
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645
www.elsevier.com/locate/cma

Optimising the performance of the spectral/hp element method with
collective linear algebra operations

D. Moxeya,∗, C.D. Cantwella, R.M. Kirbyb, S.J. Sherwina

a Department of Aeronautics, South Kensington Campus, Imperial College London, SW7 2AZ, UK
b School of Computing, University of Utah, Salt Lake City, UT 84112, United States

Received 24 December 2015; received in revised form 18 April 2016; accepted 1 July 2016
Available online 29 July 2016

Abstract

As computing hardware evolves, increasing core counts mean that memory bandwidth is becoming the deciding factor in
attaining peak performance of numerical methods. High-order finite element methods, such as those implemented in the spectral/hp
framework Nektar++, are particularly well-suited to this environment. Unlike low-order methods that typically utilise sparse
storage, matrices representing high-order operators have greater density and richer structure. In this paper, we show how these
qualities can be exploited to increase runtime performance on nodes that comprise a typical high-performance computing system,
by amalgamating the action of key operators on multiple elements into a single, memory-efficient block. We investigate different
strategies for achieving optimal performance across a range of polynomial orders and element types. As these strategies all depend
on external factors such as BLAS implementation and the geometry of interest, we present a technique for automatically selecting
the most efficient strategy at runtime.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Keywords: Spectral/hp element method; High-order finite elements; Linear algebra optimisation

1. Introduction

The spectral/hp element method is now a well-established high-order finite element approach that is gaining
popularity within both academia and industry. Traditionally, this method has been confined to the field of
computational fluid dynamics [1], with recent advances demonstrating the applicability of the method to increasingly
challenging problems within the aeronautics and automotive communities [2]. This has now lead to increased interest
in the spectral/hp method across a broad range of application areas, including cardiac electrophysiology [3], solid
mechanics [4,5], porous media [6] and oceanographic modelling [7]. This can be attributed to the attractive features
of the method: it combines the convenient geometric flexibility found in linear finite element methods with spectral-
like exponential convergence in the polynomial order p. Software such as Nektar++ [8], an open-source framework

∗ Corresponding author.
E-mail address: d.moxey@imperial.ac.uk (D. Moxey).

http://dx.doi.org/10.1016/j.cma.2016.07.001
0045-7825/ c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/151259515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2016.07.001&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2016.07.001
http://www.elsevier.com/locate/cma
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:d.moxey@imperial.ac.uk
http://dx.doi.org/10.1016/j.cma.2016.07.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 629

designed to provide an easy-to-use, efficient and modern environment for the development of high-order finite element
methods, has also helped to abate the level of difficulty in using these methods and exposed them to a wider
audience.

From a computational perspective, recent evidence suggests that high-order methods are well-placed to take
advantage of modern multi-core [9] and many-core [10,11] computing hardware. For large-scale simulations, which
are becoming increasingly commonplace in scientific studies, nodes containing many-core processors form the
backbone of current-day high-performance computing (HPC) infrastructure. The use of spectral/hp element methods
is now routine on between O(104) and O(105) cores in tackling challenging aeronautical flow simulations on large
unstructured grids [2], with other codes such as Nek5000 scaling to O(106) cores through the use of tensor-product
hexahedra [12]. Techniques for optimising the performance of these methods on a single compute node are therefore
highly important in the context of reducing execution times.

A significant proportion of the runtime, both in the spectral/hp element method and in lower-order methods, is
usually spent in the evaluation of a discretised mathematical operator across the mesh of the domain, which takes the
form of a matrix–vector multiplication. In the classic linear finite element method, this matrix is usually extremely
sparse, leading to the use of an appropriate sparse-matrix format. On the other hand, matrices that represent discretised
high-order operators on a single element possess far more structure, particularly at higher polynomial orders. This
leads to a wider range of implementation strategies [13–15], in which the elemental matrices need not be assembled
to construct the global matrix.

In the context of modern hardware, this distinction of approaches is very important. On a typical node, memory
bandwidth is rapidly becoming the deciding factor in attaining peak CPU performance. With core counts increasing
and memory hierarchies becoming more complex, data must be managed efficiently, through the use of caching-
friendly algorithms, to attain the peak performance of the hardware. Methods that minimise indirection and cache
misses can take advantage of this environment, leading to increased efficiency and shorter runtimes. High-order
methods are therefore well-suited to this new landscape since they can utilise dense operations that are typically
far more memory-compact than sparse operations. Whilst some efforts have been made to develop auto-tuning and
automatic compilation to maximise floating point operation counts [16] on different hardware types, thus far, an
investigation into the effects of compacting data and minimising data transfer has not been thoroughly investigated in
the context of high-order methods.

The aim of this paper is therefore to bridge this gap in current understanding, by utilising the mathematical
formulation of the spectral/hp element method in order to improve memory efficiency. We present a methodology
based on the amalgamation of the action of multiple elemental operators into larger matrix–vector and matrix–matrix
multiplications. In particular, we show how the mathematical construction of the method admits several different
amalgamation schemes, some (but not all) of which are similar to those described in [13–15], but formulated in a
multi-element setting. We demonstrate how the use of these schemes can significantly increase the performance of
the method, thereby decreasing the runtime of solvers that are based on this technology. We consider the effects of
these schemes on distributed memory hardware architectures, focusing on the performance effects on a single node vs.
communication costs between nodes which remains the same regardless of the scheme chosen. The choice of the most
optimal scheme is highly dependent not only on the polynomial order, but many other factors such as the underlying
hardware, choice of BLAS implementation and the problem to be considered. We therefore present an auto-tuning
method designed to rapidly and automatically select the most efficient scheme at runtime on a per-operator basis,
overcoming a significant barrier to the usage of these techniques for users. Overall, we show that whilst the effect of
amalgamating these operators inevitably leads to a limited increase in the memory footprint in certain cases, significant
performance gains can be achieved due to the increase in data transfer efficiency.

1.1. Existing work, novelty and applicability

In the context of finite elements, the idea of grouping together elements of identical structure in order to act on
them ‘collectively’ has been examined previously under the nomenclature of ‘worksets’, as seen for example in [17]
and [18]. With the advent of GPU-based methods, similar techniques have been adopted to align with the kernel-based
nature of the resulting implementations [10]. However, we emphasise that the purpose and novelty of this paper is not
therefore in the presentation of the amalgamation approach, but rather in how the mathematical formulation of the
spectral/hp element method admits schemes of different implementation (but the same mathematical operation) under

630 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

the action of amalgamation. We will demonstrate that, across a range of polynomial orders and element types, the
performance of the method can differ drastically. Depending on the amalgamation scheme chosen, this difference
can be as much as an order of magnitude in terms of the evaluation time. This work therefore notably extends the
body of knowledge relating to multi-element operations and their implementation in the high-order context, and is
relevant to a number of widely used high-order variants, including element-based continuous Galerkin, discontinuous
Galerkin and flux reconstruction. However we do not encompass the global operators which were the focus of previous
work.

