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ABSTRACT

We conduct laboratory experiments to investigate how pri-
vate and public information affect the selection of an envi-
ronmental innovation and the timing of its adoption. The
results reveal behavioral patterns underlying the “energy-
efficiency gap” in which consumers and firms delay adop-
tion of cost-effective energy and environmental innovations.
Our subjects choose between competing innovations with
freedom to select the timing of their adoption, relying on
private signals and possibly on observation of their peers’
actions. When deciding whether to make an irreversible
choice between a safe and a risky technology, roughly half
of subjects delay adoption beyond the time prescribed by
equilibrium behavior — pointing to a possible behavioral
anomaly. When they do adopt, subjects give proportion-
ately more weight to their private signals than to their peers′

actions, implying that they do not ‘herd’ on the actions of
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their peers. Nevertheless, when subjects observe their peers′

decisions, they accelerate the timing of their adoptions, but
do not necessarily imitate their peers. This occurs even
when payoffs are statistically independent as though observ-
ing prior adoptions exerts “peer pressure” on the subjects to
act. The experimental results suggest that rapid dissemina-
tion of information of peer actions can speed up diffusion of
innovations that save energy and protect the environment,
and improve selection from among competing technologies.

Keywords: Social learning; herding; endogenous timing; behavioral
economic policy; diffusion of technology; environmental
innovations

JEL Codes: Q55, C91, D83, O33

Introduction

We conduct a series of laboratory experiments that are designed to
gain a deeper understanding of the timing of adoption of innovations
that save energy or protect the environment relative to the status
quo. In particular, the experiments attempt to isolate how private and
social information affect the pace of diffusion of superior energy and
environmental technologies.

The results promise to shed light on an empirical regularity known
as the “energy efficiency gap” (EEG).1 The EEG takes different forms,
but the most common example occurs when a consumer prefers a new
energy-using appliance or vehicle that has a lower purchase price but
higher operating cost, making it more costly than an efficient alternative
over its expected lifetime. Many empirical studies have estimated the

Game Theory, the Industrial Organization Workshop (Lecce, Italy), CEDEX (Not-
tingham, UK), and the European School of Management and Technology (Berlin,
Germany). Lastly, we are grateful to Anita Sonawane, Ryan Fackler and Tasmia
Rahman for their research assistance.

1See, e.g., Allcott and Greenstone (2012) and Jaffe and Stavins (1994a).



Social Learning about Environmental Innovations 137

implicit discount rates supporting consumer decisions finding they are
often much higher than any reasonable market discount rate.2

Another dimension of the EEG is the timing of these adoption
decisions.3 Besides the selection from among competing energy-using
(or pollution-generating) technologies, the timing when consumers make
their adoption decisions is also important. While a consumer may adopt
the efficient technology in the end, significant time may elapse before
this happens.4 The timing of adoption of environmental innovations is
an aspect of EEG that has been explored far less in the field and the
laboratory.5

Our experiments are designed to replicate many of the key features
of the decision problem underlying the EEG. First, subjects in our
treatments choose one of two innovations, with the default technology
being an inferior status quo. The two innovations consist of a “safe”
technology that has a higher payoff than the status quo with certainty,
and a “risky” technology that may pay off more than the status quo and
the safe technologies, or it may be worse than both of these alternatives.
This menu of options is designed to capture the common choice between
a mature, conventional technology and a new one with which decision
makers personally have little or no experience.

An example of this type of decision confronts consumers when they
consider purchasing a new car: they can keep their conventional gasoline-
powered vehicle, choose one using gas–electric hybrid technology which
now has well-established performance record, or take a chance on an
unproven technology such as a vehicle powered by a hydrogen fuel cell.
A similar auto purchase problem was considered by Gaker et al. (2010)
in a laboratory experiment. Another illustration is the choice of light
bulb type, with the traditional incandescent bulb being the status quo

2Stadelmann (2017) (Table 1) reports a range of implicit discount rates that
were estimated for each of seven categories of consumer durables.

3See Gerarden et al. (2015) for a simple formulation of the static consumer
purchase problem.

4Van Soest (2005) models the adoption delay that occurs before firms install a
new energy-efficient technology, and predicts the impact on this delay of different
policy interventions.

5Stadelmann (2017) singles out the timing of appliance replacement as an impor-
tant decision that has not received sufficient attention.
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technology, a compact florescent bulb the safe innovation, and an LED
bulb the risky innovation in terms of payback.6

Second, unlike the vast majority of laboratory tests of observational
learning, our experiments elicit the timing of consumer adoption deci-
sions. Our subjects are free to choose which of the eight rounds they
select a technology. When they do select a technology, their decision is
irreversible.

The timing of adoption of environmental innovations is a question
that has not often been addressed in the literature.7 In the vehicle pur-
chase example, for instance, the consumer may prefer to wait until more
information becomes available about the hydrogen car. In our treat-
ments, the cost of delay arises naturally because postponing adoption
amounts to remaining with the status quo and earning a lower return
than the safe option. The cost of delay was made clear to subjects. In
each round of the experiments, subjects who remain undecided about
which innovation to select receive a private signal that is correlated
with the true return of the risky innovation. In this way we maintain,
ex ante, parity in the amount of private and public information when
subjects choose to delay their adoption decisions.

Finally, the central objective of our lab experiments is to test the role
that information plays in adoption timing, and especially the observation
of the actions of peers. As we will discuss below, field studies often find
that a social observation encourages adoption by nonadopters.

Our three experimental treatments are designed to assess how sub-
jects balance private and public information when making their adoption
decisions. The first treatment serves as a baseline in which subjects do
not observe peers’ actions. In the second treatment, subjects observe
prior decisions made by members of their group but individual payoffs
are statistically independent and, hence, observation conveys no useful
information. The third treatment also allows for observation of prior
actions, but those actions now are informative since the payoff of the
risky innovation is perfectly correlated across members of each group.

6See Allcott and Taubinsky (2015).
7Van Soest (2005) models the adoption delay that occurs before firms install a new

energy-efficient technology, and predicts the impact on this delay of different policy
interventions. Stadelmann (2017) singles out the timing of appliance replacement as
an important decision that has not received sufficient attention.
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To generate hypotheses about adoption timing, we attempt to char-
acterize Bayesian Nash Equilibrium (“BNE”) strategies in the non-
cooperative games underlying the three treatments. We find that a
risk-neutral expected-payoff maximizer in the first two treatments should
adopt at her first opportunity, choosing the innovation that is favored by
her first private signal. BNE is less conclusive for the third, ‘common-
values’ treatment. We show in that case that immediate adoption by all
players is not an equilibrium, as the opportunity to delay and observe
others’ adoption decisions is too valuable.

The results from our experiments confirm that subjects tend to
delay adoption of either one of the superior technologies — contrary
to theoretical predictions of optimizing behavior but consistent with
the energy-efficiency gap. This adoption pattern is robust across
treatments and suggests the presence of a behavioral anomaly. For
instance, subjects may display a “status quo bias” in which they
persist with the default technology despite the availability of a superior
alternative.

One plausible explanation for this delay is that subjects seek to
take advantage of social learning. In fact, the experimental results
confirm that, on average, the speed and accuracy of adoption improve
when subjects can observe their peers’ actions. While this result is
not surprising when observation conveys payoff-relevant information,
it is unexpected that mere observation also promotes faster, more
profitable decisions even when the true underlying values are statistically
independent. It appears that the opportunity to observe others’ decisions
exerts “peer pressure” on subjects, driving them to reach their own
decisions more quickly.

Turning to the accuracy of adoption decisions, we find that subjects
do better than randomizing between the two innovations, i.e., they pay
attention to private and/or public information. On average, subjects
show a slight preference for the safe innovation over the risky one,
consistent with risk aversion. We do find that when payoffs are correlated
delays beyond the first round are rewarded with improved accuracy in
the selection of an innovation.

While the lab results show our subjects take into account both kinds
of information, their actions confirm that they place greater weight on
their private signals. To see this, we classify an innovation as “popular”
when members of the peer group choose it more often than the other
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innovation. We classify as “leading” the innovation that is favored by
the history of a subject’s private signals. The experiments confirm
that subjects invariably adopt the innovation that is both the leading
and the popular one. However, if one innovation is popular but the
other is leading, then the leading innovation is chosen more often; again,
subjects tend to follow their private signals — a pattern that occurred
in both experimental treatments having public observation.

