation genetics (Allendorf et al., 156 

2010). It is however important to understand what extra information high-throughput 157 

sequencing data can provide, the biases involved in study design and data 158 

generation, and also how its usage might be optimised. Here, we seek to identify 159 

knowledge gaps in the field of fish population genetics, and contemplate how this 160 

area of research may evolve in the future. 161 

Attaining high quality, clean DNA for large numbers of individuals is paramount for 162 

downstream sequencing processes, but in some cases can be challenging. 163 

Biological samples can often be compromised during sampling or transport, 164 

potentially rendering field efforts futile. Population genetic studies on fish frequently 165 

require sampling from river transects or remote locations at sea, and so portable 166 

laboratories for sampling, storing and extracting DNA would be welcomed. At the 167 

same time, emerging technologies, e.g. the MinION USB sequencer 168 

(nanoporetech.com/products/minion), have the potential to revolutionise when and where 169 

genetic data can be generated. Most new technologies are currently restricted to 170 

sequencing small genomes, such as those of bacteria, but with on-going 171 

improvements, these technologies open up the possibility of being able to sequence 172 

DNA in real-time in the field (Hayden, 2015). Recently, the MinION technology has 173 

started to be used in hybrid assemblies with Illumina short reads (Austin et al., 2017) 174 
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and de novo eukaryotic genomes (including fish) are in progress (Jansen et al., 175 

2017).  176 

Alongside population genetic studies, research based on whole genome data is 177 

emerging, and the genomes of several commercially important species have now 178 

been published (e.g. Atlantic cod (Gadus morhua), Star et al., 2011; Atlantic salmon 179 

(Salmo salar), Lien et al., 2016). However, while the ever-reducing cost of whole 180 

genome sequencing provides opportunities to sequence and publish more fish 181 

genomes, in our view, the key priority is not simply publishing genomes, but also 182 

high-quality genome annotation. Gene annotation and accurate knowledge of the 183 

function of different identified regions is of extreme importance if genomic tools are 184 

to be used reliably in conservation and management (Ekblom & Wolf, 2014). 185 

Therefore, projects such as the ‘Functional Annotation of All Salmonid Genomes’ 186 

(Macqueen et al., 2017) should be encouraged and developed. It is also important 187 

not to underestimate or neglect the computing power and bioinformatics expertise 188 

required to produce high quality genome scaffolds and annotations, and also to 189 

recognise and account for biases in next generation sequencing data (see Benestan 190 

et al., 2017). 191 

Furthermore, population genetic approaches are usually focused on a single 192 

species. Consequently, there is a mismatch between studies of a single species 193 

genotyped at high resolution, but generally at small spatial scales (e.g. population 194 

genetics, often using hundreds to thousands of markers through GBS or GWAS) and 195 

studies of multiple species at larger spatial scales but using lower resolution markers 196 

(e.g. phylogeography or biodiversity assessments using metabarcoding or mtDNA 197 

sequencing).  Nonetheless, the widespread application of molecular resources has 198 
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led to the accumulation of rich datasets across a broad range of species, 199 

geographical regions and time periods (Blanchet et al., 2017). Accordingly, we 200 

anticipate that this aggregation of data may allow the underlying processes that drive 201 

genetic variability across these regions and times to be revealed, enabling a broader 202 

testing of theories in population genetics and evolution (Ellegren & Galtier, 2016; 203 

Pauls et al., 2014).  204 

Such studies will require the combination of high genetic resolution markers across 205 

large spatial scales, which is a non-trivial task, especially when dealing with non-206 

model species. Three challenges arise in such cases: firstly, the financial investment 207 

required to obtain reliable datasets for several species remains significant. Despite 208 

reductions in sequencing costs, it may be financially sensible to rely on more 209 

classical markers such as microsatellites or small subsets of single nucleotide 210 

polymorphisms (SNPs). Secondly, there is a need for a standardised framework in 211 

order to make datasets comparable across different species and regions. This 212 

standardisation must occur when collecting samples, characterising markers (e.g. 213 

Ellis et al., 2011; Helyar et al., 2011) and during the subsequent data analysis to 214 

streamline user choices (Paris et al., 2017), which may bias the biological 215 

interpretation of data, see Rodríguez-Ezpeleta et al. (2016). It is therefore important 216 

that researchers use common methods to isolate and characterise markers for entire 217 

sets of focal species, and/or provide full access to detailed analyses when datasets 218 

are generated. 219 

Finally, as multi-species approaches remain scarce, there is a need to define 220 

hypotheses at the beginning of such investigations. In this respect, simulation tools 221 