It is also important to note that the underlying concept of amalgamation of elemental operators has performance
benefits for the finite element formulation, be that in the context of either low- or high-order methods. Since the
operators we consider lie at the very heart of the finite element formulation, such as taking derivatives and inner
products, the methodology we present is applicable to a wide variety of finite element software packages. In terms of
high-order methods, which are becoming increasingly prevalent throughout the scientific community, amalgamation
schemes are certainly not limited to Nektar++. Many other high-order codes are based around the same types of
operator evaluations, and so can benefit from the results we present here. However, depending on the precise nature
of the formulation being used, not all of the schemes we present may be applicable. We discuss this further in the
conclusions section.

1.2. Summary

The paper is structured as follows. In the next section, we give a brief overview of the mathematical formulation
of the spectral/hp element method and describe the amalgamation schemes. In Section 3, we present initial results
demonstrating how these collections can be used to improve performance when applied to a complex three-
dimensional mesh. We additionally show the effects of some parameter changes, such as the BLAS implementation,
highlighting the need for the auto-tuning strategy that is presented in Section 4. We investigate further detailed
hardware metrics such as FLOPS and memory bandwidth attained by the schemes in Section 5. Finally, in Section 6
we apply all of these techniques to a real-world large-scale simulation of compressible flow over an ONERA M6
wing, demonstrating the practical reduction in runtime that can be achieved in using the amalgamation techniques.
We give some brief conclusions in Section 7.

2. Collective operations

In this section we outline the operations that will be amalgamated and highlight their role in the underlying method.
The starting point for this is a brief overview of the formulation of the spectral/hp element method, concentrating on
the discretisation of a single element in three dimensions. A more detailed derivation can be found in [1]. We then
outline our strategies for amalgamation.

2.1. Spectral/hp formulation

As with any other finite element method, the spectral/hp element method begins with the tessellation of a
computational domain into a mesh Ω consisting of N non-overlapping elements Ω e such that Ω =

N
e=1 Ω e. The

first step of the formulation is to consider the expansion of a function u on a standard element Ωst, on which the basis
functions and basic operations such as integration and differentiation are defined. In three dimensions we consider
either hexahedral, prismatic or tetrahedral elements whose standard regions are defined as

Ωhex
st = {ξ⃗ | − 1 ≤ ξ1, ξ2, ξ3 ≤ 1},

Ωpri
st = {ξ⃗ |ξ1, ξ2, ξ3 ≥ −1; ξ1 + ξ3 ≤ 0; ξ2 ≤ 1},

Ω tet
st = {ξ⃗ |ξ1, ξ2, ξ3 ≥ −1; ξ1 + ξ2 + ξ3 ≤ −1}.

A scalar function u is represented on a standard region through a summation of polynomial basis functions φi as

u(ξ⃗) =

i∈I

ûiφi (ξ⃗), (1)

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 631

Fig. 1. Duffy transformation from the standard quadrilateral element Ω
quad
st with collapsed coordinates (η1, η2) to triangular element Ω tri

st with
coordinates (ξ1, ξ2). We also show how Ω tri

st is taken to a general curvilinear element through the isoparametric mapping χ⃗ . Interior lines
demonstrate how quadrature points, taken to be equally spaced in this example, are transformed under each mapping.

where ξ⃗ = (ξ1, ξ2, ξ3) ∈ Ωst and I is an indexing set that depends on element type and possibly heterogeneous
polynomial orders Pi in each coordinate direction,

I hex
= {(pqr) | 0 ≤ p ≤ P1, 0 ≤ q ≤ P2, 0 ≤ r ≤ P3},

I pri
= {(pqr) | 0 ≤ p ≤ P1, 0 ≤ q ≤ P2, 0 ≤ p + r ≤ P3, P1 ≤ P3},

I tet
= {(pqr) | 0 ≤ p ≤ P1, 0 ≤ p + q ≤ P2, 0 ≤ p + q + r ≤ P3, P1 ≤ P2 ≤ P3}.

Each element therefore has a number of elemental degrees of freedom Ndof = |I|. The key part of the spectral/hp
element method is that, unlike other high-order finite element methods, the basis on each element is expressed as
a tensorial expansion of one-dimensional functions, even for elements such as the prism and tetrahedron. In the
hexahedral element this is a straightforward tensor product, leading to a decomposition of the form

φpqr (ξ⃗) = ψp(ξ1)ψq(ξ2)ψr (ξ3).

A function on the standard hexahedron is therefore expressed through the summation

u(ξ⃗) =

P1
p=0

P2
q=0

P3
r=0

û pqrψp(ξ1)ψq(ξ2)ψr (ξ3). (2)

In tetrahedral and prismatic elements, we use a collapsed coordinate system (η1, η2, η3) ∈ [−1, 1]
3, obtained

through one or more applications of the square-to-triangle Duffy transformation [19], to obtain a similar tensorial
decomposition. Fig. 1 demonstrates the Duffy transformation in a two-dimensional setting through the mapping

η1 = 2
1 + ξ1

1 − ξ2
− 1, η2 = ξ2.

Consequently, the summation over each mode i as a function of p, q and r , then becomes more complex, as indicated
by the indexing sets above. For example, a prismatic element has the general expansion

u(ξ⃗) =

P1
p=0

P2
q=0

P3−p
r=0

û pqrψ
a
p(η1)ψ

a
q (η2)ψ

b
pr (η3), (3)

where ηi ∈ [−1, 1] is the collapsed coordinate and, additionally, ψb depends on both p and r . We note that although
the number of modes has been reduced, we still maintain a complete polynomial space on Ωst. The basis functions ψa

632 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

and ψb are the tensor-product modified hierarchical basis functions defined in [1], which combine a set of orthogonal
Jacobi polynomials with linear finite element basis functions to achieve a separation of boundary and interior modes.