We draw out some of the implications of our experimental results for
policies aimed at accelerating the adoption of cost-effective innovations
to save energy and preserve the environment. Indeed, many policy
recommendations have been put forward with the aim of closing the
energy-efficiency gap. Among the policy proposals that have been
put forward, some employ the standard economic instruments — such
as taxes and subsidies — aimed at erecting monetary incentives to
spur firms and consumers to adopt cost-effective technologies. Other
proposals, however, target the behavioral anomalies which are seen to
be impediments to adoption. Some proposals of this type are known as
social “nudges” (Olander and Thogersen, 2014). Rather than adjusting
financial rewards, these proposals attempt to tailor the information
on which adoption decisions are made. A good example of a nudge
in our setting is to provide the decision maker with feedback about
the history of their personal payoffs and information, or about prior
decisions made by their peers. Our results suggest that information
that is statistically irrelevant can have significant effect on the speed
and quality of adoption decisions, and that policy makers can exploit
this fact with little additional administrative cost.

The next section positions our paper in the literature on theoretical
and laboratory experiments involving technology adoption with social
learning, especially as it applies to adoption of energy and environmen-
tal innovations. Section “Experimental Design and Procedures” then
describes our laboratory protocol and the three experimental treatments.
Section “Theory” analyzes equilibrium in the game that underlies each
treatment. We report the experimental results in section “Experimental
Results,” comparing the treatments against one another and against
our theoretical predictions. A final section summarizes our conclusions
and suggests implications of our results for policy interventions that
may work to accelerate adoption of innovations that save energy and
protect the environment.
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Related Literature

Theoretical Background

We contribute to the large body of behavioral research on social learning
games and experiments. As with many related papers, our methodology
has its roots in the pioneering work of Banerjee (1992) and Bikchandani
et al. (1992) (“BBHW” for short). In these papers, agents make one-
time binary investment decisions in a pre-determined order, each one
informed by a single private signal plus the observation of all prior
choices. While this structure generates valuable insights into adoption
behavior (e.g., herding), the assumption of exogenously determined
timing of decisions fails to represent many real-world decision problems,
e.g., whether to invest in solar photovoltaic (SPV) panels or to buy an
electric vehicle.

Our experimental treatments preserve much of the structure of
the BBHW game in that subjects can choose either a safe or a risky
innovation, and they may be able to observe the actions of their peers.
Now, however, we allow agents to choose when to make their adoption
decisions. While subjects start out with the same opportunities to
acquire information, the amount of private and social learning that is
possible depends on the timing of their decisions.

Following BBHW, a series of papers appeared that relaxed the
assumption that agents made their decisions in a pre-determined order.
In Chamley and Gale (1994) and Chamley (2004) agents choose when
to make a binary investment decision in a discrete-time model. They
find that the delays in adoption are directly related to the length of a
period and inversely related to the number of players.

Zhang (1997) also considers a binary investment game with endoge-
nous timing but with continuous time. In equilibrium, agents initially
delay their actions in order to learn from others, and then invest rapidly
thereafter. More recently, Levin and Peck (2008) construct an endoge-
nous timing game that adds a second signal about the common value
of an investment’s return, plus a signal about the agent’s cost of in-
vesting. Murto and Välimäki (2011) conduct a similar study with an
irreversible investment in an endogenous, discrete-timing game involving
both private and observational information. They find that observa-
tional learning delays decisions in equilibrium, a conclusion consistent
with the energy-efficiency gap and with our experimental results.
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Energy and Environmental Technology Adoption Literature

Despite the critical energy and environmental issues involved, and
despite evidence confirming an energy-efficiency gap, relatively little
empirical research has been conducted on the timing of this kind of
adoption.

Several observational studies have looked at the determinants of
consumers’ decisions to install SPV panels to supplement or replace
electricity provided by the grid. Bollinger and Gillingham (2012) and
Graziano and Gillingham (2015) documented the stimulative effect of
neighbor adoption on the diffusion of SPV panels among California
and Connecticut residents, respectively. For instance, Bollinger and
Gillingham (2012) found that installation of each additional SPV in-
creased the likelihood of SPV adoption in the respective zip codes by
0.78 percentage point. Learning about energy-efficient options has also
been documented in laboratory settings. For example, Gaker et al.
(2010) found that experimental subjects were more inclined to select
conventional or hybrid vehicles when a higher fraction of their peers
did likewise.

Similar trends are observed in the commercial context of environ-
mental technology adoption. For instance, Covert (2015) studies how
oil companies use different versions of hydraulic fracturing technology
over time, using detailed data from the Bakken Shale in North Dakota.
State disclosure laws made it possible for firms to analyze competitors’
data as well as their own, but he finds that even these sophisticated and
high-stakes decision-makers place higher weight on their own experience
than on that of others. Overall they appear to learn somewhat slowly,
and in particular they do not often experiment in the sense of choosing
high-risk, high-return approaches.

A number of field experiments have explored the role of private
and social information on residential electricity consumption. Fischer
(2008), Ayres et al. (2013), Costa and Kahn (2013), and Jessoe and
Rapson (2014) examine how information provision can induce conser-
vation. Collectively these studies confirm the presence of behavioral
anomalies among this important class of consumers, and also the effec-
tiveness of information dissemination to counteract the effects of those
anomalies. Comparatively little has been done in the way of laboratory
experimentation examining these same decisions, however. Our paper
attempts to fill this void with respect to the energy-efficiency gap.
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Experimental Tests

Several papers have tested models of herding behavior in the laboratory.
Among the first was Anderson and Holt (1997) who, like many who
followed, attempted to replicate the decision problem described by
BBHW. They find evidence of the predicted uniformity of behavior,
including selection of the “wrong” investment, consistent with Bayesian
updating. As will become clear, our experiments extend Anderson
and Holt’s 1997 stochastic structure, allowing decision timing to be
endogenous. Çelen and Kariv (2004) were the first to distinguish
between herd behavior and information cascades in a laboratory setting.

A few early laboratory experiments did allow for endogenous timing
but in a strategic setting that differed from BBHW, e.g., Baik et al.
(1999). Sgroi (2003) was the first to adapt the BBHW structure to
permit subjects to select the timing of their actions. The results of
these experiments showed that, while herding behavior still occurred,
subjects tended to delay their adoption in an apparent attempt to learn
from their peers’ private signals.

More recently, Ivanov et al. (2013) implemented laboratory experi-
ments of the two-period, two-signal game structure developed in Levin
and Peck (2008). They are especially interested in the implications of
group size as it alters the information content contained in the observa-
tion of peers. They find that subjects do not take full advantage of the
information supplied by others’ actions. Unlike them, our treatments
are restricted to a fixed group size (six) but allow for more than two
periods (eight). We do find, like Ivanov et al. (2013) and others, evi-
dence that subjects attach a disproportionately large weight to private
information compared to public observation — a pattern that appears
in many experiments using the BBHW model with exogenous timing.

Weizsäcker (2010) merges 13 experimental datasets, each of which
implemented the BBHW framework, and finds that subjects deviate
from choice that would be optimal leading up to a decision. In particular,
he finds that in a majority of cases subjects follow their private signal
when an alternative would earn them higher payoffs. We similarly assess
subjects earnings, and find that they learn too little from observation
of others.

Our study employs discrete time with a finite horizon, where a finite
number of agents have a choice between two innovations and a third
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option, the status quo, which delays the choice. The difference in payoffs
between the safe innovation and the status quo option determines the
cost of delay. The underlying tension, as in actual decisions such as
pollution reduction, involves incremental improvements in standard
technologies versus waiting longer to learn more about the potential
costs and benefits of an attractive, but as of yet unproven, alternative
green technology.

Experimental Design and Procedures

All of our experiments were conducted using the Experimental Social
Science Laboratory, or “Xlab,” at the University of California, Berke-
ley. The Xlab primarily recruits undergraduate students as subjects,
supplemented with graduate students and university staff members.

The experiments themselves were conducted on laptop personal com-
puters using the Zurich Toolbox for Readymade Economic Experiments
(“z-Tree”) program (Fischbacher, 2007). Workstations were separated
from one another with physical partitions to prevent subjects from look-
ing at one another’s screens and to discourage conversation. Apart from
the introductory period when subjects could ask clarifying questions,
no oral communication was allowed.

Subjects participated in just one experimental session and, hence,
in just one of the three treatments. In two of the treatments, subjects
were randomly assigned to groups of six. In those cases, members of a
group observed actions of others through the z-Tree interface, remaining
unaware of the identity of their peers. Groups were randomly reassigned
for each of the 15 decision problems, making it difficult for subjects to
learn about behavior specific to any individual.

Subjects were given monetary incentives for their participation in
the experiments. Subjects earned “tokens,” which were exchanged for
dollars at a rate announced at the beginning of each experimental
session. When a session ended, tokens were added up for each subject
and checks were issued to subjects in sealed envelopes. The average
payout per subject per session was $23.33, and the typical session lasted
about one hour.

Our sessions included a total of 227 subjects in 13 experimental
sessions, for an average of 17.5 subjects per session. At the beginning of
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each session, subjects received written instructions and 10 minutes to
read them, after which the instructions were read aloud by a researcher.
Before beginning the experiment, subjects took a simple quiz that tested
their understanding of the instructions and were not allowed to proceed
until they answered each question correctly.8 Each session consisted of
16 repetitions of a decision problem. The first decision problem was
unpaid practice and the results were discarded, leaving data for 15
decision problems per subject.

