
Stateoftheart stochastic data
assimilation methods for highdimensional
nonGaussian problems
Article

Published Version

Creative Commons: Attribution 4.0 (CCBY)

Open Access

VetraCarvalho, S., Van Leeuwen, P. J., Nerger, L., Bart, A.,
Altaf, M. U., Brasseur, P., Kirchgessner, P. and Beckers, J.M.
(2018) Stateoftheart stochastic data assimilation methods
for highdimensional nonGaussian problems. Tellus A:
Dynamic Meteorology and Oceanography, 70 (1). 1445364.
ISSN 16000870 doi:
https://doi.org/10.1080/16000870.2018.1445364 Available at
http://centaur.reading.ac.uk/75716/

It is advisable to refer to the publisher’s version if you intend to cite from the
work.

To link to this article DOI: http://dx.doi.org/10.1080/16000870.2018.1445364

Publisher: Taylor & Francis

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/151259594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://www.reading.ac.uk/centaur

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=zela20

Tellus A: Dynamic Meteorology and Oceanography

ISSN: (Print) 1600-0870 (Online) Journal homepage: http://www.tandfonline.com/loi/zela20

State-of-the-art stochastic data assimilation
methods for high-dimensional non-Gaussian
problems

Sanita Vetra-Carvalho, Peter Jan van Leeuwen, Lars Nerger, Alexander
Barth, M. Umer Altaf, Pierre Brasseur, Paul Kirchgessner & Jean-Marie
Beckers

To cite this article: Sanita Vetra-Carvalho, Peter Jan van Leeuwen, Lars Nerger, Alexander Barth,
M. Umer Altaf, Pierre Brasseur, Paul Kirchgessner & Jean-Marie Beckers (2018) State-of-the-
art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A:
Dynamic Meteorology and Oceanography, 70:1, 1445364, DOI: 10.1080/16000870.2018.1445364

To link to this article: https://doi.org/10.1080/16000870.2018.1445364

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Mar 2018.

Submit your article to this journal

Article views: 387

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=zela20
http://www.tandfonline.com/loi/zela20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/16000870.2018.1445364
https://doi.org/10.1080/16000870.2018.1445364
http://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2018.1445364&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2018.1445364&domain=pdf&date_stamp=2018-03-21

Tellus
SERIES A
DYANAMIC
METEOROLOGY
AND OCEANOGRAPHY

PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM

State-of-the-art stochastic data assimilation methods
for high-dimensional non-Gaussian problems

By SANITA VETRA-CARVALHO1∗, PETER JAN VAN LEEUWEN1,2, LARS NERGER3,
ALEXANDER BARTH4, M. UMER ALTAF5, PIERRE BRASSEUR6,

PAUL KIRCHGESSNER3 and JEAN-MARIE BECKERS4, 1Department of Meteorology, University of
Reading, Reading, UK; 2National Centre for Earth Observation, Reading, UK; 3Alfred Wegener Institute, Helmholtz
Center for Polar and Marine Research, Bremerhaven, Germany; 4GeoHydrodynamic and Environmental Research
(GHER), University of Liège, Liège, Belgium; 5King Abdullah University of Science and Technology, Thuwal, Saudi

Arabia; 6CNRS, IRD, Grenoble INP, IGE, University of Grenoble Alpes, Grenoble, France

(Manuscript received 5 July 2017; in final form 19 February 2018)

ABSTRACT
This paper compares several commonly used state-of-the-art ensemble-based data assimilation methods in a coherent
mathematical notation. The study encompasses different methods that are applicable to high-dimensional geophysical
systems, like ocean and atmosphere and provide an uncertainty estimate. Most variants of Ensemble Kalman Filters,
Particle Filters and second-order exact methods are discussed, including Gaussian Mixture Filters, while methods that
require an adjoint model or a tangent linear formulation of the model are excluded. The detailed description of all the
methods in a mathematically coherent way provides both novices and experienced researchers with a unique overview
and new insight in the workings and relative advantages of each method, theoretically and algorithmically, even leading
to new filters. Furthermore, the practical implementation details of all ensemble and particle filter methods are discussed
to show similarities and differences in the filters aiding the users in what to use when. Finally, pseudo-codes are provided
for all of the methods presented in this paper.

Keywords: ensemble Kalman filter, particle filter, data assimilation, high dimension, non Gaussian

1. Introduction

Data assimilation (DA) is the science of combining observations
of a system, including their uncertainty, with estimates of that
system from a dynamical model, including its uncertainty, to
obtain a new and more accurate description of the system includ-
ing an uncertainty estimate of that description. The uncertainty
estimates point to an efficient description in terms of probability
density functions, and in this paper we discuss methods that
perform DAusing an ensemble of model states to represent these
probability density functions.

Ensemble Kalman filters are currently highly popular DA
methods that are applied to a wide range of dynamical models
including oceanic, atmospheric, and land surface models. The
increasing popularity of Kalman-Filter-based ensemble (EnKF)
methods in these fields is due to the relative ease of the filter
implementation, increasing computational power and the natural
forecast error evolution in EnKF schemes with the dynamical

∗Corresponding author. e-mail: s.vetra-carvalho@reading.ac.uk

model in time. However, due to technological and scientific
advances, three significant developments have occurred in the
last decade that force us to look beyond standard Ensemble
Kalman Filtering, which is based on linear and/or Gaussian
assumptions. Firstly, continuous increase in computational capa-
bility has recently allowed to run operational models at high res-
olutions so that the dynamical models have become increasingly
non-linear due to the direct resolution of small-scale non-linear
processes in these models, e.g. small-scale turbulence. Secondly,
in several geoscientific applications, such as atmosphere, ocean,
land surface, hydrology and sea – i.e. it is of interest to estimate
variables or parameters that are bounded requiring DA meth-
ods that can deal with non-Gaussian distributions. Thirdly, the
observational network around the world has increased many-
fold for weather, ocean and land surface areas providing more
information about the real system with greater accuracy and
higher spatial and temporal resolution. Often the so-called ob-
servation operators that connect model states to observations of
these new observations are non-linear, again asking for non-
Gaussian DA methods. Thus, the research in non-linear DA

Tellus A: 2018. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 1
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Tellus A: 2018, 70, 1445364, https://doi.org/10.1080/16000870.2018.1445364

http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2018.1445364&domain=pdf
http://creativecommons.org/licenses/by/4.0/

2 S. VETRA-CARVALHO ET AL.

methods, which can be applied to high-resolution dynamical
models and/or complex observation operators, has seen major
developments in the last decade with the aim to understand
how existing ensemble methods cope with non-linearity in the
models, to develop new ensemble methods that are more suited
to non-linear dynamical models, as well as to explore non-linear
filters that are not limited to Gaussian distributions, such as
particle filters or hybrids between particle and ensemble Kalman
filters.

The origin of this paper lies in the EU-funded research project
SANGOMA (Stochastic Assimilation for the Next Generation
Ocean Model Applications). The project focused on generating
a coherent and transparent database of the current ensemble-
based data assimilation methods and development of data as-
similation tools suitable for non-linear and high-dimensional
systems concentrating on methods that do not require tangent
linear approximations of the model or its adjoint. The methods
described within this paper have been applied in operational
oceanography, like the TOPAZ system (Sakov et al., 2012) or
the FOAM system of the UK Met Office (see Blockley et al.,
2014). While TOPAZ is already using an EnKF, FOAM applies
an optimal interpolation scheme that takes in less dynamical
information to estimate the error covariance matrix. That said
this paper is aimed at a very broad audience and data assimilation
methods discussed in this paper are not limited to applications to
ocean or atmosphere models, hence, the methods are presented
without the context of any specific dynamical model, allowing
the reader to make the most of each technique for their specific
application.

A number of reviews have been published recently, each
collating parts of the development in data assimilation, e.g. Ban-
nister (2017) gives a comprehensive review of operational meth-
ods of variational and ensemble-variational data assimilation,
Houtekamer and Zhang (2016) review the ensemble Kalman
filter with a focus on application to atmospheric data assimi-
lation, Law and Stuart (2012) review variational and Kalman
filter methods, and Bocquet et al. (2010) present a review of
concepts and ideas of non-Gaussian data assimilation methods
and discusses various sources of non-Gaussianity. The merits of
this paper lie within:

• coherent mathematical description of the main methods
that are used in the current data assimilation community for
application to high-dimensional and non-Gaussian prob-
lems allowing the reader to easily oversee the differences
between the methods and compare them;

• discussing ensemble Kalman Filters, particle filters, second-
order exact filters and Gaussian Mixture Filters within the
same paper using consistent notation;

• inclusion of practical application aspects of these methods,
discussing computational cost, parallelising, localisation
and inflation techniques;

• provision of pseudo-code algorithms for all of the presented
methods;

along with inclusion of recent developments, such as the error-
subspace transform Kalman filter (ESTKF) and recent particle
filters, this paper goes beyond earlier reviews (e.g. Tippett et al.,
2003; Hamill et al., 2006; van Leeuwen, 2009; Houtekamer and
Zhang, 2016; Bannister, 2017).

The paper is organised as follows: in Section 2 the common
ground through Bayes theorem is established, in Section 3 a
historical overview is given for both ensemble Kalman and par-
ticle filter fields, and in Section 4 we define the basic problem
solved by all of the methods presented in this paper. In Sec-
tion 5 we discuss the most popular types of ensemble Kalman
filter methods. Then, in Section 6, we discuss several particle
filter methods that can be applied to high-dimensional problems.
In Section 7, we describe ensemble filters with second-order
accuracy, namely the particle filter with Gaussian resampling
(PFGR), the non-linear ensemble transform filter (NETF), and
the moment-matching ensemble filter. The Gaussian mixture
filter is discussed in Section 8. The practical implementation
of the filters including localisation, inflation, parallelisation and
the computation cost as well as the aspect of non-linearity are
discussed in Section 9. Finally, Appendix 1 provides pseudo
codes for resampling techniques often used in particle filter
methods, and Appendix 2 contains pseudo codes for all of the
methods discussed in this paper.

We note that many of the filters discussed in this paper are
available freely from Sangoma project website1 along with many
other tools valuable and/or necessary for data assimilation
systems.

1.1. Notation

In the data assimilation community the currently most accepted
notation is described in Ide et al. (1997). We adhere to this
notation where possible while also making this paper acceptable
and intuitive not only to data-assimilation experts but also to a
wider audience including those who might like to explore data
assimilation methods simply as tools for their specific needs.
To this end, throughout this paper dimensions will always be
described by capital N with an underscore indicating the space
in question, that is

• Nx - dimension of state space;
• Ny - dimension of observation space;
• Ne - dimension of ensemble/particle space.

Further, the time index is always denoted in parentheses in
the upper right corner of the variables, i.e. (.)(m), except for
operators such as M (dynamical model) and H (observation
operator) where it is in the lower right corner. However, we will
omit the time index when possible to ease the notation. We will

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 3

refer to each ensemble member (or each particle) by x j where the
index j = 1, . . . , Ne and Ne is the total number of the ensemble
members (or particles).

When discussing Bayesian theory in Sections 2 and 6 purely
random variables will be denoted by capital letters, and fixed
or deterministic or observed quantities will be denoted by low-
ercase letters. Probability density functions will be denoted by
p (..), and q(..) and we will use lower case arguments in this
context.

Throughout the paper, Greek letters will refer to various er-
rors, e.g. observational or model errors. Finally, bold lowercase
letters will denote vectors and bold uppercase letters will denote
matrices.

2. Common ground through Bayes theorem

Various types of data assimilation methods, e.g. variational, en-
semble Kalman filters, particle filters, etc., have originated from
different fields and backgrounds, due to the needs of a particular
community or application. However, all of these methods can
be unified through Bayes theorem. In this section, we will give a
summary of Bayes theorem showing how both ensemble Kalman
filter (KF) methods and particle filter (PF) methods are linked
in this context and what problems each of them solve. For an
introduction to the Bayesian theory for data assimilation, the
reader is referred to e.g. van Leeuwen and Evensen (1996) and
Wikle and Berliner (2006).

Data assimilation is an approach for combining observations
with model forecasts to obtain a more accurate estimate of the
state and its uncertainty. In this context, we require

• data, that is observations y and a knowledge of their asso-
ciated error distributions and

• a prior, that is a model forecast of the state, x f , and knowl-
edge of the associated forecast and model errors;

to obtain the posterior, i.e. the analysis state xa , and its associ-
ated error. The posterior can be computed through Bayes theorem
which states that

p (x|y) = p (y|x) p (x)

p (y)
, (1)

where p (x|y) is the posterior or analysis probability density
function, p (y|x) is the observation probability density function
or also called the likelihood, p (x) is the prior or forecast prob-
ability density function, and p (y) is the marginal probability
density function of the observations, which can be thought of as
a normalising constant. From now on, for the ease of the read-
ability, we will abbreviate ‘probability density function’ with
‘pdf’.

Typically, data assimilation methods make the Markovian
assumption for the dynamical model M and the conditional in-

dependence assumption of the observations. That is, we assume
that the model state or the prior at time m, when conditioned on
all previous states only depends on the state at the time m − 1,

p
(
x(0:T)

)
= p

(
x(0)

) T∏
m=1

p
(
x(m)|x(m−1)

)
. (2)

Here, the superscript 0 : T is to be read for time indices from
initial time to time T , which is typically called assimilation win-
dow in data assimilation. Further, observations are also usually
assumed to be conditionally independent, i.e. they are assumed
to be independent in time,

p
(
y(1:T)|x(0:T)

)
=

T∏
m=1

p
(
y(m)|x(m)

)
. (3)

Using Equations (2) and (3) we can rewrite Bayes theorem in
Equation (1) as

p
(
x(T)|y(T)

)
∝ p(x0)

T∏
m=1

p
(
y(m)|x(m)

)
p
(
x(m)|x(m−1)

)
.

(4)
The Markovian assumption allows us to use new observations

as they become available by updating the previous estimate of
the state process without having to start the calculations from
scratch. This is called sequential updating and the methods de-
scribed in this paper all follow this approach.

Ensemble Kalman filter methods solve this problem using
Gaussian assumptions for both prior and likelihood pdf’s. Mul-
tiplying two Gaussian pdf’s leads again to a Gaussian pdf, i.e.
the posterior or analysis pdf will also be Gaussian. The posterior
pdf will have only one global maximum, which will correspond
to the ensemble mean (also mode and median since the pdf is
Gaussian). In other words, the posterior pdf in ensemble Kalman
filter methods described in Section 5 is found in terms of the first
two moments (mean and covariance) of the prior and likelihood
pdf’s. This is also true when ensemble Kalman filters are applied
to non-linear dynamical models or observation operators, in
which case the information from higher moments in an ensemble
KF analysis update is ignored. This is a shortcoming in ensemble
Kalman filters when applied to non-Gaussian problems. How-
ever, in general ensemble Kalman filter methods are robust when
applied to non-linear models and catastrophic filter divergence,
where the filter deviates strongly from the observations while
producing unrealistically small error estimates, occurs mainly
due to sparse or inaccurate observations (Verlaan and Heemink,
2001; Tong et al., 2016). It should, of course, be realised that
in non-linear settings the estimates of the posterior mean and
covariance might be off.

4 S. VETRA-CARVALHO ET AL.

In particle filter methods, the posterior is obtained using the
prior and likelihood pdf’s directly in Equation (1) without re-
stricting them to being Gaussian. If both prior and likelihood are
Gaussian the resulting posterior or analysis pdf is also Gaus-
sian and has a global maximum corresponding to the mean
state. However, if either or both prior and likelihood pdf’s are
non-Gaussian then the resulting posterior pdf will also not be
Gaussian. In other words, if the dynamical model or mapping
of the model variables to observation space are non-linear then
particle filter methods will produce an analysis pdf which will
provide knowledge of more than the first two statistical moments
(mean and covariance), in contrast to ensemble Kalman filter
methods. Thus, the analysis pdf could be skewed, multi-modal or
of varying width in comparison to a Gaussian pdf. Hence, particle
filters are, by design, able to produce analysis pdf’s for non-
Gaussian problems. While standard particle filter methods suffer
from filter divergence for large problems recently several particle
filter variants have been developed that avoid this divergence.

In what follows, we will describe numerous filtering methods
in Sections 5, 6, 7, and 8 and discuss how each method attempts to
produce an analysis pdf for non-Gaussian and high-dimensional
problems. However, firstly we provide an overview of the histor-
ical development of both ensemble Kalman filters and particle
filter methods to show how these fields have evolved and what
has given rise in the development of each of the methods.

3. History of filtering for data assimilation

Before we precede to the main point of our paper – describing in
unified notation current state-of-the-art ensemble and particle fil-
ter methods for non-linear and non-Gaussian applications, their
implementation, and practical application, a short summary is in
order on the historical development in both ensemble Kalman
filter and particle filter areas.

3.1. Development history of ensemble Kalman filters

Ensemble data assimilation (EnDA) started in 1994 with the
introduction of the Ensemble Kalman filter (EnKF, Evensen
(1994)). The use of perturbed observations was introduced a
few years later simultaneously by Burgers et al. (1998) and
Houtekamer and Mitchell (1998) to correct the previously too
low spread of the analysis ensemble. This filter formulation
defines today the basic ’Ensemble Kalman filter’, which we
will denote as the Stochastic Ensemble Kalman Filter, with a
slightly different interpretation and implementation, as will be
described later. The first alternative variant of the original EnKF
was introduced by Pham et al. (1998a) in the form of Singular
’Evolutive’ Interpolated Kalman (SEIK) filter. The SEIK filter
formulates the analysis step in the space spanned by the ensemble
and hence is computationally particularly efficient. In contrast
to the EnKF, which was formulated as a Monte Carlo method,

the SEIK filter was designed to find the analysis ensemble by
writing each posterior member as a linear combination of prior
members without using perturbed observations. Another ensem-
ble Kalman filter that uses the space spanned by the ensemble
was introduced with the Error-Subspace Statistical Estimation
(ESSE) method (Lermusiaux and Robinson, 1999).

The filters mentioned above were all introduced for
data assimilation in oceanographic problems. A new set of filter
methods was introduced during the years 2001 and 2002 for
meteorological applications. The Ensemble Transform Kalman
Filter (ETKF, Bishop et al., 2001) was first introduced in the
context of meteorological adaptive sampling. Further, the En-
semble Adjustment Kalman Filter (EAKF, Anderson, 2001) and
the Ensemble Square Root Filter (EnSRF, Whitaker and Hamill,
2002) were introduced. The motivation for these three filters was
to avoid the use of perturbed observations, which were found to
introduce additional sampling error into the filter solution, with
the meteorological community apparently being unaware of the
development of the SEIK filter. The new filters were classified as
ensemble square root Kalman filters and presented in a uniform
notation by Tippett et al. (2003). Nerger et al. (2005a) further
classified the EnKF and SEIK filters as error-subspace Kalman
filters because the filters compute the correction in the error-
subspace spanned by the ensemble. This likewise holds for the
ETKF, EAKF, and EnSRF, however, these filters do not explicitly
use a basis in the error subspace but use the ensemble to represent
the space. When the EAKF and EnSRF formulations are used
to assimilate all observation at once, these filters exhibit a much
larger computational cost compared to the ETKF. To reduce the
cost, the original study on the EnSRF (Whitaker and Hamill,
2002) already introduced a variant in which observations are
assimilated sequentially, which assumes that the observation
errors are uncorrelated.Asimilar serial formulation of the EAKF
was introduced byAnderson (2003). This sequential assimilation
of observations was assessed by Nerger (2015) and it was shown
that this formulation can destabilise the filtering process in cases
when the observations have a strong influence.

With regard to the classification as an ensemble square root
Kalman filter, the SEIK filter is the first filter method that was
clearly formulated in square root form. The original EnKF uses
the square root form only implicitly but an explicit square root
formulation of the EnKF was presented by Evensen (2003).

The methods above all solve the original equations of the
Kalman filter but use the sample covariance matrix of the ensem-
ble to represent the state error covariance matrix. An alternative
was introduced with the Maximum-Likelihood Kalman Filter
(MLEF, Zupanski, 2005). This filter represents the first variant of
the class of hybrid filters that were introduced in later years. The
filter computes the maximum-a posteriori solution (in contrast
to the minimum-variance solution of the Kalman filter) by an
iterative scheme.2

While the EnKFs were very successful in making the appli-
cation of the Kalman filter feasible for the high-dimensional

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 5

problems in oceanography and meteorology, the affordable en-
semble size was always very limited. To counter the issue of
sampling error in ensemble covariances (the ensemble-sampled
covariance has a rank of not more than the ensemble size mi-
nus one while the applications were of very high state dimen-
sion) the method of covariance localisation was introduced by
Houtekamer and Mitchell (1998) and Houtekamer and Mitchell
(2001). Later, an alternative localisation was introduced for the
ETKF (LETKF, Hunt et al., 2007) which uses a local analysis
(also used previously, e.g. by Cohn et al. (1998)) where ob-
servations are down-weighted with increasing distance from the
local analysis point through a tapering of the inverse observation
covariances.

The relationship between the SEIK filter and the ETKF was
investigated by Nerger et al. (2012a). The study leads to a new
filter formulation, the Error-Subspace Transform Kalman Filter
(ESTKF), which combined the advantages of both filter formu-
lations.

The filters mentioned above represent main developments of
the ensemble Kalman filters. However, there are many other
developments, which are not included here. Some of them are
discussed in the sections below, in particular with regard to local-
isation. Overall, while there are different reviews of selections
of ensemble Kalman filters, a complete and coherent overview
of the different methods is still missing.

3.2. Development history of particle filters

Particle filters, like ensemble Kalman filters, are variants of
Monte Carlo methods in which the probability distribution of the
model state given the observations is approximated by a number
of particles; however, unlike ensemble Kalman filters, particle
filters are fully non-linear data assimilation techniques. From
a sampling point of view, Ensemble Kalman Filters draw sam-
ples directly from the posterior since the probability distribution
function (pdf) is assumed to be a Gaussian. In a particle filter
application, the shape of the posterior is not known, and hence
one cannot sample directly from it. In its simplest form, samples
are generated from the prior after which importance sampling
is employed to turn them into samples from the posterior where
each sample is weighted with its likelihood value.

Particle filters emerged before ensemble Kalman filters, and
when Gordon et al. (1993) introduced resampling in the se-
quential scheme the method became mainstream in non-linear
filtering. This basic scheme has been made more efficient for spe-
cific applications in numerous ways, like looking ahead, adding
small perturbations to resampled particles to avoid that they
are the same etc. (see Doucet et al., 2001 for a very useful
review of the many methods available at that time). Attempts
to apply the particle filter to geophysical systems are as old as
1996 (van Leeuwen and Evensen, 1996), with the first partially
successful application by van Leeuwen (2003a). However, until
recently, particle filters have been deemed to be computation-

ally unfeasible for large-dimensional systems due to the filter
degeneracy problem (Bengtsson et al., 2008; Snyder et al., 2008;
van Leeuwen, 2009). This means that the likelihood weights
vary substantially between the particles when the number of
independent observations is large, such that one particle obtains
a weight close to one, while all the others have weight very close
to zero. New developments in the field generated particle filter
variants that have been shown to work for large dimensional
systems with a limited number of particles. These methods can be
divided in two classes: those that use localisation (starting with
van Leeuwen, 2003b; Bengtsson et al., 2003), followed more
recently by local variants of the ensemble transform particle
filter (ETPF, Reich, 2013) and the Local Particle Filter (Poterjoy,
2016a) and those that exploit the future observational informa-
tion via proposal densities, such as the Implicit Particle Filter
(Chorin and Tu, 2009), the Equivalent Weights Particle Filter
(EWPF, van Leeuwen, 2010; van Leeuwen, 2011; Ades and van
Leeuwen, 2013), and the Implicit Equal Weights Particle Filter
(IEWPF, Zhu et al., 2016).

In another development, second-order exact filters have been
developed that ensure that the first two moments of the poste-
rior pdf are consistent with the particle filter, and higher-order
moments are not considered. The first paper of this kind was the
Particle Filter with Gaussian Resampling of Xiong et al. (2006),
followed by the Merging Particle Filter (Nakano et al., 2007) and
the Moment Matching Ensemble Filter (Lei and Bickel, 2011).
All these filters seem to have been developed independently.
The Non-linear Ensemble Transform Filter (Tödter and Ahrens,
2015) can be considered a local version of the filter by Xiong
et al. (2006), ironically again developed independently.

A further approximation to particle filtering is the Gaussian
Mixture Filter first introduced in the geosciences by Bengtsson
et al. (2003), followed by the adaptive Gaussian mixture filter
variants (Hoteit et al., 2008; Stordal et al., 2011). The advantage
of these filters over the standard particle filter is that each par-
ticle is ’dressed’ by a Gaussian such that the likelihood weights
are calculated using a covariance that is broader than the pure
observational covariance, leading to better behaving weights at
the cost of reducing the influence of the observations on the
posterior pdf (see e.g. van Leeuwen, 2009).