We must additionally discuss how a given PDE will be discretised. For the problems we consider here, the
continuous or discontinuous Galerkin methods will be used, where the PDE is transformed into a weak form involving
the L2 inner product of functions lying in polynomial test and trial spaces. We therefore equip each element type with
a distribution of NQ quadrature points (ξ1 j , ξ2 j , ξ3 j) and weights w j to numerically calculate the resulting integrals.
In the hexahedron, the tensor-product expansion means our choice of quadrature is straightforward: we select Qi
Gauss–Lobatto–Legendre points, with Qi = Pi + 2 being large enough to exactly evaluate the integral of polynomial
products in the i th coordinate direction for straight-sided elements. Owing to the use of the Duffy transformation in the
other elements, a singularity arises at the collapsed vertex of triangles. We therefore select Qi = Pi + 1 Gauss–Radau
points in these directions to avoid this issue. However, we note that for all element types, a tensor product of quadrature
points is used so that NQ = Q1 Q2 Q3, as can be seen in Fig. 1.

Finally, the standard region must be mapped to a general element Ω e
⊂ Ω . The reference element co-ordinates

ξ⃗ ∈ Ωst are mapped to the Cartesian coordinates x⃗ = (x1, x2, x3) ∈ Ω e through a bijection χ⃗ = (χ1, χ2, χ3) with
xi = χe

i (ξ⃗). Each component χi is isoparametric, so that it is written as an expansion (1) in terms of the modified
basis functions ψ . We may then determine geometric factors such as the Jacobian Jξχ and its determinant, which are
used to calculate, for example, integrals and derivatives on Ω e through an application of the chain rule. In general,
elements may be straight-sided, in which case Jξχ is constant, or curvilinear so that Jξχ is a function of ξ . Fig. 1
demonstrates a mapping from a Ωst into a curvilinear element.

2.2. Operator evaluation strategies

In previous work in two [13] and three dimensions [14,15], various evaluation strategies were devised for key
discretised mathematical operators. To illustrate this, we examine the most straightforward operation: the backward
transformation as shown in Eq. (2), which recovers the physical solution u given the coefficients û pqr . In the case
of a nodal basis, where ψp is equipped with a set of (possibly non-tensorial) quadrature points {ζ⃗q} and obeys the
Lagrange interpolant property that ψp(ζ⃗q) = δpq , this is equivalent to an interpolation operator. For simplicity we
consider the hexahedral element type.

A naive implementation of this triple summation at each of the quadrature points leads to an evaluation involving
O(P6) floating point operations, where we assume that Pi and Qi are all of the same order P . In the local evaluation
strategy, we reformulate the summation as a matrix–vector product Bû, where B = [ψ j (ξi)]i j is a NQ × Ndof matrix
that stores the evaluation of the basis functions at each quadrature point and û is a vector of the coefficients û pqr ,
ordered so that p runs fastest, followed by q and then r . This permits the use of an efficient linear algebra library to
evaluate the matrix–vector product, potentially increasing performance over a naive implementation, as these packages
tend to be highly optimised over a range of computational hardware.

An alternative approach is to apply the technique of sum-factorisation [20]. In this evaluation strategy, the tensor-
product expansion of the basis functions φi is leveraged to decrease the number of operations and thus the order of
complexity of the evaluation. In the hexahedron, this is achieved by rewriting (2) as

u(ξ⃗) =

P1
p=0

ψp(ξ1)

P2

q=0

ψq(ξ2)

P3

r=0

û pqrψr (ξ3)

.

We see that if the bracketed summations are stored in memory, the application of sum-factorisation leads to a reduction
to O(P4) floating point operations. A similar technique can be used for the tetrahedron and prism, although it is
typically less efficient than the hexahedron due to the inter-dependency of the p, q and r indices. With a little more
work, we can again use linear algebra packages by rewriting the summation as a series of matrix–matrix operations,

(Û⊤

[P1]
B⊤

1)
⊤

[Q2]
B⊤

2

⊤

[Q3]
B⊤

3 , (4)

where Û[P1], for example, denotes the reinterpretation of the vector û as a P1 × P2 P3 matrix stored in column-
major format. The parentheses also highlight where temporary storage is required to store intermediate steps. Whilst
intuition may point towards sum-factorisation being the quickest way to evaluate these operators due to the reduction

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 633

in operator count, our previous work demonstrates that the fastest technique depends heavily on polynomial order,
element type and the type of operator under consideration. This points towards there being the need for a number of
different amalgamation schemes in order to attain optimal performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each element, evaluating the
operator and measuring the total execution time for the entire mesh. However, in the context of memory efficiency
and using the CPU cache effectively, this approach may not prove to be the most optimal if matrices are not stored
contiguously in memory. Additionally, since local matrices must be generated for each element, there is a large cost
incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of multiple elements. We aim
to remove local matrices wherever possible, thereby reducing data movement and increasing data locality. We will
leverage both the tensor-product decomposition of the spectral/hp element method and the use of a standard region,
on which we can define an operator for many elements simultaneously. Then, through grouping local elemental storage
of the coefficient and physical spaces, we aim to apply standard level-3 BLAS operations such as dgemm for matrix
multiplication wherever possible. These routines, owing to their widespread use, are highly optimised. Indeed, many
HPC facilities and vendors supply custom implementations with processor-specific code that can achieve a significant
percentage of peak floating-point performance.

The first step is to consider the mathematical principles behind the amalgamation procedure and decide precisely
how to group elemental operations together. The defining characteristics of the action of an operator on an element
Ω e are the element type, the triple (P1, P2, P3) defining its polynomial order and the geometric mapping χe with its
derivatives and Jacobian determinant J e. These properties should then dictate the grouping of elements within a given
mesh.

However, for the purposes of amalgamating elements, we note that the geometric information can be ignored.
Since each element is mapped to a standard element Ωst, we may choose to perform our computationally expensive
operations on Ωst and then apply the geometric information as a secondary step. To demonstrate how this works,
we must investigate an alternative to the backwards transformation (1), which does not use the geometric terms. We
therefore consider another fundamental operation: calculating the L2 inner product of a function u with respect to the
basis functions φe

i (x⃗) = φi (χ
e(ξ⃗)) on each element Ω e. On a single element, this is defined as

Ai =

Ω e

uφe
i dx⃗ =

Ωst

uφi J ed ξ⃗ (5)

yielding a vector of solutions A = [Ai]
Ndof
i=1 . If we sample ue

= u|Ω e at each quadrature point, creating a vector

ue
= [ue(ξi)]

NQ
i=1, and do the same for J e, we may construct a vector we(ue) = [J e(ξi)wi ue(ξi)]

NQ
i=1, where wi are

the quadrature weights on the standard element. Then (5) can be expressed as the matrix–vector product A = B⊤we.
We may therefore naturally extend this into a multi-element setting by combining the geometric terms and quadrature
weights into a single vector W = [w1, . . . ,wN] that spans a group of elements 1 ≤ e ≤ N .