(e.g. Laval & Excoffier, 2004; Peng & Kimmal, 2005; Neuenschwander, 2006) are 222 
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particularly useful for testing complex hypotheses and also for predictive purposes. 223 

Moreover, the integration of mathematical and statistical models with fish population 224 

genetics would be useful for revealing genotype-phenotype interactions (Ritchie et 225 

al., 2015), evolutionary signatures (Stark et al., 2007), functional DNA elements 226 

(Schrider & Kern, 2014), spatial dynamics (Guillot et al., 2009) and species-genetic 227 

diversity correlations (SGDC; Vellend 2003; Vellend et al., 2014). 228 

 229 

Environmental DNA  230 

The use of environmental DNA (eDNA) to identify the presence and understand the 231 

distribution of fish has expanded rapidly in the last decade. eDNA is a polydisperse 232 

mixture (Turner et al., 2014; Wilcox et al., 2015) of various biological material 233 

ranging from entire cellular fragments to extracellular DNA, which is isolated from 234 

environmental samples such as water or sediment. Such techniques are used for 235 

species identification and food security purposes. Universal primers that target 236 

mitochondrial DNA can be applied for identifying species presence (Yamamoto et al., 237 

2016) or to gain information about species natural history (e.g. food web 238 

construction, Sousa et al. (2016)). 239 

An important component of this work is validating the results from eDNA surveys 240 

with traditional fish survey methods. In both freshwater and marine environments, 241 

eDNA has compared favourably to traditional fish survey methods (Thomsen et al., 242 

2012; Hänfling et al., 2016). However, eDNA was found to be less effective 243 

compared to experienced snorkel surveys (Ulibarri et al., 2017). This underpins the 244 

importance of validation with traditional techniques, especially in spatially 245 

heterogeneous and complex aquatic environments (Shogren et al., 2017). 246 
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The development of effective PCR primers is central to the successful application of 247 

eDNA (e.g. Freeland, 2016; MacDonald & Sarre, 2017). As a result, a vast range of 248 

primer sets are available for fishes (e.g. Doi et al., 2015; Clusa et al., 2017). 249 

Metabarcoding primers, that simultaneously amplify eDNA from many fish species, 250 

have also been developed for monitoring entire fish communities (Miya et al., 2015; 251 

Valentini et al., 2016).  252 

Beyond inferring if a fish species is present in the sampled location, researchers 253 

have begun to investigate if eDNA can provide further information regarding fish 254 

populations. The use of eDNA to infer population level variation has been 255 

demonstrated (Uchii et al., 2015; Sigsgaard et al., 2016), but is still in its infancy. 256 

Similarly, although attempts to link eDNA concentration and fish biomass have 257 

shown promising results (Lacoursière‐Rousse et al., 2016; Yamamoto et al., 2016), 258 

further development is required to improve the accuracy of these measurements. 259 

However, for techniques utilising eDNA to be optimised, preexisting molecular 260 

information needs to be accessible. A number of publicly available databases (e.g. 261 

NCBI Genbank and BOLD - boldsystems.org) hold a vast array of molecular data but 262 

there is still a need for further mitochondrial genome sequencing to allow optimal 263 

usage of molecular identification techniques.   264 

 265 

Microbiomes 266 

Analysis of a microbiome can provide novel insights into the health and biology of 267 

fish populations. Traditional culture-dependent tools used to map the commensal 268 
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microbiota community in teleost fish are often time-consuming, expensive and 269 

subjected to bias as only 0.1-10% of bacteria can be cultured in vitro (Amann et al., 270 

1995; Austin, 2006). More recently, rapid culture-independent tools such as 16S 271 

rRNA targeted sequencing have been utilised to provide detailed profiles of the 272 

structure and diversity of the microbiota residing on the mucosal surface of fish 273 

(Ghanbari et al., 2015). 274 

The gut microbiome composition has also become an important biomarker for 275 

understanding the influence of stress in fish (Llewellyn et al., 2014), as numerous 276 

stressful stimuli have been shown to alter the microbiome composition (Xia et al., 277 

2014; Gaulke et al., 2016). The gut microbiome composition can provide insights into 278 

the ecology and physiology of fish in a range of areas such as ecological speciation 279 