4. The problem

Consider the following non-linear stochastic discrete-time dy-
namical system at a time when observations are available:

x(m) =Mm

(
x(m−1)

)
+ β(m) (5)

y(m) = Hm

(
x(m)

)
+ β

(m)
o , (6)

where x(m) ∈ RNx is the Nx dimensional state vector, y(m) ∈
RNy is the observation vector of size Ny � Nx ,Mm : RNx →

6 S. VETRA-CARVALHO ET AL.

RNx is the forward model operator, Hm : RNx → RNy is
the observation operator, β(m) ∈ RNx is the model noise (or
error) distributed Gaussian with a covariance matrix Q(m), and
β

(m)
o ∈ RNy is the observation noise (or error) distributed

Gaussian with covariance matrix R(m).
Then we can define an ensemble of model forecasts obtained

using Equation (5) for each ensemble or particle member as
follows,

X f,(m) =
[
x f,(m)

1 , x f,(m)
2 , . . . , x f,(m)

Ne

]
∈ RNx×Ne , (7)

where superscript (.) f stands for forecast.
The aim of the stochastic data assimilation methods is to

produce a posterior pdf or analysis distribution of the state, Xa ,
at the time of the observations through combining the ensemble
model forecast X f with observations y. In Section 5, we will
discuss ensemble Kalman filter based methods and in Sections 6–
8 we will discuss particle, second-order exact, and adaptive
Gaussian mixture filter methods all achieving this aim through
different approaches.

5. Ensemble Kalman filters

Given an initial ensemble X(0) ∈ RNx×Ne , the different pro-
posed variants of the ensemble Kalman filter have the following
steps in common:

• Forecast step: the ensemble members at each time step
between the observations 0 < k ≤ m are propagated using
the full non-linear dynamical model:

x f,(k)
j =Mk

(
x f,(k−1)

j

)
+ β

(k)
j , (8)

starting at the previous analysis ensemble (if k = 1, then
this would be x f,(1)

j = M1

(
x(0)

j

)
+ β

(1)
j), where j =

1, . . . , Ne is the ensemble member index.
• Analysis step: at the observation time k = m the ensem-

ble forecast mean and covariance are updated using the
available observations to obtain a new analysis ensemble.

The various ensemble methods differ in the analysis step. Here
we will discuss current methods applicable for large-dimensional
systems, namely, the original ensemble Kalman filter (EnKF)
(Evensen, 1994) with stochastic innovations (Burgers et al., 1998;
Houtekamer and Mitchell, 1998), the singular evolutive
interpolated Kalman filter (SEIK) (Pham et al., 1998a), the
error-subspace statistical estimation (ESSE) (Lermusiaux and
Robinson, 1999; Lermusiaux et al., 2002; Lermusiaux, 2007),
the ensemble transform Kalman filter (ETKF) (Bishop et al.,
2001), the ensemble adjustment Kalman filter (EAKF)
(Anderson, 2001), the original ensemble square root filter

(EnSRF) (Whitaker and Hamill, 2002) with synchronous and
serial observation treatment, the square root formulation of the
EnKF (Evensen, 2003), the error subspace transform Kalman
filter (ESTKF) (Nerger et al., 2012a), and the maximum likeli-
hood ensemble filter (MLEF) (Zupanski, 2005; Zupanski et al.,
2008). We will present these methods in the square root form and
point out the different ways the analysis ensemble is obtained
in each of the methods. Tippett et al. (2003) gives a uniform
framework for EnSRFs, which we follow closely here. In the
rest of this section for ease of notation we omit the time index
(·)(k) since all of the analysis operations are done at time m.

The ensemble methods discussed in this section are based on
the Kalman filter (Kalman, 1960) where the updated ensemble
mean follows the Kalman update for the state, given by

xa = x f + K
(
y −H(x f)

)
= x f + Kd (9)

where d = y − H(x f) is the innovation. The ensemble co-
variance update follows the covariance update equation in the
Kalman Filter, given by

Pa = (I− KH)P f , (10)

where K is the Kalman gain given by

K = P f HT(HP f HT + R)−1. (11)

The matrix H is the linearised observation operator H(..) at the
forecast mean x f . Initially the Kalman filter was derived for a
linear observation operator, but in the Extended Kalman Filter
the non-linear observation operator is used as above.

Since for high-dimensional systems it is computationally not
feasible to form the error covariance matrix P, the analysis
update of the covariance matrix in Equation (10) is formulated in
a square root form by computing a transform matrix and applying
it to the ensemble perturbation matrix, which is a scaled square
root of P. That is, the analysis ensemble is then given by

Xa = X
a + X′a, (12)

where X
a = (xa, . . . , xa) ∈ RNx×Ne is a matrix with the en-

semble analysis mean in each column and the ensemble analysis
perturbations are a scaled matrix square root of

Pa = X′a (X′a)T
Ne − 1

. (13)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 7

To obtain the general square root form we write, using (10)

X′a(X′a)T =
(
I− P f HT(HP f HT + R)−1H

)
X′ f (X′ f)T

= X′ f
(
I− STF−1S

)
(X′ f)T, (14)

where S = HX′ f is the ensemble perturbation matrix in obser-
vation space and

F = S ST + (Ne − 1) R (15)

is the innovation covariance.
It is possible to use a slightly different way to calculate matrix

S using the non-linear observation operator as S = H(X f) −
H(X

f
), in which, with a slight abuse of notation, H(X f) =(

H(x f
1), · · · , H(x f

Ne
)
)

, and similarly for H(X
f
). This can be

used in any of the ensemble Kalman filters discussed below.
To find the updated ensemble analysis perturbations X′a we

need to compute the square root T of the matrix

I− STF−1S = TTT, (16)

where T is called a transform matrix. Different ways exist to
compute the transform matrix T and here we will discuss the
current methods applicable to large-dimensional systems.

For the ensemble-based Kalman filters presented in this paper
we can write the analysis update as linear transformations using
a weight vector w for the ensemble mean and a weight matrix
W′ for the ensemble perturbations as

xa = x f + X′ f w, (17)

X′a = X′ f W′. (18)

Notice, that the ensemble analysis perturbation matrix, X′a , in
Equation (18) has a zero mean by construction. Further, we note
that for most of the methods discussed in this section, matrix W′
is the transformation matrix T in Equation (16). However, this
is not the case for EnKF, SEnKF and MLEF. Further, we can
compute the analysis ensemble directly by

Xa = X
f + X′ f

(
W +W′

)
, (19)

where W = (w, . . . , w
)
. In the sections below we will derive

the weight matrices for each of the ensemble-based Kalman filter
methods we discuss. The updated ensemble can then be obtained
using Equation (19).

To aid simplicity in discussing the different methods we use
the same letter for the variables with the same meaning, i.e.

W′ is always the perturbation analysis transform matrix that
transforms X′ f into X′a . Clearly, such variables do not neces-
sarily have the same values for the various methods listed below.
Thus, we subscript these variables common to all methods with
a specific letter for each method. This letter is underlined in the
title of each subsection that follows here, e.g. for EnKF we use
W′N . Note that some of the variables can have the same values
for different methods, though. At the end of this section we will
provide a table of the common variables with their dimensions
and whether they are equal to the same variable in a different
method.

5.1. The Stochastic Ensemble Kalman filter (EnKF)

The Stochastic EnKF was introduced at the same time by
Burgers et al. (1998) and Houtekamer and Mitchell (1998). It
is a modified version of the original under-dispersive EnKF as
introduced by Evensen (1994) by adding measurement noise to
the innovations so that the filter maintains the correct spread in
the analysis ensemble and prevents filter divergence.

Although the scheme was initially interpreted as perturbing
observations, a more consistent interpretation is that the pre-
dicted observations are perturbed with the observation noise.
The reason for this is that it doesn’t make sense to perturb obser-
vations since they already contain measurement noise (errors),
e.g. from measuring instruments, and thus have already departed
from the true state of the system. Also, Bayes Theorem, see
Section 2 tells us that we need the probabilities of the states
given this set of observations, not a perturbed set. The idea
is that each ensemble member is statistically equivalent to the
true state of the system, and the true observation is a perturbed
measurement of the true state. So to compare that observation
with the predicted observations the latter have to be perturbed
with the measurement noise too to make this comparison mean-
ingful. This reasoning is identical to that used in rank histograms
in which observations are ranked in the perturbed predicted
observations from the ensemble to be statistically equivalent.

Each ensemble member individually is explicitly corrected
using the Kalman filter equations, and hence the square root
form is implicit only as the transform matrix and its square root
are never explicitly computed. In contrast to the other filters, the
stochastic EnKF perturbs the predicted observations by forming
a matrix

Y f =
(
H(x f

1),H(x f
2), . . . , H(x f

Ne
)
)
+Y′ ∈ RNy×Ne , (20)

where the observational noise (perturbation) matrix Y′ is given
by:

Y′ = (ε1, ε2, . . . , εNe

) ∈ RNy×Ne (21)

with the noise vectors ε j drawn from a Gaussian distribution
with mean zero and covariance R. We also introduce the

8 S. VETRA-CARVALHO ET AL.

observation matrix Y = (y, y, . . . , y) ∈ RNy×Ne consisting
of Ne identical copies of the observation vector.

The Stochastic EnKF uses the matrix F defined in Equation
(15) with prescribed matrix R and proceeds by transforming all
ensemble members according to

Xa = X f + 1

Ne − 1
X′ f STF−1

N

(
Y − Y f

)
, (22)

Similar to the Equations (17)–(19), this can be written as

Xa = X f + X′ f W′N (23)

with
W′N = 1

Ne − 1
STF−1

N

(
Y − Y f

)
. (24)

Due to the use of the observation ensemble Y no explicit trans-
formation of the ensemble mean needs to be performed.

Algorithm 4 in Appendix 2 gives a pseudo-algorithm of the
EnKF method.

We note that while the above description of the stochastic
EnKF is widely accepted and implemented, it does produce the
correct posterior covariance only in a statistical sense due to
extra sampling errors while the ensemble mean is not affected
by the sampling error by ensuring that observation noise matrix,
Y′, has zero mean. However, in the limit of infinite ensemble size
and when all sources of error (both observation and model) are
correctly sampled, the stochastic EnKF does produce the correct
posterior covariance (Whitaker and Hamill, 2002).

5.2. The singular evolutive interpolated Kalman filter
(SEIK)

The SEIK filter (Pham et al., 1998b Pham, 2001) was the first
filter method that allowed for non-linear model evolution and
that was explicitly formulated in square root form. The filter
uses the Sherman–Morrison–Woodbury identity (Golub and Van
Loan, 1996) to rewrite TTT (Equation 16) as

TTT = I− STF−1S =
(

I+ 1

Ne − 1
STR−1S

)−1
. (25)

Note, that the performance of this scheme depends on whether
the product of the inverse of the observation error matrix, R−1,
and a given vector can be efficiently computed, which is for
instance the case when we assume that the observation errors
are uncorrelated.

The SEIK filter computes the analysis step in the ensemble
error subspace. This is achieved by defining a matrix

LE = X f AE , (26)

where AE ∈ RNe×(Ne−1) is a matrix with full rank and zero
column sums. Commonly, matrix AE is identified as

AE =
[

INe−1×Ne−1
01×Ne−1

]
− 1

Ne

[
1Ne×Ne−1

]
, (27)

where 0 is a matrix whose elements are equal to zero and 1 is
a matrix whose elements are equal to one (Pham et al., 1998b).
Matrix AE implicitly subtracts the ensemble mean when the
matrix L is computed. In addition, AE removes the last column
of X′ f . Thus, L is an Ne × Ne − 1 matrix that holds the first
Ne − 1 ensemble perturbations. The product of the square root
matrices in the ensemble error space becomes now

TE TT
E =

(
AT

E AE + 1

Ne − 1
(HLE)TR−1(HLE)

)−1
. (28)

The matrix TE TT
E is of size Ne − 1× Ne − 1. The square root

TE is obtained from the Cholesky decomposition of (TE TT
E)−1.

Then, the ensemble transformation weight matrices in Equations
(17)–(19) are given by

W′E = AE TE�, (29)

wE = 1√
Ne − 1

AE TE TT
E (HLE)TR−1d. (30)

Here, the columns of � ∈ RNe−1×Ne are orthonormal and
orthogonal to the vector (1, . . . , 1)T. � can be either random or
a deterministic rotation matrix. However, if a deterministic � is
used then Nerger et al. (2012a) shows that a symmetric square
root of TE TT

E should be used for a more stable ensemble.
Algorithm 5 in Appendix 2 gives a pseudo-algorithm of the

SEIK method.

5.3. The error-subspace statistical estimation (ESSE)

The ESSE (Lermusiaux and Robinson, 1999 Lermusiaux et al.,
2002 Lermusiaux, 2007) method is based on evolving an error
subspace of variable size, that spans and tracks the scales and
processes where the dominant errors occur (Lermusiaux et al.,
2002). Here, we follow the formulation of Lermusiaux (2007)
adapted to the unified notation used here.

The consideration of an evolving error subspace is analogous
to the motivation of the SEIK filter. The main difference to other
subspace filters mentioned here is how the ensemble matrix is
truncated. That is, the full ensemble perturbation matrix X′ f at
the current analysis time with columns

x′ fj = x f
j − x f , j = 1, . . . , Ne

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 9

is approximated by the fastest growing singular vectors. The full
ensemble perturbation matrix is decomposed using the reduced
or thin singular value decomposition (SVD), (e.g. p. 72, Golub
and Van Loan, 1996),

US�SVT
S = X′ f , (31)

where US ∈ RNx×Ne is an orthogonal matrix of left singular
vectors, �S ∈ RNe×Ne is a diagonal matrix with singular values
on the diagonal, and VT

S ∈ RNe×Ne is an orthogonal matrix of

right singular vectors of X′ f . Next, normalised eigenvalues are
computed via

ES = 1

Ne − 1
�2

S . (32)

The matrices US and ES are truncated to the leading eigenvalues.
Using ŨS , ẼS with rank Ñe ≤ Ne and ÛS , ÊS with rank p̂ < Ñe

where the similarity coefficient ρ is computed via

ρ =
Tr

(
Ê

1
2
S Û

T
S ŨSẼ

1
2
S

)

Tr
(
ẼS

) (33)

and Tr(.) is the trace of a matrix. ρ measures the similarity be-
tween two subspaces of different sizes. The process of reducing
the subspace is repeated until ρ is close to one, i.e. ρ > α where
1 − ε ≤ α ≤ 1 is a user selected scalar limit.3 The dimension
of the error subspace thus varies with time and in accord with
model dynamics (Lermusiaux, 2007). Hence, in the following
analysis update the reduced rank approximations

ŨS ≈ US, (34)

ẼS ≈ ES, (35)

ṼS ≈ VS (36)

are used where the right singular vector matrix ṼS is also trun-
cated to have size Ñe × Ñe.

The product of the square root matrices, using Equation (14),
in the error subspace becomes

TSTT
S = I− S̃

T
F̃
−1

S̃ (37)

where ensemble errors in observation space are given by S̃ =
HŨSẼ

1
2
S Ṽ

T
S and innovation covariances by F̃ = HŨSẼŨ

T
HT+

R.
The inverse of the Ny×Ny-matrix F̃ is obtained by performing

the eigenvalue decomposition (EVD)

F̃ = ���T (38)

so that Equation (37) becomes

TSTT
S = I− S̃

T
��−1�TS̃. (39)

Performing another EVD in Equation (39),

TSTT
S = Z�ZT, (40)

the symmetric square root becomes

TS = Z�
1
2 ZT . (41)

Hence, the ensemble transformation weight matrices needed to
form the ensemble analysis mean and analysis perturbations in
Equations (17)–(19) are given by

W′aS = Z�
1
2 ZT (42)

wa
S =

1√
Ne − 1

S̃F̃
−1

d. (43)

Note, that when computing the analysis ensemble mean and

perturbations, the truncated ensemble perturbation matrix X̃′ f is
used in the pseudo-algorithm 6 in Appendix 2. The truncation to
the rank Ñe will results in a reduction of the ensemble size.
To avoid that the ensemble size shrinks, Lermusiaux (2007)
described an optional adaptive method to generate new ensemble
members.

5.4. The ensemble transform Kalman filter (ET KF)

The ETKF (Bishop et al., 2001) was derived to explicitly trans-
form the ensemble in a way that results in the correct spread of
the analysis ensemble. As the SEIK filter, the ETKF uses the
Morrison-Woodbury identity to write

TT TT
T =

(
I+ 1

Ne − 1
STR−1S

)−1
. (44)

In contrast to the SEIK filter, TT TT
T is of size Ne×Ne and hence

represents the error-subspace of dimension Ne− 1 indirectly by
the full ensemble.

Currently, the most widespread method to compute the update
in the ETKF appears to be the formulation of the LETKF by Hunt
et al. (2007), which we describe here. By performing the EVD
of the symmetric matrix (TT TT

T)−1 = UT �T UT
T we obtain the

symmetric square root

TT = UT �
− 1

2
T UT

T . (45)

10 S. VETRA-CARVALHO ET AL.

Using this decomposition, the ensemble transformation weight
matrices needed to form the ensemble analysis mean and analysis
perturbations in Equations (17)–(19) are given by

W′T = UT �
− 1

2
T UT

T , (46)

wT = 1√
(Ne − 1)

UT �−1
T UT

T (X′ f)THTR−1d. (47)

Using the symmetric square root produces a transform matrix
which is closest to the identity matrix in the Frobenius norm
(Hunt et al., 2007). Thus, the ETKF results in a minimum trans-
form in the ensemble space, which is different from the notion
of ’optimal transportation’ used in the ETPF (see Section 6.3).

The original publication introducing the ETKF (Bishop
et al., 2001) did not specify the form of the matrix square root
TT . There are different possibilities to compute it, and taking a
simple single-sided square root could lead to implementations
with a biased transformation, such that the transformation by
W′ would not preserve the ensemble mean. However, using the
symmetric square root approach this bias is avoided. Livings
(2005) proposed another variant normalising first the forecast
observation ensemble perturbation matrix so that the observa-
tions are dimensionless with standard deviation one

S̃ = 1√
Ne − 1

R− 1
2 S. (48)

Substituting (48) into (44) gives

TT TT
T =

(
I+ S̃

T
S̃
)−1

. (49)

To find the square root form next we perform the SVD

S̃
T = UT �̃T Ṽ

T
T . (50)

In this case, the ensemble transformation weight matrices in
Equations (17)–(19) become

W′T = UT

(
I+ �̃T �̃

T
T

)− 1
2 UT

T , (51)

wT = 1√
Ne − 1

UT (I+ �̃
T
�̃

T
T)−1�̃T Ṽ

T
T R− 1

2 d.s (52)

This formulation avoids the multiplication STR−1S and can
hence prevent possible loss of accuracy due to rounding errors.
However, this formulation also requires the computation of the
square root of R, which itself can result in rounding errors if R
is not diagonal.

Algorithm 7 in Appendix 2 gives a pseudo-algorithm of the
ETKF method.

5.5. The ensemble adjustment Kalman filter (EAKF)

The EAKF was introduced by Anderson (2001). Similarly to
the SEIK filter and the ETKF we require here that the matrix
R−1 is readily available. Using scaled ensemble perturbations
as discussed for the ETKF-formulation by Livings (2005) in
Equations (48)–(49) we can write

TATT
A =

(
I+ S̃

T
S̃
)−1

. (53)

We perform the SVD on the scaled forecast ensemble observa-
tion perturbation matrix

S̃
T = UA�AVT

A. (54)

Note that UA = UT , related to the similarity between the EAKF
and the ETKF. We also use an EVD to obtain

P f = ZA�AZT
A. (55)

The decomposition in Equation (55) is usually performed as an
SVD of the ensemble perturbation matrix X′ f , which approxi-
mates P f using Ne ensemble members.

Due to the ranks of the matrices decomposed in Equations
(54) and (55) there are at most q = min(Ne − 1, Ny) non-zero
singular values in �A and at most Ne−1 non-zero eigenvalues in
�A. Thus, the matrices in the equations below can be truncated
as follows: UA ∈ RNe×q , �A ∈ Rq×q , VT

A ∈ Rq×Ny and
�A, ZA ∈ RNe−1×Ne−1. Then, the ensemble transformation
weight matrices in Equations (17)–(19) are given by

W′A = UA

(
I+ �A�T

A

)− 1
2

�
− 1

2
A ZT

AX′ f , (56)

wA = 1√
Ne − 1

UA(I+ �T
A�A)−1�T VT

AR− 1
2 d. (57)

Note, that the EAKF perturbation weight matrix in Equation

(56) is the same as applying the orthogonal matrix �
− 1

2
A ZT

AX′ f
instead of the orthogonal matrix UT in the ETKF perturbation
transform matrix given by Equation (51) (Tippett et al., 2003).

The decomposition in Equation (55) is costly due to the size
of the matrix to be decomposed. For this reason, the EAKF is
typically applied with serial observation processing as will be
described for the EnSRF in Section 5.7.

Algorithm 8 in Appendix 2 gives a pseudo-algorithm of the
EAKF method.

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 11

5.6. The ensemble square root filter (EnSRF)

The EnSRF was introduced by Whitaker and Hamill (2002)
to avoid the use of perturbed observations by a square root
formulation. In the EnSRF the transform matrix is given by

TRTT
R = I− STF−1S.

We first perform an EVD of F to obtain its inverse

F−1 = �R�−1
R �T

R . (58)

Then, we can write the ensemble analysis covariance as

X′a(X′a)T = X′ f
(
I− ST�R�−1

R �T
RS
)

(X′ f)T

= X′ f
(
I−GRGT

R

)
(X′ f)T (59)

where GR = ST�R�
− 1

2
R . Decomposing GR = UR�RVT

R
using an SVD we obtain

X′a(X′a)T = X′ f
(

I−
[
UR�RVT

R

] [
UR�RVT

R

]T)
(X′ f)T

= X′ f UR

(
I−�R�T

R

)
UT

R(X′ f)T.

The diagonal matrix holding the singular values is of dimension
�R ∈ RNe×Ny and has thus at most min(Ne, Ny) nonzero
singular values. To reduce the computational cost for the case of
high dimensional models with Ne � Ny , we can truncate to get
the much smaller matrix �R ∈ RNe×min(Ne,Ny) (see Table 1).
The square root form for the ensemble analysis perturbations is
given by

X′a = X′ f UR

(
I− �R�T

R

) 1
2

, (60)

and the ensemble transformation weight matrices needed to form
the ensemble analysis mean and analysis perturbations in Equa-
tions (17)–(19) are given by

W′R = UR

(
I−�R�T

R

) 1
2 UT

R, (61)

wR = ST�R�−1
R �T

Rd, (62)

where in Equation (61) we have post-multiplied the ensemble
analysis perturbations by the orthogonal matrix of the left singu-
lar vectors UT

R to ensure that the analysis ensemble is unbiased
(Livings et al., 2008; Sakov and Oke, 2008).

Algorithm 9 in Appendix 2 gives a pseudo-algorithm of the
EnSRF method.

5.7. EnSRF with serial observation treatment

The serial observation treatment in the EnSRF was introduced
by Whitaker and Hamill (2002) together with the EnSRF as-
similating all observations at once. The serial treatment reduces
the computing cost. Hence, the EnSRF is typically not applied
with the bulk update described above, but with serial treatment
of observations, which is possible if R is diagonal. In this case,
each single observation can be assimilated separately. Thus, F
reduces to the scalar F and SST to the scalar S2. For a single
observation (Ny = 1), the matrix GR becomes a vector given
by

GR = 1√
F

ST. (63)

All singular values of GR are zero except the first, which is
its norm,

�R = S√
F

e (64)

where e is a vector with Ne zero elements except the first, which
is one. The first column of UR corresponds to the normalised
vector ST

URe = 1

S
ST. (65)

The square root of the diagonal matrix in Equation (61) can be
written as a sum of the identity matrix and a matrix proportional
to eeT:

(
I−�R�T

R

) 1
2 = I− (1−√(Ne − 1)R/F) eeT. (66)

Using Equation (65) and the fact that all columns of U are
orthonormal, one obtains

W′R = I− 1−√(Ne − 1)R/F

S2
STS (67)

and the weight vector for the update of the ensemble mean is

wR = 1

F
STd. (68)

The equations above are then applied in a series over each
single observation. The equations are likewise valid when the
EAKF is formulated with a serial observation treatment.

Algorithm 10 in Appendix 2 gives a pseudo-algorithm of the
EnSRF method with serial observation treatment.