A copy of the instructions that subjects received for one of the
experimental sessions is reproduced in Appendix A. Note that while we
use the language of ‘technology adoption’ and ‘innovation’ in this paper
to describe the decision problems facing subjects, neutral language was
used in the verbal and written instructions during the experimental
sessions.

Payoffs, Probabilities, and Information

In each decision problem, subjects choose between three technologies:
A, B, and C. Subjects begin each decision problem with technology
A by default, and remain with A until they make the irreversible de-
cision to adopt “innovation” B or C. A is inferior in expected payoff
to B and C, but remaining with A allows subjects to postpone their
adoption decision at least one more period. Thus, A can be inter-
preted as an inferior status quo technology that an agent may maintain
while she accumulates information on the relative merits of the two
innovations.

Each decision problem consists of an eight-round “decision sequence.”
Each technology has a per-round payoff that accrues to a subject who
has chosen that technology. The status quo technology A pays 1 token
per round and the innovation B pays 2 tokens per round. The payoff
to innovation C is stochastic, paying 0 or 4 tokens per round, each
with equal likelihood. The per-round value of C, once realized, remains
constant for the entire decision sequence. Subjects can earn the most if
they choose innovation C when it takes a high value (4), and innovation
B when C takes a low value (0). The earlier in the decision sequence

8The quiz was introduced after the first three sessions. No difference in experi-
mental outcomes was found before and after adding the quiz.
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that a subject makes this choice, the greater the total number of tokens
she earns.

Subjects receive an informative but noisy private signal about the
realized value of innovation C before they make their decision for round 1.
Each subject who chooses technology A in round 1, and thus declines
to adopt innovation B or C, remains “active,” and will receive further
information about innovation C in subsequent rounds. Thus, innovation
B can be interpreted as a guaranteed improvement over status quo
technology A, while C is a risky innovation. It may be superior to both
A and B, but it may also be worthless.

Active subjects — those who have yet to adopt innovation B or
C — begin each round of a decision problem by observing a private
signal. Draws of the signal are independent and identically distributed
across rounds. They are informative of the true value of innovation
C. If the value of C is 0, the subject receives a signal of “H” with a
probability of 1

3 and “L” with a probability of 2
3 . If innovation C’s value

is 4, then each signal is “H” with probability 2
3 and “L” with probability

1
3 . Applying Bayes Rule, the conditional probability that C pays 0 and
4 tokens, given that the “L” signal is observed is 2

3 and 1
3 , respectively,

absent any other information.
By design, subjects incur an opportunity cost of delay equal to one

token per round since postponing adoption to the next period generates
1 token per round under status quo A compared to 2 tokens per round if
they chose innovation B instead. The benefit of delay is the possibility
to make a “better” choice between B and C after drawing an additional
private signal and, depending on the treatment, observing another round
of decisions by peers. The cost of delay is captured in the opportunity
cost as opposed to imposing an arbitrary discount factor on subjects’
payoff streams as is done by other experimental studies. It is possible
that there is a countervailing nonmonetary temptation to delay, simply
to forestall boredom as raised in Lei et al. (2001). This is not specific
to lab settings, however. Further, we would expect this effect to be
approximately symmetric across our treatments.

The Three Treatments

Treatments differ in two dimensions: the opportunity to observe the
actions of other subjects, and the correlation of payoffs across subjects
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Table 1: Characteristics of the treatments.

Treatment Payoffs Observation of peers
P Private No
PO Private Yes
CO Common Yes

in a group. The observability of actions and commonality of payoffs were
nested across treatments to identify the influence of each characteristic
on adoption decisions. The three treatments are summarized in Table 1.
In the baseline Treatment P subjects only observe their private signals
of the payoff to C which is independently drawn for that subject. As
there is no social interaction in this treatment, there can be no social
learning.

In all three treatments, all subjects draw at random a private signal
of the payoff to innovation C. A “P” indicates that only private signals
inform the subjects. In some treatments, beginning in the second round
and continuing through the eighth and final rounds, active subjects
observe the choices made by other members of their group in the previous
round prior to making their own decision. When observation of others’
actions is allowed, we label the treatment with an “O.” This feature
allows for the possibility of social learning as subjects can learn about
their peers’ private signals by observing the resulting actions.

The second characteristic of treatments is whether the payoffs to
innovation C are independent across subjects or they are perfectly
correlated among members of the same group. A “C” stands for common
value (or perfect correlation) of these payoffs and we refer to such a
treatment as “common value.” When the C payoffs are statistically
independent across group members, we refer to this as the case of
“private values” but do not use separate label for the treatments. The
experimental instructions inform subjects whether they are participating
in a private or common value treatment, and subjects must demonstrate
their understanding of the experiment by achieving a perfect score on a
short quiz before proceeding.

For instance, Treatment PO allows subjects to observe the decisions
of each member of their six-person peer group, but these decisions have
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no statistical bearing on their own decisions. Thus, any differences
in behavior between Treatments P and PO cannot be explained by
Bayesian updating. On the other hand, Treatment CO represents the
case when there is an informational externality. In that treatment social
learning is possible because subjects can update their beliefs about the
payoff of innovation C by observing the choices of other members of
the group.

Theory

This section characterizes optimal behavior for risk-neutral expected-
utility maximizers in each treatment. Such subjects will select the
innovation and the timing of the adoption that maximizes their expected
payoff. Let h and l represent the number of private draws of H and
L, respectively, seen by a subject through round t, and N t−1

j the
number of subjects that have adopted technology j as of round t− 1.9

Vj(h, t,N
t−1
B , N t−1

C ) denotes the per-round expected value of technology
j ∈ {A,B,C} earned by a subject in round t based on all available
information.10

The total expected profit from technology j over the remainder of
the decision problem if technology j is chosen in round t is πj(h, t) =
Vj(h, t)× (9− t). Finally, let X∗(h, t) be a subject’s optimal choice in
round t given h, that is, j ∈ X∗(h, t) if πj ≥ πk for all k ∈ {A,B,C}.

For Treatments P and PO, the solution is an optimal decision rule
that maps their information sets into a probability distribution over the
three technologies. In Treatment CO, subjects’ optimal actions may
also depend on the adoption decisions of others, rendering subjects’
optimal actions interdependent. As a consequence, we must look for
equilibrium noncooperative strategies.

Treatments P and PO

As treatments P and PO are theoretically equivalent, we can char-
acterize optimal decisions for both simultaneously. As decisions are

9Subjects observe the N t−1
j other subjects had chosen technology j ∈ {A,B,C}

before making their own choice in round t.
10For example, VA(h, t,N

t−1
B , N t−1

C ) = 1 and VB(h, t,N
t−1
B , N t−1

C ) =
2 ∀ (h, t,N t−1

B , N t−1
C ).
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independent, VC depends only on h and l. Using Bayes’ Rule, the like-
lihood that the payoff to innovation C equals 4 is: P4(h, t) =

2h

2h+2t−h =
2h−l

2h−l+1
. Importantly, P4(h, t), and thus VC(h, t), depends only on the

difference (h− l). πC(h, t) = VC(h, t)× (9− t) and πB(h, t) = 2× (9− t).
The computation of πA(h, t) is more complex, requiring the computation
of πX∗(h, t+ 1) and πX∗(h+ 1, t+ 1):

πA(h, t) = 1 + [PH × πX∗(h+ 1, t+ 1) + (1− PH)

×πX∗(h, t+ 1)]× (8− t), (1)

where PH(h, t) represents the probability that the next private signal
will be H:

PH(h, t) =
2

3
× P4 +

1

3
× P0. (2)

As the opportunity to delay adoption complicates early decisions, we
begin our analysis at the end with Round 8, where a profit-maximizer
need not consider remaining with A. Subjects remaining in Round 8
should adopt C for h > 4, B for h < 4, and either for h = 4. Because
delay is costly, this also reveals that profit-maximizing subjects should
adopt C if h ≥ 4 and B if l ≥ 4 in any round. As a consequence, such
subjects should adopt immediately for all (h, l) in Round 7.

(h = 3, t = 6) is the only circumstance in the last three rounds where
we must consider the possibility of retaining technology A. However,
πB(3, 6) = πC(3, 6) = 2× (9− 6) = 6, while πA = 1 + 1

2πC(4, 7) +
1
2 ×

πB(3, 7) = 1+ 8−6
2

[
2
3 × 4+ 2

]
= 17

3 < 6, so the additional information is
not worth waiting for, and thusX∗(3, 6) = {B,C}, ruling out technology
A when h ≥ 3 or l ≥ 3 for any t, etc. The end result of this backwards-
induction process is displayed in Table 2.