(Sevellec et al., 2014), the biology of migratory fish (Llewellyn et al., 2016), trophic 280 

interactions within ecosystems (Ingerslev et al., 2014) and adaptation to extreme 281 

environments (Song et al., 2016).  282 

There are a number of challenges currently facing fish microbiome research. At 283 

present, the majority of data regarding the microbiome composition in wild teleost 284 

fish originates from laboratory models (Tarnecki et al., 2017). More studies are 285 

required to see if captive-reared animals provide a reliable analogue for wild 286 

populations. Standardised protocols for collecting and generating microbiome data 287 

are also lacking, which could restrict progress as several processes have the 288 

potential to introduce differential bias in microbiota profiles (e.g. Salipante et al., 289 

2014; Hart et al., 2015). Adopting a framework of robust, quality-controlled protocols 290 

(e.g. similar to human microbiome research Methé et al., (2012)) would be of great 291 

benefit. In addition, there is currently a lack of non-invasive protocols for conducting 292 
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longitudinal or repeated sampling of the gut microbial community in individual fish 293 

over time. The application of rectal swabs (Budding et al., 2014) for sampling the 294 

vent of fish could provide a non-invasive strategy for collecting microbiome data from 295 

individuals over time. Finally, time-series data could also enhance our knowledge in 296 

terms of the functional aspects of host lifecycles and the stability and resilience of 297 

microbiota (Goodrich et al., 2014). 298 

 299 

Survey Tools 300 

Field-based surveys  301 

Fish population assessments are conducted using a wide range of techniques; the 302 

advantages, limitations, personnel requirements and health and safety 303 

considerations of each are presented in Table 1. It is encouraging to note that even 304 

well-established methods such as hydro-acoustics are continually being improved, 305 

while emerging tools such as eDNA (see above) are beginning to be included in 306 

routine monitoring. We suggest that integrating methods and data series are key 307 

priorities for future research in this field.  308 

In large and complex habitats it is often the case that a suite of survey 309 

methodologies has to be employed to sample different times, habitats and species 310 

effectively. Indeed, an advantage of field-based surveys is the ability to generate 311 

information from both fishery-independent (Nash et al., 2016) and fishery-dependent 312 

(Shin et al., 2010) data. However, the availability of a diversity of methodologies, can 313 

make the task of assessment in these habitats even more costly; issues also remain 314 

Commented [JRP3]: This is now a main table 
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over how to use often disparate data types to develop a sound understanding of a 315 

fishery. Integrating methods represents a key means of improving data resolution 316 

from such field surveys. For instance, methods such as eDNA and hydro-acoustic 317 

sampling provide comparatively fast and non-invasive estimates of fish community 318 

structure and biomass. However, to obtain a thorough understanding of fish 319 

populations, this information must be combined with fish age, size and health data 320 

obtained via destructive sampling (e.g. gill netting). As yet, there are no structured, 321 

universally agreed guidelines on which methods should be integrated to obtain a 322 

thorough assessment of population dynamics from a specific habitat type. 323 

Fish survey methodologies are typically determined at a national level, making 324 

international comparisons of data extremely challenging. In recent years, 325 

standardised protocols initiated through the EU Water Framework Directive have 326 

facilitated Europe-wide assessments of fish community structure. Such international 327 

standardisation is essential when assessing the impact of anthropogenic effects on 328 

fish (see Gordon et al., 2018), and we recommend that efforts are made to make 329 

national datasets available using standardised metadata and biodiversity 330 

information, ideally via open sharing platforms (e.g. freshwaterplatform.eu). 331 

 332 

Historical records 333 

Historical records (e.g. catch records) can also be useful in helping to extrapolate 334 

population data back into the recent past. Libraries and historical societies often hold 335 

picture archives and these images can in some instances be used as a form of 336 
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historical survey data to provide information on past community composition and size 337 

distributions (McClenachan, 2009). Historical records of catch data are typically held 338 

by government agencies or can be found in local archives (e.g. angling club logs) 339 

and corporate records. Such data have been used successfully to reconstruct fish 340 

populations back to the late 1800s (Thurstan & Roberts, 2010; Thurstan et al., 2010). 341 

Catch reconstruction approaches can also provide useful insights into fishery trends 342 

that may not be apparent from Food and Agriculture Organization (FAO) reported 343 

data alone (Smith & Zeller, 2015; Zeller et al., 2015). Although limited to the 344 

information that is still available and subject to the often-unidentifiable biases of the 345 

individuals who originally recorded the data, such data can provide a unique way to 346 

extrapolate population data back in time.  347 

 348 

Statistical and modelling tools 349 

Bayesian methods - Reliable estimates of demographic parameters (e.g. abundance, 350 

survival, growth rates and fecundity) and an understanding of the processes that 351 

regulate these parameters are fundamental for sustainable management of fish 352 

populations. However, to understand the ecological processes and to truly inform 353 

policy, researchers must use multiple data sources, provide links between 354 

management actions and population responses and also estimate uncertainty as a 355 

prerequisite to making forecasts that provide useful information. Bayesian methods 356 

in ecology and conservation biology are now increasingly being used to explore 357 

these links, for example, in stable isotope analyses (see below). Indeed, the 358 