5.8. The square root formulation of the stochastic ensem-
ble Kalman filter (SEnKF)

The SEnKF was introduced by Evensen (2003) as a square
root formulation of the stochastic EnKF. Defining Y′ as for the
stochastic EnKF and using a matrix

12 S. VETRA-CARVALHO ET AL.

FF = SST + Y′Y′T (69)

we obtain the matrix

TF TT
F = I− STF−1

F S. (70)

We could decompose FF using an EVD but this is costly if
Ny � Ne (Evensen, 2003). Instead, we assume that forecast
and observation errors are uncorrelated, i.e.

SY′T ≡ 0, (71)

so that

FF = SST + Y′Y′T = (S+ Y′)(S+ Y′)T. (72)

Now we can use an SVD to decompose S + Y′ = UF�F VT
F ,

giving

FF = UF�F�T
F UT

F , (73)

which has a much smaller computational cost than decomposing
FF using an EVD when Ny � Ne.

The ensemble transformation is then computed according to
Equation (23) with the weight matrix given by

W′F = STUF�−1
F (�−1

F)TUT
F (Y − Y f). (74)

Algorithm 11 in Appendix 2 gives a pseudo-algorithm of the
EnKF in square root form.

5.9. The error-subspace transform Kalman filter
(ESTK F)

The ESTKF has been derived from the SEIK filter (Nerger
et al., 2012a) by combining the advantages of the SEIK filter and
the ETKF. The ESTKF exhibits better properties than the SEIK
filter, like a minimum ensemble transformation as the ETKF.
However, unlike the ETKF, the ESTKF computes the ensemble
transformation in the error subspace spanned by the ensemble
rather than using the ensemble representation of it. That is, the
error subspace of the dimension Ne−1 is represented directly in
the ESTKF (similarly to the SEIK filter) while in the ETKF the
error subspace is represented indirectly using the full ensemble
of size Ne.

Similar to the SEIK filter, a projection matrix AK ∈
RNe×Ne−1 is used whose elements are defined by

AK {i, j} :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− 1
Ne

1
1√
Ne
+1

for i = j, i < Ne

− 1
Ne

1
1√
Ne
+1

for i = j, i < Ne

− 1√
Ne

for i = Ne

(75)

With this projection, the basis vectors for the error subspace are
given by

LK = X f AK . (76)

As for the matrix � in the SEIK filter, the columns of matrix
AK are orthonormal and orthogonal to the vector (1, . . . , 1)T.
When the matrix LK is computed, the multiplication with AK
implicitly subtracts the ensemble mean. Further, AK subtracts a
fraction of the last column of X′ f from all other columns. In this
way, the last column of X′ f is not just dropped as in the SEIK
filter, but its information is distributed over the other columns.
The product of the square root matrices in the error subspace
becomes now

TK TT
K =

(
I+ 1

Ne − 1
(HLK)TR−1(HLK)

)−1
. (77)

By performing the EVD of the symmetric matrix (TK TT
K)−1 =

UK �K UT
K we obtain the symmetric square root

TK = UK �
− 1

2
K UT

K . (78)

Then, the ensemble transformation weight matrices needed to
form the ensemble analysis mean and perturbations in Equations
(17)–(19) are given by

W′K = AK TK AT
K , (79)

wK = 1√
Ne − 1

AK UK �−1
K UT

K (HLK)TR−1d. (80)

Compared to the SEIK filter, both the matrices AE and �

are replaced by AK in the ESTKF. In addition, the ESTKF uses
the symmetric square root of TK TT

K . The use of AK leads to
a consistent projection onto the error subspace and back onto
the state space, while the symmetric square root ensures that the
minimum transformation is obtained. It is also possible to apply
the ESTKF with a random ensemble transformation. For this
case, the rightmost matrix AK in Equation (79) is replaced by
a random matrix with the same properties as the deterministic
AK .

Algorithm 12 in Appendix 2 gives a pseudo-algorithm of the
ESTKF method.

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 13

5.10. The Maximum Likelihood Ensemble Filter (MLEF)

The MLEF (Zupanski, 2005; Zupanski et al., 2008) calculates
the state estimate as the maximum of the posterior probabil-
ity density (pdf) function. This is in contrast to the ensemble
Kalman filter methods described in this paper, which are based
on the minimum variance approach, so targeting the mean. The
maximum of the pdf is found by an iterative minimisation of the
cost function using a generalised non-linear conjugate-gradient
method.

The original MLEF filter (Zupanski, 2005) uses a second-
order Taylor approximation to the analysis increments, which
requires that the cost function is twice differentiable. However,
this requirement is not necessarily satisfied in many real life
non-linear applications, for example where the parameterisation
of some processes is used in models or for strongly non-linear
observation operators. Here, we present the revised MLEF by
Zupanski et al. (2008) that avoids this requirement by using a
non-differentiable minimisation algorithm.

In contrast to all other ensemble filters discussed above, the
MLEF maintains the actual state estimate separately from the en-
semble, which is used to provide the measurement of estimation
error. Thus, the analysis perturbations in the MLEF are computed
for each ensemble member in a square root form without re-
centring them onto the analysis ensemble mean. Hence, this filter
does not follow the same square root form as the filters described
above and is presented last in this section.

In the MLEF, the ensemble analysis perturbations are defined
using the difference between analysis and forecast for each en-
semble member, x′aj = xa

j − x f
j and not between ensemble

analysis states and the analysis mean. They are found using
generalised Hessian preconditioning in state space. A change
of variable is performed as follows

xa
j = x f

j + x′aj , (81)

x′aj = G
1
2 ξ j , (82)

where the matrix G
1
2 = X′ f

(
I+ C

)− 1
2 ∈ RNx×Ne represents

the inverse square root of the generalised Hessian estimated at the
initial point of minimisation, and ξ j is a control variable defined
in ensemble subspace. Matrix C is the covariance matrix

C = (X′ f)THTR−1HX′ f . (83)

Equation (82) can be written as a transformation of ensemble
perturbations by

x′aj = X′ f wM, j (84)

where the elements of the weight vector wM, j ∈ RNe for
ensemble member j are given by

wM, j =
(
I+ C

)− 1
2 ξ j . (85)

Now we use an EVD of C = �M�M�T
M to write Equation (85)

as
wM, j = �M (I+�M)− 1

2 �T
M ξ j . (86)

We note, that in a linear case matrix G
1
2 is a square root of Pa .

Indeed the same decomposition and inversion was used to find
the square root analysis perturbations for the ETKF, see Equation
(45).

After successfully accomplishing the Hessian precondition-
ing, the next step in the iterative minimisation is to calculate the
gradient in the ensemble-spanned subspace. The preconditioned
generalised gradient at the k-th minimisation iteration is obtained
by

∇G J (xk) = [I+ C
]−1

ξk − Z(xk)TR− 1
2 [y −H(xk)] , (87)

where

Z(x) = [z1(x), z2(x), . . . , zNe (x)] (88)

z j (x) = R− 1
2 [H(x + x′ fj)−H(x)]. (89)

Upon convergence we have obtained an optimal state analysis

xa = xk .

To complete the non-differential formulation of the MLEF,
ensemble analysis perturbations are computed as follows

X′a = X′ f
[
I+ (Z(xa)

)T Z(xa)
]− 1

2 (90)

where Z(xa) is obtained by substituting x = xa into Equation
(89).

Algorithm 13 in Appendix 2 gives a pseudo-algorithm of the
MLEF method.

5.11. Summary of ensemble Kalman Filter methods

In this section, we have described ten most popular ensemble
Kalman filter methods that are applicable to high-dimensional
non-Gaussian problems.

This collection of methods could be categorised in different
ways, for example in deterministic ensemble filters, where the

14 S. VETRA-CARVALHO ET AL.

analysis is found through explicit mathematical transformations
(SEIK, ETKF, EAKF, EnSRF, ESTKF, MLEF), and stochastic
ensemble filters, where perturbed forecasted observations are
used (EnKF, SEnKF). Burgers et al. (1998) and Houtekamer
and Mitchell (1998) showed that in order to maintain suffi-
cient spread in the ensemble and prevent filter divergence, the
observations should be treated as random variables, i.e. per-
turbed, while our interpretation is slightly different, as described
above. This stochasticity, of course, leads to extra sampling
noise in the filters. On the other hand, Lawson and Hansen
(2004) showed that for large ensemble sizes, stochastic filters
can handle non-linearity better than the deterministic filters. This
is due to the additional Gaussian observation spread normalis-
ing the ensemble update in the stochastic filter, which tends to
erase the non-Gaussian higher moments non-linear error growth
has generated. However, current computational power restricts
us to small ensemble sizes for high-dimensional problems, in
which case stochastic filters add another source of sampling error
thus underestimating the analysis update (Whitaker and Hamill,
2002).

While all ensemble Kalman filter methods use low-rank ap-
proximations of the state error covariance matrix, some of the
methods in this section are referred to as error-subspace ensem-
ble filters because they directly operate in the error subspace
spanned by ensemble rather than using the ensemble represen-
tation of it. Such filters are SEIK (see Section 5.2), ESTKF (see
Section 5.9), and ESSE (see Section 5.3). Nerger et al. (2005b)
compares the stochastic EnKF with the SEIK filter in an idealised
high-dimensional shallow water model with non-linear evolu-
tion, showing that the main difference between the filters lies in
the efficiency of the representation of the covariance matrix P.
In general, the EnKF filter will require a larger ensemble size Ne

to achieve the same performance as the SEIK filter. The relation
of the ETKF and SEIK methods has been studied by Nerger et
al. (2012a), where also the ESTKF has been derived. Apart from
computing the ensemble transformation in the error subspace
in case of SEIK and ESKTF, the three filters are essentially
equivalent. However, for the SEIK filter it has been found that the
application of the Cholesky decomposition can lead to unevenly
distributed variance in the ensemble members. To this end, the
ESTKF and ETKF method are preferable unless a random matrix
� is used in the SEIK filter.

The methods described in this section each have nuances
in which they differ one from another as well as underlying
common ground. Writing these methods using unified mathe-
matics notation allows us to see these algorithmic differences
and commonalities more readily. Many filters described above
have several common variables and while for some methods the
variables have different sizes, others can not only have the same
size but actually the same value, too. Table 1 summarises the
sizes of the common variables between the methods and below
we comment on whether they have the same value.

Apart from the matrices listed in Table 1, there are the finally
resulting weight matrices W′ and W. The matrix W is identical
for all filters. Thus, for all filters except EnKF, SEnKF and
MLEF, which don’t use this matrix, the mean of the analysis
ensemble is identical. The EnKF and SEnKF are an exception
because they do not explicitly transform the ensemble mean and
introduce sampling error due to the perturbed observations. The
maximum likelihood approach of the MLEF also results in a
different analysis state estimate if the ensemble distribution is
not Gaussian and the observation operator is non-linear. Further
the square W′W′T is identical for all filters except the EnKF,
SEnKF and MLEF. Thus, the analysis covariance matrix Pa will
be identical.

In contrast to the equality of the matrix W, the matrix W′ is
different for almost all methods. Thus, while many methods yield
the same analysis ensemble covariance matrix, their ensemble
perturbations are distinct. In the ETKF and ESTKF methods, the
dimensions of the matrices T, U, and � have distinct dimensions.
However, the ensemble transformation weight matrices W′ of
both methods are identical (Nerger et al., 2012a).

In general, the choice of using a particular ensemble method
depends on a number of the system’s components: the dynamical
model at hand, model error, number and types of observations,
ensemble size. Given these degrees of freedom it is not possible
to attribute one data assimilation method to be better suited
for a general situation. In practise operational meteorological
applications most widely use the LETKF and the serial for-
mulations of the EnSRF and EAKF, while in oceanography
there are many applications of the stochastic EnKF, the SEIK
filter, and the ESTKF. There are less applications of the ESSE
and MLEF, despite the fact that these filters are algorithmically
interesting because of the ensemble-size adaptivity of ESSE and
the maximum-likelihood solution MLEF. From the algorithmic
viewpoint, the stochastic EnKF will be useful if the stochasticity
can be an advantage and if large ensembles can be used. Further,
the filters SEIK, ETKF, ESTKF differ from the EnKF, EnSRF
and EAKF also in the application of distinct localisation methods
(see Section 9.1 for the discussion of localisation). EnKF, EnSRF
and EAKF allow for localisation in the state space, which could
be advantageous for some observation types (Campbell et al.,
2010). The serial formulation of the EnSRF and EAKF requires
that the observation error covariance matrix is diagonal. Thus,
these filters cannot directly be applied if the observation errors
are correlated. A transformation into variables that are uncorre-
lated is possible in theory, but it is most likely not practical for
large sets of observations.

6. Particle filters

In this section we will consider the standard particle filter fol-
lowed by three efficient variants of the particle filters: the Equiva-
lent Weights Particle Filter (EWPF, van Leeuwen, 2010;

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 15

Table 1: Overview of the sizes of matrices that are used in different filter methods.

Variable EnKF SEIK ESSE ETKF EAKF EnSRF SEnKF ESTKF

T Ne × Ne Ne − 1× Ne − 1 Ñe × Ñe Ne × Ne Ne × Ne Ne × Ne Ne × Ne Ne − 1× Ne − 1
U – – Nx × Ne Ne × Ne Ne × Ne Ne × Ne Ne × Ne Ne − 1× Ne − 1
� – – Ne × Ne Ne × Ne Ne × Ny Ne × min(Ne, Ny) Ne × Ny Ne − 1× Ne − 1
V Ny × Ny – Ne × Ne – Ny × Ny min(Ne, Ny)× Ny – –
L – Nx × Ne − 1 – – – – – Nx × Ne − 1
A – Ne × Ne − 1 – – – – – Ne × Ne − 1

van Leeuwen, 2011; Ades and van Leeuwen, 2013), the Im-
plicit Equal-Weights Particle Filter (Zhu et al., 2016) and the
Ensemble Transform Particle Filter (Reich, 2013). Other variants
of local particle filters are discussed in Section 9 on practi-
cal implementation. Another interesting particle filter for high-
dimensional systems, the so called implicit particle filter (Chorin
and Tu, 2009; Chorin et al., 2010; Morzfeld et al., 2012; van
Leeuwen et al., 2015), is not discussed here as it needs a 4D-
Var-like minimisation for each particle. The Multivariate Rank
Histogram Filter (MRHF, Metref et al., 2014b), based on the
Rank-Histogram Filter of Anderson (2010) that performs well
in highly non-Gaussian regimes, has been recently developed
in the European project Sangoma.4 However, it is still under
development for high-dimensional systems and its idea is only
shortly described in Section 9.1.5. Often particle filters are de-
fined as providing approximations of p

(
x(0:m)|y(1:m)

)
, but we

restrict ourselves to particle filters that are approximations of the
marginal posterior pdf p

(
x(m)|y(1:m)

)
as there are at present

no efficient algorithms for the former for high-dimensional geo-
physical systems, and we have forecasting in mind. Further-
more, for ease of presentation we take all earlier observations
for granted, leading to the marginal posterior at time m being
denoted as p

(
x(m)|y(m)

)
.

6.1. The standard particle filter

This particle filter is also known as the bootstrap filter or Sequen-
tial Importance Resampling (SIR). The probability distribution
function (pdf) in particle filtering, represented by Ne particles
or ensemble members at time k, is given by

p
(
x(m)

)
= 1

Ne

Ne∑
j=1

δ
(
x(m) − x(m)

j

)
, (91)

where x(m) ∈ RNx is the Nx -dimensional state of the system
that has been integrated forward in time using the stochastic
forward model and δ(x) is a Dirac-delta function. We let time m
to be the time of a current set of observations with the previous
observation set at time 0. Then the stochastic forward model for
times 0 < k < m for each particle j = 1, . . . , Ne is given by

x(k)
j =Mk

(
x(k−1)

j

)
+ β

(k)
j , (92)

where β
(k)
j ∈ RNx are random terms representing the Gaussian

distributed model errors with mean zero and covariance matrix
Q, and Mk : RNx → RNx is the deterministic model from
time k− 1 to k. Thus, the model state transition from time k− 1
to k is fully described by the transition density given by

p
(
x(k)

j |x(k−1)
j

)
= N

(
Mk

(
x(k−1)

)
, Q
)

, (93)

which will be of later use.
Using Bayes theorem

p
(
x(m)

j |y(m)
)
=

p
(
y(m)|x(m)

j

)
p
(
y(m)

) p
(
x(m)

j

)
(94)

and the Markovian property of the model, the full posterior at
observation time m is written as

p
(
x(m)

j |y(m)
)
=

Ne∑
j=1

w
(m)
j δ

(
x(m) − x(m)

j

)
(95)

where the weights w
(m)
j are given by

w
(m)
j ∝ p

(
y(m)|x(m)

j

)
p
(
x(m)

j |x(m−1)
j

)
w

(m−1)
j (96)

and each w
(m−1)
j is the product of all the weights from all time

steps 0 < k ≤ m − 1. The conditional pdf p
(
y(m)|x(m)

)
is

the pdf of the observations given the model state x(m) which is
often taken to be Gaussian

p
(
y(m)|x(m)

)
∝ exp

[
−1

2

(
y(m) −Hm

(
x(m)

))T

R−1
(
y(m) −Hm

(
x(m)

))]
. (97)

http://www.data-assimilation.net

16 S. VETRA-CARVALHO ET AL.

To obtain equal-weight posterior particles one applies resam-
pling, in which particles with high weights are duplicated, while
particles with low weights are abandoned. Several schemes have
been developed to perform resampling, and three of the most-
used schemes are presented in Appendix 1.

The problem in high-dimensional spaces with a large number
of independent observations is that these weights vary enor-
mously over the particles, with one particle obtaining a weight
close to one, while all the others have a weight very close to zero.
This is the so-called degeneracy problem related to the ‘curse of
dimensionality’: any resampling scheme will produce Ne copies
of the particle with the highest weight, and all variation in the
ensemble has disappeared.

Hence, as mentioned at the beginning of this section, to apply
a particle filter to a high-dimensional system additional infor-
mation is needed to limit the search space of the filter. One
option is to use localisation directly on the standard particle
filter. Local particle filters, like the so-called Local Particle Filter
(Poterjoy, 2016a) will be discussed in the section on localisation
in particle filters. We next discuss the proposal-density particle
filters since this technique could be applied to all filters and
permits us to achieve equal-weights for the particles in a different
way.

6.2. Proposal-density particle filters

To avoid that the ensemble degenerates we aim at ensuring
that equally significant particles are picked from the posterior
density. To do this we have to ensure that all particles end up in
the high-probability area of the posterior pdf, and that they have
very similar, or even equal, weights. For the former we can use a
scheme that pulls the particles towards the observations. Several
methods can be used for this, including traditional methods like
4DVar, a variational method, and ensemble Kalman filters and
smoothers. However, the main ingredient in efficient particle
filters is the step that ensures that the weights of the different
particles are close before any resampling step.

We start by writing the prior at time m as follows:

p
(
x(m)

)
=
∫

p
(
x(m)|x(m−1)

)
p
(
x(m−1)

)
dx(m−1). (98)

Without loss of generality but for simplicity we assume that
the particle weights in the ensemble at the previous time step
m − 1 are equal, so

p
(
x(m−1)

)
= 1

Ne

Ne∑
j=1

δ
(
x(m−1) − x(m−1)

j

)
. (99)

Using Equation (99) in Equation (98) leads directly to:

p
(
x(m)

)
= 1

Ne

Ne∑
j=1

p
(
x(m)|x(m−1)

j

)
, (100)

hence, from Equation (93) the prior can be seen as a mixture
density, with each density centred around one of the forecast
particles.

One can now multiply the numerator and denominator of
Equation (100) by the same factor q

(
x(m)|x(m−1)

1:Ne
, y(m)

)
, in

which x(m−1)
1:Ne

is defined as the collection of all particles at time
m − 1, and the conditioning on j denotes that each particle does
in general has a different parent to start from. This leads to

p
(
x(m)

)
= 1

Ne

Ne∑
j=1

p
(
x(m)|x(m−1)

j

)
q
(
x(m)|x(m−1)

1:Ne
, y(m)

)q
(
x(m)|x(m−1)

1:Ne
, y(m)

)
(101)

where q
(
x(m)|x(m−1)

1:Ne
, y(m)

)
is the so-called proposal tran-

sition density, or proposal for short, whose support should be
equal to or larger than that of p

(
x(m)|x(m−1)

)
. Note that the

proposal density as formulated here is slightly more general
than the usual q

(
x(m)|x(m−1)

j , y(m)
)

through allowing for the
explicit dependence on all particles at time m − 1.

Drawing from this density we find for the posterior:

p
(
x(m)|y(m)

)
=

p
(
y(m)|x(m)

j

)
p
(
y(m)

) p
(
x(m)

)

= 1

Ne

Ne∑
j=1

w j δ
(
x(m) − x(m)

j

)
(102)

where w j are the particle weights given by

w j =
p
(
y(m)|x(m)

j

)
p
(
y(m)

) p
(
x(m)

j |x(m−1)
j

)
q
(
x(m)

j |x(m−1)
1:Ne

, y(m)
) . (103)

Using Bayes’ theorem, the numerator in the expression for the
weights can be expressed as

p
(
y(m)|x(m)

)
p
(
x(m)|x(m−1)

j

)
= p

(
x(m)|x(m−1)

j , y(m)
)

p
(
y(m)|x(m−1)

j

)
(104)

Therefore, the particle weight of ensemble member j can be
written as:

w j =
p
(
y(m)|x(m−1)

j

)
p
(
y(m)

) p
(
x(m)

j |x(m−1)
j , y(m)

)
q
(
x(m)

j |x(m−1)
1:Ne

, y(m)
) . (105)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 17

In the so-called optimal proposal density (Doucet et al., 2000)
one chooses

q
(
x(m)

j |x(m−1)
1:Ne

, y(m)
)
= p

(
x(m)

j |x(m−1)
j , y(m)

)
,

leading to weights w j ∝ p
(
y(m)|x(m−1)

j

)
. For systems with

a large number of independent observations these weights are
again degenerate (see, e.g. Snyder et al., 2008; Ades and van
Leeuwen, 2013; Snyder et al., 2015).

Several efficient particle filter schemes have been developed
utilising the proposal density to avoid this degeneracy. Here we
discuss the Equivalent-Weights Particle Filter (EWPF) and the
Implicit Equal-Weights Particle Filter (IEWPF). As mentioned,
the Implicit Particle Filter (Chorin et al., 2010), which allows
for an extension of the one-time-step optimal proposal particle
filter to a full time window explores a 4DVar-like method on
each particle. Since it needs an adjoint of the underlying model,
it is not discussed in this paper.

6.2.1. The equivalent-weights particle filter. The EWPF
works as follows:

(1) Determine the optimal proposal weight w j ∝ p(
y(m)|x(m−1)

j

)
for each particle. Note that these weights

vary enormously in high-dimensional systems.
(2) Choose a target weight wtarget based on these weights that

a certain percentage of particles can reach. For instance,
if the target weight is set to the lowest of these weights we
keep 100% of the particles. A choice of 50% will mean
that the target weight is set to the medium value of these
weights.

(3) Calculate the position in state space of each particle such
that it has a weight exactly equal to the target weight.
This is where the proposal density comes in. Note that
some of the particles cannot reach this target weight no
matter how we move them, and these are brought back
into the ensemble via the resampling step in point 5.

(4) Add a small random perturbation to each particle and
recalculate its weight.

(5) Resample all particles such that their weights are equal
again.

It is in step 3 that we use the fact that the proposal density is
dependent on all previous particles, and not just particle j . This
step is the main reason for the efficiency of the filter.

As an example, when the error in the model equations is addi-
tive Gaussian and the observation operator is linear an analytical
solution can be found for the maximum weight for each particle
j , or actually, the minimum of minus the log of that weight called
φ j :

φ j =
(
y(m) − HM

(
x(m−1)

j

))T (
HQHT + R

)−1

×
(
y(m) − HM

(
x(m−1)

j

))
. (106)

Then a target weight is set from these φ j ’s. The target weight
splits the ensemble of particles in two groups: those particles that
have a higher optimal proposal weight, and those with a lower
optimal proposal weight. The latter are abandoned at this point,
and will be regenerated in the resampling step 5.