Our strategy for amalgamation therefore begins by grouping elements which are of the same type and have the
same polynomial order. For Nel elements in any given group, the elemental coefficients ûe and physical solution at the
quadrature points ue

j = u(ξ1 j , ξ2 j , ξ3 j)|Ω e are stored in a contiguous vector, which we denote by Û = [û1, . . . , ûNel]

and U = [u1, . . . ,uNel] respectively. We then consider four different schemes, which are depicted graphically in
Fig. 2.

2.3.1. Local sum factorisation
LocalSumFac represents the baseline existing implementation that we will compare against. We iterate over each

expansion, applying the sum-factorised version of a given operator. All operations are considered locally and without
any amalgamation. Therefore the matrix representation of an operator, as well as the Jacobian determinant J e and
related geometric factors, are not guaranteed to be contiguous in memory, depending on the implementation choices
that have been adopted within the code. However, the use of a per-element geometric information allows us to benefit
from a memory improvement, since planar-sided elements have a constant Jacobian determinant.

634 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

Fig. 2. Diagrammatic representation of each amalgamation scheme. Four quadrilateral elements with P1 = P2 = 1 and Q1 = Q2 = 3 are
considered for the backward transform operator.

2.3.2. Iteration over elements with sum-factorisation
In the IterPerExp scheme, we use the local sum-factorisation technique of Eq. (4) in a similar fashion to

LocalSumFac. However we now combine this with the geometry amalgamation technique outlined above, so that
the geometric information is stored contiguously in memory. The standard basis matrices Bi are shared between each
element; however no particular attention is paid to keep them contiguous in memory. In regard to the geometric
terms, we note that on planar-sided elements, J e is usually constant as a function of ξ . However, to ensure memory
is streamed efficiently and to avoid unnecessary branching, we store the J e terms as a contiguous vector of size
Nel × NQ .

2.3.3. Standard matrix approach
The aim of the StdMat scheme is to utilise the standard element, by first forming a matrix M on Ωst that represents

our operator. Considering, for example, the inner product, M has dimensions NQ×Ndof. To calculate the inner product,
we first perform a pointwise multiplication (i.e. Hadamard product) of the function u at the quadrature points, U with
the vector W that contains the combined Jacobian and quadrature weights, to obtain a vector V. We then calculate the
action of M on multiple elements through a matrix–matrix multiplication

Û[Ndof] = MV[NQ],

where, for example, Û[Ndof] is the interpretation of Û as an Ndof × Nel matrix stored in column-major format, so
that each column is the vector of elemental coefficients ûe. VNQ is interpreted similarly as an NQ × Nel matrix. The

resulting Ndof × Nel matrix Û[Ndof] has each column being the resulting elemental inner product with respect to the
basis function that has this column as its index. In this case, we can evaluate the inner product with a single call to
the BLAS routine dgemm (matrix–matrix multiplication), taking full advantage of the optimised BLAS functionality.
We note that one advantage of this method is that its implementation is precisely the same for each element type,
making the scheme straightforward to implement. We also eliminate the need for local elemental matrices. However,
we do not explicitly use the tensor-product composition property of the elements. This means that, in comparison with
approaches that use sum-factorisation, the effective operation count is larger and thus the StdMat scheme may prove
more expensive.

2.3.4. Collective sum-factorisation
In the SumFac scheme, we extend the sum-factorisation technique of Eq. (4) to multiple elements. As in the

previous scheme, the goal is to extend the formulation of Eq. (4) through the use of dgemm. However, due to the way
that elemental data is laid out in memory, this is not always possible without memory-intensive transposition of the
data. We therefore opt to iterate over the elements for certain substeps. For example, the backward transformation on
the hexahedron is calculated in four steps:

• preallocate a vector U1 of size P1 P2 Q3;
• for each element, calculate ue

1 = B3(ûe
[P3]
)⊤, placing the result in the correct position inside U1, which

amalgamates the contributions from each element;

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 635

• calculate U2 = B2(U1)
⊤

[P2]
; and

• finally, compute U = B1(U2)
⊤

[P1]
.

Whilst the iteration over elements in the first step cannot be avoided, since the Bi matrices are re-used, data locality
can be ensured, giving the best possible chance for caching to be used effectively. Similar formulations can be made
for all of the operators and element types under consideration.

2.4. Implementation of amalgamations

To evaluate the action of an operator on the entire mesh, upon setup we ensure that the memory for each collection
is arranged contiguously. Then, when an operator evaluation is required as part of a solver, we iterate over each
collection group and apply the selected amalgamation scheme. The implementation inside Nektar++ allows for the
selection of different schemes for different collection groups. As we shall see in the following section, this is important
since each group may have vastly different performance metrics. As well as the backward transform and inner product
operators already introduced, we will consider a further two key operators:

• the L2 inner product with respect to the derivatives in each direction of the basis functions: this is used to construct
elemental Laplacian (stiffness) matrices and in other discretisations such as the discontinuous Galerkin method;

• the derivative ∂u/∂xi of a function u in each of the coordinate directions xi , calculated at each of the quadrature
points.

Together, these four operators form the building blocks of a large variety of solvers, one of which we shall investigate
in Section 6. However, in the following section, we present results from timing each of schemes when applied to a
three-dimensional example, demonstrating how amalgamation can be used to improve runtime performance.

3. Results

In this section, we apply the amalgamation schemes described previously to an example mesh containing
tetrahedral and prismatic elements. We demonstrate how each scheme exhibits different performance characteristics,
which, when combined appropriately lead to an overall improvement in execution times across a range of polynomial
orders. We examine whether the number of elements in an amalgamation group significantly impacts on the observed
performance. Finally, we highlight how the choice of BLAS implementation can affect the observed performance,
which motivates the introduction of an auto-tuning strategy in the following section.

3.1. General performance characteristics

In our first series of tests, we aim to determine a general picture of the performance characteristics of each
amalgamation scheme. We therefore examine a mesh of a rabbit aorta section, which contains two sets of intercostal
artery pairs, as shown in Fig. 3. This is a representative example of a typical biological flow configuration. As the
inset shows, the mesh comprises a boundary layer of curvilinear prismatic elements, with tetrahedral elements being
used to fill the interior of the volume. The mesh contains 21,564 prismatic elements and 40,877 tetrahedral elements
in total.