Table 2 characterizes the entire decision space.11 C ∈ X∗(h, t) if
h ≥ l and B ∈ X∗(h, t) if h ≤ l, except for (h, t) = (1, 2) or (2, 4),
where X∗(h, t) = A. Subjects get the highest payoff from adopting the
innovation suggested by their private information (C if h > l, B if h < l)
in any round of the experiment. When private information suggests
indifference (h = l) early in the experimental decision sequence (Rounds
2 and 4), subjects are best served by delaying, and adopting according
to their next signal. By Round 6, however, not enough rounds remain in

11See the Appendix for the calculations behind the predictions in Table 2.
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Table 2: Optimal decisions for treatments P and PO.

t (Round) h : A ∈ X∗(h, t) h : B ∈ X∗(h, t) h : C ∈ X∗(h, t)
8 0, 1, 2, 3, 4 4, 5, 6, 7, 8
7 0, 1, 2, 3 4, 5, 6, 7
6 0, 1, 2, 3 3, 4, 5, 6
5 0, 1, 2 3, 4, 5
4 2 0, 1 3, 4
3 0, 1 2, 3
2 1 0 2
1 0 1

which subjects could reap the benefits of the newly acquired information,
and adopting either innovation B or C immediately maximizes expected
payoffs when h = l = 3.

Importantly, backwards-induction yields a unique Bayesian Nash
equilibrium (“BNE”) of ‘immediate adoption’ for Treatments P and PO,
in which subjects adopt innovation B following a private signal of L and
innovation C following a private signal of H in Round 1. The ex ante
expected payoff of this strategy is (0.5×2+0.5× 2

3 ×4)× (9−1) = 56
3 ≈

18.67. A complete characterization of the optimal decision rule calls for
X∗ to include B if h ≤ l and C if h ≥ l, except X∗(1, 2) = X∗(2, 4) = A.

Treatment CO

The characterization of optimal behavior in Treatment CO is com-
plicated by observational learning. Delaying adoption is potentially
more attractive in this treatment because delay reveals not only private
signals, but also the information of others. Subjects adopting in earlier
rounds effectively confer an informational externality on later adopters.

We begin by testing whether immediate adoption can occur in BNE,
as it does in Treatments P and PO. Following any such strategy again
yields πC(1, 1) ≈ 21.33 and πB(0, 1) = 16, while deviating and choosing
A effectively reveals six additional private-signal equivalents. The payoff
to this deviation is more complicated than Equation (1), as the six
additional pieces of information yield seven information sets in the next
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round, rather than two. Equation (3) calculates the distribution of H
signals among the additional private-signal equivalents, Dt,12 under the
maintained assumption that all subjects adopt in round t.

Pr(ha = i) =
Dt!

i!× (Dt − i)!
× P iH × (1− PH)(Dt−i) (3)

Equation (4) uses the probability distribution derived from Equa-
tion (3) to calculate the expected profit of choosing technology A, where
the optimal choice in the next round, X∗(t+ 1) ∈ {A,B,C} depends
on the number of effective H draws:

πA(h, t) = 1 +

Dt∑
i=0

Pr(ha = i)× πX∗(t+ 1, h+ i) (4)

In the ‘immediate adoption’ strategy profile, deviating by choosing
technology A in Round 1 yields one more private signal and the decision
of five colleagues, or D1 = 6. For example, following a private draw of
L in round t = 1, a subject adopts technology B at t = 2 for ha ≤ 3,
and technology C for h > 3:

πA(0, 1) = 1 +

(
2×

3∑
i=0

Pr(ha = i) + 4×
6∑
i=4

Pr(ha = i)× 2i

2i + 27−i

)
× 7 ≈ 16.57,

πB(0, 1) = 2× 8 = 16 (5)

As πA(0, 1) > πB(0, 1) according to this strategy profile, “honest”
adoption in the first round cannot occur in equilibrium in Treatment CO.
Further, for the same strategy profile, 21.73 = πA(1, 1) > πC(1, 1) =
21.33. Thus, in Treatment CO, there can be no equilibrium in which
all subjects adopt with certainty in the first round. The information
revealed in the decisions of others would be too valuable for subjects to
profitably follow such a strategy. Note that this argument does indeed
show that there is no BNE (not simply perfect Bayesian equilibrium, or
“PBE”) in which all agents adopt immediately, because in that case a

12Dt = 7−N t−1
B −N t−1

B , equivalent to the 6−N t−1
B −N t−1

B colleagues that are
yet to adopt, plus one for the additional private signal that will accompany the
selection of A.
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unilateral deviation would be profitable. In any symmetric equilibrium,
therefore, all subjects must delay adoption with at least some positive
probability.

Implications

We do not expect our experimental subjects to play exactly according
to the formal equilibrium strategies. This is due to noise (and other
errors), ‘behavioral’ factors (discussed further later), and modeling
simplifications such as risk neutrality. Nevertheless, we can draw a few
robust qualitative conclusions from the theory in order to help guide
the interpretation of the results.

For Treatments P and PO, the first implication is that average
behavior should be the same in both cases. Any divergence must be
due to either misunderstanding the rules (which we tried to avoid to the
extent possible); to some nonstandard component of utility; or something
like ‘meta-learning’ about how to play the game. The second robust
implication is that players should adopt one of the new innovations very
quickly. Note for instance that any positive degree of risk-aversion will
break indifference in expected payoff values: at t = 2, if h = l = 1, there
will be a strict preference for B over C since it is less uncertain.

For Treatment CO the main implication is that, relative to Treat-
ments P and PO, delay should occur and the average time of adoption
will be later. This follows whatever the nature of the exact mixed
equilibrium in the former case, and it is robust to the addition of risk
aversion. Indeed, other than the threshold case mentioned in the previ-
ous paragraph, risk aversion will tend to delay adoption since by waiting
more uncertainty is resolved. However, this effect is the same across
treatments and does not change the relative prediction of later adoption.
Finally, as subjects can always choose to simply ignore the observed
behavior of others (and therefore optimally adopt immediately), payoffs
should be weakly larger in Treatment CO as compared to the other two.

Experimental Results

Our laboratory experiments were designed to explore how subjects
balance the competing goals of speed and accuracy, and how that
trade-off depends on their private signals and observations of peers’
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adoption decisions. This section assesses the data generated by the
experiments using several empirical techniques.

Looking first at the choice between the two innovations, we say that
a subject is accurate if she adopts the innovation that would deliver the
highest ex post payoff in the decision sequence. Specifically, innovation
B is the accurate choice in a decision sequence when πC = 0, while
innovation C is accurate when πC = 4. Note that at any round of the de-
cision sequence, the private signals drawn by a subject may nonetheless
point to the innovation with the lower payoff. Turning next to adoption
timing, the speed of decision making is measured by the number of
rounds that a subject stays with A before choosing either B or C.

We begin by reporting simple summary statistics to compare the
experimental treatments. We then employ the statistical techniques
of survival analysis to analyze the timing of adoptions. Initially, we
make non-parametric comparisons of adoption timing of pairs of treat-
ments. Next, we estimate Cox proportional hazard models, which relate
adoption timing to the history of a subject’s private signals and, when
observable, the prior adoptions made by her peers. The estimated
coefficients provide a means to quantify the differences among the vari-
ous treatments as well as to assess the influence of private and public
information. To allow distinct patterns of adoption for the safe and
risky innovations, we estimate a competing risks model and relate the
timing of adoption of B and C to the time-varying covariates.

Finally, the complexity of the decision problems stemming from
different sources of information led us to consider whether behavioral
rules could better explain the experimental data than BNE strategies.
We propose nine behavioral rules of thumb that map private and public
information into adoption decisions. Each of the rules is a reasonable
response to the available information, but they are not necessarily
optimal. Based on subjects’ adoption decisions, we attribute one of
the nine behavioral rules to each subject. After calculating the average
payoff corresponding to each rule, we rank order the rules in terms of
average payoff.

Accuracy of Decisions

Table 3 provides an initial assessment of the accuracy of adoption
decisions by comparing summary statistics across the three treatments.
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Table 3: Summary statistics of decision accuracy.

Adopted Adopted Accurate Avg. round of
Treatment Obs. B (%) C (%) adoption (%) adoption
P 525 51.8 48.2 59.4 2.17

(0.20)
PO 900 56.0 44.0 64.7 2.06

(0.10)
CO 720 52.6 47.4 61.5 1.91

(0.10)

Robust standard errors in parentheses, clustered by subject.

Each decision sequence amounts to a single observation, and so there
are 15 observations per subject.