For the retained particles, there is an infinite number of ways
to move a particle in state space such that it reaches the target
weight. In the EWPF that problem is solved by assuming

x̂(m)
j =M

(
x(m−1)

j

)
+α j ϒ

(
y(m) − HM

(
x(m−1)

j

))
(107)

in which α j is a scalar, and ϒ is defined as

ϒ = QHT
(
HQHT + R

)−1
. (108)

Under this assumption the number of solutions is reduced to
two, and the two values for α j are given by

α j = 1±
√

1− b j /a j (109)

in which

a j = 1

2

(
y(m) − HM

(
x(m−1)

j

))T

×R−1HT ϒ
(
y(m) − HM

(
x(m−1)

j

))
(110)

and

b j = 1

2

(
y(m) − HM

(
x(m−1)

j

))T

×R−1
(
y(m) − HM

(
x(m−1)

j

))
+

log wtarget − log w
(m−1)
j , (111)

in which w
(m−1)
j is the weight of particle j accumulated over

previous time steps, included here for completeness. Note that
wtarget is the target weight selected from φ’s in Equation (106)
(e.g. if we choose to keep 80% particles − log(wtarget) =
{φ̃ j } j=�Ne∗0.8� where {φ̃ j } j=1,...,Ne is a sorted list of optimal-
proposal weight of each particle) and that α j = 1 pushes the
particle to its optimal-proposal weight position. The solution re-
sembles the optimal proposal solution in which the deterministic
part of the proposal is scaled to ensure equal weights. Also note
the resemblance of the deterministic part with the shape of that
used in a Kalman filter when we replace Q with the ensemble
covariance of the state.

18 S. VETRA-CARVALHO ET AL.

When the number of independent observations is large the
optimal proposal density particle filter is degenerate, meaning
that one particle gets a much larger weight than all the others. The
EWPF is not degenerate because a set percentage of all particles
has a similar weight (before the resampling step). The EWPF
does not, however, converge for large Ne to the posterior pdf
because of this equivalent-weights construction, in which high-
weight particles are moved such that their weight becomes lower,
equal to the target weight. So the scheme is biased. However,
the large Ne limit is not that relevant in practise as the affordable
number of particles will be low, below say 10,000, and typically
of O(20 − 100). In that setting, the Monte-Carlo error will be
substantial, and the bias should be measured against the Monte-
Carlo error. As long as the latter is larger than the former the
scheme is a valid alternative in high-dimensional systems.

Algorithm 16 in Appendix 2 gives a pseudo-algorithm for the
EWPF.

6.2.2. The implicit equal-weights particle filter. This scheme
is very similar to that of the EWPF:

(1) Determine the optimal proposal weight w j ∝ p(
y(m)|x(m−1)

j

)
for each particle. Note that these weights

vary enormously in high-dimensional systems.
(2) Choose a target weight based on these weights that a

certain percentage of particles can reach. Typically the
target weight is chosen as the minimum of the maximal
weights, so that all particles are kept.

(3) Draw a random perturbation vector for each particle, and
add this to the particle position that leads to maximal
weight. So far the scheme is the same as that used in the
optimal proposal density.

(4) Scale each random vector such that each particle will
reach the target weight.

(5) Resample the particles such that their weights are equal
in case the kept percentage is lower than 100%.

The main difference between this scheme and the EWPF is
that in the EWPF we scale the deterministic part of the optimal
proposal to reach a target weight, while here we scale the random
part of the optimal proposal.

The implicit part of our scheme follows from drawing samples
implicitly from a standard Gaussian distributed proposal density
q (ξ) instead of the original one q

(
x(m)|x(m−1), y(m)

)
, as in

(Chorin and Tu, 2009). These two pdfs are related by:

q
(
x(m)|x(m−1)

1:Ne
, y(m)

)
=

q
(
ξ j

)
∥∥∥∥ dx

dξ j

∥∥∥∥
(112)

where

∥∥∥∥ dx
dξ j

∥∥∥∥denotes the absolute value of the determinant of the

Jacobian matrix of the RNx → RNx transformation

x j = g j (ξ j). The transformation g j (.) is now defined via the

following implicit relation between variable x(m)
j and ξ as

x(m)
j = xa

j + α
1/2
j P1/2ξ

(m)
j (113)

where xa
j is the mode of p

(
x(m)

j |x(m−1)
j , y(m)

)
, P a measure

of the width of that pdf, and α j a scalar that depends on ξ
(m)
j .

The α j are now chosen such that all particles get the same
weight wtarget, so the scalar α j is determined for each particle
from:

w j =
p
(
x(m)

j |x(m−1)
j , y(m)

)
p
(
y(m)|x(m−1)

j

)
q
(
ξ j

)
∥∥∥∥∥ dx

dξ j

∥∥∥∥∥w
(m−1)
j

= wtarget (114)

This ensures that the filter is not degenerate in systems with
arbitrary dimensions and an arbitrary number of independent
observations. Because of the target-weight construction the filter
does not converge to the correct posterior pdf, and the same
discussion as for the EWPF applies here, namely that as long
as this bias is smaller than the Monte-Carlo error this filter is a
valid candidate for high-dimensional non-linear filtering.

As an example we assume now that observation errors and
model errors are Gaussian and that the observation operator
H ∈ RNy×Nx is linear. Then we find that

p
(
y(m)|x(m)

)
p
(
x(m)|x(m−1)

j

)
= 1

A
exp

[
−1

2

(
y(m) − Hx(m)

)T
R−1

(
y(m) − Hx(m)

)

− 1

2

(
x(m) −M

(
x(m−1)

j

))T
Q−1

(
x(m) −M

(
x(m−1)

j

))]

= 1

A
exp

[
−1

2

(
x(m) − xa

j

)T
P−1

(
x(m) − xa

j

)]
exp

(
−1

2
φ j

)

= p
(
x(m)|x(m−1)

j , y(m)
)

p
(
y(m)|x(m−1)

j

)
(115)

where

P =
(
Q−1 + HT R−1H

)−1
, (116)

xa
j =M

(
x(m−1)

j

)
+ϒ

(
y(m) − HM

(
x(m−1)

j

))
, (117)

and

φ j =
(
y(m) − HM

(
x(m−1)

j

))T (
HQHT + R

)−1

×
(
y(m) − HM

(
x(m−1)

j

))
. (118)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 19

This leads to a complicated non-linear differential equation for
α j that involves the determinant of P. Since we are interested
in high-dimensional problems we consider this equation in the
limit of large state dimension Nx . In that limit it turns out that we
can integrate this equation, leading to the much simpler equation
(see Appendix in Zhu et al. (2016)):

(α j − 1)γ j − Nx log(α j)+ φ j − log w
(m−1)
j = log wtarget.

(119)

in which γ j = ξT
j ξ j . This equation could be approximated by

using numerical methods, such as the Newton method, etc., but
analytical solutions based on the so-called Lambert W function
do exist. We do not elaborate on these here.

Algorithm 17 in Appendix 2 gives a pseudo-algorithm for the
IEWPF.

6.2.3. Between observations: relaxation steps. If the system
is not observed at every time step, the schemes mentioned above
can be used over the time window between observations. No an-
alytical solutions can be obtained in this case so that the solution
has to be found iteratively. However, this procedure is rather
expensive as it typically involves solving a problem similar to
a 4DVar on each particle.5 Thus, typically simpler schemes are
employed between observation times. These schemes will be less
efficient, although we can ensure that Bayes’ theorem is fulfilled
exactly for each particle.

In the following, we demonstrate the use of relaxation between
observation times. We use the future observations to relax the
particles at time k towards observations at next time m > k by
using instead of Equation (92) the modified forward model

x(k)
j =Mk

(
x(k−1)

j

)
+ β̃

(k)
j +

+ϒ̃
[
y(m) −Hk

(
x(k−1)

j

)]
, (120)

where β̃
(k)
j ∈ RNx are random terms representing the model

error distributed according to a given covariance matrix Q̃,6

Mk is the same deterministic model as in Equation (92), ϒ̃ is a
relaxation matrix given by

ϒ̃ = τ(k)QHT R−1. (121)

Here, τ(k) is a time dependent scalar that determines the
strength of the relaxation. y(m) ∈ RNy is the vector of Ny

observations at time m andHk : RNx → RNy is the observation
operator mapping model space into observation space. Note that
the observations y(m) exist at the later time m > k. The modified
transition density is now given by

q
(
x(k)

j |x(k−1)
j , y(m)

)
= N

(
Mk

(
x(k−1)

)
+ ϒ̃

[
y(m) −Hk

(
x(k−1)

)]
, Q
)

,

(122)

and the modified weights w
(k)
j are accumulated as

w
(k)
j ∝

p
(
x(k)

j |x(k−1)
j

)
q
(
x(k)

j |x(k−1)
j , y(m)

)w
(k−1)
j

∝
k∏

t=1

p
(
x(t)

j |x(t−1)
j

)
q
(
x(t)

j |x(t−1)
j , y(m)

) . (123)

This simple modification of the forward model to include
information about future observations using a relaxation term is
only consistent with Bayes Theorem when the weights that are
introduced by this modification are properly taken into account,
and it leads to efficient schemes if it is used in combination
with an equal-weight scheme, like the EWPF or the IEWPF.
Algorithm 15 in Appendix 2 gives a pseudo-algorithm of the
relaxation step used in the EWPF and the IEWPF.

Note that it would also be possible to use other methods like
ensemble smoothers or ensemble 4Dvar-like methods to move
particles between observations, but we will not elaborate on
those here.

6.3. The Ensemble Transform Particle Filter (ETPF)

The idea of the Ensemble Transport Particle Filter (Reich, 2013)
is to avoid resampling by finding a linear transportation map
between the prior and the posterior ensemble such that the prior
particles are minimally modified, while ensuring that the poste-
rior particles have equal weight. We write each posterior particle
as a linear combination of the prior particles as

xa
j = Ne

Ne∑
i=1

x f
i ti j (124)

in which we ensure that the particles have the correct mean via

Ne∑
i=1

ti j = 1

Ne
,

Ne∑
j=1

ti j = wi . (125)

This still leads to N 2
e −2 undetermined elements ti j . These are

found by minimising the movement from old to new particles,
by minimising

20 S. VETRA-CARVALHO ET AL.

J (T) =
Ne∑
i, j

ti j

∥∥∥x f
i − x f

j

∥∥∥2
(126)

under the condition that ti j ≥ 0. The above formulation is an
example of an optimal transportation algorithm, see e.g. the
review by Chen and Reich in van Leeuwen et al. (2015). This
scheme can be combined with any proposal density discussed in
the previous section.

If the dynamical model is deterministic one needs to add some
small random noise to the particles to avoid ensemble collapse.
Typically this noise is assumed to be Gaussian with zero mean
and covariance Pa = h2P f with 0 < h < 1 a free parameter.
This term is an ad-hoc addition related to inflation in Ensemble
Kalman Filters.

Algorithm 14 in Appendix 2 gives a pseudo-algorithm of the
ETPF.

7. Second-order exact ensemble Kalman filters

Several extensions to ensemble Kalman filters have been pro-
posed to overcome the linearity or Gaussianity assumptions. A
large number of filters exists that try to bridge an ensemble
Kalman filter and particle filter by defining smoothly varying
parameters that move the filter between these two extremes
based on the degeneracy of the particle filter. In high-dimensional
systems, however, all of these filters become ensemble Kalman
filters as any particle filter contribution results in complete de-
generacy. These filters (not discussed here) will become useful
when localisation is applied.

In a non-linear, non-Gaussian case the ensemble Kalman fil-
ters will necessarily produce an analysis where the mean and
covariance are biased due to the assumption of a Gaussian prior
pdf (Lei and Bickel, 2011). Here, we will discuss four ensemble
filters that concentrate on getting the first two moments of the
posterior distribution correct in non-linear situations. These are
the Particle Filter with Gaussian Resampling of Xiong et al.
(2006), the Non-linear Ensemble Transform Filter (Tödter and
Ahrens, 2015), the Moment-Matching Ensemble Filter (Lei and
Bickel, 2011), and the Merging Particle Filter (Nakano et al.,
2007).

7.1. Particle Filter with Gaussian Resampling (PFGR)
and Non-linear Ensemble Transform Kalman Filter
(NETF)

The Particle Filter with Gaussian Resampling (PFGR, Xiong
et al. (2006)) introduced an explicit ensemble transformation
matching the mean and covariance matrix. The Non-linear En-
semble Transform Filter (NETF, Tödter and Ahrens, 2015) is
a recent reinvention of this algorithm formulated to obtain an
ensemble transformation that is analogous to that of the ETKF.

In addition, the NETF was introduced with localisation, so that
the filter can be applied to high-dimensional systems (see Section
9.1). The presentation here follows the more modern formula-
tion of the NETF in analogy to the ETKF presented before. As
a novel feature, the presented formulation avoids the explicit
computation of the analysis state, that is given by the weighted
ensemble mean.

The PFGR and the NETF are designed to exactly match the
first two moments of the posterior pdf in Bayes theorem without
assuming that the prior or likelihood are normally distributed.
The forecast ensemble is transformed into an analysis ensemble
by applying a weight vector to obtain the analysis mean state and
a transform matrix to obtain analysis ensemble perturbations,
analogous in form to a square root filter (Equations (17) to (19)).

As in most particle filters, the likelihood weights that arise
from Bayes’ theorem

w j =
p
(
y|x j

)
∑Ne

k=1 p (y|xk)
(127)

are used. For normally distributed observation errors, the weight
of each member is at first given by

w j ∝ exp

[
−1

2

(
y −H

(
x f

j

))T
R−1

(
y −H

(
x f

j

))]
(128)

and then normalised so that the weights sum up to one. Before
the weights are computed, the ensemble perturbations should be
inflated by an inflation factor γ > 1 as in the ensemble-based
Kalman filters (for inflation see Section 9.2). Using the weight
vector w = (w1, . . . , wNe

)T the transform matrix is

TTT = Ne

[
diag(w)−wwT

]
. (129)

Here, diag(w) is a diagonal matrix that contains the weights
w j on the diagonal. The factor Ne was not present in the for-
mulation by Xiong et al. (2006). It was introduced by Tödter
and Ahrens (2015) to ensure that the ensemble has the correct
analysis variance. As in the ensemble Kalman filters, the eigen-
value decomposition of TTT = U�UT yields the ensemble
transformation

T = U�1/2UT . (130)

Combining the weight vector and transform matrix as in Equa-
tion (19), the analysis ensemble is given by

Xa = X f (T�+ [w, . . . , w]) . (131)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 21

Here, � is an random matrix. Xiong et al. (2006) use a ran-
dom matrix sampled from a normal distribution with mean zero
and standard deviation one. They use � because in Equation
(130) they omit all eigenvalues that are very close to zero and
need to restore an ensemble of full size. In contrast, Tödter and
Ahrens (2015) use a mean-preserving orthogonal matrix (see
Pham, 2001) analogous to that used in the SEIK filter. They
motivate the use of � also by the reduction of ensemble outliers
and showed experimentally that the random transformation with
mean preserving properties leads to a more stable data assimila-
tion process.

Note, that the transformation in Equation (131) is applied to
the ensemble matrix X f instead of the ensemble perturbation
matrix X′ f without subsequent addition of the analysis mean
state (see e.g. Equation 19). This is possible because of the
property of T to implicitly subtract the ensemble mean, while
the multiplication of X f with the weight vector array adds the
analysis mean state.

For high-dimensional systems, a localisation of the analysis
step is required. It was introduced by Tödter and Ahrens (2015)
in analogy to the localisation of the ETKF and SEIK filters (see
Sec. 9.1). Algorithm 18 in Appendix 2 gives a pseudo-algorithm
of the PFGR and NETF andAlgorithm 22 shows the computation
of the weights for Gaussian observation errors.

7.2. Moment-Matching Ensemble Filter (MMEF)

A stochastic algorithm that has second-order correct statistics
was developed by Lei and Bickel (2011). In this moment-
matching ensemble filter (MMEF) we generate an ensemble
of perturbed pseudo-observations, Y f , as in the SEnKF (see
Equations 20 and 21)

Y f
j ∼ pH(x j)

(
y|x j

)
(132)

using H (x j
)

as variable in the density, so y is fixed. Then the
analysis mean for each particle is generated using a correspond-
ing pseudo-observation as follows

x̄a
(
y f

j

)
=

Ne∑
k=1

wk

(
y f

j

)
xk = X f w

(
y f

j

)
(133)

in which wk

(
y f

j

)
is given by

wk

(
y f

j

)
=

p
(
y f

j |xk

)
∑Ne

l=1 p
(
y f

j |xl

) . (134)

Similarly, the analysis mean for actual observations is computed
via

x̄a (y) =
Ne∑

k=1

wk (y) xk = X f w (y) . (135)

Furthermore, we calculate equivalent expressions for covari-
ances for perturbed and actual observations as follows

Pa
(
y f

j

)
=

Ne∑
k=1

wk

(
y f

j

) (
xk − x̄a

(
y f

j

))

×
(
xk − x̄a

(
y f

j

))T
(136)

Pa (y) =
Ne∑

k=1

wk (y)
(
xk − x̄a (y)

)
× (xk − x̄a (y)

)T
. (137)

Then each of the ensemble members or particles is updated
via

xa
j = x̄a (y)+ Pa (y)1/2 Pa

(
y f

j

)−1/2 (
x j − x̄a

(
y f

j

))
.

(138)
This filter gives the correct posterior mean and covariance in

the large-ensemble limit (Lei and Bickel, 2011). To see this, note
that x j − x̄a

(
y f

j

)
is distributed according to N

(
0, Pa

(
y f

j

))
,

so Pa
(
y f

j

)−1/2 (
x j − x̄a

(
y f

j

))
is distributed N (0, I), and

hence the distribution of xa
j is N (

x̄a (y) , Pa (y)
)
.

This filter cannot be used in high-dimensional systems, even
when localisation is applied, because it needs the evaluation of
several full covariance matrices. However, we can explore en-
semble perturbations that are used to calculate these covariances,
as in all ensemble Kalman filter schemes. The following was not
discussed by Lei and Bickel (2011), but is a practical way to
make the filter useful in high-dimensional systems.

We can express each covariance matrix Pa
(
y f

j

)
directly in

terms of the forecast ensemble as

Pa
(
y f

j

)
= X f T

(
y f

j

)
X f T

(139)

where matrix T
(
y f

j

)
is given by

T
(
y f

j

)
= diag

(
w(y f

j)
)
− w

(
y f

j

)
wT
(
y f

j

)
. (140)

The square root of this matrix is

Pa
(
y f

j

)1/2 = X f T
(
y f

j

)1/2
. (141)

22 S. VETRA-CARVALHO ET AL.

To find the inverse of this matrix we perform an SVD on the
prior ensemble matrix

X′ f = U�VT (142)

and compute also the EVD on the much smaller square matrices
T
(
y f

j

)

T
(
y f

j

)
= Ũ j �̃ j Ũ

T
j . (143)

Using Equations (142) and (143) we find

Pa
(
y f

j

)− 1
2 = Ũ

T
j �̃

1/2
j V�−1UT . (144)

Hence, we can write the update equation of the MMEF as

xa
j = x̄a + X′ f T1/2Ũ

T
j �̃

1/2
j V�−1UT

(
x j − x̄a

(
y f

j

))
.

(145)
This expression is suitable for high-dimensional applications

when the matrices T(y f
j) are computed with localisation.

7.3. Merging Particle Filter (MPF)

The merging particle filter generates several sets of posterior
ensembles and merges them via a weighted average to obtain
a new set of particles that has the correct mean and covariance
but is more robust than the standard particle filter. Specifically,
the method draws a set of q ensembles each of size Ne from the
weighted prior ensemble at the resampling step. Denote each
ensemble member as x j,i for ensemble member j in ensemble
i . Then new merged ensemble members are generated via

xa
j =

q∑
i=1

αi x j,i . (146)

To ensure that the new ensemble has the correct mean and
covariance, the coefficients α j need to fulfil the two conditions

q∑
j=1

α j = 1;
q∑

j=1

α2
j = 1, (147)

where each α j also has to be a real number.

When q > 3 there is no unique solution for the α’s, while for
q = 3 we find:

α1 = 3

4

α2 =
√

13+ 1

8

α3 = −
√

13− 1

8
. (148)

Although not discussed by Nakano et al. (2007) this scheme
will be degenerate for high-dimensional problems. However, we
can make the α’s space-dependent when q > 3 and then apply
localisation.

8. Adaptive Gaussian mixture filter

Both ensemble Kalman and Monte Carlo-based techniques dis-
cussed in Sections 5 and 6, respectively, have their drawbacks.
The Gaussian mixture filter (Anderson and Anderson, 1999;
Bengtsson et al., 2003; Hoteit et al., 2008) attempts to avoid these
by approximating an arbitrary form of the prior by combining
multiple Gaussian priors. This gives it the advantage that both the
local Kalman filter type correction step as well as the weighting
and resampling step of a particle filter can be applied. This
possibility also makes it applicable to highly non-linear and
high dimensional systems. In this paper, we discuss the adaptive
Gaussian mixture filter developed by Stordal et al. (2011) as a
representative scheme, out of all Gaussian mixture filters that
have been proposed.

In the Gaussian mixture filter, the prior distribution is approx-
imated by a mixture density (Silverman, 1986) where each en-
semble member forms the centre of a Gaussian density function

p(x f) =
Ne∑
j=1

1

Ne
N
(
x f

j , P̃
f)

, (149)

where N (x j , P̃) denotes a multivariate Gaussian kernel density

with ensemble member x j as mean and covariance matrix P̃
f =

h2P f , in which P f is the covariance of the whole forecast
ensemble and h is a bandwidth parameter. Stordal et al. (2011)
discuss that the optimal choice of the bandwidth h is hopt ∼
N−1/5

e if we are only interested in the marginal properties of
the individual components of x, but that it might be beneficial to
choose h > hopt to reduce the risk of filter divergence, since the
choice of the bandwidth parameter determines the magnitude of
the Kalman filter update step. Thus, the parameter h is treated
as the design parameter and is defined by the user. Note that
each particle represents the mean of a Gaussian kernel and that
the uncertainty associated with each particle is given by the
covariance of that Gaussian kernel (Stordal et al., 2011).

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 23

If the likelihood is Gaussian, the posterior pdf is again a
Gaussian mixture, now with pdf

p
(
xa |y) = Ne∑

j=1

w j N
(
xa

j , P̃
a)

. (150)

Here, the weights w j are propotional to N
(
y − Hx f

j , Ra
)

with∑
j w j = 1 and Ra = HP̃

f
HT+R. So, compared to the particle

filter the covariance used in the weights is inflated with a term

HP̃
f
HT , leading to more equal weights. Each mean xa

j and

the covariance matrix P̃
a

are obtained using one of the EnKF
variants.

In high-dimensional systems, the covariance matrices are never
formed explicitly, and the algorithm in Stordal et al. (2011)
cannot be used. Hoteit et al. (2008) used an update based in the
SEIK filter (see Section 5.2). For a more modern formulation,
we provide here an algorithm based on Stordal et al. (2011) but
explore an ETKF to avoid the explicit computation of P̃. First,
the matrix

TG M TT
G M =

(
I+ h2

Ne − 1
STR−1S

)−1

(151)

is generated with S = HX′ f similar to Equation (44), but
including the factor h2. Then, we perform an EVD of the sym-
metric matrix (TG M TT

G M)−1 = UG M�G M UT
G M and obtain

the symmetric square root

TG M = UG M�
−1/2
G M UT

G M . (152)

This is used to update the mean of each Gaussian kernel by
calculating the ETKF update on each of the prior particles as

w j,G M = 1√
(Ne − 1)

UG M�−1
G M UT

G M (hX′ f)THTR−1d j

(153)
in which d j = y − Hx f

j . The new centres of the Gaussian
mixture densities are now found as

xa
j = x f

j + hX′ f w j,G M . (154)

A square root of the posterior covariance of each Gaussian
mixture density is found by

Z = hX′ f W′G M (155)

in which
W′G M = UG M�

−1/2
G M UT

G M . (156)

Thus, for Equation (150) we have P̃
a = (Ne−1)−1ZZT , but to

evaluate the equation one can use the square root Z, so it is not
required to compute P̃

a
explicitly.

Until this point, the algorithm is the standard Gaussian mixture
filter. The adaptive part of the filter was introduced by Stordal et
al. (2011) and has been demonstrated to avoid filter divergence
due to ensemble degeneration. Further, the adaptivity allows
us to choose smaller values of the bandwidth parameter h. To
stabilise the Gaussian mixture filter, we interpolate the original
analysis weights with a uniform weight as

wα
j = αw j + (1− α)N−1

e . (157)

For the adaptivity, α is chosen to be

α = Neff N−1
e , (158)

where Neff = 1/(
∑Ne

l=1 w2
l) is the effective ensemble size. To

avoid ensemble degeneration one can further add a resampling
step as in particle filters. It is performed if Neff < Nc, with Nc

a value that can be chosen freely, for instance Nc = 0.5Ne. The
full scheme then becomes:

(a) When Neff ≥ Nc no resampling is needed, so the weights
are calculated as above and transported with each particle
to the next set of observations.