Bayesian framework provides an intuitive method for estimating parameters, 359 
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expressing uncertainty in these estimates and allows for the incorporation of as 360 

much or as little existing data or prior knowledge that is available (Ellison, 2004). 361 

However, to develop the use of this specific framework in fish ecology and 362 

management, there is a need to educate and train fish biologists in the use of 363 

Bayesian principles and methods.  364 

Individual-based models (IBMs) are process-based mechanistic computer models 365 

that simulate emergent properties of fish biology, behaviour, traits or group 366 

characteristics, based on simple heuristic functions, and their use has grown 367 

exponentially (e.g. DeAngelis & Mooij, 2005) as computational power has increased 368 

(DeAngelis & Grimm, 2014). Several separate individual-based models were 369 

presented at the 50th Symposium of the FSBI, and, with continued increases in 370 

computational power, IBMs look set to offer powerful new avenues for population 371 

research (DeAngelis & Grimm, 2014) in computationally challenging multifactor 372 

systems such as fish ecotoxicology (e.g. Mintram et al., 2017). Additionally, a variety 373 

of tools now exist which provide for the easier creation of new models, such as 374 

various R packages (see: derekogle.com/fishR/packages) and programmable 375 

environments (e.g. NetLogo;  ccl.northwestern.edu/netlogo). However, programs such 376 

as R are sometimes not intuitive to new users, and so additional training for fisheries 377 

scientists and collaborations between scientists from different computational and 378 

statistical backgrounds would be advantageous. For more robust future application 379 

of IBMs within fisheries science, there is a need for more assessment of the relative 380 

strengths and weaknesses (and potential availability and future development) of the 381 

different models.  382 
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Integration with environmental data is a pertinent issue when modelling and is 383 

becoming easier through developments in geographic information systems (GIS) and 384 

other programming environments (such as R), which now include procedures and 385 

libraries for use in ecological work. One example is the use of food web models that 386 

integrate environmental data (e.g. Christensen & Walters, 2004) and coral reef 387 

ecosystem modelling methods (e.g. Rogers et al., 2014; Weijerman et al., 2015). A 388 

hindrance to the integration of environmental data into fisheries science is that it can 389 

be difficult to find and access data sources, although availability and accessibility of 390 

such data is improving (e.g. worldclim.org). The existence of a central node or hub 391 

with paths to these data sources would be useful.  392 

 393 

Tissue analysis 394 

Stable isotope ecology 395 

Stable isotopes are now routinely used to quantify the trophic ecology (Boecklen et 396 

al., 2011) and migration history (Trueman et al., 2012) of fishes, or to identify 397 

community level patterns in food web structure and resource use (Layman et al., 398 

2012). Although the technique is still in its relative infancy, stable isotope ecology 399 

has advanced much in recent decades. Below we outline four areas of rapid 400 

development with potential to enhance the applicability of this tool to studies of fish 401 

biology. 402 

Biochemical mechanism: The relationship between the isotopic composition of a 403 

consumer’s tissues and that of its prey is fundamental to all applications of stable 404 
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isotopes in ecology. However, while general principles are clear (i.e. faster reaction 405 

rates and preferential incorporation of light isotopes into excretory metabolites a 406 

process termed trophic fractionation (DeNiro & Epstein, 1977)), the precise 407 

mechanisms leading to fractionation and, particularly, the extent of isotopic 408 

fractionation expected under differing physiological conditions cannot currently be 409 

predicted, primarily due to the complexity of amino acid biochemistry. Uncertainties 410 

associated with the isotopic expression of tissue composition, and relative rates of 411 

tissue growth and regeneration further complicate the interpretation of stable isotope 412 

values in ecology. However, recent information gained from compound-specific 413 

isotope analysis (i.e. assessing isotopic compositions of single amino acids) is 414 

beginning to shed light on the fractionation process (McMahon & McCarthy, 2016).  415 