Our initial tests are performed across a range of polynomial orders between 1 ≤ P ≤ 8, with two collection groups
being created: one for the prismatic elements and another for the tetrahedral elements respectively. For each group,
we record the average execution time, measured across a number of samples, for the evaluation of each operator and
amalgamation scheme outlined in the previous section.

The test hardware used is a single core of a 2.7 GHz Intel Xeon E5-2697v2 CPU with 30 MB of L3 cache and
192 GB of RAM. A standard Debian Linux installation is used, containing gcc v4.7.2 with default -O3 optimisation
flags and, for our initial tests, the standard Netlib BLAS implementation [21]. The system was kept idle at the time of
testing to the best of our ability to limit the effects of other processes on timings.

Figs. 4 and 5 show the relative timings of each amalgamation scheme, normalised by the IterPerExp scheme.
We see that, in general, significant performance improvements can be observed, particularly at lower polynomial
orders where large speedups of up to a factor of 8 are seen. Depending on the element and operator type, the StdMat
scheme generally performs best at linear and quadratic orders. However as the polynomial order is increased and

636 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

Fig. 3. Mesh used in performance study of two rabbit intercostal pairs. Inset shows the mesh detail near each branch, with thin lines indicating
collapsed coordinates inside triangles.

the standard matrix becomes larger, this scheme rapidly becomes prohibitively expensive. As the polynomial order
increases further, it is clear that the sum-factorised variants of either SumFac, IterPerExp or the baseline LocalSumFac
are generally the correct scheme to select. We note that, broadly speaking, the IterPerExp and LocalSumFac
methods appear to perform at similar levels. This indicates that the additional expense that is incurred by storing
elemental Jacobian determinants for planar-sided elements is not substantial in comparison to the cost of the operator.
Here, we posit that the local sum-factorised matrix sizes are large enough that, regardless of whether matrices
are allocated contiguously in memory or not, a local approach to sum-factorisation still provides a highly-efficient
implementation.

3.2. Effect of group size

An additional factor to consider is the number of elements in the amalgamation group. Since BLAS is known
to utilise less of the peak CPU performance for smaller matrix ranks, increasing the number of elements in an
amalgamation group will lead to larger matrix sizes and thus may increase performance. To this end, we repeat
the previous procedure, examining the inner product operator with the IterPerExp scheme for tetrahedral elements,
as they have the smallest local matrix sizes. The number of elements in the amalgamation is limited to powers of 10
until the entire mesh of tetrahedral elements is recovered. The measured execution time is then scaled to determine
the equivalent time required to evaluate the action of the operator on the whole mesh. The results, depicted in Fig. 6,
show that with some minor exceptions, the runtime is broadly equal across the range of element sizes. Other tests
performed with different BLAS implementations also did not show a significant difference in performance. However,
we note that this factor may be more important when considering two-dimensional elements, which will generally
have smaller matrix sizes. For the purposes of the rest of this paper however, this parameter is not considered further.

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 637

Fig. 4. Initial performance characteristics for the four key operators with prismatic elements using the reference BLAS implementation from
NETLIB.

Fig. 5. Initial performance characteristics for the four key operators with tetrahedral elements using the reference BLAS implementation from
NETLIB.

638 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

Fig. 6. Effect of amalgamation sizes on the observed evaluation time for the inner product operator on tetrahedral elements.

4. Auto-tuning strategy

Whilst from the previous section we see that the performance improvements that can be obtained with
amalgamation schemes are significant, it is clear that the choice of scheme in an a priori fashion is highly nontrivial.
As we have seen in both this and previous work, operator count calculations alone are not sufficient to give an accurate
estimation of the most efficient scheme. In reality, the number of variables involved in analysing the efficiency of each
scheme is highly problem- and hardware-dependent.

For example, let us consider the effects of switching from the Netlib BLAS implementation to the OpenBLAS
library [22], widely regarded to be highly efficient on modern hardware. To obtain a general idea of the changes in per-
formance characteristics, we repeat the experiment of Fig. 5 on tetrahedral elements, but this time using OpenBLAS,
which is configured to only use a single thread. The results, which can be seen in Fig. 7, demonstrate remarkably
different properties. For example, the StdMat scheme is now far more efficient across the entire range of polynomial
orders, with even greater speedups observed at low polynomial orders. The SumFac scheme also exhibits greater per-
formance in the mid- to high-polynomial order. This may be due to the relatively poor performance of OpenBLAS on
small matrices, such as those used in the other methods we are comparing StdMat and SumFac to. However, we see
that the baseline LocalSumFac method is now widely outperformed. Changing a single parameter in our computational
setup has therefore drastically altered the amalgamation schemes that would yield an optimal simulation.

The choice of BLAS implementation is far from the only parameter that can affect performance. From the
perspective of hardware, the choice of CPU, its cache hierarchy, bus speed and peak memory bandwidth are all
important in each scheme’s performance. Different software choices such as the choice of compiler, operating system
and optimisation settings also impact runtime behaviour. Although we may be able to observe general trends in the
relative performance of each scheme, important factors such as the polynomial order crossing point, whether this
extends more generally to other CPU models, and the further effects of multi-core simulations, all point towards the
need for a simple method to automatically select the fastest scheme at runtime for a given problem.

To mitigate these factors, we have developed a simple and effective auto-tuning strategy which can be used at
runtime to automatically select the fastest amalgamation scheme. At the start of a simulation, Nektar++ creates a list
of elements that lie in the three-dimensional problem mesh, as well as lists of quadrilateral and triangular elements
that represent the two-dimensional boundary conditions. These are then used to construct the collection groups, as
defined in Section 2. We then iterate over each collection group and apply the following procedure:

1. Query a lookup table for existing performance metrics, based on the group’s polynomial order, element type and
number of elements in the group. All groups with 100 elements or more are identified to have the same metrics,
based on the results of Fig. 6.

2. If no existing metrics are found, then:
• Execute each amalgamation scheme once, recording the execution time in order to estimate the number of

operator evaluations that can be evaluated in one second.
• Run this number of tests against random input data.

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 639

Fig. 7. Performance characteristics for the four key operators with prismatic elements under OpenBLAS.

• The scheme to select is the one with the fastest average time.
• Record this metric in the lookup table.

3. Otherwise, use the obtained metric to set the correct scheme.
4. Go to the next group and apply step 1 until all groups are processed.

The use of a lookup table, as well as an equivalence relation between groups having greater than 100 elements, means
that in a typical simulation, this auto-tuning method will require less than one minute to run. This is true even for large
problems that run in parallel on a HPC cluster. In the worst case, the mesh will be sufficiently large that the initial
operator evaluation will be greater than one second, meaning that no averaging procedure will be performed.