Participants show a slight preference for the safe innovation B, as if
subjects were on average averse to the risk of innovation C.13 Adoption
is significantly less accurate in Treatment P (p = 0.023), suggesting that
the ability to observe peers and the correlation of payoffs in Treatments
PO and CO, respectively, may guide subjects toward the superior
innovation. More specifically, examining the contingency tables relating
subjects’ choice between B and C conditional on the true value of C,
we found they were particularly accurate in identifying case of C = 0
and choosing B in both of those two treatments.

As evidenced by the average number of rounds before an innova-
tion was chosen, subjects adopted more quickly in the common value
treatment, i.e., CO.14 At first glance, it appears that the observation
of peers results in faster and more accurate adoptions, whether values
are perfectly correlated or statistically independent. We now turn to a
more formal analysis that takes account of difference in adoption timing
over all rounds of the decision sequence.

13Whether this is due to underlying risk aversion or to a change in expressed norms
as a function of the varying contexts across treatments, as suggested by List (2007)
and Bardsley (2008), is difficult to separate empirically. The policy implications are
similar in either case.

14The difference is significant at the 1% level when the standard errors are not
clustered. When they are clustered, the significance level is better than p = 0.15 for
one-sided tests relative to Treatments P and PO.
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Survival Analysis of Adoption Timing

We want to be able to compare statistically the time pattern of adoption
in our experimental data, and for this purpose we employ the statistical
technique of “survival analysis” or what is also called “duration analysis.”
These techniques are specifically designed to model the timing of an
“event,” which in our context is the adoption of an energy-environmental
innovation. In economics survival analysis most often appears in the field
of labor economics.15 It is perfectly suited, for example, to modeling
the duration of unemployment spells and their determinants. Survival
analysis was used to statistically model the timing of adoption of energy-
efficient building codes by Nelson (2012) and deployment of solar panels
by Islam and Meade (2013).

Since survival analysis was designed to perform statistical analysis
on the timing of an event, it is well-suited to analyzing the adoption
times generated by our experiments.16 In our case, the event is the
adoption of an innovation, and so the dependent variable becomes the
round in which subjects adopt either innovation B or C.17

We begin by plotting the empirical hazard functions observed for
each treatment. Figure 1 overlays the Kaplan–Meier non-parametric
hazard functions for all three treatments after they have been smoothed
for easier comparison. A rising hazard function indicates that the
propensity to adopt one of the two innovations increases from one round
to the next, while a falling hazard indicates a decreasing propensity.18

It is clear that the baseline Treatment P results in uniformly slower
adoption than the other two treatments. The deviation between Treat-
ments P and PO is especially surprising. By design, observation of
others’ actions in Treatment PO conveys no information about subjects’
expected payoffs; all relevant information is contained in their individual

15See, e.g., Heckman and Singer (1984).
16To our knowledge, this is the first application of survival analysis to the results

of endogenous timing experiments.
17Event data are often censored because the experiment ends or subjects leave

the study. With negligible exceptions (i.e., 8 out of 2,145 decision sequences), our
subjects made an adoption sometime during the eight-round decision sequence.

18In other words, the longer the subject delays making a decision, the less likely
she will adopt in the next period. In labor economics such “duration dependence”
arises when the longer a person is unemployed, the less likely they will re-enter the
workforce in the near future.
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Figure 1: Smoothed hazard function by treatment.

private signals. The fact that its hazard rate increases steadily over
rounds indicates that postponing adoption leads to increased propensity
to adopt. It appears that the observation of actions of other mem-
bers of the group prompts subjects to act when they would otherwise
procrastinate.

Cox Proportional Hazard Models

Pair-wise comparisons of adoption timing are likely to be affected by the
private signals and observation of peers’ decisions. To control for the
two factors, we fit time-varying covariates to the observed hazard rates.
Specifically, we estimate Cox proportional hazard models that specifies
the hazard rate to be proportional to a baseline non-parametric hazard,
where the proportionality factor is linear in the included covariates.
Two time-varying covariates are of primary interest: (i) the number of
Bs and Cs adopted by each subject’s peer group prior to the current
round, NB and NC ; and (ii) the absolute difference in the number of
Hs and Ls drawn by each subject including the current round, |h− l|.
Since at this point we do not distinguish which of the two innovations
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Table 4: Cox Proportional hazard models with covariates.

Model 1 2 3 4† 5 6
Treatment PO 0.132 −0.332

(0.060)∗∗ (0.073)∗∗∗

Treatment CO 0.239 –0190
(0.061)∗∗∗ (0.073)∗∗∗

NB 0.135 0.130 0.129

(0.036)∗∗∗ (0.036)∗∗∗ (0.036)∗∗∗

NC 0.124 0.114 0.112

(0.039)∗∗∗ (0.039)∗∗∗ (0.039)∗∗∗

|h− l| 0.304 0.312 0.316 0.305 0.308
(0.034)∗∗∗ (0.034)∗∗∗ (0.034)∗∗∗ (0.034)∗∗∗ (0.034)∗∗∗

NB +NC 0.130

(0.033)∗∗∗

|NB −NC | 0.029

(0.030)

N 4,293 3,701 3,701 3,701 3,701 3,701
Pseudo R2 0.001 0.004 0.005 0.005 0.004 0.004
Log likelihood –14,236.4 –12,521.9 –12,511.1 –10,816.6 –12,521.9 –12,528.9
Log like at zero –14,244.8 –12,575.3 –12,575.3 –10,871.7 –12,575.3 –12,575.3

Key: ∗ = significant at 10%, ∗∗ = significant at 5%, ∗∗∗ = significant at 1%. † = Stratified
by treatment.
Standard errors are clustered by subject.

is adopted, B or C, it should not matter the absolute number of Hs
and Ls that are drawn.

Table 4 contains the results of estimating Cox proportional hazard
models with various combinations of covariates on the entire sample of all
three treatments. Dummy indicators of the treatments were sometimes
included in which case Treatment P was taken as the excluded category.

The positive coefficients on the two treatment dummies in Model 1
confirm that the observation of prior adoptions accelerates adoption
regardless of whether or not they are informative. The larger coefficient
on Treatment CO dummy compared to that for Treatment PO is
consistent with the comparison of hazard rates in Figure 1.

Models 2 through 6 include some combination of the private and
public information variables. All estimated coefficients are positive and,
with one exception, statistically significant. The sizes of the coefficients
on the time-varying covariates are robust across specifications. We
conclude that observation of peers’ prior choices induces subjects to
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make an adoption decision sooner (without regard to which of the two
innovations was chosen). As a generalization, the results confirm that
subjects tend to adopt more quickly as observations of Bs and Cs
increase and as the absolute difference between draws of Hs and Ls
increases. Note that the positive coefficients on NB and NC are about
the same size within each model, and across the models. Also, the
coefficients on the variable |h− l| are more than twice as large as those
on the variables NB and NC . This is our first evidence that subjects
are relatively more responsive to their private signals when deciding
when to adopt compared to the observation of peers’ prior actions.

Table 4 also reports coefficients when the estimated hazard model
was stratified by treatment: Model 4 allows the baseline hazard to vary
across the three treatments. Compared to when a common baseline
hazard is assumed, coefficients do not differ much.

Model 5 includes the total number of prior adoptions of both types,
NB+NC , replacing the variations with the number of the two innovations
separately, NB and NC . The coefficient on the sum is again positive and
significant, and close is size to the coefficients on the separate variables.

Finally, we check whether subjects might be spurred on by an im-
balance of the prior adoptions between to the two innovations. Model 6
includes the absolute difference in the adoptions of Bs and Cs as of the
prior period, i.e., |NB −NC |. The coefficient on this variable was not
significant indicating that the cumulative number of adoptions, not the
innovations chosen, determine the speed of adoption.

Competing Risks Analysis

Up to this point, our survival analysis did not make any distinction as to
which of the two innovations subjects adopted. It is possible, however,
that there could be differences in timing of adoption between the two
innovations if only because the payoff of B is certain while the payoff
of C is risky. We allow for such differences by estimating a “competing
risks” model of adoption timing. A typical application of this model
occurs in medical studies in which individuals can die from two or more
causes, such as from a heart attack or from some type of cancer.19 In
this medical application, as in our experiments, each of the two possible

19A typical example of competing risks found in labor economics occurs when
workers leave unemployment for one of several reasons, as when they return to work
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events is irreversible. In our case, once a subject adopts either B or C,
she cannot make a change for the remainder of the decision sequence.
Consequently, when one of the two events occurs, the other event can
no longer be observed for that subject. Estimation of the timing of
adoption of B taking the adoption of C as a competing risk, relates the
covariates to this specific event rather than to the event of adoption of
either innovation. This approach allows us to disentangle the causes for
adoption of B and C.