Population-level data: The distribution of isotopic compositions of individuals within a 416 

population (often termed the ‘isotopic niche’, Newsome et al., 2007) has been 417 

proposed as a powerful comparative measure of population-level ecological 418 

characters. However, in addition to individual variability in consumers, the distribution 419 

of isotopic compositions in a population is influenced by spatial and temporal 420 

variations in the isotopic composition of primary production, temporal variability 421 

within trophic linkages and differential rates of growth and isotopic assimilation 422 

(Gorokhova, 2017). Very few studies have attempted to combine ecological and food 423 

web theory with isotope systematics to explore the sensitivity of community isotopic 424 

metrics to changes in food web structure and function.  425 

IsoBank: To date, applications of stable isotopes to fish biology have predominantly 426 

focussed on analyses of specific populations or communities. The absence of a 427 

centralised, open-access repository for stable isotope data restricts the opportunity 428 
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for syntheses or meta-analyses of stable isotope data (Pauli et al., 2017). Recent 429 

efforts to address this have found broad support from the stable isotope research 430 

community (Pauli et al., 2017) and would be especially beneficial to fish biologists 431 

due to the large amount of fish isotope data currently available. Defining an ontology 432 

of stable isotope metadata, information required to describe and interpret isotope 433 

data, for fish biologists is an immediate requirement in this regard. 434 

Marine isoscapes: The stable isotope ratios of a consumer’s tissue encode the 435 

resources (water, air, prey etc.) it was using when that tissue was formed. As such, 436 

provided one has access to a suite of isotopic baseline measurements (e.g. water, 437 

plants and primary consumers), it is possible to trace an organisms route through 438 

space and time up to the point of capture (Trueman et al., 2012). Creation of a 439 

practically useful isoscape requires relatively dense sampling of a reference 440 

organism across space (and potentially time). Bulk stable isotope analyses are now 441 

routine, commonly available globally, and relatively cheap, and regional marine 442 

isoscape models are being developed at a rapid rate (MacKenzie et al., 2014; Kurle 443 

& McWhorter, 2017). In the open ocean, sample-based isoscapes are difficult to 444 

develop, but progress is being made in isotope-enabled global biogeochemical 445 

models (Magozzi et al., 2017), offering temporal and spatial models of expected 446 

isotopic variability at global scales. Improving the precision, accuracy and availability 447 

of these baseline measurements will increase the robustness and precision of 448 

isotope based estimates animal position.  449 

 450 

Archaeological material 451 
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Archaeological material can allow an otherwise impossible snapshot into past 452 

populations. Traditional morphological approaches can provide age distributions and 453 

species ranges, and, with the rapid development of biomolecular archaeology in the 454 

past 20 years, many of the techniques used to explore modern fish populations can 455 

now be used to look into the past. From ancient DNA to proteomics, and isotopes to 456 

lipids, a wide range of biomolecules have been recovered and explored from 457 

archaeological material (Orton, 2016). For example, compound-specific isotope 458 

analysis has the potential to track trophic level changes through time (McClelland & 459 

Montoya, 2002; Naito et al., 2016). Population genetics of extinct populations have 460 

been successfully explored in terrestrial animals (Chang & Shapiro, 2016; Murray et 461 

al., 2017) and these same techniques can be used on fish bones to reconstruct past 462 

genetics (Iwamoto et al., 2012; Ólafsdóttir et al., 2014). Ideally these data will be 463 

used to understand environmental and anthropogenic effects on fish populations and 464 

how modern fish populations might respond to climate change and fishing pressures.  465 

A major barrier to the use of archaeological fish material is the fact that less than 466 

10% of fish bones are identified to species (Wheeler & Jones, 1989; Gobalet, 2001) 467 

and much of what is identified is buried in the ‘grey literature’ of archaeological 468 

reports that are often not digitised and printed in small quantities (Linden & Webley, 469 

2012). This makes the material relevant to an ecological question very difficult to 470 

find. Archaeologists are working towards ways to improve the amount of bones 471 

identified by better reference collections and education on fish bones (National 472 

Zooarchaeological Reference Resource, Nottingham’s Archaeological Fish 473 

Resource, Vertebra@UWF) and on creating searchable databases of archaeological 474 

material (Callou, 2009; Kansa, 2010).  In addition, new ZooMS (Zooarchaeology by 475 