We additionally note that occasionally, operating system kernel task management will abruptly skew observed
execution times, and so a lack of averaging could lead to an incorrect indication of the optimal performance metric.
However, we posit that this is unlikely in all but the most extreme cases. For scheme selection to be significantly
influenced by kernel operations requires a large kernel interruption of the order of one second. In general, we regard
such cases as ‘extreme’ as we would expect our hardware to be HPC-based: that is, composed of empty, dedicated
compute nodes with very few processes running at time of execution. As a representative example, in Fig. 6, the
recorded runtime for each amalgamation scheme is less than 0.7 s for a mesh of 40,000 elements. However, for a
realistic flow simulation, in order to obtain results in a timely fashion we may use around O(102) processors depending
on the polynomial order. In this case then, assuming optimal scaling of this communication-free routine, the execution
time for each scheme will be less than 0.007 s, allowing for 140 operator executions to be measured.

5. Hardware performance analysis

In order to better understand the performance observations of the different amalgamation schemes with respect
to the underlying low-level hardware, we give a brief overview of metrics obtained through examination of CPU
hardware counters, which give a more detailed picture of the operations being performed on the CPU. To reduce the
parameter space, we now consider 1000 prismatic elements under the actions of the physical derivative operator, which
admits a simple tensor product structure, and the inner product operator, in which a more complex procedure must be

640 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

adopted to account for the dependency in the tensor product indices. These tests are performed using OpenBLAS and
a single core of an Intel i7-5960K 6-core Haswell-architecture CPU, on a machine with 32 GB RAM and the Ubuntu
15.10 Linux distribution and kernel version 4.1.12, using standard -O3 compiler optimisations with the gcc 5.2.1
C++ compiler.

In addition to the runtime, we examine some of the key system characteristics, including the memory bandwidth
attained in streaming data from main memory and the cache hit ratio for the highest-level L3 cache. These metrics
are obtained using the Intel Performance Hardware Counter library at appropriate points within the test program,
which is executed in the same manner as the previous sections. We additionally calculate the number of floating
point operations per second (FLOPS) achieved for the SumFac and StdMat schemes by examining the matrix–matrix
multiplications in each scheme and taking the standard approach of estimating the floating-point operation count of
a M × K and K × N matrix as 2M N K [23]. The IterPerExp and LocalSumFac schemes are omitted as they share
nearly identical operation counts as SumFac.

Fig. 8 shows the results of this study. We see that this architecture again yields different set of runtime performance
characteristics, which further emphasises the need for autotuning as part of the practical use of these schemes in real-
world applications. For the most part, the fastest schemes for the inner product operator follow a somewhat similar
trend, with StdMat being fastest at lower polynomial orders and SumFac fastest towards higher polynomial orders.
We see that the three main factors in this performance are a combination of the operator count of the algorithm,
the memory bandwidth attained and the FLOPS achieved. At lower polynomial orders, StdMat and SumFac share
reasonably similar order of complexity, but StdMat is able to achieve a higher FLOPS count, peaking at around 20
GFLOPS, which represents around 30% of the peak performance of one core of this processor. As the polynomial
order increases, even though StdMat achieves consistently higher FLOPS counts, the lower operator count of SumFac
and higher memory bandwidth become more important in the smaller-sized matrices that SumFac uses, leading to
reduced runtimes. We also observe that the IterPerExp scheme, which is designed to optimise memory throughput,
shares a similar improvement in memory bandwidth over the LocalSumFac scheme and allows it to achieve better
runtime performance. L3 cache performance is reasonably good across all of the schemes, with improvements over
LocalSumFac in a number of polynomial orders, but in this case does not prove to be a limiting factor. We see generally
similar trends in the physical derivative operator, although this time the SumFac scheme shows less of a performance
increase over the other two sum-factorisation-based schemes.

These results align with the findings of other multi-core performance models, such as the roofline performance
model [24] as seen in other high-order performance analysis [25]. In this model, the arithmetic intensity (i.e. number
of FLOPS/byte) dictates whether performance is ultimately limited by the maximum FLOPS attainable by the
processor or the memory bandwidth of the system. Our amalgamation schemes all use matrix–matrix or matrix–vector
multiplications that are of a reasonably high arithmetic intensity. However, the smaller matrices arising from sum-
factorisation will result in a lower arithmetic intensity. The development of multiple amalgamation schemes is
therefore important, as this allows us to investigate a broader extent of the arithmetic intensity parameter space. This
may therefore lead to better memory bandwidth utilisation and lower runtimes, even though the number of FLOPS
does not achieve as high a level as other schemes, which we broadly see in the results of Fig. 8.

6. Application to a real example

To demonstrate the benefits of the amalgamation scheme in combination with our auto-tuning method, we now
examine a real-world example in a HPC environment. We consider the compressible Euler equations,

∂t u⃗ + ∇ · F(u⃗) = 0

where u⃗ = [ρ, ρu, ρv, ρw, E]
⊤ is a vector of conserved variables in terms of the velocity (u, v, w), density ρ and

specific total energy E , with the flux tensor

F(u⃗) =

ρu ρv ρw

p + ρu2 ρuv ρuw
ρuv ρv2

+ p ρvw

ρuw ρvw ρw2
+ p

u(E + p) u(E + p) v(E + p)

 ,

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 641

Fig. 8. Measurements of runtime, GFLOPS, memory bandwidth and L3 cache hit ratios for prismatic elements under OpenBLAS on an Intel Core
i7-5930K.

and p being the pressure. An equation of state is needed to close the system. In this case, we use the ideal gas law
p = ρRT where T is the temperature and R is the gas constant.

To discretise this hyperbolic system, we adopt a discontinuous Galerkin method, which is well-suited in this setting
due to its local conservation properties. Specific details on the discretisation are available in [26] and on its implemen-
tation in Nektar++ in [8,27]. However, we note that the discretisation makes heavy use of the inner product operator
with respect to the derivatives of the basis functions, since the weak form involves the calculation of the volume flux
term

Ω e
∇v⃗ · F(u⃗) dx⃗

for a test function v⃗ composed of polynomial functions.

642 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

Table 1
Results of auto-tuning method from the root node for the ONERA M6 wing test case for cx2 and ARCHER. For each
operator, the fastest scheme is highlighted in bold text.