(b) When Neff < Nc we will resample according to any of
the resampling schemes in Appendix 1. This leads to a
new set of states for the centres of the Gaussian mixtures
denoted x j,(i) in which j denotes the index of the state
for resampling, and i its index after resampling. Note
that several of the new states will coincide. To avoid
identical samples we draw our final new ensemble from
the Gaussian mixtures, as follows

ξi ∼ N (0, I), (159)

xa
i = x j,(i) + Zξi , (160)

wi = 1

Ne
. (161)

Further, we set P̃
a = (Ne − 1)−1Xa(Xa)T , but use this

only in factorised form.

Note that in this scheme we never calculate a full state covari-
ance.

It is important to realise what the adaptive part does. Indeed,
by construction, the filter is not degenerate, but at the expense
of strongly reducing the influence of the observations when α

24 S. VETRA-CARVALHO ET AL.

is small. In high dimensional systems with a large number of
independent observations localisation is essential to avoid using
the scheme as a sum of ensemble Kalman filters only.

In the scheme by Bengtsson et al. (2003), the mean of each
Gaussian pdf is chosen at random from the ensemble, and the
covariance in each Gaussian pdf is estimated from the ensemble
members which are local in state space, including a localisation
and smoothing step. Since the scheme has not been applied to
high-dimensional systems it will not be discussed here.

9. Practical implementation of the ensemble
methods

This section is devoted to issues related to the practical imple-
mentation of the ensemble methods. In particular, we address
the need for localisation and inflation in some of the presented
ensemble methods to counteract the issues arising from ensem-
ble undersampling in large scale problems such as ocean and
atmosphere prediction. We also discuss the computational cost
of each method as presented and the parallelisation of ensemble
data assimilation methods. We will conclude this section with a
discussion on the suitability of the ensemble data assimilation
methods applied to non-linear dynamical models.

9.1. Localisation in EnDA

The success of the EnDAmethods is highly dependent on the size
of the ensemble being adequate for the system we apply these
methods to. Thus, for large scale problems, where the number
of state variables is many magnitudes larger than the number of
ensemble members, ensemble undersampling can cause major
problems in EnDA methods: underestimated ensemble variance,
filter divergence, and errors in estimated correlations, in par-
ticular spurious long-range correlations. In such cases, spatial
localisation is a necessary tool to minimise the effect of under-
sampling.

Localisation damps long-range correlations, e.g. in the en-
semble covariance matrix (’covariance localisation’, see Section
9.1.2). This damping can be applied to the extend to keep only
correlations over limited distances and erase long-range correla-
tions in the analysis step. Thus, localisation decouples the anal-
ysis update at distant locations in a model grid. The underlying
assumption of localisation is that the assimilation problem has in
fact a local structure. This means, that correlation length scales
are much shorter than the extent of the model grid so that only
correlations over short distances are relevant while for long dis-
tances the sampling error in the ensemble-estimated covariance
matrices dominates (see, e.g. Morzfeld et al., 2017). This seems
to be fulfilled for many oceanic and atmospheric applications.
For example, Patil et al. (2001) described a locally low dimen-
sion for atmospheric dynamics. The success of localised filters
in oceanic and atmospheric data assimilation applications also

shows that this condition is dominantly fulfilled, even though it is
known that long-range correlations (teleconnections) exist in the
atmosphere and ocean. However, if a modelling problem does
not have a local structure or if too little observations are available
or the observations only represent long-range properties of the
system, localisation cannot be applied.

Localisation is usually applied either explicitly by considering
only observations from a region surrounding the location of the
analysis or implicitly by modifying P or R so that observations
from beyond a certain distance cannot affect the analysis state.
The way in which such localisation is applied is still an active
field of research and many variants of localisation schemes have
emerged over the last decade. There are two main types of spatial
localisation techniques (or simply localisation) that are widely
used in ensemble data assimilation: Covariance localisation (also
termed P- or B-localisation) and observation localisation (also
denoted R-localisation). Both methods will be discussed here
together with domain localisation, which is required for the
application of observation localisation. In addition, a number
of adaptive localisation schemes was developed over the recent
years. A selection of these schemes is discussed in Section 9.1.4.

In general, all localisation schemes are empirical. While they
improve the estimations by ensemble filters, they can disturb
balances in the model state (Lorenc, 2003; Kepert, 2009). Fur-
ther, the interaction of localisation with the serial observation
processing usually applied with the EnSRF and EAKF methods
can reduce the stability of these filters (Nerger, 2015).

9.1.1. Domain localisation. Domain localisation or local
analysis is the oldest localisation technique. For ensemble
Kalman filters it was first applied by Houtekamer and Mitchell
(1998), but the method was also applied in earlier schemes of
optimal interpolation (see Cohn et al., 1998). In domain local-
isation we only use the ensemble perturbations that belong to
the domain Dγ in which the analysis correction of the state
estimate is computed. For example, this domain can be a vertical
column of grid points or a single grid point. Thus, we use a linear
transformation Dγ to obtain

x′ j,γ = Dγ x′ fj , (162)

where j = 1, . . . , Ne and γ = 1, . . . ,
 with
 being the total
number of subdomains. To localise, we now only use obser-
vations within a specified distance – the localization radius –
around the local domain Dγ . This defines a local observation
domain D̂γ . Using the corresponding linear transformation D̂γ

we can transform the observation error covariance R, the global
observation vector y, and the global observation operator H
analogously to Equation (162) to their local parts

yγ = D̂γ y, (163)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 25

Hγ = D̂γ H, (164)

Rγ = D̂γ RDT
γ . (165)

Thus, we neglect observations that are outside of the domain
D̂γ . Then a general local analysis state is given by

Xa
γ = X

f
γ + X′ fγ

(
Wγ +W′γ

)
, (166)

where Wγ and W′γ are computed using local ensemble forecast
perturbations and local observations from the domain D̂γ . For a
complete analysis update, a loop over all local analysis domains
has to be performed with a local analysis update for each domain.

Applying domain localisation allows significant savings in
computing time since solving for the analysis update is not
performed globally but on much smaller local domains. Ac-
cordingly, updates on the smaller scale domains can be done
independently and therefore parallel (Nerger et al., 2006) even
if the observation domains overlap. In ensemble-based Kalman
filters, domain localisation was used predominantly with filters
that use the analysis error covariance matrix for the calculation
of the gain like SEIK, ETKF, ESTKF, all discussed in detail
in Section 5. In these algorithms, the forecast error covariance
matrix is never explicitly computed. Examples of the application
of domain localisation can be found, e.g. in Brusdal et al. (2003)
and Testut et al. (2003).

Blindly using domain localisation can result in boxed analysis
fields if neighbouring local domains are updated using signifi-
cantly different observation sets. Thus, great care needs to be
taken to choose domains so that they overlap sufficiently to
produce smooth global analysis fields with minimal increase
in computational cost. Today, domain localisation is typically
applied with observation localisation (Hunt et al., 2007), which
is discussed in Section 9.1.3.

9.1.2. Covariance localisation. Covariance localisation
(also termed P-localisation or B-localisation, depending on
whether the background covariance matrix is denoted P or B
as in variational assimilation schemes) is a localisation method
that is directly applied to the ensemble covariance matrix. The
ensemble undersampling causes spurious cross-correlations be-
tween state variables. As realistic long-range correlations are
typically small, the sampling errors are particularly pronounced
for long distances. The direct covariance localisation can be used
to reduce the long-range correlations in the forecast error co-
variance and hence damp the spurious correlations. In addition,
the rank of the ensemble covariance is increased, giving more
degrees of freedom to the analysis update (Hamill et al., 2001;
Whitaker and Hamill, 2002).

Typically, covariance localisation is applied by first forming a
correlation matrix C and then taking a Schur product (an element
by element matrix multiplication) of this correlation matrix and

the forecast error covariance. Thus, given some P f , our localised
forecast error covariance will be

P f
L = C ◦ P f . (167)

The localization matrix C is usually formed of correlation func-
tions with compact support similar in shape to a Gaussian func-
tion (e.g. Gaspari and Cohn, 1999). Practically, the computation
of the covariance matrix P f can be avoided by applying the
localisation matrix to the matrices P f HT and HP f HT (see
Equation (11)).

We note that, from all the ensemble-based Kalman filter meth-
ods presented in Section 5, covariance localisation can only
be applied to the EnSRF and EAKF, since for these methods
observations can be processed serially, and in the stochastic
EnKF.

9.1.3. Observation localisation. In the case of square root
filters, presented in Section 5, the full covariance matrix is never
formed. Instead, only the ensemble perturbation matrix X′ f is
calculated at each analysis step. Petrie and Dance (2010) showed
that covariance-localisation for square root filters cannot be ap-
proximately decomposed into a square root of the correlation
matrix ρ,

(
ρρT

)
◦
(
X′X′T

)
= (ρ ◦ X′

) (
ρ ◦ X′

)T (168)

thus covariance localisation cannot be applied. For such filters,
e.g. SEIK, ETKF and ESTKF, the observation localisation is a
more natural choice and is currently used instead of covariance
localisation (Hunt et al., 2007; Miyoshi andYamane, 2007; Janjić
et al., 2011).

Observation localisation is applied by modifying the obser-
vation error covariance matrix R. More specifically, one mod-
ifies its inverse R−1 so that the inverse observation variance
decreases to zero with the distance of an observation from an
analysis grid point. To be able to define the distance, it is neces-
sary to perform the analysis with the domain localization method
as described in Section 9.1.1. An abrupt cutoff could be obtained
by setting observation variances to zero beyond a given distance.
This would be equivalent to the simple domain localisation of
Section 9.1.1 and could result in non-smooth analysis updates.
For a smooth analysis, e.g. Brankart et al. (2003) described to
increase the observation error variance with increasing distance
from the analysis grid point. Hunt et al. (2007) proposed to use
a gradual observation localisation in the LETKF acting on R−1,
which is likewise applicable with the SEIK filter and the ESTKF.
In this case, elements of R−1 are multiplied by a smoothly
decreasing function of distance from the analysis grid point. This
modification smoothly reduces the observation influence and
excludes observations outside a defined radius by prescribing

26 S. VETRA-CARVALHO ET AL.

their error to be infinitely large. As for covariance-localisation,
the method uses a Schur product as

R̃ = C̃ ◦ R . (169)

Here, the same correlation function (Gaspari and Cohn, 1999)
as for covariance localisation can be used to construct the local-
isation matrix. However, in contrast to covariance localisation,
C̃ is not a correlation matrix as the values on the diagonal of this
matrix vary with the distance between the observation and the
local analysis domain. Then, the analysis update is computed as
in the case of domain localisation, but using the weight-localised
matrix R̃. For computational savings we would in practise also
discard any observations with zero weight from the analysis
computations.

Both observation and covariance localisation can lead to sim-
ilar assimilation results. In general, the optimal localisation has
been found to be a bit larger for covariance localisation than for
observation localisation (Greybush et al., 2011). The reason for
this difference lies in the different effect of the localisations in
the Kalman gain as was explained by Nerger et al. (2012b).

9.1.4. Adaptive localisation schemes. The localisation meth-
ods described above are widely used and can be applied without
much additional computing cost. However, the optimal local-
isation radius is a priori unknown and needs to be tuned in
numerical experiments. For the tuning one performs several
data assimilation experiments with different localisation radii,
perhaps over shorter time periods, and selects the radius that
results in the smallest estimation errors. Regarding the theo-
retical understanding of localisation, Kirchgessner et al. (2014)
showed for the case of observation localisation when each grid
point is observed that the optimal localisation radius should be
reached when the sum over the observation weights equals the
ensemble size. This finding allows for a simple form of adaptivity
or a starting point for further tuning. Further, Perianez et al.
(2014) showed that both the sampling error in the ensemble
covariance matrix and the observation error influence the optimal
localisation radius. As the sampling error has a largest influence
when the true correlations are small, the dynamically generated
correlations also influence the optimal localisation radius (Zhen
and Zhang, 2014; Flowerdew, 2015).

To avoid the need for numerical tuning and to better adapt the
localisation to the dynamically created correlation structure, sev-
eral adaptive localisation methods have been developed, which
we shortly mention here.Acommon approach is to damp the spu-
rious correlations that are caused by sampling errors due to the
small ensemble size. Anderson (2007) developed a hierarchical
localisation method, in which the ensemble is partitioned into
sub-ensembles. Then, the sub-ensembles are used to estimate
the sampling errors. Bishop and Hodyss (2009) proposed an
adaptive localisation method that uses a power of the correlations

to damp small correlations and pronounce those correlations
that are significant. This method can find correlations even at
longer distances. Further, methods have been developed to find
empirical localisation functions. In these methods, one attempts
to find for a single observation the weight factor that minimises
the deviation from a true solution (Anderson, 2012; Lei and
Anderson, 2014; Flowerdew, 2015). These methods are typically
tuned once based on observation system simulation experiments
(OSSEs), in which one knows the true state. When the OSSEs
are configured realistically, the obtained localisation functions
should be applicable for the assimilation of real observations
after the tuning.

The major advantage of the methods proposed so far is that
they are able to adaptively specify the localisation function or
radius according to the dynamically generated covariance struc-
ture. However, the methods still need tuning, which can be
even more costly than for the fixed covariance and observation
localisation methods. For example, the method by Bishop and
Hodyss (2009) requires the specification of an envelope function
around the locations that are found by powering the correlations
and the number of powers that are computed. Lei and Anderson
(2014) also showed that the localisation function can change
when it is applied iteratively such that a sufficient number of
iterations have to be computed.

Apart from the adaptive localisation methods, further meth-
ods like spectral localisation (Buehner and Charron, 2007) and
localisation in different variables (i.e. stream function, velocity
potential, Kepert, 2006) have been developed. However, none
of these methods are yet a standard for operational centres.

9.1.5. Localisation in particle filtering. Several variants of
the Particle Filter that explore localisation have been developed
recently, following its success in Ensemble Kalman Filters. An
issue with directly localising R or using domain localisation is
that the weight of each particle is a global property of the filter
(van Leeuwen, 2009). That is, the same particle could have a
high weight in one area and low weight in another making it
ambiguous whether this particle should be resampled or not.
Keeping parts of a number of particles that all perform well
in a certain area of the domain and parts of other particles
in other areas of the domain would lead to balance problems
between variables and sharp gradients in the fields. In contrast,
when performing parameter estimation a smooth variation of
parameter values is less likely to cause imbalances in the model
variables, and localisation is straightforward, as pioneered by
Vossepoel and Van Leeuwen (2006).

Particle filters that use a proposal density, such as the EWPF
discussed in Section 6.2.1 indirectly use localisation through
the model error covariance matrix Q. This localisation does
not explicitly work on the weights but on how the states are
updated, because a natural choice is to pre-multiply each update
of a particle with that matrix. Since the model error covariance
matrix will mainly contain short length-scale correlations related

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 27

to missing or inaccurate physics at the model grid scale, each
point in the state space is only influenced by observations within
the radius set by that covariance matrix. In fact, as noted in
Section 6.2.1, we do have the freedom to choose this matrix
differently from Q, so other choices closer to our needs are
possible. This is because the effects of this choice will be taken
into account in the computation of the weights of each particle.
This has not been explored in any detail in the literature.

Of the full particle filters, the ETPF (Reich, 2013) can easily be
localised by taking for each grid point only observations close to
that grid point into account and making the transformation matrix
space-dependent to ensure smooth transitions between different
regions. This can for example be achieved by calculating the
transformation matrix in a limited number of grid points and
interpolate that matrix between grid points. This would also
reduce the number of computations, which would otherwise be
prohibitive (see Section 9.4 on computational costs).

The PFGR and the NETF perform an ensemble transformation
similar to the ETKF, but with a transform matrix T computed
from particle filter weights. Accordingly, observation localisa-
tion can be applied to the NETF (Tödter and Ahrens, 2015)
by smoothing the weight matrix over space. This can also be
applied to the MMPF in the high-dimensional implementation.
Also the MPF can be localised by making the weights local and
using a systematic resampling method like Stochastic Universal
Resampling (seeAppendix 1). In practise, more might be needed,
e.g. the extra averaging as advocated by Penny and Miyoshi
(2016) described below.

Several localisation schemes have been proposed and dis-
cussed in the review van Leeuwen (2009) and those will not
be repeated here. The most obvious thing to do is to weight
and resample locally, and somehow glue the resampled particles
together via averaging at the edges between resampled local
particles (van Leeuwen, 2003b). Recently, Penny and Miyoshi
(2016) used this idea with more extensive averaging, and their
scheme runs as follows. First, for each grid point j the observa-
tions close to that grid point are found and the weight of each
particle i is calculated based on the likelihood of only those
observations:

wi, j =
p(y j |xi, j)∑Ne

k=1 p(y j |xi, j)
(170)

in which y j denotes the set of observations within the locali-
sation area. This is followed by resampling via Stochastic Uni-
versal Resampling to obtain ensemble members xa

i, j with i =
1, . . . , Ne for each grid point j . As mentioned before, the issue
is that two neighbouring grid points can have different sets of
particles, and smoothing is needed to ensure that the posterior
ensemble consists of smooth particles. This smoothing is per-
formed for each grid point j for each particle i by averaging
over the Np neighbouring points within the localisation area
around grid point j :

xa
i, j =

1

2
xa

i, j +
1

Np

2Np∑
k=1

xa
i, jk

(171)

in which jk for k = 1, . . . , Np denotes the grid point index for
those points in the localisation area around grid point j . The
resampling via Stochastic Universal Resampling is done such
that the weights are sorted before resampling, so that high-weight
particles are joined up to reduce spurious gradients.

While this scheme does solve the degeneracy problem in
simple one-dimensional systems it is unclear if it will work well
in complex systems such as the atmosphere in which fronts can
easily be smoothed out, and non-linear balances broken, see e.g.
the discussion in van Leeuwen (2009).

Anew scheme has recently been proposed in Poterjoy (2016a),
which involves a very careful process of ensuring smooth poste-
rior particles and retaining non-linear relations. The filter
processes each observation sequentially, as follows. First,
adapted weights are calculated for the first element y1 of the
observation vector, as

w̃i = αp(y1|xi)+ 1− α (172)

These weights are then normalised by their sum W̃ . Then we
resample the ensemble according to these normalised weights to
form particles xki .

Here, α is an important parameter in this scheme, with α = 1
leading to standard weighting, and α = 0 leading to all weights
being equal to 1. Its importance lies in the fact that the weights are
always larger than 1−α, so even a value close to 1, say α = 0.99,
leads to a minimum weight of 0.01 that might seem small, but it
means that particles that are more than 1.7 observational standard
deviations away from the observations have their weights cut off
to something close to 1− α. This seriously limits the influence
the observation can have on the ensemble. Furthermore, the
influence of α does depend on the size of the observational error,
which is perhaps not what one would like. It is included to avoid
losing any particle.

Now, we do the following for each grid point j . For each
member i we calculate a weight

w̃i = αρ(y1, x j , r)p(y1|xi)+ 1− αρ(y1, x j , r) (173)

in which ρ(.) is the localisation function with localisation radius
r . The normalised weights for this grid point, wi , are obtained
by dividing w̃i by the summed weights over all the particles.
Note, again, the role played by α. Then, the posterior mean for
this observation at this grid point is calculated as

28 S. VETRA-CARVALHO ET AL.

x̄ j =
Ne∑

i=1

wi xi, j (174)

in which xi, j is grid point j of particle i . Next, a number of
scalars are calculated that ensure smooth posterior fields (Poter-
joy, 2016a):

σ 2
j =

Ne∑
i=1

ωi (xi, j − x̄ j)
2

c j =
Ne(1− αρ(x j , y1, r))

αρ(x j , y1, r)W̃

r1, j =

√√√√√ σ 2
j

1
Ne−1

∑Ne
i=1(xki , j − x̄ j + c j (xi, j − x̄ j))

2

r2, j = c j r1 j (175)

so that the final estimate becomes:

xa
i, j = x̄ j + r1, j (xki , j − x̄ j)+ r2, j (xi, j − x̄ j). (176)

This procedure is followed for each grid point so that at the end
we have an updated set of particles that have incorporated the
first observation. As a next step the whole process is repeated for
the next observation, with a small change that w̃i is multiplied
by w̃i from the previous observation, until all observations have
been assimilated. In this way, the full weight of all observations
is accumulated in the algorithm. Now the importance of α comes
to full light: without α the ensemble would collapse because the
w̃’s would be degenerate when observations are accumulated.

The final estimate shows that each particle at grid point j
is the posterior mean at that point plus a contribution from the
deviation of the posterior resampled particle from that mean
and a contribution from the deviation of the prior particle from
that mean. So each particle is a mixture of posterior and prior
particles, and departures from the prior are suppressed. When
α = 1, so for a full particle filter, we find for grid points at the
observation locations that c j = 0 because it is ρ(y1, x j , r) = 1
here. Accordingly, it is r2, j = 0 and r1, j ≈ 1 and indeed the
scheme gives back the full particle filter.

Between observation locations it can be shown that the parti-
cles have the correct first and second order moments, but higher-
order moments are not conserved. To remedy this a probabilistic
correction is applied at each grid point as follows. The prior
particles are dressed by Gaussians with width 1 and weighted by
the likelihood weights to generate the correct posterior pdf. The
posterior particles are dressed in the same way, each with weight
1/Ne. Then the cumulative distribution functions (cdf’s) for the
two densities are calculated using a trapezoidal rule integration.
A cubic spline is used to find the prior cdf values at each prior

particle i , denoted by cdf(i). Then a cubic spline is fitted to the
other cdf, and the posterior particle i is found as the inverse of its
cdf at value cdf(i). See Poterjoy (2016a) for details. The result
of this procedure is that higher order moments are brought back
into the ensemble between observed points.

This scheme, although rather complicated, is the only local
particle filter scheme that has been applied to high-dimensional
geophysical systems based on primitive equations in Poterjoy
and Anderson (2016b). (van Leeuwen, 2003b applied a local
particle filter to a high-dimensional quasi-geostrophic system,
but that system is quite robust to sharp gradients as it does not
allow gravity waves.)

Another interesting local particle filter is the Multivariate Rank
Histogram Filter (Metref et al., 2014a). The idea is to write the
posterior pdf in terms of an observed marginal multiplied by a
set of conditional pdfs. For example, for a 3-dimensional system
in which variable x1 is observed we have:

p(x1, x2, x3|y) = p(y|x1)

p(y)
p(x1, x2, x3)

= p(y|x1)

p(y)
p(x1, x2)p(x3|x1, x2)

= p(y|x1)

p(y)
p(x1)p(x2|x1)p(x3|x1, x2).

(177)

The filter now uses the rank-histogram idea ofAnderson (2010)
on each component, resulting in a fully non-Gaussian update
of each component. Localisation can be easily applied directly
in this algorithm as it is a transformation algorithm and the
transformation can be made local. Unfortunately, this procedure
becomes too expensive when the system is high dimensional.
However, via a so-called mean-field approximation we suppress
the conditioning on non-observed variables, so that we find:

p(x1, x2, x3|y) ≈ p(y|x1)

p(y)
p(x1)p(x2|x1)p(x3|x1). (178)

This will make the algorithm parallelisable and suitable for
high-dimensional applications, although that has not been ex-
plored yet.

9.2. Ensemble covariance inflation

In practice, an ensemble Kalman filter can diverge from the truth
due to systematic underestimation of the error variances in the
filter, possibly caused by model errors or ensemble undersam-
pling as discussed in Section 9.1. In particular, estimating a too
large amount of long range correlation will reduce the estimated
variance too strongly. Regardless of the cause, underestimating
the uncertainty leads to a filter that is overly confident in the state
estimate. Thus, the analysis step of the filter puts increasingly

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 29

more weight on the ensemble background estimate than on the
observations and, at some point, it disregards observations com-
pletely. Localisation is one method to reduce the undersampling.
However, for high-dimensional systems, localisation alone is not
sufficient to ensure a stable assimilation process and covariance
inflation is applied to further increase the sampled variance and
thus stabilise the filter. In addition, the inflation can partly ac-
count for model error in case of an imperfect model (Pham et
al., 1998b; Hamill, 2001; Anderson, 2001; Whitaker and Hamill,
2002; Hunt et al., 2007).

Most common is a fixed multiplicative covariance inflation
(Anderson and Anderson, 1999). The method uses the inflation
factor r to perform a multiplicative inflation for each ensemble
member xa, f

j . With j = 1, . . . , Ne being ensemble member
indices, it is given by

xa, f
j = r

(
xa, f

j − xa, f
)
+ xa, f (179)

where r usually is chosen to be slightly greater than one. The
specification of an optimal inflation factor may vary according to
the size of the ensemble ((Hamill, 2001); Whitaker and Hamill,
2002) and the choice of r will depend on various factors, such as
dynamics of the model, type of the ensemble filter used as well
as the length scale of covariance localisation.