Mass Spectrometry) techniques are being explored to quickly identify even small 476 
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bones and scales to species using peptide mass fingerprinting (Richter et al., 2011) 477 

which will allow even more material to be identified in a useful way for those working 478 

on understanding fish populations. In the near future, it should be possible for 479 

modern fish biologists, in conjunction with archaeologists, to ask direct questions of 480 

past populations (Van Neer & Ervynck, 2010). 481 

 482 

General topics identified as applicable across all themes 483 

Management of data: integration, calibration and standardisation 484 

Progression of an integrated management framework for data classification, 485 

characterisation, storage and accessibility would be a valuable resource for fish and 486 

fisheries biologists. FishBase, which at the time of writing contains information 487 

regarding 33,600 fishes, involving 2290 collaborators, and receives over 600,000 488 

visits per month, is an example of the potential for such a resource (see: fishbase.org; 489 

Froese & Pauly, 2017). A single database for all types of fish data (for example, 490 

DNA, tagging, isotopes, diet) is probably unworkable, but the advent of application 491 

programming interfaces (API) and analytical software which allows automated 492 

querying across multiple databases represents an unprecedented opportunity to 493 

access a wealth of global data. Indeed, we suggest that more data (such as those 494 

discussed here) could be integrated into FishBase. However, such resources require 495 

significant funding and long-term commitment from governments and trans-national 496 

organisations, e.g. NASCO.  497 

 498 
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Public engagement, education and outreach 499 

Scientific engagement with the public is essential to effect meaningful societal 500 

change or to ensure a wider consensus is made around new discoveries or ethical 501 

considerations. Additionally, however, the power of the public as a “tool” in science is 502 

also being increasingly recognised. ‘Crowdfunding’, whereby a scientist requests 503 

small amounts of money from a large number of interested individuals to 504 

successfully launch a project, potentially provides a powerful new way to raise funds, 505 

overcoming some of the difficulties of raising money from traditional grant bodies, 506 

especially for early career researchers or those in developing countries (Wheat et al., 507 

2013).  508 

In addition to funding science, the public can also actively engage in the process of 509 

research directly through citizen science projects. Whilst research conducted by non-510 

professionals is certainly not a new concept, the numbers of projects involving citizen 511 

scientists are growing, especially in the fields of environmental science and ecology 512 

(Silverton, 2009). Through catch records of amateur anglers and commercial net 513 

fishery data extending back many years, research into fish and fisheries is uniquely 514 

placed to benefit from citizen science projects (Stuart-Smith et al., 2013), which have 515 

effectively spanned generations of contributors. Similarly, REEF (reef.org) has been 516 

collecting reef fish diversity and abundance data from trained volunteer divers for 27 517 

years, and the data have been successfully leveraged in hundreds of publications 518 

(e.g. Stallings, 2009; Serafy et al., 2015). Citizen science can also help achieve 519 

important social outcomes, e.g. in establishing sustainable fisheries and marine 520 

protected areas, MPAs (Bonney et al., 2014). And, as with crowdfunding, the best 521 
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examples of citizen science typically encourage deeper engagement with the public, 522 

and offer a pathway to the democratisation of science.  523 

 524 

Fisheries policy and governance 525 

Conserving critical habitats is central to the sustainable management of fish species 526 

and populations. Marine Protected Areas (MPAs), networks of MPAs and Marine 527 

Conservation Zones (MCZs) are widely accepted management tools for fish and 528 

other marine organisms that have been established in many countries (Harborne et 529 

al., 2008; OSPAR, 2013). However, the design of MPA networks could benefit 530 

greatly from the integration of traditional survey data, along with modelling and 531 

connectivity data (Botsford et al., 2009; Grüss et al., 2014). From a social science 532 

perspective, there is a need to better understand public perceptions of marine-533 

related conservation issues, e.g. fishery regulations, MPAs and MCZs, and to 534 

incorporate these data into fisheries policy and governance frameworks. For 535 

example, there is high public support for MPAs, with surveys showing that people 536 

desire around 40% of the UK’s marine waters to be protected (Hawkins et al., 2016). 537 

But, while the public appears to realise that in reality levels of coverage are well 538 

below 40%, there is still a substantial disconnect between perceived coverage of 539 

highly protected UK MPAs (11%) and actual MPA coverage (<0.1%); ultimately, this 540 

means that people believe the UK oceans receive a higher level of conservation than 541 

in reality they do (Hawkins et al., 2016). Developing and implementing effective 542 

policies for fisheries management remains challenging because of the complexities 543 

of fisheries and the socio-political landscape under which they typically operate 544 
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(Jentoft & Chuenpagdee, 2009). However, the establishment of guidelines or 545 

frameworks for fisheries policy and governance (e.g. FAO Voluntary Guidelines for 546 