Machine Operator Scheme timings [s]
LocalSumFac IterPerExp StdMat SumFac

cx2 BwdTrans 0.00213393 0.00209944 0.000202192 0.000534608
IProductWRTBase 0.00245141 0.00200234 0.000233064 0.000521411
IProductWRTDerivBase 0.0266448 0.017248 0.00201284 0.00298702
PhysDeriv 0.00485056 0.00492247 0.00389733 0.00319892

ARCHER BwdTrans 0.000643393 0.000638955 2.36882e−05 4.74285e−05
IProductWRTBase 0.000754697 0.000712303 2.78743e−05 0.000150587
IProductWRTDerivBase 0.00827777 0.00530682 0.00019947 0.000643919
PhysDeriv 0.00075556 0.000595179 0.000287773 0.000318533

Table 2
Measured run-times and improvements for default LocalSumFac method
vs. auto-tuned collections for the ONERA M6 example.

Machine Wall-time per timestep [s] Improvement
LocalSumFac Auto-tuned collections

ARCHER 1.308 0.744 43%
cx2 0.356 0.135 62%

We consider the flow over an ONERA M6 swept wing, a common aeronautics test case [28], at a freestream Mach
number M∞ = 0.4. The distribution of the Mach number across the wing surface and symmetry plane, as the flow
is evolved to a steady state, is visualised in Fig. 9. A curvilinear tetrahedral mesh of 147,805 elements represents the
underlying geometry, generated through the use of an elastic analogy described in [4]. The flow is evaluated using
a fully-explicit four-stage 4th-order Runge–Kutta scheme with a timestep of ∆t = 10−7 at a uniform polynomial
order of P = 2. A HLLC Riemann solver is used to solve the one-dimensional Riemann problem arising at elemental
interfaces.

To run this simulation, containing around 1.5m degrees of freedom per conserved variable, requires the use of
larger scale computing resources. We consider two machines of varying capabilities. The first, cx2, is located within
Imperial College HPC facilities. We use 16 nodes containing two 2.93 GHz, 6-core Intel Xeon X5670 CPUs with 12
MB L3 cache each and 24 GB of RAM, connected over an Infiniband interconnect, for a total of 192 cores. The second
is ARCHER, the UK national supercomputer located at EPCC at the University of Edinburgh. This is a Cray XC30 MPP
machine, comprising of nodes containing two 2.7 GHz, 12-core Intel Xeon E5-2697 v2 (Ivy Bridge) processors with
64 GB of RAM and connected via a Cray Aries interconnect. We use 20 nodes for our experiment, giving a total of
960 computing cores. We note that the same mesh and polynomial order is used for each system.

Table 1 shows the timings obtained from the auto-tuning method on the root process, which executed at solver setup
in the span of around 20 s. We note that each processor runs its own sets of timings and this should only therefore be
seen as a representative example. The autotuning method is run across all nodes simultaneously, with each processor
selecting its own fastest observed time. We deliberately choose this approach, as opposed to, for example, the root
process dictating the scheme, since mixed element meshes will lead to partitions requiring different scheme selection.
The table shows the timings for each method, with the fastest highlighted in bold. We see that typically the StdMat
operator is preferred, which corresponds to the general trends seen in Section 3 for this polynomial order. Indeed, over
the LocalSumFac baseline scheme, we see that generally the amalgamation schemes perform extremely well, being
almost an order of magnitude faster in the case of cx2.

To see the effect of each scheme on the overall runtime, we now measure the average wall-time needed per timestep
over 5000 samples. This timing therefore incorporates all other aspects of the compressible Euler solver, such as the
Riemann solver and communication costs. Table 2 shows the measured wall-time for each of the machines. The use
of our amalgamation schemes, in combination with the auto-tuning method, results in a reduction in overall runtime

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 643

Fig. 9. Distribution of the Mach number 0 < M ≤ 0.45 across the surface of the ONERA M6 wing as the flow evolves to a steady state.

of around 40% for cx2 and 60% for ARCHER. This is a considerable improvement in execution time and shows the
potential advantages that can be achieved when using amalgamation.

7. Conclusions

In this work, we have presented a methodology for amalgamating the action of various key finite element operators
across a range of elements. The resulting amalgamation schemes demonstrate improved performance due to their more
efficient use of data locality and reduction in data transfer across the memory bus, enabling increased performance
through exploiting optimised BLAS routines and the CPU cache structure. An auto-tuning method was presented,
enabling the automatic selection of the most efficient scheme at runtime. We have shown how these schemes can
be leveraged to improve runtimes, both by examining the schemes individually and by applying them to a large-
scale simulation of the compressible Euler equations. The results clearly demonstrate the importance and benefits of
streaming data from memory efficiently.

As alluded to in the introduction, we stress that the results shown here are generally not specific to the spectral/hp
element method, due to the fundamental nature of the operators being used. Other high-order schemes, such as the
popular nodal discontinuous Galerkin method [26], rely on the evaluation of the same types of operators, which in turn
have similar matrix formulations. However, we note that the SumFac scheme may not be applicable, depending on the
choice of basis functions used in the local expansion of each element. As we describe in Section 2, sum-factorisation
relies on the ability to write local expansion modes as the tensor product of one-dimensional functions. In the nodal
DG scheme, hybrid elements such as prisms and tetrahedra typically use Lagrange interpolants together with a set of
suitable solution points, such as Fekete or electrostatic point distributions. This choice of basis functions is inherently
non-tensor-product based, and so the SumFac schemes we consider here cannot therefore be utilised for these element
types. However, the IterPerExp and StdMat schemes are both equally applicable in this setting.

Possible routes for further work could focus around improvements to the autotuning method, which may not be
well-suited for a fully hp-adaptive simulation. Other kernel implementations that are specifically designed to optimise
performance tailored to particular operators, such as the approach investigated in [25] that generate matrix-specific
code based on the sparsity of the standard matrix, could also prove useful in furthering the performance of this work.

644 D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645

We also note that in general, the performance gains presented in Section 6 may not be achievable in other solvers.
In particular, where the problem is either fully implicit or semi-implicit, a large proportion of the overall runtime is
usually spent inverting the global matrix system. In parallel this is done iteratively, with the action of the global matrix
represented through a block-diagonal elemental matrix and an appropriate gather–scatter operation. Future studies on
this topic should therefore focus on making this process more memory efficient in combination with our amalgamation
schemes.

Acknowledgements

We thank D. Ekelschot and M. Turner for their assistance in generating the mesh and parameters for the simulation
of Section 6. We also thank F. Witherden for initial discussions motivating this study. This work was funded in part by
support from the libHPC II EPSRC project under grant EP/K038788/1. DM additionally acknowledges support under
the Laminar Flow Control Centre funded by Airbus/EADS and EPSRC under grant EP/I037946. SJS acknowledges
Royal Academy of Engineering support under their research chair scheme. We thank the Imperial College High
Performance Computing Service for computing time used to calculate the results seen in Section 6. We additionally
acknowledge access to ARCHER with support from the UK Turbulence Consortium under EPSRC grant EP/L000261/1.