Figure 2 plots the Cumulative Incidence Functions (“CIF”) for adop-
tion of B and C separately, for each of the three treatments. The CIF
gives the portion of all subjects that have adopted an innovation at some
time up to and including a round of the decision sequence. Solid curves
are used for CIFs for adoption of B while the dashed curves are used
for C. Consistent with Figure 1, the timing of adoption is similar under
Treatments PO and CO, but differs from the baseline Treatment P .
Under Treatment P , adoption of both technologies is greater in the
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Figure 2: Cumulative incidence of B and C by treatment.

with their previous employer, take a job with a new employer or drop out of the
workforce entirely.
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first round, but the other two treatments catch up quickly. Despite
equality in expected payoff, technology B is adopted more frequently
than technology C for all three treatments, i.e., solid CIF is below the
dashed CIF in Figure 2. Subjects apparently delay their adoption of
C as they gather additional information of both kinds. Note, however,
that the adoption of B would also be delayed as this information is
gathered, and yet it occurs sooner as if the risk associated with adoption
of C prolongs deliberation.

We next estimate a parametric model that has a similar specification
to the Cox proportional hazard model in the presence of a competing
risk. The results are presented in Table 5. Models were run for both B
and for C with the other innovation acting as a competing risk. Two
specifications are included in the table, one of which excludes Treatment
P (because no recording of prior adoptions in that case) and one which
includes fixed effects for the other two treatments. Both specifications
include the cumulative number of prior adoptions of B and C, NB and
NC , as well as the relative difference in private signals, h− l. Note that
now we do not take the absolute value of the difference in signals as the

Table 5: Competing risks models of adoption of B and C.

Event of interest Adoption of B Adoption of C
Competing risk Adoption of C Adoption of B
NB 0.488 0.505 0.350 0.381

(0.025)∗∗∗ (0.024)∗∗∗ (0.026)∗∗∗ (0.025)∗∗∗

NC 0.280 0.313 0.615 0.623
(0.029)∗∗∗ (0.029)∗∗∗ (0.025)∗∗∗ (0.025)∗∗∗

h− l −0.569 −0.556 0.583 0.581
(0.020)∗∗∗ (0.020) (0.023)∗∗∗ (0.023)∗∗∗

Treatment
Fixed effects No Yes No Yes
N 5,685 6,209 5,685 6,209
Log likelihood –10,812.89 –12,200.1 –10,088.01 –11,185.61

Key: ∗ = significant at 10%, ∗∗ = significant at 5%, ∗ ∗ ∗ = significant at 1%.
Standard errors are clustered by subject.
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measure of private information since the number of each type of signal
should matter.

The coefficients are very precisely estimated and have the expected
signs. For instance, observation of prior adoptions of Bs, NB, leads to
more rapid adoption of B. Similarly, observation of prior adoptions of
Cs, NC , accelerate adoption of C. But note the cross-effects in Table 5:
observation of prior Cs (Bs) also accelerates the adoption of B (C).
The cross-effects, however, are smaller than the direct effects.

Also, as expected, the speed of adoption of B (C) is directly in-
creasing in the draws of Ls (Hs). The parametric model allows us to
compare the relative impacts of these factors on speed of adoption of
the two innovations. In particular, the observation of prior adoptions
of C has a greater impact on adoption of C (about 0.62), whereas the
counterpart effect of prior adoptions of B on the adoption of B is smaller
(about 0.50). The net number of signals has about the same impact on
adoption of B and C, though opposite in sign (i.e., +0.58 and −0.56,
respectively).

The Speed-Accuracy Tradeoff

We have seen how the two types of information affect the speed and
accuracy of subjects’ adoption decisions in different ways. For instance,
observation of peers’ decisions and correlation of group payoffs accelerate
adoption in Treatments PO and CO, respectively. This was quantified,
among other ways, in the last column of Table 3. We might expect,
therefore, that adoption accuracy under Treatment P would be superior
because in that case subjects draw more private signals; in fact, subjects
are less accurate in that treatment than under the other two as shown
in the fifth column of Table 3. In this section we summarize using a
single measure of how subjects trade off between speed and accuracy of
their adoption decisions.

Table 6 is an initial attempt to capture both speed and accuracy
of subjects’ decisions in each of the three treatments. First, note the
third column offers an alternative measure of accuracy as the average
number of rounds that subjects earn the highest payoff possible —
itself a measure of combined speed and accuracy of adoption decisions.
Again, subjects perform worst in Treatment P spending fewer rounds
receiving the high-payoff innovation (p = 0.052). The difference in this



162 Jamison et al.

Table 6: Tradeoff between speed and accuracy.

Avg no. of Average payoff by round of adoption
high-payoff Round Round Round Round Round

Treatment Obs. Rounds 1 2 3 4 ≥ 5

P 525 4.06 17.59 17.95 15.76 15.39 10.63
(0.22) (0.83) (1.31) (0.86) (0.86) (0.82)

PO 900 4.49 17.52 18.14 15.66 16.02 12.36
(0.14) (0.59) (0.58) (0.69) (0.84) (1.37)

CO 720 4.27 16.96 18.43 16.49 17.10 12.53
(0.12) (0.61) (0.61) (0.72) (0.95) (1.61)

Robust standard errors in parentheses, clustered by subject.

performance measure for Treatments PO and CO is not statistically
significant. As before this is surprising to the extent that Treatment PO
provides subjects with only irrelevant, potentially confusing, information
relative to Treatment P .

The remaining portion of Table 6 groups subjects by the round in
which they adopted, and reports the average payoff of each group of
subjects. For all three treatments, the average payoff earned by subjects
who adopted in Round 2 was higher than the average payoff to a subject
that chose to adopt in a different round. Delay pays off: empirically,
subjects do better when they do not adopt in Round 1 as prescribed by
the Bayesian Nash Equilibrium. In fact, the difference in average profits
between first- and second-round adopters is not necessarily statistically
significant at the usual 5% level.20 Nevertheless, subjects who adopt
in Round 3 or later earn significantly less than those who adopt in
Round 2.21

Apparently, it pays to delay long enough to observe the first round
of peers’ adoptions (and to draw a second private signal as well) but
beyond that average payoffs tend to suffer. This regularity, which holds

20Treatment CO comes closest to significant difference, with those adopting in
the second round out-earning their first-round counterparts by 1.47 tokens (p = 0.09,
robust).

21The majority of pairwise comparisons between Round 2 average payoffs and
payoffs to adoptions in other rounds are statistically different at the 5% level.
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across all treatments, compels us to examine adoption rules that, while
not necessarily BNE strategies, generate high profits in our experimental
settings.

Evaluating Behavioral Adoption Rules

The different types of information available to subjects in our experi-
ments, and the complex incentives that affect their adoption decisions,
make theoretical predictions difficult. As described in section “Theory,”
in Treatments P and PO, the Bayesian Nash equilibrium has subjects
adopt in the first round, while the analysis of Treatment CO is less
conclusive. As optimal behavior in Treatment CO depends on the actual
behavior of subjects’ colleagues, we turn to an empirical analysis to
enhance our understanding of optimal behavior in Treatment CO, with
the same calculations performed for Treatments P and PO included for
comparison.

We propose nine plausible behavioral rules that subjects might
follow, and calculate the hypothetical profits that subjects would have
earned under each rule22 in each decision sequence. The nine rules
exhaust all strategies for adopting innovation B or C in the first three
rounds that are ‘rationalizable,’ in the sense that subjects do not
adopt an innovation that is neither Leading (“L”) nor Popular (“P ”),
if one of them exists.23 The strategy labels denote the rank-order
of priority. Thus, L1 is the strategy in which a subject adopts the
leading innovation in the first round, while L2−P2−L3 has the subject
adopting the leading innovation in Round 2, breaking ties if neither
is leading at Round 2 by choosing the popular innovation, and choosing
the leading innovation in Round 3 if neither is popular in Round 2. The
symbol “R” indicates that a subject randomizes between the adoption
of B and C when their other adoption criterion fails to force a decision.
Thus, the rule L2−P2−R2 means that a subject adopts the leading
innovation in Round 2, breaks ties by adopting the popular innovation,
and picks one or the other if there is no popular or leading innovation.

22In performing this exercise, we implicitly assume that other group members’
behavior did not depend on the subjects represented in each observation.

23We define ‘Leading’ and ‘Popular’ technologies as in previous sections. There
are fewer strategies listed for Rounds 1 and 3, as there is always a Leading innovation,
so less tie-breaking is required.
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Table 7: Average payoff under behavioral rules.