Securing Sustainable Small-Scale Fisheries) have the potential to better address 547 

these challenges and provide appropriate implementable solutions.  548 

 549 

Conclusions  550 

Across all five of the research themes identified here, it is clear that innovative and 551 

novel tools are being employed to understand all aspects of the biology of fish 552 

populations. Notwithstanding, the authors call for the continued development of 553 

these new and emerging techniques. In particular, there is a need for better 554 

integration of these methods and resulting data, to inform scientifically sound 555 

management and conservation of fish populations.  556 

However, it should be noted that, not infrequently, revolutionary methods have been 557 

pedestalled as providing the ability to offer unprecedented novel answers to long-558 

standing practical problems. Unfortunately, the danger is that such methods can (by 559 

their novelty and the excitement surrounding them), blinker scientists into posing 560 

questions that showcase the methodology, rather than the biology (for example, the 561 

plethora of papers that emerged in the early 1990s extolling the virtues of the 562 

random amplified polymorphic DNA (RAPD) technique). The potentially reduced 563 

power of using any technique on its own (new or otherwise), in isolation of other 564 

apparently ‘antiquated’ methods can turn out to be unnecessarily restrictive. Every 565 

technique has its limitations, but often the restrictions of one tool can be substantially 566 

alleviated by the inclusion of another approach (e.g. Goodwin et al., 2016; Nielson et 567 

al., 2017), the marriage of which can provide a new angle for researching 568 
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challenging biological problems. It is important that both traditional and emerging 569 

tools remain in the toolbox of fish biology research.  570 

Likewise, when genetic-based assignment became popular, many researchers 571 

naively believed the days of tagging fish were over. It is now realised that due to the 572 

many stochastic drivers of population structure, genetic stock identification-based 573 

methodologies such as genetic assignment, do not always succeed. In such cases, 574 

there remains a significant role for tagging in fisheries research. As tag sizes 575 

decrease, and the deleterious effects of tag insertions on fish also decrease, we can 576 

anticipate that genetics and tagging will both continue to have a role to play. The 577 

importance of the relative roles of each technique will depend on the questions being 578 

addressed, the population structure of the study species, and the scale of the 579 

questions being assessed. 580 

A final example, which highlights the importance of applying inter-disciplinary and 581 

complimentary tools for understanding fish populations, was a five-year, multi-582 

agency, EU-funded project investigating the migration and distribution of Atlantic 583 

salmon (Salmo salar L.) in the north-east Atlantic (the SALSEA project; NASCO 584 

2008). The purpose was to understand not just where salmon go, but what they eat, 585 

migration routes to feeding grounds, and which waters and regions they pass 586 

through. The SALSEA project used a combination of genetics (microsatellites), 587 

stable isotope analysis, at-sea trawls, tagging and gut contents analysis to assess 588 

the movements and diet of Atlantic salmon across the north-east Atlantic Ocean. As 589 

a result of applying these combined approaches, salmon post-smolt movements 590 

have been confidently ascertained (Gilbey et al., 2017). Nonetheless, even while this 591 

comprehensive study was being finalised, a similarly broad-ranging study was also 592 

being undertaken using SNPs (Bourret et al., 2013). Arguably, this method offers 593 
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both the potential for finer levels of stock discrimination and the ability to better 594 

explore patterns among functional loci, which may make microsatellite-based 595 

analysis redundant within a short period of time (though see Narum et al., 2008). 596 

Thus, the authors consider the continued development of emerging tools, together 597 

with the use of multiple methodologies and inter-disciplinary approaches, to 598 

represent the best avenues for further improving our understanding of fish 599 

populations. We implore scientists from unrelated fields to collaborate on such 600 

projects. The FSBI 50th Anniversary Symposium represented one such event, where 601 

fish-focused researchers across diverse fields, came together to advance the state 602 

of fish biology.  603 
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Table 1. Summary of popular current and emerging methods used for fish surveys along with the associated advantages and 

limitations of each method. 

 

Method Advantages Limitations 
Manpower 

requirement 

Health & 

Safety 

consideration 

Electric fishing 

1. Can be used in flowing and still 

water, amongst macrophytes 

and obstructions 

2. Relatively unselective 

3. Can be used quantitatively 

1. Inefficient in water > 1 – 1.5m or 
in wide reaches 

2. Limited by water and bed 
conductivity 

3. Can be harmful to sensitive fish 
species and life stages 

4. Invasive 
 

Significant to 

high 
High 

Seine netting 

1. Can be used quantitatively 

2. Efficiency well-understood 

3. Relatively unselective 

1. Limited effectiveness in very 
deep or very shallow water 

2. Limited effectiveness where 
there are macrophytes, 
obstructions, or soft sediment 

3. Restricted to use in low velocity 
water bodies. 

4. Invasive. 
 

High 
 

Significant 
 

Trawling 

 

1. Large areas of deep water can 

be surveyed efficiently 

1. Restricted to use in relatively 
open continuous stretches of 
water of > 2m in depth.  

2. Cannot be used where there are 
dense macrophytes, very 
variable bed profiles or large 

High High 

Table



debris. 
3. Requires sizeable boats and 

launching facilities. 
4. Invasive. 