References

[1] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, second ed., Oxford University Press, 2005.
[2] J.-E.W. Lombard, D. Moxey, S.J. Sherwin, J.F.A. Hoessler, S. Dhandapani, M.J. Taylor, Implicit large-eddy simulation of a wingtip vortex,

AIAA J. 54 (2) (2016) 506–518. http://dx.doi.org/10.2514/1.J054181.
[3] C.D. Cantwell, S. Yakovlev, R.M. Kirby, N.S. Peters, S.J. Sherwin, High-order spectral/hp element discretisation for reaction–diffusion

problems on surfaces: Application to cardiac electrophysiology, J. Comput. Phys. 257 (2014) 813–829.
[4] D. Moxey, D. Ekelschot, U. Keskin, S.J. Sherwin, J. Peiró, A thermo-elastic analogy for high-order curvilinear meshing with control of mesh

validity and quality, Procedia Eng. 82 (2014) 127–135.
[5] A.C. Nogueira Jr, M.L. Bittencourt, Spectral/hp finite elements applied to linear and non-linear structural elastic problems, Lat. Am. J. Solids

Struct. 4 (2007) 61–85.
[6] A. Comerford, K. Chooi, M. Nowak, P. Weinberg, S. Sherwin, A combined numerical and experimental framework for determining

permeability properties of the arterial media, Biomech. Model. Mech. Biol. (2014) 1–17.
[7] C. Eskilsson, S. Sherwin, A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations, Internat. J.

Numer. Methods Fluids 45 (2004) 605–623.
[8] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, et al.,

Nektar++: An open-source spectral/hp element framework, Comput. Phys. Comm. (2015).
[9] S. Yakovlev, D. Moxey, S.J. Sherwin, R.M. Kirby, To CG or to HDG: a comparative study in 3D, J. Sci. Comp. 67 (1) (2016) 192–220.

http://dx.doi.org/10.1007/s10915-015-0076-6.
[10] F.D. Witherden, A.M. Farrington, P.E. Vincent, PyFR: An open source framework for solving advection–diffusion type problems on streaming

architectures using the flux reconstruction approach, Comput. Phys. Comm. 185 (2014) 3028–3040.
[11] J. King, S. Yakovlev, Z. Fu, R.M. Kirby, S.J. Sherwin, Exploiting batch processing on streaming architectures to solve 2D elliptic finite

element problems: A hybridized discontinuous galerkin (HDG) case study, J. Sci. Comput. 60 (2014) 457–482.
[12] S. Kerkemeier, S. Parker, PFF, 2010. Scalability of the NEK5000 spectral element code. Jülich Blue Gene/P Extreme Scaling Workshop 2010,

Tech. Rep.
[13] P.E. Vos, S.J. Sherwin, R.M. Kirby, From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal

performance for low-and high-order discretisations, J. Comput. Phys. 229 (2010) 5161–5181.
[14] C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral

elements, Comput. & Fluids 43 (2011) 23–28.
[15] C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: selecting the optimal spectral/hp discretisation in three dimensions, Math.

Model. Nat. Phenom. 6 (2011) 84–96.
[16] J. Shin, M.W. Hall, J. Chame, C. Chen, P.F. Fischer, P.D. Hovland, Speeding up nek5000 with autotuning and specialization, in: Proceedings

of the 24th ACM International Conference on Supercomputing, ACM, 2010, pp. 253–262.
[17] J.R. Stewart, H.C. Edwards, The sierra framework for developing advanced parallel mechanics applications, in: Large-Scale PDE-Constrained

Optimization, Springer, 2003, pp. 301–315.
[18] R.P. Pawlowski, E.T. Phipps, A.G. Salinger, S.J. Owen, C.M. Siefert, M.L. Staten, Automating embedded analysis capabilities and managing

software complexity in multiphysics simulation, part ii: Application to partial differential equations, Sci. Program. 20 (2012) 327–345.
[19] M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (1982) 1260–1262.
[20] S.A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980) 70–92.
[21] Netlib BLAS website. http://www.netlib.org/blas/.
[22] OpenBLAS website. http://www.openblas.net/.
[23] F.G. Gustavson, High-performance linear algebra algorithms using new generalized data structures for matrices, IBM J. Res. Dev. 47 (2003)

31–55.

http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref1
http://dx.doi.org/10.2514/1.J054181
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref3
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref4
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref5
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref6
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref7
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref8
http://dx.doi.org/10.1007/s10915-015-0076-6
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref10
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref11
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref13
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref14
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref15
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref16
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref17
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref18
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref19
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref20
http://www.netlib.org/blas/
http://www.openblas.net/
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref23

D. Moxey et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 628–645 645

[24] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance model for multicore architectures, Commun. ACM 52
(2009) 65–76.

[25] B.D. Wozniak, F.D. Witherden, F.P. Russell, P.E. Vincent, P.H. Kelly, GiMMiK—Generating bespoke matrix multiplication kernels for
accelerators: Application to high-order computational fluid dynamics, Comput. Phys. Comm. (2016).

[26] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54, Springer, 2007.
[27] D. de Grazia, G. Mengaldo, D. Moxey, P.E. Vincent, S.J. Sherwin, Connections between the discontinuous Galerkin method and high-order

flux reconstruction schemes, Internat. J. Numer. Methods Fluids 75 (2014) 860–877.
[28] V. Schmitt, F. Charpin, Pressure distributions on the ONERA M6 wing at transonic mach numbers Experimental database for computer

program assessment, 4, 1979.

http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref24
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref25
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref26
http://refhub.elsevier.com/S0045-7825(16)30673-9/sbref27

	Optimising the performance of the spectral/ h p element method with collective linear algebra operations
	Introduction
	Existing work, novelty and applicability
	Summary

	Collective operations
	Spectral/hp formulation
	Operator evaluation strategies
	Amalgamation schemes
	Local sum factorisation
	Iteration over elements with sum-factorisation
	Standard matrix approach
	Collective sum-factorisation

	Implementation of amalgamations

	Results
	General performance characteristics
	Effect of group size

	Auto-tuning strategy
	Hardware performance analysis
	Application to a real example
	Conclusions
	Acknowledgements
	References