Treatment P Treatment PO Treatment CO
L1 19.2 L1 19.0 L1 19.1

(0.49) (0.36) (0.41)
L2–L3 17.8 L2–P2–L3 17.9 L2–L3 18.3

(0.45) (0.28) (0.33)
L3 17.0 L2–L3 17.8 L2–P2–R2 18.0

(0.36) (0.29) (0.34)
L2–P2–R2 17.6 L2–P2–L3 18.0

(0.29) (0.34)
L3 16.9 L3 17.4

(0.27) (0.30)
P2–L2–R2 15.6 P2–L2–P3–L3 16.8

(0.27) (0.33)
P2–L2–P3–L3 15.5 P2–L2–R2 16.6

(0.26) (0.34)
P2–P3–L3 15.2 P3–L3 16.5

(0.26) (0.29)
P3–L3 14.8 P2–P3–L3 16.5

(0.24) (0.33)

Table 7 reports the average profits calculated for each strategy, in
descending order of average payoffs for each treatment.24 Clearly, honest
adoption (L1) performs the best in Treatment CO, as it does in the
other two. The calculated payoffs of Table 7 are largely consistent with
the calculations of section “Theory.” In all treatments, it is best to follow
private information, though following peer observation is punished less
in Treatment CO, due to the benefits of observational learning.

Policy Options and Conclusions

We design an experiment that captures three elements inherent in the
decision to adopt environmental innovations: (i) uncertainty about net

24Only three of the nine behavioral rules are possible under Treatment P .
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benefits of the new technologies, (ii) observation of private information
and of others’ actions, and (iii) freedom to choose the timing of the
adoption. We find that subjects routinely depart from rationality,
often adopt a new technology later than was optimal given available
information. This pattern corroborates the real-world delay that lies at
the heart of the “energy-efficiency gap” discussed in the Introduction,
and leads us to explore the features of our experimental manipulations
that affect the speed of adoption.

Analyzing the experimental data using parametric and non-
parametric models, we conclude that, when choosing between the safe
and risky innovation, subjects place greater weight on their private
signals compared to observation of prior adoptions by their peers.
Observation of prior decisions does, nevertheless, tend to accelerate
adoption, all else equal. This pattern is consistent with field evidence
regarding adoption of environmental innovations. As mentioned above,
Bollinger and Gillingham (2012) and Graziano and Gillingham (2015)
find that observation of installations of photovoltaic solar panels by
households in the same geographic area tends to accelerate adoption by
other nearby households.

One interpretation of this finding is that peers’ actions convey their
private information about the new technology. However, we also found
in our experiments that adoption is hastened even when payoffs of
adoptions are statistically independent, in which case peers’ adoption
decisions do not contain any useful information. In fact, prior adoptions
not only accelerate adoption by laggards, but they do so regardless of
what innovation is chosen by peers. Prior adoptions spur the laggards
to act, but do not cause them to imitate the early movers. If, as we
would suspect, subjects are slow to adopt due to some form of status
quo bias, we are seeing that observation of actions of any sort by their
peers overcome their inertia.

Reducing, or removing, this inertia is central to policies that aim to
promote adoption of new technologies that conserve energy or protect
the environment. Rather than inducing adoption through monetary
incentives — such as through the use of taxes, subsidies or price con-
trols — evidence points to informational strategies to promote these
adoptions.25 An immediate recommendation emerging from our results

25See, e.g., Fischer (2008) and Olander and Thogersen (2014).
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is to focus on the volume of adoption, especially the total counts of
adoptions by whomever the decision makers perceive as their peer group,
e.g., households located in the same neighborhood, or other firms in the
same industry.26

These results may have practical implications for the real-world
adoption of environmental innovations — for both decision makers who
must not only select among competing technologies but also choose the
timing of the adoption, and for policy makers who wish to influence
those decisions. Specifically, our experiments affirm the delay that lies
at the heart of the energy-efficiency gap discussed in the Introduction,
and could enlighten policy makers that aim to hasten the adoption of a
superior alternative.

The diffusion of energy conservation technologies has received consid-
erable attention recently. Numerous field studies have been conducted
that quantify how financial and informational programs affect residential
energy usage. For instance, Delmas et al. (2013) conduct a meta-analysis
of 156 field trials of electricity conservation programs for residential
consumers. They found that programs that supplied consumers with in-
formation about usage of electricity by their peers resulted in an average
reduction of 11.5% in electricity use, a significantly larger reduction than
the average of 7.4% registered by all methods including the provision of
information about consumers’ prior personal usage or offering monetary
incentives for usage reduction. Few of these studies, however, focus on
the speed with which consumers respond to the programs.

Our results are consistent with the findings of these field experi-
ments in that the timing of adoption of our subjects is influenced by
the decisions of others. It could be that in both the laboratory and
the field the typical decision maker is relatively certain as to which
innovation to pursue but his uncertainty as to when to take action
results in delay. An additional source of information — even when the
feedback provides no useful information — can spur an agent to take
action without necessarily steering them toward a particular option.
Setting aside concerns about privacy, policy makers could accelerate
adoption by collecting and disseminating individual adoption decisions

26While we do not test how subjects might respond differently to others inside or
outside of a reference group, field studies confirm this difference, as do laboratory
experiments. See Viscusi et al. (2011).
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to prospective adopters, or by offering subsidies to early adopters.27

Our findings suggest that policy makers ought to favor the use of infor-
mation dissemination relative to the recently popular use of “nudges”
which leverage cognitive biases. The concept of choice architecture
falls somewhere in between: the context of a decision, including both
information and framing (such as the source of the information), can
positively affect outcomes as we have observed here.

As has been often noted, e.g., Rogers (1962), lead adopters can be
instrumental in promoting diffusion of new technology. Jaffe and Stavins
(1994b) observe that “if the act of adopting a new technology is, itself, a
source of useful information for others, then the act of adoption creates
a positive externality by providing information to others for which the
adopter is unlikely to be compensated. This (positive) externality is
another form of market failure [slowing down adoption]” (p. 805). The
policy question becomes how to internalize this positive externality that
early adopters confer on procrastinators. One way to encourage early
adoption is to offer a subsidy that is declining over time and that is
independent of the adopted innovation — so as not to bias technology
choice, but rather to encourage adopters to use their private signals.
To an extent, this approach was adopted with the federal solar panel
tax credit plan.28 From the time it began in 2006 and running through
2019, residential adopters of solar panels could/can claim a 30% credit
off their tax bill. The credit drops exogenously to 26% in 2020 and then
to 22% in 2021, at which time the program ends. Adopters are given
an incentive to move sooner rather than later, and this could be seen
as a reward for motivating other households to adopt sooner than they
otherwise would.29

We need to add that, while early adoption of an innovation may
advance the date when it begins to pay dividends, delaying the decision
generates additional information on the relative merits of the competing
innovations. Indeed, our experiments show that the highest average
payoffs are earned by subjects who adopt an innovation in the second

27The 2006 California Solar Initiative had this effect since it offered rebates
that declined over time as cumulative installations reached certain thresholds. See
Bollinger and Gillingham (2012).

28See https://energy.gov/savings/residential-renewable-energy-tax-credit.
29To the extent that costs of solar panel systems fall over time, the present value

of the marginal incentive is steeper than would appear from the credit percentages.

https://energy.gov/savings/residential-renewable-energy-tax-credit
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round, and not in the first as is prescribed by the risk-neutral equilibrium.
Further, subjects who select in the first or second round the innovation
that is favored by private signal(s) earn the highest average payoffs,
compared to subjects who follow other plausible behavioral rules of
thumb which specify wait-and-see strategies. The importance of timing,
as well as the tradeoffs involved for both market actors and policy
makers, is particularly relevant for certain environmental innovations,
e.g., with potentially limited infrastructure in place, such as the choice
between a hybrid and a hydrogen fuel cell vehicle. Hence, programs that
disseminate the adoption decisions of peers may not only encourage
earlier movement away from inefficient legacy technologies but also offer
the added bonus of improving the choices of later movers regarding
innovative new technologies.

Appendix A — Instructions for Laboratory Subjects

Experimental Instructions: [treatment CO]

Welcome to this experiment on decision making and thank you for being
here. You will be compensated for your participation in the experiment,
though the exact amount you will receive will depend on the choices you
and others make and on random chance (as explained below). Please
pay careful attention to these instructions, as a significant amount of
money is at stake.

Information about the choices that you make during the experiment
will be kept strictly confidential. Your name will appear only on the
payment-receipt form and will not be linked to any specific choices you
make. You will not be asked to reveal your identity or the content of your
decisions to anyone else (either the experimenter or other participants)
at any time during or after the experiment. In order to maintain
privacy and confidentiality, please do not speak to anyone during the
experiment and please do not discuss your choices with anyone even
after the conclusion of the experiment.

The experiment will consist of a series of 16 problems, the first
of which will be a practice problem for which you will not be paid.
Each problem is called a Decision Sequence and is made up of eight
rounds. During each Decision Sequence, you will decide if and when to
move between three alternative courses of action: options A, B, and C.
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You will begin each Decision Sequence following the default option, A.
During Round 1 of 8, you will be asked to choose one of three options:
to remain with option A, to switch to B, or to switch to C. As long as
you remain with A, you will be given the same three options during
each subsequent round in the sequence. After you switch to B or C,
you will no longer have the opportunity to move between options. You
will remain with either B or C (depending on which one you selected)
each subsequent round until the end of the sequence. For example, you
may choose to remain in option A for the first three rounds, and then
switch to option C in Round 4. You must then remain in option C for
the rest of that Decision Sequence.