Related to covariance inflation is the so-called ’forgetting-
factor’ρ introduced by Pham et al. (1998b). The forgetting factor
is usually chosen to be slightly lower than one and is typically
applied in the square root filters like the ETKF, SEIK and ESTKF.
For example, in the ETKF it is applied to TTT , e.g. in Equation
(44) as

TT TT
T =

(
ρI+ 1

Ne − 1
STR−1S

)−1
. (180)

In this way, the inflation and forgetting factors are related as
ρ = r−2. Equation (180) allows one to apply inflation in a
computationally very efficient way because TTT is much smaller
than the ensemble states to which the inflation is applied in
Equation (179).

Next to the multiplicative inflation, an additive inflation has
been proposed. The multiplicative inflation leads to an inflation
that is relative to the variance level. Thus, large variances will be
inflated much more than small variances. This behaviour can be
avoided with additive inflation (Ott et al., 2004), which can also
be applied in combination with the multiplicative inflation. In
additive inflation, all variances are inflated by the same amount,
rather than a relative factor. This difference can be useful if the
variances vary strongly as in this case the additive inflation acts
stronger on the very small variances.

The optimal strength of the inflation is usually determined
by tuning experiments, i.e. running experiments with different

inflation values and analysing which value results in the smallest
estimation errors. Usually a single fixed value of r or ρ is chosen
for all grid points. This situation is mainly motivated by the fact
that a manual tuning of spatially varying inflations is not feasi-
ble for high-dimensional models. To avoid the tuning, several
adaptive inflation methods have been proposed. Brankart et al.
(2003) proposed to use the relation

tr(ρ−1SST + R) = (y −H(x f))T (y −H(x f)) (181)

to estimate a temporally variable forgetting factor ρ for multi-
plicative inflation. This equation is one of the statistical consis-
tency relations in observation space that Kalman filters should
fulfil (Desroziers et al., 2005). Further, Anderson (2009) pro-
posed a method to adaptively estimate spatially and temporally
varying inflation factors. This method also aims to fulfil Equation
(181) but uses Bayesian estimation to obtain the inflation values.
All of these adaptive methods do assume that we have a very
good knowledge of the error covariance of the observations.
Apart from adaptively inflating the ensemble spread, adaptive
inflation of observation errors has been proposed by Minamide
and Zhang (2017) for assimilating all-sky satellite brightness
temperatures.

An alternative to the inflation can be to explicitly account for
the sampling error caused by the finite ensemble size as is done
in the finite-size ensemble transform Kalman filter (Bocquet,
2011). This method, while still denoted ’Kalman filter’, requires
the iterative minimisation of a cost functional and is hence dis-
tinct from the Ensemble Kalman filter variants in Section 5,
which compute a one-step analysis update.

9.3. Parallelisation of EnDA

The need to integrate an ensemble of model states leads to
large computational costs, because instead of computing a sin-
gle model integration as in normal modelling applications an
ensemble of O(10–100) members has to be propagated. To re-
duce the time to perform the costly computations one can apply
parallelisation of the data assimilation program and then use
high-performance computers with a large number of processors
to perform the computations. The ensemble integrations as the
most costly part of the computations can be easily parallelised. In
fact, the integration of each ensemble state is independent from
the other states. Thus, this step could be parallelised by simply
starting the numerical model Ne times. Each model state has to be
initialised from a different restart file and one has to store the final
state of each model integration to keep the information on the
forecast ensemble. Subsequently to the ensemble forecasts, one
starts the data assimilation program, which reads the ensemble
information from the files, computes the analysis step, and writes
a set of new restart files to prepare the next forecast phase. The
computations of the analysis step can also be parallelised as is

30 S. VETRA-CARVALHO ET AL.

outlined below. This implementation scheme of data assimilation
can be termed ’offline coupling’(Nerger and Hiller, 2013). While
being flexible, the frequent writing and reading of the large files
holding the ensemble states can take a significant amount of
time.

A more sophisticated parallelisation of the ensemble data as-
similation problem with a high-dimensional ocean model was
discussed by Keppenne and Rienecker (2002) and Keppenne and
Rienecker (2003). This method applied a domain-decomposition
to the model and then integrated several ensemble states concur-
rently. The forecast ensemble was then collected by the use of
the parallelisation technique SHMEM, which was also used for
exchanging data in between processors during the analysis step
of the EnKF applied in this study. Keeping the analysis step and
the ensemble forecasts within one program reduced the overall
computing time because the writing and reading of model state
files is reduced.

The analysis step of the ensemble filters can also be paral-
lelised using parallelisation methods like the Message Passing
Interface (MPI, Gropp et al., 1994). The parallelization differs
depending on whether localisation is used and on which of the
filters is used. For the filter methods that assimilate all obser-
vations at once (in contrast to the serial observation processing
of the EAKF and EnSRF) using the domain-decomposition of
a model was found to be more efficient than using ensembles
which are distributed over several processors because the amount
of data that has to be exchanged using MPI is smaller for domain-
decomposition (Nerger et al., 2005a).

For the ensemble Kalman filters with domain localisation,
the local analysis update is independent for each local domain.
Thus, this part is naturally parallel and can be distributed with
MPI, the shared-memory standard OpenMP, or a combination of
both. However, because the observation domains have a larger
spatial extent they can reach into the grid domain held by neigh-
bouring processors. The local analysis step needs the difference
(innovation) between the observation and the corresponding part
of the observed state vector. These differences need to be first
computed by the processor that holds the sub-domain and then
exchanged in between the different processors computing the
analysis step. This computation of the observation innovations
and their exchange using MPI is only required once before the
loop over all local analysis domains can be computed in parallel
(Nerger and Hiller, 2013). The cost for these operations depends
on the total number of observations and on their distribution over
the model grid. For many observations this can limit the parallel
speedup of the analysis update as was shown for the localised
SEIK filter by Nerger and Hiller (2013).

The EAKF and EnSRF are typically applied with serial ob-
servation processing and covariance localisation. In this case,
the parallelisation of the analysis step has to take into account
that for each assimilated observation the full model state has to
be updated. Hence, also the innovation differences between the
not yet assimilated observations and the corresponding observed

model state change after each update.Anderson (2007) proposed
to let each processor separately update the innovations so that the
required parallel communication is limited. This parallelisation
does not take the localisation into account. Taking into account
that the localisation results in a limited reach of the observation
influence, Wang et al. (2013) proposed another parallelisation
strategy.

The analysis step of the ensemble Kalman filters requires only

the model states. This allows for a generic coupling between the

model and the analysis step. In particular, one can implement fil-
ter algorithms such that they can be coupled in the same way with
different models. This allows one to build generic frameworks
for ensemble data assimilation (Nerger et al., 2005a; Nerger and
Hiller, 2013; Browne and Wilson, 2015). In the generic form, the
ensemble forecast can still be computed by concurrent parallel
model forecasts. The transfer of the forecast state information
can then be performed either directly in memory by subroutine
calls (Nerger and Hiller, 2013) or by parallel communication
using MPI (Nerger, 2004; Browne and Wilson, 2015). These
strategies allow a tight ’online’ coupling of the model and the
data assimilation code that computes the analysis updates. The
coupling can be achieved with minimal changes in the model
code.

For the implementation of the EWPF and IEWPF different

parallelisation schemes are applicable for the computations at

each nudging step in between observations (Equations (120) and

(123)) and at observation time for the EWPF between Equations
(106) to (111) and for the IEWPF between Equations (112) to
(114). Before the observation time, the computations for the

random forcing β̃
(m)
j in Equation (120) are independent for each

particle since a different forcing is drawn from the covariance for
each of them. Similar, the nudging term in Equation (120) and
the update of the weights are independent for each particle. Thus,
these operations can be performed in parallel and there is no need
to gather all particles on a single process. The computation of
the matrix ϒ in Equations (108) and (117) is computationally
the most expensive part. When the observation operator does
not change over time, this matrix can be precomputed before
beginning the assimilation. The downside of this approach is that
this matrix can be huge and requires a lot of memory if the state
dimension and number of observations are large. Otherwise,
since the same matrix is used by all particles, it is possible
to distribute the computation to all processes allocated for the
particles, e.g. using a parallel matrix solver. At observation time,
most of the computations are again independent for all particles.
Only the maximum weight obtained from Equations (106) and
(118) for EWPF and IEWPF, respectively, must be exchanged
over all processes holding particles, so that the target weight
wtarget can be computed. Further parallelisation, e.g. to use the
domain decomposition of the model, might also be possible.
However, the matrix Q is frequently implemented in form of
operators. As the parallelisation is always dependent on the par-

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 31

ticular implementation of the matrix Q it cannot be generalised
for all models.

9.4. Computational cost

In Section 5, we presented various ensemble-base Kalman filter
methods in a clean mathematical way for ease of comparison and
clarity. In Appendix 2, we give a practical and precise pseudo-
algorithms on how to implement each method. Providing de-
tailed operation counts for all the ensemble methods presented
in this paper would be too lengthy but more importantly the
actual operation count would depend on many details such as
operators H and R, which are case specific for the model and
observations. The operation counts provided here have been
obtained by counting them in the pseudo codes in Appendix 2.

Generally, the leading order of operation counts in the differ-
ent filters are those that scale with third order in any of the
dimensions Nx , Ny , and Ne. For the SEIK, ETKF, ESTKF,
and the EAKF methods, the leading order of operation count is
O
(

Ny N 2
e + N 3

e + Nx N 2
e

)
if the observation error covariance

matrix is diagonal. The main cost is the update of the ensemble by
multiplying with the weight matrix in Equation (19) which has
a complexity of O

(
Nx N 2

e

)
. Computing the matrix TTT , e.g.

in Equation (25) involves multiplications of matrix S with R−1

which has a complexity of O
(

Ny N 2
e

)
. Finally computing the

transform matrix T by a Cholesky decomposition or an EVD has
a computational complexity of O

(
Ny N 2

e

)
. While the leading

order of operation counts is identical for all four filters, the SEIK
and ESTKF are in general computationally faster than the ETKF,
or the bulk formulation of the EAKF, despite equal leading
operation counts due to details in the algorithms. For the EAKF,
computing the SVDs of the matrices X′ f and S̃, whose costs scale
with O

(
Nx N 2

e

)
and O

(
Ny N 2

e

)
, respectively, increases the

computing time without changing the leading order of operation
counts. Thus, the leading order of operation count does not reflect
the computing speed.

The serial observation handling that is usually applied in the
EAKF and EnSRF leads to an operation count of O

(
Ny Nx Ne

)
in the leading order. Because only the ensemble updates are of
third order complexity in the serial update, it can be faster than
the bulk updates that assimilate all observations at once. This is
even the case when localisation is used. However, in combination
with localisation, the stability of the serial formulations can be
deteriorated (Nerger, 2015).

The leading order operation count of the stochastic EnKF with
perturbed forecasted observations is O(Ny N 2

e + N 2
y Ne+ N 3

y +
Nx N 2

e). Here again the ensemble update, which scales as

O
(

Nx N 2
e

)
, is usually the most costly operation. However, the

EnKF is usually more costly than the filters mentioned before
because of the inversion of the Ny × Ny matrix FF (Equation

(69)), which has a complexity of O
(

N 3
y

)
. Parallelising this

inversion can help to reduce the computing time. A computing

cost O
(

N 3
y

)
also occurs for the bulk formulation of the EnSRF

due to the EVD computed in Equation (58).
When localisation is used, the change in the cost compared to

the global formulation depends on the localisation method used.
For covariance localisation (Section 9.1.2), the cost for comput-
ing the weight in matrix C and to apply it to P f or the matrices
P f HT and HP f HT is added. For observation localisation (Sec-
tion 9.1.3), the cost to compute the analysis for a local analysis
domain with the bulk update methods is O(Ny,γ N 2

e + N 3
e +

Nx,γ N 2
e), where Ny,γ is the number of local observations and

Nx,γ is the size of a local state vector that is corrected. Because
both Ny,γ and Nx,γ are usually much smaller than the global
dimensions Ny and Nx , a single local analysis update is cheaper
than the global update. However, the local analysis update has to
be computed for each local analysis domain. Thus, the cost for
the analysis with observation localisation is usually significantly
higher than the global analysis. However, the local analysis
can be easily parallelised to reduce the computing time as was
described in Section 9.3.

The computing cost in the ETKF can be reduced using a pro-
jection matrix A analogous to the SEIK and ESKTF methods. For
the ETKF, this projection is square-matrix with diagonal entries
of 1− 1/Ne and off-diagonal entries of −1/Ne. The advantage
of using A is that one can avoid the explicit computation of X′
in favour of applying A to smaller matrices when evaluating the
analysis equations (Nerger et al., 2012a).

The computational cost for the particle-based non-linear filter
NETF (Section 7.1) is similar to that of the ETKF since the anal-
ysis is performed in the Ne-dimensional subspace spanned by the
ensemble members. In addition, the NETF does not compute an
inverse matrix thus avoiding computational instabilities caused
by small singular values, which are sometimes neglected in
ETKF implementations for that reason (Sakov et al., 2012). If lo-
calisation is applied to the NETF, the local analysis computations
are independent and can be evaluated in parallel as for the ETKF.
The generation of random rotation matrices consumes additional
resources; however, it is possible to resort to a collection of pre-
calculated random matrices since they only depend on ensemble
size Ne.

9.5. Ensemble data assimilation and non-linearity

The original EnKF was developed to overcome stability prob-
lems of the extended Kalman filter (see Jazwinski, 1970) that
were discovered with ocean data assimilation applications
(Evensen, 1993). Due to its use of an ensemble to propagate
the state error covariance matrix, the EnKF is suited for non-
linear models in this phase. However, the analysis step is based
on the Kalman filter and is only optimal for Gaussian distribu-
tions. Obviously, a non-linear model forecast will transform a
Gaussian distribution into a non-Gaussian distribution. Hence,
the optimality of the Kalman filters is no longer preserved and
the estimated analysis state and the error estimates will be sub-

32 S. VETRA-CARVALHO ET AL.

Table 2: Overview of filter methods available from Sangoma project website.

Filter Section Comment

EnKF 5.1 includes covariance localisation
EnsRF 5.6 includes covariance localisation
ETKF/LETKF 5.4 ETKF is without localisation; LETKF includes domain/observation localisation
ESTKF/LESTKF 5.9 ESTKF is without localisation; LESTKF includes domain/observation localisation
NETF 7.1 without localisation

optimal. This is a common issue for all ensemble filters whose
analysis step is based on the equations of the Kalman filter.
Nonetheless, the many existing data assimilation studies with
non-linear models, e.g. of the ocean or atmosphere, with different
formulations of the ensemble Kalman Filters show that these
filters are rather stable with regard to non-linearity.

Second-order accurate ensemble filters, like the NETF,
MMEF and MPF in Section 7 as well as the adaptive Gaussian
mixture filter described in Section 8 avoid the assumption that the
forecast ensemble has a Gaussian distribution. Thus, they should
be better suited for non-linear systems. When the methods are
applied with localisation, they can also be applied with large
systems (e.g. the NETF in Tödter et al., 2016). However, filters
like the NETF are still approximations to the full non-linear
analysis that is performed by particle filters.

Particle filters do not rely on any assumption on the error distri-
bution of the state estimate. However, the observation errors are
frequently assumed to be Gaussian as is for the particle filters pre-
sented in Section 6.Additionally, while the EWPF and IEWPF do
not require knowledge of forecast errors, they both require good
knowledge of model errors, i.e. Q. Of course, good knowledge
of model errors is always beneficial to forecasting irrespective of
the data assimilation method used, but for the application EWPF
and IEWPF model errors are essential. While standard particle
filters suffer the curse of dimensionality when applied to large
systems, the EWPF and IEWPF by construction are designed
to work for high-dimensional models, including those which
are highly non-linear, with a small number of particles, e.g.
Ades and van Leeuwen (2013) and Zhu et al. (2016). However,
when applying the relaxation scheme between observations in
an EWPF it is important to keep in mind that one has to choose
the relaxation term ϒ̃ in Equation (120) very carefully. We can
choose this term to suit the needs of our model and indeed we
need to do so carefully by selecting an appropriate relaxation
strength function ρ and covariance matrix. The relaxation term
can be chosen to be constant between observation times, but
that would not be a good idea if the system experiences os-
cillations between observations. In that case, the strength term
can be chosen to be linearly increasing with the time lag to the
next observation we are nudging particles to, or non-linear with
maximum strength close to the observations.

In all local particle filters that we discussed the posterior
particles are linear combinations of the prior particles. This has
the potential to break non-linear balances between variables
in the model. However, the linear combinations are typically

formed such that only prior particles are added that are close to
each other in state space, and hence quite similar. So this is not
necessarily a disadvantage.

10. Summary and conclusion

This overview paper provides a coherent algorithmic summary
and highlights differences between many currently used en-
semble data assimilation methods that can be applied to high
dimensional and non-linear problems such as ocean or weather
prediction including well-known ensemble-based Kalman filters
as well as recently developed particle filter methods and the
Gaussian mixture filter.

We have presented these methods in a mathematically coher-
ent way allowing the reader to compare many methods easily. In
particular, we have presented all ensemble-based Kalman filter
methods in form of a square root filter. In addition, we have
included practical pseudo-algorithms for all methods since for
computational reasons many of them would not be implemented
in the form they are mathematically described. For some of
the particle filters and for the Gaussian mixture filter we have
presented the theory along with the step by step algorithm.

Finally, we have discussed important issues for practical im-
plementation of the ensemble methods including various meth-
ods of localisation, inflation, parallelisation, computational cost
and ensemble applicability to non-linear problems.

Concluding, a wealth of ensemble-based data-assimilation
methods have been developed, and although they seem quite
different in theory, the numerical implementations are quite simi-
lar. The implementations turn out to be quite similar to those for
the particle filters, even those that explore a proposal density,
where the state covariances that play an essential role in the
Kalman filters are replaced by the covariance of the model errors.
The main difference is that the state covariances are evolving
over time and are always of low rank, while the model error
covariance is given and of full rank but sparse. This means
that different numerical algorithms need to be used to solve the
equations when the system of interest has a high dimension.

11. Code availability

We note that many of the algorithms here have been efficiently
implemented as a part of the Sangoma project and are freely
available to everyone on the project website http://sourceforge.
net/p/sangoma/ along with many other tools useful to data assim-
ilation. Table 2 provides a list of available filters. Please note that

http://sourceforge.net/p/sangoma/
http://sourceforge.net/p/sangoma/

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 33

the filter implementation was done independently from this paper
so that not all filters described here are available. For simplicity
these filters have been implemented without parallelisation and
are hence only usable for moderately large problems with a state
dimension of O(105).

Further, all of these analysis methods have been implemented
in at least one of the toolboxes connected to the Sangoma project,
these are: EMPIRE, OAK, SESAM, OPENDA, BELUGA/
SEQUOIA, NERSC and PDAF. For example, the set of filters
listed in Table 2, plus the SEIK filter (5.2) with localization, are
available in a parallelised implementation for high-dimensional
problems in the freely available data assimilation framework
PDAF (Nerger et al., 2005a; Nerger and Hiller, 2013). Further,
the EWPF (Section 6.2.1) and IEWPF (Section 6.2.2) are avail-
able in EMPIRE (Browne and Wilson, 2015).

Acknowledgements

PJvL thanks the European Research Council (ERC) for funding
of the CUNDAproject under the European Unions Horizon 2020
research and innovation programme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the SANGOMA EU Project [grant
number FP7-SPACE-2011-1-CT-283580-621 SANGOMA].

Notes

1. www.data-assimilation.net/.
2. The discussion of the increasingly growing developments in hybrid

data assimilation methods is beyond the scope of this paper, instead
we refer the reader to a very recent review article by Bannister
(2017), and papers by Frei and Künsch (2013) and Chustagulprom
et al. (2016) aiming to bridge particle and ensemble Kalman filter
methods.

3. Note that ρ = 1 if p̂ = Ñe .
4. Many of the analysis methods discussed in this paper including

MRHF have been implemented in Sangoma and are available for
free to download from www.data-assimilation.net, as well as many
other data assimilation tools for diagnostics, utilities etc..

5. Interestingly, the ECMWF is using an ensemble of 4DVars for their
weather forecasting scheme, and it is relatively easy to turn this into
a set of particles using 4DVar as proposal (see e.g. van Leeuwen et
al., 2015).

6. The model error covariance matrices are usually assumed to be
equal, i.e. Q̃ = Q. .

References

Ades, M. and van Leeuwen, P. J. 2013. An exploration of the equivalent
weights particle filter. Q. J. R. Meteorol. Soc. 139, 820–840.

Anderson, J. 2003. A local least squares framework for ensemble
filtering. Mon. Wea. Rev. 131, 634–642.

Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data
assimilation. Mon. Wea. Rev. 129, 2884–2903.

Anderson, J. L. 2007. Exploring the need for localization in ensemble
data assimilation using a hierarchical ensemble filter. Physica D 230,
99–111.

Anderson, J. L. 2009. Spatially and temporally varying adaptive
covariance inflation for ensemble filters. Tellus 61A, 72–83.

Anderson, J. L. 2010. A non-Gaussian ensemble filter update for data
assimilation. Mon. Wea. Rev. 138(11), 4186–4198.

Anderson, J. L. 2012. Localization and sampling error correction in
ensemble Kalman filter data assimilation. Mon. Wea. Rev. 140, 2359–
2371.

Anderson, J. L. andAnderson, S. L. 1999.AMonte Carlo implementation
of the non-linear filtering problem to produce ensemble assimilations
and forecasts. Mon. Wea. Rev. 126, 2741–2758.

Bannister, R. N. 2017. A review of operational methods of variational
and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc.

143, 607–633.
Bengtsson, T., Snyder, C. and Nychka, D. 2003. Toward a nonlinear

ensemble filter for high-dimensional systems. J. Geophys. Res. 108,
8775–8785.

Bengtsson, T., Bickel, P. and Li, B. 2008. Curse-of-dimensionality
revisited: collapse of the particle filter in very large scale systems.
IMS Collections: Prob. Stat. Essays Honor David A. Freedman 2,
316–334.

Bishop, C. H. and Hodyss, D. 2009. Ensemble covariances adaptively
localized with ECO-RAP. Part 2: a strategy for the atmosphere. Tellus
61A, 97–111.

Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive
sampling with the ensemble transform Kalman filter. Part I: theoretical
aspects. Mon. Wea. Rev. 129, 420–436.

Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters,
A., and co-authors. 2014. Recent development of the Met Office
operational ocean forecasting system: an overview and assessment
of the new global FOAM forecasts. Geosci. Mod. Dev. 7, 2613–2638.

Bocquet, M. 2011. Ensemble Kalman filtering without the intrinsic need
for inflation. Nonl. Proc. Geophy. 18, 735–750.

Bocquet, M., Pires, C. A. and Wu, L. 2010. Beyond Gaussian statistical
modelling in geophysical data assimilation. Mon. Wea. Rev. 138,
2997–3023.

Bolić, M., Djurić, P. M. and Hong, S. 2003. New resampling algorithms
for particle filters. Acoustics, Speech, and Signal Processing, 2003.

Proceedings. (ICASSP ’03). 2003 IEEE International Conference,
Vol. 2, IEEE, pp. II–589–592.

Brankart, J.-M., Testut, C.-E., Brasseur, P. and Verron, J. 2003.
Implementation of a multivariate data assimilation scheme for
isopycnic coordinate ocean models: application to a 1993–1996
hindcast of the North Atlantic ocean circulation. J. Geophys. Res.

108(C3), 3074.
Browne, P. A. and Wilson, S. 2015. A simple method for integrating a

complex model into an ensemble data assimilation system using MPI.
Env. Modell. Software 68, 122–128.

http://www.met.reading.ac.uk/~darc/empire/
http://modb.oce.ulg.ac.be/mediawiki/index.php/Ocean_Assimilation_Kit
http://lgge.osug.fr/meom/Outils/SESAM/sesam.html
http://www.openda.org/joomla/index.php
http://sirocco.omp.obs-mip.fr/Assim_tools/sequoia
http://www.nersc.no/category/keywords/data-assimilation-0
http://pdaf.awi.de/trac/wiki
www.data-assimilation.net/
www.data-assimilation.net

34 S. VETRA-CARVALHO ET AL.

Brusdal, K., Brankart, J. M., Halberstadt, G., Evensen, G., Brasseur, P.,
and co-authors. 2003.Ademonstration of ensemble based assimilation
methods with a layered OGCM from the perspective of operational
ocean forecasting systems. J. Mar. Syst. 40–41, 253–289.

Buehner, M. and Charron, M. 2007. Spectral and spatial localization of
background-error correlations for data assimilation. Q. J. R. Meteorol.