Gill-netting 

1. Can be used in a wide variety of 

environments amongst debris 

and macrophytes, in almost any 

depth 

1. Invasive / destructive 
2. Limited ability to assess 

absolute fish abundance 
 

Significant Significant 

Hydro-

acoustics  

1. Huge expanses of water can be 

surveyed efficiently 

2. Non-invasive 

3. Quantitative abundance 

estimates possible 

1. Limited effectiveness in 
turbulent environments 

2. Can only sample relatively open 
water so unsuitable to use for 
sampling in marginal habitats 

3.  Lacks capacity to differentiate 
between species 

4. Cannot assess age, condition 
and health of fish 

Significant 
 

Significant 

Fyke netting 

and trapping 

1. Can be deployed in a variety of 

environments,  

2. Can be effective for some 

species difficult to sample by 

other methods 

1. Very species and size-selective 
2. Limited ability to assess 

absolute fish abundance 

Significant 
 

Significant 
 

Fry surveys – 

micromesh 

seine/handnet/

traps 

1. Focuses on margins of rivers 

and lakes, therefore less 

resource intensive, simple 

equipment only 

2. Assesses a key life stage 

3. Relatively unselective 

1. Only assesses juvenile 
populations 

2. Invasive – very young fish 
unlikely to survive capture 

 

Significant Significant 

Fish counters 

/fixed traps 

1. Good for assessing highly 

mobile fish with relatively 

1. Resource intensive – high 
capital costs, maintenance 

2. Quantitative assessment for 

High Significant 



(sometimes 

accompanied 

by 

camera/video 

recorder 

predictable migration patterns migratory species only 
3. Often only operational under 

certain environmental conditions 

Rod-and-line 
 

1. Adaptable, can be deployed 

almost anywhere 

2. Amenable to volunteer/citizen 

science participation 

1. Very effort-dependent (quantity 
and quality) 

2. Strongly influenced by 
conditions 

3. Very selective for species and 
size of fish 

4. Limited capability to assess 

absolute fish abundance 

5. Very noisy data 

High Low 

Commercial 
fish catch 
monitoring 

1. Enables large volumes of data 
collected over large spatial and 
temporal scales. 

2. Relatively cheap – fish are being 
caught anyway 

1. Can only happen where 
commercial fisheries exist. 

2. Little control over changes in 
effort and methodology – driven 
by market forces 

3. Strongly influenced by 
conditions 

Low  Low 

Visual surveys 
(snorkelling, 

counting from 
the bank) 

1. Relatively non-invasive 
2. Enables observation of fish in their 

surroundings  

1. Only applicable in high water 
clarity and over short ranges 

2. Mostly applicable to species 
with distinct individual home 
range, typically associated with 
physical habitat features.  

Moderate 
Significant to 

High 

 

Methods under development 

eDNA (single- 1. Very adaptable, deployable 
1. Currently can only establish fish 

presence and abundance of 
Significant Significant 



target and 

meta 

barcoding) 

anywhere 

2. Non-invasive 

3. Non-selective 

4. Low field manpower 

requirement 

species relative to each other – 
absolute abundance remains a 
challenge 

2. Cannot assess age, size, 
condition or health  

3. Uncertainty around the source 

of eDNA in lotic environments  

4. High laboratory time 

requirement 

DIDSON 
/ARIS – high 

resolution 
sonar 

 

1. Can be used in turbid water, 
amongst obstructions  

2. Can be used in a variety of 
depths and flows except very 
turbulent water Enables 
visualisation of target fish, 
species identification  

3. Quantitative estimates possible 
Species (some) and size of fish 
can be identified  

4. Observations of fish behaviour 
permissible  

5. Non-invasive 

1. Mobile deployment currently 

challenging 

2. Limited ability to assess whole 

water body abundance 

3. Limited species identification 

ability 

4. High data-processing 

requirement 

5. Cannot assess age, condition 

and health of fish 

Significant Significant 

 