At the beginning of each sequence, you will be placed into a group
with five other participants that are in the lab with you. Group as-
signments will be made randomly and will change at the end of each
sequence. At the beginning of each round, you will be told how many
of your group members were following each alternative (A, B, and C)
as of the end of the previous round.

There is a payoff associated with following each option. For each
round that you follow option A, you will receive 1 token. For each round
that you follow B, you will receive 2 tokens. The payoff for C in each
decision sequence is the same for all members of your group and will be
randomly determined at the beginning of each decision sequence; it will
remain the same until the end of that decision sequence. The payoff for
C will either take a value of 0 tokens per round or 4 tokens per round,
both being equally likely. You will not be told if your group’s payoff
for C is 0 or 4 in any given decision sequence, but at the beginning of
each round you will be shown the result of a coin flip that will help
you determine what the payoff for C is. If the payoff for C is 0, the
coin flip will result in an H with 1/3 probability and an L with 2/3
probability. If the payoff for C is 4, the coin flip will result in an H with
2/3 probability and an L with 1/3 probability. The payoff for C will be
the same for each member of your group in each decision sequence, but
the coin flips themselves are generated randomly for each group member
individually, and therefore may or may not be the same. Figure A1,
below, illustrates the payoffs.

Your payoffs for the eight rounds in a sequence will be tallied at
the end of the sequence. For example, if you decided to remain with
option A for the first four rounds and then switched to option B, you
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Option A = 1 token per round

Option B = 2 tokens per round

Option C = either 0 or 4 tokens per round.  Each is equally likely.

Coin Flips:

If C = 0

= 1/3 chance

= 2/3 chance

If C = 4

= 1/3 chance

= 2/3 chance

Figure A1: Payoffs for options A, B, and C.

would receive 4 ∗ 1+ 4 ∗ 2 = 12 tokens. Your tokens from all 15 Decision
Sequences will be added at the end of the experiment and converted
to U.S. dollars (the exchange rate is: 12 tokens = $1), and you will be
given a check for that amount.

The payoff for option C can be 4 or 0 tokens. For example, if you
remain with option A for the first two rounds and switch to option C
in the third round, your payoff will be 2 ∗ 1 + 6 ∗ 4 = 26 if the payoff
for option C turns out to be 4, and your payoff will be 2 ∗ 1 + 6 ∗ 0 = 2
if the payoff for C turns out to be 0. Note that the true value of the
payoff for C will remain the same (either 0 or 4) for all eight rounds of
the Decision Sequence.

For each round that you remain with option A, you will view a flip
of the coin that will help you determine the payoff for option C. For
example, if you choose option A during rounds 1, 2 and 3, you will see
four flips of the coin (at the beginning of Rounds 1–4).

After all eight rounds of a Decision Sequence, you will be told how
many tokens you accumulated in that sequence. Then a new sequence
will begin and you will go through the same process again. Remember
that payoff for C is independently chosen for each sequence, so the value
of C’s payoff in previous sequences is not an indication of what it will
be in future sequences. After all 15 Decision Sequences, your tokens
from all sequences will be added together, converted to dollars, and
given to you in the form of a check.

Computer Program Description

To make your decisions you will use the computer in front of you. Right
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now, you can see an initial waiting screen. The program will be activated
when the instructions are finished.

Once the program is activated, you will be given a short quiz and go
through a practice decision sequence to make certain that you correctly
understand how the experiment will work. After you have completed the
quiz and the practice sequence, the experiment will begin. At that time,
a new window will pop up and replace the initial waiting window. The
new window will resemble the one shown below. The upper-left of the
screen informs you that you are in the first of 15 Decision Sequences.
The upper-right of the screen shows how much time you have remaining
to make your decision. You will have a total of 20 seconds to make your
decision, after which the computer will choose option A for you. The
center of the screen will inform you that you are in Round 1 and tell
you the result of a coin flip that will help you determine the payoff for
option C. The screen below shows that the first flip of the coin resulted
in an H. Finally, you are asked for your decision. You may choose option
A, option B, or option C by placing the cursor on the corresponding
button and left-clicking.

If you choose option B or C in Round 1, you remain with that
option for the remainder of the rounds of the Decision Sequence. In
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this case, you will again see the waiting screen that is in front of you
now, which will remain until the other participants are finished with
the first Decision Sequence.

If you choose option A in round 1, you will see a similar screen
as the second round begins. Notice that the upper-left of the screen
shows that you are still in the first decision sequence. As shown in the
upper-right, you will again have 20 seconds to make your decision, after
which the computer will select option A for you. The screen will inform
you that you are in Round 2. It will also show the options chosen by
other members of your group in the previous round. Below, the screen
shows that six group members chose A, while no group members chose
B or C. Just underneath, the screen shows the result of a new coin flip.
The screen shown below indicates that the coin flips for rounds 1 and 2
resulted in an H and an L. Notice that you are shown the results of the
coin flips for both round 1 and round 2.

If you choose option B or C in round 2, you remain in that option
and are therefore shown the waiting screen. If you choose option A in
round 2, you will be told the result of an additional coin flip and be
asked to make another decision.
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This process will repeat itself until you choose option B or option C,
or until you complete round 8. After the Decision Sequence is over, you
see the feedback screen. The feedback screen shows you the payoff for
C, 0, and your profit for the round, 1 token.

You have a maximum of 20 seconds to observe the feedback screen
from the first Decision Sequence. You may click the OK button in
the lower right corner of the screen when you are ready to proceed
to the next Decision Sequence. After 20 seconds, you will proceed
automatically.

Then, the new Decision Sequence will start, and the computer will
again randomly place you into a group with five other participants,
randomly select a coin, show more information and ask for a new
decision.

After the last round is finished, a final screen will pop up, informing
you of your total earnings for this experiment.

Rules

Please do not talk with anyone during the experiment. We ask everyone
to remain silent until the end of the last round.
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Your participation in the experiment and any information about
your earnings will be used solely for research purposes. Your name and
association to your decisions will be kept strictly confidential. Your
payment receipt and participation form will be the only places in which
your name is recorded.

Questions

Any clarification questions should be asked at this time. Please raise
your hand and wait for an instructor to come to your desk.

Appendix B — Survival Analysis

Non-parametric Comparison of Adoption Timing

Survival analysis summarizes the timing of an event using its hazard
function, or equivalently, its corresponding survival function. There are
several ways to test statistically the equality of two survival functions. A
standard non-parametric test of equality of two survival functions is the
“log-rank test.”30 Table B1 reports the significance levels of the log-rank
test for each pair of the three treatments. The figures in the table are
the Chi-squared statistics of a non-parametric test of the equality of
two estimated survival functions over all eight rounds of each decision
sequence.

Consistent with a visual comparison of the hazard plots in Figure 1,
the tests reject that survival under Treatment P is statistically the

Table B1: Log-rank tests of equality of survival functions.

P PO CO

P
PO 4.31∗∗

CO 13.94∗∗∗ 5.30∗∗

Significance: ∗ = 10%, ∗∗ = 5%, ∗ ∗ ∗ = 1%.

30This test is also known as the “Mantel–Haenszel test.” See Kalbfleisch and
Prentice (1980).
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same as survival under each of the other two treatments. The tests
also reject that timing under treatments PO and CO are the same —
affirming that the existence of common values speeds up the pace of
adoption.

Cox Proportional Hazard Models of Adoption Timing

The log-rank test imposes no parametric restriction on the three survival
functions. In this section, we again test for differences in timing under
the three treatments but now using the popular Cox proportional hazard
model. The Cox model assumes that the observed hazard is proportional
to a base hazard rate. We take the base hazard rate to be the hazard
under Treatment P , and estimate the proportionality of the hazards
of the other two treatments relative to this baseline. The results of
this estimation are found in Table B2. The coefficient β in the table
determines the factor of proportionality, eβ, relative to the hazard for
Treatment P .

Table B2: Cox proportional hazard models relative to the baseline treatment, P .

Std. Lower Upper
Treatment Coef. Err. z P > |z| 95% CI 95% CI
PO 0.131 0.059 2.20 0.028 0.014 0.249
CO 0.239 0.061 3.91 0.000 0.119 0.359

The fact that both estimated coefficients are positive confirms that
the adoption rate is faster under Treatments PO and CO than under
Treatment P . The coefficients are all statistically significant at the
usual 5% level. As observed earlier, adoption occurs much faster when
outcomes are perfectly correlated compared to when they are statistically
independent. Indeed, the coefficients on the treatments involving a
common payoff are roughly twice as large a those with independent
payoffs, indicating that common values accelerates adoption.
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