Soc. 133, 615–630.
Burgers, G., van Leeuwen, P. J. and Evensen, G. 1998. Analysis scheme

in the ensemble Kalman filter. Mon. Wea. Rev. 126(6), 1719–1724.
Campbell, W. F., Bishop, C. H. and Hodyss, D. 2010. Vertical covariance

localization for satellite radiances in ensemble Kalman filters. Mon.
Wea. Rev. 138, 282–290.

Chorin,A. J. and Tu, X. 2009. Implicit sampling for particle filters. PNAS

106, 17249–17254.
Chorin, A. J., Morzfeld, M. and Tu, X. 2010. Interpolation and iteration

for nonlinear filters. Commun. Appl. Math. Comput. Sci. 5, 221–
240.

Chustagulprom, N., Reich, S. and Reinhardt, M. 2016.Ahybrid ensemble
transform filter for nonlinear and spatially extended dynamical
systems. SIAM/ASA J. Uncert. Quant. 4, 552–591.

Cohn, S. E., Da Silva, A., Guo, J., Sienkiewicz, M. and Lamich, D. 1998.
Assessing the effects of data selection with the DAO physical-space
statistical analysis system. Mon. Wea. Rev. 126, 2913–2926.

Desroziers, G., Berre, L., Chapnik, B. and Poli, P. 2005. Diagnosis of
observation, background and analysis-error statistics in observation
space. Q. J. R. Meteorol. Soc. 131, 3385–3396.

Doucet,A., Godsill, S. and Andrieu, C. 2000. On sequential Monte Carlo
sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208.

Doucet, A., de Freitas, N., Gordon, N. 2001. Sequential Monte-Carlo
Methods in Practice. Springer-Verlag, New York.

Evensen, G. 1993. Open boundary conditions for the extended Kalman
filter with a quasi-geostrophic ocean model. J. Geophys. Res. 98(C9),
16529–16546.

Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte-Carlo methods to forecast error
statistics. J. Geophys. Res. 99, 10143–10162.

Evensen, G. 2003. The ensemble Kalman filter: theoretical formulation
and practical implementation. Ocean Dyn. 53, 343–367.

Flowerdew, J. 2015. Towards a theory of optimal localisation. Tellus A

67, 25257.
Frei, M. and Künsch, H. R. 2013. Bridging the ensemble Kalman and

particle filters. Biometrica 100, 781–800.
Gaspari, G. and Cohn, S. 1999. Construction of correlation functions in

two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757.
Golub, G. H. and Van Loan, C. F. 1996. Matrix computations, 3rd ed.

The Johns Hopkins University Press, Baltimore and London.
Gordon, N. J., Salmond, D. J. and Smith, A. F. M. 1993. Novel approach

to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. 140,
107–113.

Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K. and Hunt, B. R. 2011.
Balance and ensemble Kalman filter localization techniques. Mon.

Wea. Rev. 139, 511–522.
Gropp, W., Lusk, E. and Skjellum, A. 1994. Using MPI: Portable

Parallel Programming with the Message-Passing Interface The MIT
Press, Cambridge, Massachusetts.

Hamill, T. M. 2001. Interpretation of rank histograms for verifying
ensemble forecasts. Mon. Wea. Rev. 129, 550–560.

Hamill, T. M. 2006. Ensemble-based atmospheric data assimilation.
In: Predictability of Weather and Climate (eds. T. Palmer and R.
Hagedorn). Cambridge University Press, New York, pp. 124–156.
chapter 6.

Hamill, T. M., Whitaker, J. S. and Snyder, C. 2001. Distance-dependent
filtering of background error covariance estimates in an ensemble
Kalman filter. Mon. Wea. Rev. 129, 2776–1790.

Hoteit, I., Pham, D.-T., Triantafyllou, G. and Korres, G. 2008. A
new approximate solution of the optimal nonlinear filter for data
assimilation in meteorology and oceanography. Mon. Wea. Rev. 136,
317–334.

Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an
ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796–811.

Houtekamer, P. L. and Mitchell, H. L. 2001. A sequential ensemble
Kalman filter for atmospheric data assimilation. Mon. Wea. Rev. 129,
123–137.

Houtekamer, P. L. and Zhang, F. 2016. Review of the ensemble Kalman
filter for atmospheric data assimilation. Mon. Wea. Rev. 144, 4489–
4532.

Hunt, B. R., Kostelich, E. J. and Szunyogh, I. 2007. Efficient data
assimilation for spatiotemporal chaos: a local ensemble transform
Kalman filter. Physica D 230, 112–126.

Ide, K., Courtier, P., Ghil, M. and Lorenc,A. C. 1997. Unified notation for
data assimilation: pperational, l sequential and variational. J. Meteor.

Soc. Jpn. 75, 181–189.
Janjić, T., Nerger, L., Albertella, A., Schroeter, J. and Skachko, S. 2011.

On domain localization in ensemble-based Kalman filter algorithms.
Mon. Wea. Rev. 139, 2046–2060.

Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory
Academic Press, New York.

Kalman, R. E. 1960. A new approach to linear filtering and prediction
problems. Trans. AMSE –J. Basic Eng. 82(D), 35–45.

Kepert, J. D. 2006. Localisation, balance and choice of analysis variable
in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135(642), 1157–
1176.

Kepert, J. D. 2009. Covariance localisation and balance in an ensemble
Kalman filter. Q. J. R. Meteorol. Soc. 135, 1157–1176.

Keppenne, C. L. and Rienecker, M. M. 2002. Initial testing of a massively
parallel ensemble Kalman filter with the Poseidon isopycnal ocean
circulation model. Mon. Wea. Rev. 130, 2951–2965.

Keppenne, C. L. and Rienecker, M. M. 2003.Assimilation of temperature
into an isopycnal ocean general circulation model using a parallel
ensemble Kalman filter. J. Mar. Syst. 40–41, 363–380.

Kirchgessner, P., Nerger, L. and Bunse-Gerstner, A. 2014. On the choice
of an optimal localization radius in ensemble Kalman filter methods.
Mon. Wea. Rev. 142, 2165–2175.

Law, K. J. H. and Stuart, A. M. 2012. Evaluating data assimilation
algorithms. Mon. Wea. Rev. 140, 3757–3782.

Lawson, W. G. and Hansen, J. A. 2004. Implications of stochastic and
deterministic filters as ensemble-based data assimilation methods in
varying regimes of error growth. Mon. Wea. Rev. 132, 1966–1989.

Lei, J. and Bickel, P. 2011. A moment matching ensemble filter for
nonlinear non-Gaussian data assimilation. Mon. Wea. Rev. 139, 3964–
3973.

Lei, L. and Anderson, J. 2014. Empirical localization of observations
for serial ensemble Kalman filter data assimilation in an atmospheric
general circulation model. Mon. Wea. Rev. 142, 1835–1851.

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 35

Lermusiaux, P. F. J. 2007.Adaptive modelling, adaptive data assimilation
and adaptive sampling. Physica D 230, 172–196.

Lermusiaux, P. F. J. and Robinson,A. R. 1999. Data assimilation via error
subspaces statistical estimation, part I: theory and schemes. Mon. Wea.

Rev. 127, 1385–1407.
Lermusiaux, P. F. J., Robinson, A. R., Haley, P. J. and Leslie, W.

G. 2002. Advanced interdisciplinary data assimilation: filtering and
smoothing via error subspace statistical estimation. Proceedings of
“The OCEANS 2002 MTS/IEEE conference, Holland”, Vol. 230, pp.
795–802.

Livings, D. 2005. Aspects of the ensemble Kalman filter [Master’s thesis]
Department of Mathematics, University of Reading, UK.

Livings, D., Dance, S. L. and Nichols, N. K. 2008. Unbiased ensemble
square root filters. Physica D 237, 1021–1028.

Lorenc,A. C. 2003. The potential of the ensemble Kalman filter for NWP
- a comparison with 4D-Var. Q. J. R. Meteorol. Soc. 129, 3183–3203.

Metref, S., Cosme, E., Snyder, C. and Brasseur, P. 2014a.Anon-Gaussian
analysis scheme using rank histograms for ensemble data assimilation.
Nonlin. Processes Geophys. 21, 869–885.

Metref, S., Cosme, E., Snyder, C. and Brasseur, P. 2014b.Anon-Gaussian
analysis scheme using rank histogram for ensemble data assimilation.
Nonlinear Proc. Geophys. 21, 869–885.

Minamide, M. and Zhang, F. 2017. Adaptive observation error inflation
for assimilating all-sky satellite radiance. Mon. Wea. Rev. 145, 1063–
1081.

Miyoshi, T. and Yamane, S. 2007. Local ensemble transform Kalman
filter with an AGCM at a T159/L48 resolution. Mon. Wea. Rev. 135,
3841–3861.

Morzfeld, M., Tu, X., Atkins, E. and Chorin, A. J. 2012. A random map
implementation of implicit filters. J. Comput. Phys. 231, 2049–2066.

Morzfeld, M., Hodyss, D. and Snyder, C. 2017. What the collapse of
the ensemble Kalman filter tells us about particle filters. Tellus A 69,
1–14.

Nakano, S., Ueno, G. and Higuchi, T. 2007. Merging particle filter for
sequential data assimilation. Nonlinear Process. Geophys. 14, 395–
408.

Nerger, L. 2004. Parallel Filter Algorithms for Data Assimilation
in Oceanography Number 487 in Reports on Polar and Marine
Research, Alfred Wegener Institute for Polar and Marine Research,
Bremerhaven, Germany, [PhD Thesis]. University of Bremen,
Germany.

Nerger, L. 2015. On serial observation processing on localized ensemble
Kalman filters. Mon. Wea. Rev. 143, 1554–1567.

Nerger, L. and Hiller, W. 2013. Software for ensemble-based data
assimilation systems - implementation strategies and scalability.
Comput. Geosci. 55, 110–118.

Nerger, L., Hiller, W. and Schröter, J. 2005a. PDAF – the parallel data
assimilation framework: experiences with Kalman filtering. In: Use

of High Performance Computing in Meteorology: Proceedings of
the Eleventh ECMWF Workshop on the Use of High Performance

Computing in Meteorology, Reading, UK, 25–29 October 2004 (eds.
W. Zwieflhofer and G. Mozdzynski). World Scientific, Singapore, pp.
63–83.

Nerger, L., Hiller, W. and Schröter, J. 2005b. A comparison of error
subspace Kalman filters. Tellus 57A, 715–735.

Nerger, L., Danilov, S., Hiller, W. and Schröter, J. 2006. Using sea level
data to constrain a finite-element primitive-equation ocean model with
a local SEIK filter. Ocean Dyn. 56, 634–649.

Nerger, L., Janjić, T., Schroeter, J. and Hiller, W. 2012a. A unification of
ensemble square root filters. Mon. Wea. Rev. 140, 2335–2345.

Nerger, L., Janjić, T., Schröter, J. and Hiller, W. 2012b. A regulated
localization scheme for ensemble-based Kalman filters. Q. J. Roy.

Meteor. Soc. 138, 802–812.
Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., and co-

authors. 2004. A local ensemble Kalman filter for atmospheric data
assimilation. Tellus 56A, 415–428.

Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E. 2001. Local
low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86(26),
5878–5881.

Penny, S. and Miyoshi, T. 2016. A local particle filter for high-
dimensional geophysical systems. Nonlinear Processes Geophys. 23,
391–405.

Perianez, A., Reich, H. and Potthast, R. 2014. Optimal localization for
ensemble Kalman filter systems. J. Meteorol. Soc. Jpn. 92, 585–597.

Petrie, R. E. and Dance, S. L. 2010. Ensemble-based data assimilation
and the localisation problem. Weather 65(3), 65–69.

Pham, D. T. 2001. Stochastic methods for sequential data assimilation
in strongly nonlinear systems. Mon. Wea. Rev. 129, 1194–1207.

Pham, D. T., Verron, J. and Gourdeau, L. 1998a. Singular evolutive
Kalman filters for data assimilation in oceanography. C. R. Acad. Sci.

Ser. II 326(4), 255–260.
Pham, D. T., Verron, J. and Roubaud, M. C. 1998b. A singular evolutive

extended Kalman filter for data assimilation in oceanography. J. Mar.

Syst. 16, 323–340.
Poterjoy, J. 2016a. A localized particle filter for high-dimensional

nonlinear systems. Mon. Wea. Rev. 144, 59–76.
Poterjoy, J. andAnderson, J. L. 2016b. Efficient sssimilation of simulated

observations in a high-dimensional geophysical system using a
localized particle filter. Mon. Wea. Rev. 144, 2007–2020.

Reich, S. 2013. A nonparametric ensemble transform method for
Bayesian inference. SIAM Journal on Scientific Computing 4(35),
2013–2024.

Sakov, P. and Oke, P. R. 2008. Implications of the form of the ensemble
transformation in the ensemble square root filters. Mon. Wea. Rev.

136, 1042–1053.
Sakov, P., Counillon, F., Bertino, L., Lisaeter, K. A., Oke, P. R. and co-

authors. 2012. TOPAZ4: an ocean-sea ice data assimilation system for
the North Atlantic and Arctic. Ocean Sci. 8, 633–656.

Silverman, B.W. 1986. Density estimation for statistics and data analysis

Chapman and Hall, New Work.
Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J. 2008. Obstacles to

high-dimensional particle filtering. Mon. Wea. Rev. 136, 4629–4640.
Snyder, C., Bengtsson, T. and Morzfeld, M. 2015. Performance bounds

for particle filters using the optimal proposal. Mon. Wea. Rev. 143(11),
4750–4761.

Stordal, A. S., Karlsen, H. A., Nævdal, G., Skaug, H. J. and Valles, B.
2011. Bridging the ensemble Kalman filter and particle filters: the
adaptive Gaussian mixture filter. Comput. Geosci. 15, 293–305.

Testut, C.-E., Brasseur, P., Brankart, J.-M. and Verron, J. 2003.
Assimilation of sea-surface temperature and altimetric observations

36 S. VETRA-CARVALHO ET AL.

during 1992–1993 inot an eddy permitting primitive equation model
of the North Atlantic ocean. J. Mar. Sys. 40–41, 291–316.

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M. and
Whitaker, J. S. 2003. Ensemble square root filters. Mon. Wea. Rev.

131, 1485–1490.
Tödter, J. and Ahrens, B. 2015. A Second-Order Exact Ensemble Square

Root Filter for Nonlinear Data Assimilation. Mon. Wea. Rev. 143(4),
1347–1367.

Tödter, J., Kirchgessner, P., Nerger, L. and Ahrens, B. 2016. Assessment
of a nonlinear ensemble transform filter for high-dimensional data
assimilation. Mon. Wea. Rev. 144, 409–427.

Tong, X. T., Majda, A. J. and Kelly, D. 2016. Nonlinear stability and
ergodicity of ensemble based Kalman filters. Nonlinearity 29, 657–
691.

van Leeuwen, P. J. 2003a. A variance-minimizing filter for nonlinear
dynamics. Mon. Wea. Rev. 131, 2071–2084.

van Leeuwen, P. J. 2003b. Nonlinear ensemble data assimilation for
the ocean. Recent Developments in data assimilation for atmosphere

and ocean, ECMWF Seminar 8–12 September 2003, Reading, United
Kingdom, pp. 265–286.

van Leeuwen, P. J. 2009. Particle filtering in geophysical systems. Mon.

Wea. Rev. 137, 4089–4114.
van Leeuwen, P. J. 2010. Nonlinear data assimilation in Geosciences: an

extremely efficient particle filter. Q. J. R. Meteorol. Soc. 136, 1991–
1999.

van Leeuwen, P. J. 2011. Efficient nonlinear data-assimilation in
geophysical fluid dynamics. Comput. Fluids 46, 52–58.

van Leeuwen, P. J., Cheng, Y. and Reich, S. 2015. Nonlinear data
assimilation. Frontiers in Applied Dynamical Systems: Reviews and
Tutorials 2 Springer.

van Leeuwen, P. J. and Evensen, G. 1996. Data assimilation and inverse
methods in terms of a probabilistic formulation. Mon. Wea. Rev. 124,
2898–2913.

Verlaan, M. and Heemink, A. W. 2001. Nonlinearity in data assimilation
applications: a practical method for analysis. Mon. Wea. Rev. 129(6),
1578–1589.

Vossepoel, F. C. and Van Leeuwen, P. J. 2006. Parameter estimation
using a particle method: inferring mixing coefficients from sea-level
observations. Mon. Wea. Rev. 135, 1006–1020.

Wang, Y., Jung, Y., Supine, T. A. and Xue, M. 2013. A hybrid MPI-
OpenMP parallel algorithm and performance analysis for an ensemble
square root filter designed for multiscale observations. J. Atm. and

Oce. Tech. 30, 1382–1397.
Whitaker, J. S. and Hamill, T. M. 2002. Ensemble data assimilation

without perturbed observations. Mon. Wea. Rev. 130, 1913–1924.
Wikle, C. K. and Berliner, L. M. 2006. A Bayesian tutorial for data

assimilation. Physica D, 230(1):1–16.
Xiong, X., Navon, I. M. and Uzunoglu, B. 2006. A note on the particle

filter with posterior Gaussian resampling. Tellus A 58(4), 456–460.
Zhen, Y. and Zhang, F. 2014. A probabilistic approach to adaptive

covariance localization for serial ensemble square root filters. Mon.

Wea. Rev. 142, 4499–4518.
Zhu, M., van Leeuwen, P. J. and Amezcua, J. 2016. Implicit equal-

weights particle filter. Q. J. R. Meteorol. Soc. page personal
communication.

Zupanski, M. 2005. Maximum likelihood ensemble filter: Theoretical
aspects. Mon. Wea. Rev. 133, 1710–1726.

Zupanski, M., Michael, N. I. and Zupanski, D. 2008. The maximum
likelihood ensemble filter as a non-differentiable minimization
algorithm. Q. J. R. Meteorol. Soc. 134, 1039–1050.

Appendix 1. Resampling methods

In this section, we give descriptions of a number of resampling
techniques that can be applied to the particle filter and Gaussian
mixture filter methods to turn weighted particles into equal-
weight particles. The resampling techniques included here are
probabilistic resampling, stochastic universal resampling and
residual resampling. However, they are by no means exclusive
and other techniques could be used.

A.1. Probabilistic resampling (PR)

The probabilistic resampling or the basic random resampling is
the most straightforward to implement as we sample directly
from the density given by the weights.

Given the weights {w j }Ne
j=1 associated with the ensemble of

particles, where the sum of weights is equal to one, the total
number of particles Ne and the number of particles to be gen-
erated Ñe, we generate an index of the sampled particles using
the Algorithm 1.

Algorithm 1 Algorithm of probabilistic resampling

function PR(w, Ne, Ñe)
ŵ1 ← w1
for j ← 2 to Ne do � compute cumulative weights

ŵ j =
∑ j

i=1 w j

end for
c← 1
for j ← 1 to Ñe do

u ∼ U [0, Ñe] � generate a random number
while u > ŵc do

c← c + 1
end while
I j ← c � assign an index of the sampled particle
c← 1

end for
return I

end function

The required input for the PR is: w ∈ RNe a vector of particle
weights, Ne the total number of particles in the filter, and Ñe

the number of particles to be sampled and the method returns an
index I ∈ RÑe , which can then be used to select the sampled
particles x∗j = xI (j) for j = 1 : Ñe.

Note that this scheme introduces sampling noise by drawing
Ñe times from a uniform distribution.

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 37

A.2. Stochastic universal resampling (SUR)

Stochastic universal resampling is also known as systematic
resampling. It performs resampling in the same way as the basic
random resampling algorithm except instead of drawing each
u j independently from U(0, 1) for j = 1, . . . , Ne, it uses a
uniform random number u according to u ∼ U[0, 1/Ne] and
u j = u + (j − 1)/Ne (Bolić et al., 2003).

Given the weights {w j }Ne
j=1 associated with the ensemble of

particles, where the sum of weights is equal to one, the total
number of particles Ne and the number of particles to be gen-
erated Ñe, we generate an index of the sampled particles using
the Algorithm 2.

Algorithm 2 Algorithm of stochastic universal resampling

function SUR(w, Ne, Ñe)
ŵ1 ← w1
for j ← 2 to Ne do � compute cumulative weights

ŵ j =
∑ j

i=1 w j

end for
u ∼ U [0, 1/Ne] � generate a random number
c← 1
for j ← 1 to Ñe do

while u > ŵc do
c← c + 1

end while
I j ← c � assign an index of the sampled particle
u ← u + 1/Ne

c← 1
end for
return I

end function

The required input for the SUR is: w ∈ RNe a vector of
particle weights, Ne the total number of particles in the filter,
and Ñe the number of particles to be sampled and the method
returns an index I ∈ RÑe which can then be used to select the
sampled particles x∗j = xI (j) for j = 1 : Ñe.

Note, that this method has a lower sampling noise than prob-
abilistic resampling since only one random variable is drawn.

A.3. Residual resampling (RR)

The RR algorithm samples the particles in two parts. In the first
part the number of replications of particles is calculated, but since
the method does not guarantee that the number of resampled
particles is Ne, the residual Nr is computed. The second step
requires resampling, which produces Nr of the final Ñe particles.
InAlgorithm 3 this is done by PR, but other resampling technique
can be used.

The required input for the RR is: w ∈ RNe a vector of particle
weights, Ne the total number of particles in the filter, and Ñe the
number of particles to be sampled and the method returns an

Algorithm 3 Algorithm of residual resampling

function RR(w, Ne, Ñe)
for j ← 1 to Ne do

ŵ j ← �w j · Ñe� � the integer part of w · Ñe

end for
Nr ← Ñe

c← 1 � counter
for j ← 1 to Ñe do

if ŵ j > 0 then
Ic to c+ŵ j

← j � select copies of index to sample
c← c + ŵ j

end if
end for

if Nr > 0 then
for j ← 1 to Ne do

w̃ j ← (w j − ŵ j)/Nr � compute residual weights and
normalise

end for
I R← P R(ŵ, Ne, Nr) � sample additional indices
Ic to Ne ← I R � store extra indices at end of array I

end if
return I

end function

index I ∈ RÑe which can then be used to select the sampled
particles x∗j = xI (j) for j = 1 : Ñe. Note, that we used the

PR method to obtain an array I R ∈ RNr with the indices of
the additional sampled particles, which we then stored in the
remaining empty cells of the index array I ∈ RNe .

Note, that this method reduces the sampling noise, but not as
much as the SUR method.

Appendix 2. Filter algorithms for practical im-
plementation

This Appendix contains practical pseudo-algorithms of all the
ensemble filter methods presented in Sections 5–7. To discuss
the computational cost of each method in Section 9.4 we used
the algorithms presented in this appendix because for some filter
methods they are more computationally efficient or numerically
stable than mathematically elegant versions given in Section 5.
The algorithms are written in the way one would implement
them efficiently in Fortran. For compactness, the algorithms
don’t show that the final step of the ensemble filters can usually
be written in a blocked form, so that only the allocation one
large ensemble array X is required. This is different for the
MLEF, where two arrays of size Nx×Ne are required. If indices
are given for matrices, the notation follows Fortran in that the
first index defines the row, while the second index specifies the
column.

Note, that in all the algorithms that follow in this appendix any
variable with a number subscript is a temporary variable used to

38 S. VETRA-CARVALHO ET AL.

Algorithm 4 EnKF (for Ny > Ne/2, see Section 5.1)

x f ← mean of X f � (Nx × 1)
HX f ← H

(
X f
)

� Ens. predicted obs.; (Ny × Ne)

HX
f ← mean of HX f � (Ny × 1)

HX′ f ← HX f − HX
f � Ens. predicted pert.; (Ny × Ne)

HPH← 1
N−1 HX′ f

(
HX′ f

)T � (Ny × Ny)
A← HPH+ R � (Ny × Ny)
Gen. obs. ensemble Y � (Ny × Ne)
D← Y − HX f � (Ny × Ne)
Solve AC = D for C � (Ny × Ne)

E←
(
HX′ f

)T
C � (Ny × Ne)

X′ ← X f − x � (Ny × Ne)
Xa ← X f + (N − 1)X′E � (Ny × Ne)

Algorithm 5 SEIK, see Section 5.2

x f ← mean of X f � (Nx × 1)
Hx f ← H

(
x f
)

� Ens. predicted obs.; (Ny × 1)

d← y − Hx f � (Ny × 1)

HX f ← H
(
X f
)

� (Ny × Ne)
HL← (HX) L � (Ny × Ne − 1)
B1 ← R−1HL � (Ny × Ne − 1)

Initialise C1 ← (N − 1)ATA � (Ne − 1× Ne − 1)
C2 ← ρC1 + (HL)T B1 � (Ne − 1× Ne − 1)
d1 ← B1d � (Ne − 1× 1)
Solve C2e = d1 � (Ne − 1× 1)
w← Ae � (Ne × 1)
TTT ← C2 � Cholesky decomp.; (Ne − 1× Ne − 1)
Initialise � � (Ne − 1× Ne)
Solve TI = R � (Ne − 1× Ne)
W′ ← 1√

N−1
AT � (Ne × Ne)

W←W′ +w � (Ne × Ne)
Xa ← X f + X′ f W � (Nx × Ne)

reduce the computational time and storage space needed for the
algorithm. Further, for ease of reading these algorithms, we use
abbreviations: SVD for singular value decomposition and EVD
for eigenvalue decomposition. The values in the right column of
each algorithm give the dimension of the resulting array, which
helps to determine the computational cost of the operations.

Below, we use the notation H
(
X f
)

as a shorthand notation
for applying the possibly non-linear observation operator H
individually to each ensemble state in X f .

Algorithm 6 ESSE, see Section 5.3

d← y − H(x f) � (Ny × 1)
x f ← mean of X f � (Nx × 1)
for j = 1 to Ne do � Form ens. pert. matr.

X′ fj ← x f
j − x f � (Nx × Ne)

end for
U�VT ← X′ f � Compute SVD; (Nx × Ne)
E← 1

Ne−1 ��T � Normalised e.g.values; (Nx × Nx)
q1 ← 2 � (1× 1)
Uq ← U(1 : q1, :) � (Nx × q1)
Eq ← E(1 : q1, 1 : q1) � (q1 × q1)
r ← 1− ε � Set tolerance; (1× 1)
repeat � Find min. covar. matr.

q1 ← q1 + 1 � (1× 1)
Uq1 ← U(1 : q1, :) � (Nx × q1)
Eq1 ← E(1 : q1, 1 : q1) � (q1 × q1)

A← E1/2
q1 UT

q1Uq E1/2
q � (q × q1)

ρ ← Tr(A)/ Tr(Eq) � (1× 1)
Uq ← Uq1 � (Nx × q1)
Eq ← Eq1 � (q1 × q1)

until ρ > r
VT

q ← V(:, 1 : q1)T � (q1 × Ne)
C1 ← HUq � (Ny × q1)
���T ← C1Eq CT

1 + R � Compute EVD; (Ny × Ny)
Finv← ��−1�T � (Ny × Ny)

S← C1E1/2
q VT

q � (q1× Ny)

C2 ← ST Finv � (q1× Ny)
A← I− C2 S � (q1 × q1)
Z�ZT ← A � Compute EVD; (q1× q1)
w← 1√

Ne−1
Sq F−1d � (q1 × 1)

W′ ← Z�1/2ZT � (q1 × q1)
W←W′ +w � (Ne × Ne)
Xa ← X f + X′ f W � (Nx × Ne)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 39

Algorithm 7 ETKF, see Section 5.4

x f ← mean of X f � (Nx × 1)
Hx f ← H

(
x f
)

� Ens. predicted obs.; (Ny × 1)

d← y − Hx f � (Ny × 1)

HX f ← H
(
X f
)

� (Ny × Ne)

HX′ f ← HX f − Hx f � Ens. predic. obs. perturb.;(Ny × Ne)

C← R−1HX′ f � (Ny × Ne)
A1 ← (N − 1)I � (Ne × Ne)

A2 ← A1 +
(
HX′ f

)T
C � (Ne × Ne)

X′ f ← X f − X
f � Ens. perturb.; (Nx × Ne)

D← CTd � (Ne × 1)
U�UT ← A2 � Compute EVD; (Ne × Ne)
w1 ← UTD � (Ne × 1)
for j = 1 to Ne do � Scale for each ens. member

w2(j)← w1(j)�−1(j, j) � (Ne × 1)
end for
w← Uw2 � (Ne × 1)
for j = 1 to Ne do � Scale for each ens. member

W′1(:, j)←√�(j, j)U(:, j) � (Ne × Ne)
end for
W′ ←W′1UT � (Ne × Ne)
W←W′ +w � (Ne × Ne)
Xa ← X f + X′ f W � (Nx × Ne)

Algorithm 8 EAKF, see Section 5.5

x f ← mean of X f � (Nx × 1)
Hx f ← H

(
x f
)

� Ens. predicted obs.; (Ny × 1)

d← y − Hx f � (Ny × 1)

HX f ← H
(
X f
)

� (Ny × Ne)

HX′ f ← HX f − Hx f � Ens. predic. obs. perturb.;(Ny × Ne)

X′ f ← X f − X
f � Ens. perturb.; (Nx × Ne)

S̃← 1√
N−1

R−1HX′ f � (Ny × Ne)

U�V← S̃ � Compute SVD; (Ny × Ne)

Z�G← X′ f � Compute SVD; (Nx × Ne)
W′1 ← ZX′ f � (Ne × Ne)
for j = 1 to Ne do � Scale for each ens. member

b(j)← 1+ �2(j, j) � (Ne × 1)
W′2(:, j)← 1√

�(j, j)b(j)
W′1(:, j) � (Ne × Ne)

end for
W′ ← UW′2 � (Ne × Ne)
for l = 1 to Ny do � Scale for each onbservation

c1(l)← 1
b(l)
√

R(l,l)
d(l) � (Ny × 1)

end for
c2 ← Vc1 � (Ny × 1)
for j = 1 to Ne do

c3(j)← �(j, j)c2(j) � (Ne × 1)
end for
w← 1√

N−1
Uc3 � (Ne × 1)

W←W′ +w � (Ne × Ne)
Xa ← X f + X′ f W � (Nx × Ne)

Algorithm 9 EnSRF, see Section 5.6

x f ←compute mean of X f � (Nx × 1)
X′ fj ← x j − x, for j = 1, . . . , Ne � (Nx × Ne)

S← HX′ � (Ny × Ne)
I1 ← SST � (Ny × Ny)
I2 ← I1 + (N − 1)R � (Ny × Ny)
���T ← I2 � Compute EVD; (Ny × Ny)
G1 ← 1

�
� � (Ny × Ny)

G2 ← STG1 � (Ne × Ny)
U�V← G2 � Compute SVD; (Ne × Ny)

A←
√

I− �2 � (1× Ne)
W′1 ← UA � (Ne × Ny)
W′2 ←W′1UT � (Ne × Ne)
d← y −H (x) � (Ny × 1)
w1 ← �Td � (Ny × 1)
w2 ← �−1w1 � (Ny × 1)
w3 ← �w2 � (Ny × 1)
w4 ← Sw3 � (Ne × 1)
W←W′2 + [w4, . . . , w4] � (Ne × Ne)
Xa

1 ←
[
x f , . . . , x f

]
� form an Nx × Ny matrix with ens. forecast

mean in each column
Xa ← Xa

1 + X′ f W � (Nx × Ne)

Algorithm 10 Serial EnSRF, see Section 5.7

x f ← compute mean of X f � (Nx × 1)
for i = 1 to Ny do � Loop over each single obs.

X′io ← X − x � Compute perturb.; (Nx × Ne)
HXio ← H (X)io) � Ens. predicted obs; (1× Ne)
H Xio ← mean of HXio � (1× 1)
HX′io ← HXio − H Xio � (1× Ne)
HP← 1

N−1 HX′ioX′Tio � (1× Nx)

H P HT ← HX′io
(
HX′io

)T � 1× 1
Localise HP; optional
F ← H P HT + σR,io � (1× 1)

K← 1
F HP � (1× Nx)

d ← y − H Xio � (1× 1)

α1 ← 1+
√

σR
F � (1× 1)

α2 ← 1
α1

� (1× 1)

xa
io ← x f

io + Kd � (Nx × 1)
X′io ← X′io−1 − α2KHX′ � (Nx × Ne)
Xa

io ← X′io + xa
io � (Nx × Ne)

end for

40 S. VETRA-CARVALHO ET AL.

Algorithm 11 SEnKF, see Section 5.8

x f ← mean of X f � (Nx × 1)
HX f ← H

(
X f
)

� Ens. predicted obs.; (Ny × Ne)

HX
f ← mean of HX f � (Ny × 1)

HX′ f ← HX f − HX
f � Ens. predicted pert.; (Ny × Ne)

Gen. obs. ensemble Y � (Ny × Ne)
D← Y − HX f � (Ny × Ne)

A← 1
N−1 HX′ f + D � (Ny × Ne)

U�V← A � Compute SVD; (Ny × Ne)
B1 ← U�−1 � (Ny × Ne)
I1 ← UTD � (Ne × Ne)
I2 ← �−2I1 � (Ne × Ne)

I3 ← 1
N−1

(
HX′ f

)T
U � (Ne × Ne)

w← I3I2 � (Ne × Ne)
Xa ← X f + 1

N−1 X′ f w � (Nx × Ne)

Algorithm 12 ESTKF, see Section 5.9

x f ← mean of X f � (Nx × 1)
Hx f ← H

(
x f
)

� Ens. predicted obs.; (Ny × 1)

d← y − Hx f � (Ny × 1)

HX f ← H
(
X f
)

� (Ny × Ne)
HL← (HX) L � (Ny × Ne − 1)
B1 ← R−1HL � (Ny × Ne − 1)

Initialise C1 ← (N − 1)I � (Ne − 1× Ne − 1)
C2 ← ρC1 + (HL)T B1 � (Ne − 1× Ne − 1)
d1 ← B1Td � (Ne − 1× 1)
U�UT ← C2 � Compute EVD; (Ne − 1× Ne − 1)
d2 ← UTd1 � (Ne − 1× 1)
for j = 1 to N − 1 do

d3(j)← �−1(j, j)d2(j) � (Ne − 1× 1)
T1(: j)← �−1/2(j, j)U(:, j) � (Ne − 1× Ne − 1)

end for
w← Ud3 � (Ne − 1× 1)
T2 ← T1UT � (Ne − 1× Ne − 1)
W′ ← T2AT � (Ne − 1× Ne)
W← w +W′ � (Ne − 1× Ne)
WA ← AW � (Ne × Ne)
Xa ← X f + X′ f W′ � (Nx × Ne)

Algorithm 13 MLEF (using generalised non-linear conjugate-gradient),
see Section 5.10

C← (X′ f)THTR−1HX′ f � (Ne × Ne)
F← I+ C � (Ne × Ne)
U�UT ← F � Compute EVD; (Ne × Ne)
Finv ← U�−1UT � (Ne × Ne)
Finv2 ← U�−1/2UT � (Ne × Ne)
Ghalf← X′ f Finv2 � (Nx × Ne)
hx← H(x f) � (Ny × 1)
for each particle j = 1, . . . , Ne do

X f (j)← x f + X′ f (j) � (Nx × 1)
HX(j)← H(X f (j)) � (Ny × 1)
Z(j)← HX(j)− hx � (Ny × 1)

end for
d← y − hx � (Ny × 1)
ZR← ZTR−1 � (Ne × Ny)
b← ZR d � (Ne × 1)
β0 ← bTb � (1× 1)
ξ ← 0 � (Ne × 1)
xa ← x f � (Nx × 1)
repeat

hx← H(xa) � (Ny × 1)
for each particle j = 1, . . . , Ne do

X(j)← xa + X′ f (j) � (Nx × 1)
HX(j)← H(X(j)) � (Ny × 1)
Z(j)← HX(j)− hx � (Ny × 1)

end for
d← y − hx � (Ny × 1)
ZR← ZTR−1 � (Ne × p)
db1 ← ZR d � (Ne × 1)
db2 ← Finv ξ � (Ne × 1)
db2 ← db1 − db2 � (Ne × 1)
β1 ← dbT

2 db2 � (1× 1)
β = β1/β0 � (Fletcher-Reeves); (1× 1)

(Or use other formula for β, e.g. Polak-Ribiere.)
b← db2 + βb � (Ne × 1)
ξ ← ξ + αb � (Ne × 1)
xa ← x f +Ghalf ξ � (Nx × 1)
β0 ← β1 � (1× 1)

until Convergence
hx← H(xa) � (Ny × 1)
for each particle j = 1, . . . , N do

X(j)← xa + X′ f (i) � (Nx × 1)
HX(j)← H(X(j)) � (Ny × 1)
Z(j)← HX(j)− hx � (Ny × 1)

end for
C← ZTR−1Z � (Ne × N)
F← I+ C � (Ne × Ne)
U�UT ← C � Compute EVD; (Ne × Ne)
Finv2 ← U�−1/2UT � (Ne × Ne)
X′a ← X′ f Finv2 � (Nx × 1)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 41

Algorithm 14 ETPF, see Section 6.3

di ← y −H
(
x f

i

)
� For each particle; (Ny × Ne)

wi = p(y|x f
i) � (Ne × 1)

J (T)←∑Ne
i, j ti j ||x f

i − x f
j ||2

Solve for minT J (T) with ti j ≥ 0 and
∑Ne

i ti j = 1
Ne

and
∑Ne

j = wi

� (N 2
e log Ne)

x f ← mean of X f � (Nx × 1)
X′ f = X f − x f I � (Nx × Ne)

P← X′ f X′ f T � (Nx × Nx)
ξ ∼ N (0, h2P) � (Nx × 1)
xa

j ← N
∑

i x f
i t∗i j + ξ j � (Nx × Ne)

Algorithm 15 Relaxation step for EWPF and IEWPF algorithms (used
in forecast step to nudge towards observations), see Section 6.2.3

d j ← y −H
(
x f

j

)
� For each particle; (Ny × Ne)

Solve Re j = d j � (Ny × Ne)
f j ← τ(m)Q1/2HT e j � (Nx × Ne)
ξ j ∼ N (0, I) � Random forcing (Nx × Ne)

xm
j ←M

(
xm−1

j

)
+Q1/2(f j + ξ j) � (Nx × Ne)

log wm
j ← log wm−1

j + fTj (f j + 2ξ j) � (Nx × Ne)

Algorithm 16 EWPF, see Section 6.2.1

wrest ←− log w(m−1) �Weights from previous time steps
(1× Ne)
ε ← 0.0001/Ne � Choose parameter; (1× 1)
γU ← 10−6 � has to be small; (1× 1)

γN ← 2Nx /2εγ
Nx

U
π Nx /2(1−ε)

� (1× 1)

k ← 0.8 � e.g. keep 80% particles; (1× 1)
Nk ← Nek � (1× 1)

for j = 1, . . . , Ne do � For each particle find max weights
d j ← y −H

(
M(x(m−1)

j)
)

� (Ny × 1)

Solve
(
HQHT + R

)
e j = d j � (Ny × 1)

φ j ← dT
j e j � (1× 1)

c j ← w(m−1) + 0.5φ j � (1× 1)

end for(
ĉ, idx

)← sort (c) � Sort max weights with idx holding sorted
indices of c; (Ne × 1)

Cmax ← ĉ(Nk) � Find abs. max weight; (1× 1)

for j = 1, . . . , Nk do � For each remaining particle
i ← idx(j) � go through each kept particle; (1× 1)
Ki ← QHT ei � (Ny × 1)
ai ← 1

2 dT
i R−1HKi � (1× 1)

ri ← dT
i R−1di � (1× 1)

bi ← 1
2 ri − Cmax + wrest (i) � (1× 1)

αi ← 1+√1− bi /ai � (1× 1)
β ∼ (1− ε)Q1/2U (−γU I,+γU I)+ εN

(
γ 2

N Q
)

� Random
forcing (Nx × 1)

xa
j ←M

(
x(m−1)

i

)
+ αi Ki + β � (Nx × 1)

if β was from uniform distribution then
w j ← wrest (i)+ (α2

i − 2αi)ai + 1
2 ri � (1× 1)

else
w1 ← wrest (i)+ (α2

i − 2αi)ai � (1× 1)

w2 ← w1 + 1
2 ri

(
2−Nx /2

) (
π Nx /2

)
� (1× 1)

w3 ← w2γN γ
−Nx
U (1−ε

ε) � (1× 1)

w j ← w3 exp
(

0.5β2
i

)
� (1× 1)

end if
end for
Resample to have full ensemble, Xa , of Ne particles using one of
algorithms in Appendix 1. Resample from subset xa ∈ RNx×Nk and
w ∈ R1×Nk . � (Nx × Ne)
w← 1

Ne
� 1× Ne

42 S. VETRA-CARVALHO ET AL.

Algorithm 17 IEWPF, see Section 6.2.2

wrest ←− log w(m−1) �Weights from previous time steps
(1× Ne)
for j = 1, . . . , Ne do � For each particle find max weights

d j ← y −H
(
M(x(m−1)

j)
)

� (Ny × 1)

Solve
(
HQHT + R

)
e j = d j � (Ny × 1)

db j ← dT
j e j � (1× 1)

c j ← wrest + 0.5db j � (1× 1)

end for
wtarget ← min (c) � Keep all particles; (1× 1)
d← mean of d j � (Ny × 1)
if P can be calculated directly then

P = (Q−1 + HT R−1H)−1 � (Nx × Nx)
ξ i ∼ N (0, P) � (Nx × Ne)

else use e.g. ETKF algorithm:
�̃ ∼ N (0, Q) �Matrix of random vectors (Ne × Nx)
C← R−1H�̃ � (Ny × Ne)

A← (N − 1)I+
(
HQ�
′)T

C � (Ne × Ne)

D← CTd j � (Ne × 1)
U�UT ← A � Compute EVD; (Ne × Ne)
w1 ← UTD � (Ne × 1)
for j = 1 to Ne do � Scale for each ens. member

w2(j)← w1(j)�−1(j, j) � (Ne × 1)
end for
w← Uw2 � (Ne × 1)
for j = 1 to Ne do � Scale for each ens. member

W′1(j, :)←√�(j, j)U(j, :) � (Ne × Ne)
end for
W′ ←W′1UT � (Ne × Ne)
W←W′ +w � (Ne × Ne)
�← �̃+ �̃W � (Nx × Ne)
ξ j = � j � (Nx × 1)

end if
for j = 1, . . . , Ne do � for each particle

Solve
(
HQHT + R

)
e j = d j � (Ny × 1)

K j ← QHT e j � (Nx × 1)

φ j = dT
j e j � (Nx × 1)

xa
j ←M

(
xm−1

j

)
+ K j � (Nx × 1)

γ j ← ξT
j ξ j � (Nx × 1)

a j ← φ j −wrest
j + wtarget � (1× 1)

Solve (α j − 1)γ j − Nx log α j + a j = 0 � (1× 1)
xn

j ← xa
j + α j ξ j � Nx × 1

end for

Algorithm 18 PFGR and NETF, see Section 7.1

for j = 1, . . . , Ne do � for each particle

w j ← p(y|x j)∑
i p(y|xi)

� (1× 1)

end for
W← diag(w)−wwT � (Ne × Ne)
U�UT ←W � Compute EVD; (Ne × Ne)
T′ ←√NU�1/2UT � (Ne × Ne)
Prepare � � (Ne × Ne)
T← T′�+w � (Ne × Ne)
Xa ← X f T � (Nx × Ne)

Algorithm 19 MMPF, see Section 7.2

for j = 1, . . . , Ne do � for each particle

w j ← p(y|x j)∑
i p(y|xi)

� (1× Ne)

end for
x̄a ← X f w � (Nx × 1)
TTT ← diag(w)− wwT � (Ne × Ne)
U�UT ← TTT � Compute EVD; (Ne × Ne)
B�CT ← X′ f � Compute SVD; (Nx × Ne)
yk ∼ pH(xk)(y|xk) � Sample observations; (Ny × Ne)
for k = 1, . . . , Ne do � Loop over sampled obs.

for j = 1, . . . , Ne do � for each particle

w̃ j ← p(yk |x j)∑N
i=1 p(yk |xi)

� (1× Ne)

end for
˜̄xa ← X f w̃ � (Nx × 1)

T̃T̃
T ← diag

(
w̃
)− w̃w̃T � (Ne × Ne)

Ũ�̃Ũ
T ← T̃T̃

T � Compute EVD; (Ne × Ne)
d←

(
xk − ˜̄xa

)
� (Nx × 1)

d1 ← BT d � (1× Ne)
d′1 ← �−1d1 � Diagonal �; (1× Ne)
d2 ← Cd′1 � (1× Ne)

d′2 ← �̃
1/2

d2 � Diagonal �̃; (1× Ne)

d3 ← Ũ
T

d′2 � (1× Ne)
d′3 ← �1/2d3 � Diagonal �; (1× Ne)
d4 ← Ud′3 � (1× Ne)
xa

k = x̄a + X′ f d4 � (Nx × 1)
end for

Algorithm 20 Merging Particle Filter, see Section 7.3

for j = 1, . . . , Ne do � for each particle

w j ← p(y|x j)∑
i p(y|xi)

� (Ny × 1)

end for
(Xa

1 , . . . Xa
q)← q times resampled prior ensemble � (q × Ne)

Find αi such that
∑

i αi = 1 and
∑

i α2
i = 1 � (q × q)

Xa ←∑
αi Xa

i � (q × Ne × Nx)

STATE-OF-THE-ART STOCHASTIC DATA ASSIMILATION METHODS 43

Algorithm 21 Local PF Poterjoy, see Section 9

for Each observation do
w̃i ← αp(y1|xi)+ 1− α � (1× Ne)
Resample xki � (Nx × 1)
for Each grid point j do

ωi ← αρ(y1, x j , r)p(y1|xi)+ 1− αρ(y1, x j , r) � (1× Ne)
xi ←

∑
ωi xi, j � (1× 1)

σ 2 ←∑
ωi (xi, j − xi)

2 � (1× Ne)

c j ← N (1−αρ(x j ,y1,r))

αρ(x j ,y1,r)W̃

r1 j ←
√

σ2
j

1
N−1

∑N
i=1(xki , j−x̄ j+c j (xi, j−x̄ j))

2
� (1× Ne)

r2 j ← c j r1 j
xa

i, j = x̄ j + r1 j (xki , j − x̄ j)+ r2 j (xi, j − x̄ j) � (1× Ne)
end for

end for

Algorithm 22 Weights wi = p(y|xi)∑
j p(y|x j)

for Gaussian obs. errors

D← [y, . . . , y] −H
(
X f
)

� (Ny × Ne)

D1 ← R−1D � (Ny × Ne)
w′ ← exp(−0.5 DT D1) � (Ny)
w← w′/∑ j w′j � (Ny)

	Abstract
	1. Introduction
	1.1. Notation

	2. Common ground through Bayes theorem
	3. History of filtering for data assimilation
	3.1. Development history of ensemble Kalman filters
	3.2. Development history of particle filters

	4. The problem
	5. Ensemble Kalman filters
	5.1. The Stochastic Ensemble Kalman filter (EunderlinenKF)
	5.2. The singular evolutive interpolated Kalman filter (SunderlineEIK)
	5.3. The error-subspace statistical estimation (EunderlineSSE)
	5.4. The ensemble transform Kalman filter (EunderlineTKF)
	5.5. The ensemble adjustment Kalman filter (EunderlineAKF)
	5.6. The ensemble square root filter (EnSunderlineRF)
	5.7. EnSRF with serial observation treatment
	5.8. The square root formulation of the stochastic ensemble Kalman filter (SEnKunderlineF)
	5.9. The error-subspace transform Kalman filter (ESTunderlineKF)
	5.10. The Maximum Likelihood Ensemble Filter (underlineMLEF)
	5.11. Summary of ensemble Kalman Filter methods

	6. Particle filters
	6.1. The standard particle filter
	6.2. Proposal-density particle filters
	6.2.1. The equivalent-weights particle filter
	6.2.2. The implicit equal-weights particle filter
	6.2.3. Between observations: relaxation steps

	6.3. The Ensemble Transform Particle Filter (ETPF)

	7. Second-order exact ensemble Kalman filters
	7.1. Particle Filter with Gaussian Resampling (PFGR) and Non-linear Ensemble Transform Kalman Filter (NETF)
	7.2. Moment-Matching Ensemble Filter (MMEF)
	7.3. Merging Particle Filter (MPF)

	8. Adaptive Gaussian mixture filter
	9. Practical implementation of the ensemble methods
	9.1. Localisation in EnDA
	9.1.1. Domain localisation
	9.1.2. Covariance localisation
	9.1.3. Observation localisation
	9.1.4. Adaptive localisation schemes
	9.1.5. Localisation in particle filtering

	9.2. Ensemble covariance inflation
	9.3. Parallelisation of EnDA
	9.4. Computational cost
	9.5. Ensemble data assimilation and non-linearity

	10. Summary and conclusion
	11. Code availability
	Acknowledgements
	Disclosure statement
	Funding
	Notes
	Appendix 1. Resampling methods
	Appendix A.1. Probabilistic resampling (PR)
	Appendix A.2. Stochastic universal resampling (SUR)
	Appendix A.3. Residual resampling (RR)

	Appendix 2. Filter algorithms for practical implementation

