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ABSTRACT
Accurate characterization of wetting-drying fronts in free surface flows is challenging because it is difficult and computationally
demanding to track the exact position of the interface. This work presents a novel numerical treatment of the wetting-drying
fronts applied to an approximate Roe Riemann solver and compares it to four other approaches. The numerical treatments were
implemented both for the shallow water equations and for the local inertial equations. The results of this comparison overall showed
a good agreement. For the tests conducted it was verified that element removal numerical treatments with global distributing
of water can introduce errors and degenerate the solution introducing or displacing water upstream. Local correction and flux
restricting numerical treatments show the best results. The negative depth numerical treatments provided similar results to the local
correction and flux restricting numerical treatment, although with mass conservation errors.

Keywords: Flood Modelling, Local Inertial Equations, Overland Flows, Shallow Flows, Shallow Water Equations,

Wetting-Drying Fronts

1 Introduction

The characterisation of wetting-drying (WD) fronts in free surface flows is often demanding because the ex-

act position of the interface is difficult to calculate or the process to obtain it is computationally demanding.

In technical literature WD fronts have been treated using several different numerical approaches.

Medeiros and Hagen (2013) present a review of numerical treatments and divide them into four types.

Two more approaches can be added to this classification, resulting in six categories: (1) Thin Film, (2)

Element removal, (3) Depth extrapolation, (4) Artificial porosity (also termed negative depth in Medeiros

and Hagen (2013)), (5) Positivity-Preserving, and (6) Flux Correctors.

Thin layer numerical treatments rely on the addition and subtraction of a thin layer of water to the

computational nodes, preserving positivity permanently. These treatments produce, however, a spurious

water surface slope and an artificial pressure gradient (Heniche, Secretan, Boudreau, & Leclerc, 2000) and

may introduce oscillations and numerical instabilities (Kärnä et al., 2011). This approach also implies that

the entire domain is always calculated, thus increasing the computational time (Medeiros & Hagen, 2013).
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Element removal numerical treatments are very common (Medeiros & Hagen, 2013). They rely on the

algorithm that checks if a node is included in the computational domain or not (Nikolos & Delis, 2009). The

simple implementation process makes it very attractive and computationally effective. Usually a threshold

is defined that turns the computational cell “on” or “off”. After such verification, the numerical treatment

redistributes the volume. This process is fairly straightforward for first order methods. The major disad-

vantages of such approach are its unsuitability for implicit or semi-implicit methods, large sensitivity to

round-off errors (Hof & Vollebregt, 2005), possibility of rapid toggling of computational cells, and damp-

ening of overland flow (Medeiros & Hagen, 2013).

Depth extrapolation and Wave-front tracking numerical treatments (Aureli, Maranzoni, Mignosa, &

Ziveri, 2008) are very accurate but difficult to implement. They rely either on extrapolation of the free

surface in the computational cell or on pinpointing the exact location of the wetting-drying front. Tech-

niques such as VFR (Volume/free-surface relation) have improved the accuracy of the wave front tracking

(Begnudelli & Sanders, 2006).

Artificial porosity approach consists of adding a porous layer, circumventing some of the disadvantages

of the previous numerical treatments (Hof & Vollebregt, 2005). This numerical treatment however requires

that artificial porosity is applied not only to negative depths but also to a small depth above the bed elevation.

Another class of numerical treatments are positivity-preserving numerical treatments – Xing and Shu

(2011) that relies on a positivity preserver limiter, and Duran, Liang, and Marche (2013) that uses non-

conservative variables, are examples of such numerical treatments. Generally they conserve mass, globally

and locally, converge to the analytical solution on grid independent problems and have an analytical CFL

condition that ensures the numerical stability. Other examples of these numerical treatments are the exact

Riemann solver (Godunov, Zabrodin, & Prokopov, 1961), HLLE (Einfeldt, Munz, Roe, & Sjögreen, 1991),

Kinetic (Audusse & Bristeau, 2005), VFRoe (Buffard, Gallouët, & Hérard, 2000), and the numerical treat-

ment proposed by Murillo and Garcı́a-Navarro (2010).

The ultimate family of numerical treatments is termed flux corrector or flux restricting. Leandro, Chen,

and Schumann (2014) developed a treatment for flood inundation that limits the inter-cell flux such that a

cell is never depleted. The authors applied it to the diffusive wave model and showed it to be stable also

for urbanized areas (Leandro, Schumann, & Pfister, 2016). This numerical treatment is easily used for a

first order diffusive wave model, however with the introduction of second or higher order reconstructions in

FVM it may become more difficult to apply. First order methods can benefit from this numerical treatment.

Other examples are presented by Brufau, Garcı́a-Navarro, and Vázquez-Cendón (2004) who applied flux

corrector to a Roe Riemann scheme where the wave-strengths and fluxes are redefined “a priori” so that the

mass conservation is guaranteed, and Murillo, Garcı́a-Navarro, Burguete, and Brufau (2006) who redefined

the bottom slopes in a way that is equivalent to redistributing the updating fluxes.

Without correction the wetting-drying front numerical treatments usually produce spurious oscillations or

violate mass conservation when depth becomes negative. Some authors deem a small mass continuity error

acceptable (Bates & Hervouet, 1999; Neal et al., 2012). The aim of this work is to provide a comparison

between five numerical treatments that apply corrections after the time step calculation is performed. In this

paper we propose a novel element removal wetting-drying numerical treatment (section 2.2), based upon the

concept of gravitational attraction. In addition to being globally mass conservative, this numerical treatment

is also “locally” conservative limiting the exchanges to an adjacent cell. In order to verify the accuracy of

this numerical treatment, a thorough comparison between the novel numerical treatment and four (sections

2.2) well established ones existent in technical literature is made. Finally the differences between all models

are analysed and discussed (section 3) and conclusions drawn regarding the numerical treatments used

(section 4) in this paper for both the Shallow Water Equations and the Local Inertial Equations.

2 Numerical models of overland flow

The wetting-drying numerical treatments were tested on a Finite Volume Roe Riemann solver applied to

two sets of equations, namely the shallow water equations and the local inertial equations.

2
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2.1 Hydrodynamic models

The generic conservation law is given by the mass conservation equation and the momentum conservation

equations in x and y direction:

∂

∂t
U +∇ ·W(U , x, y)− S(U , x, y) = 0 (1)

When using the Manning friction term to model the bed friction stress, the matrix form of the third term

on the left hand side becomes common to the two models used here and is therefore:

S(U , x, y) =





0

−(ghBx − ugn2||w||h−1/3)

−(ghBy − vgn2||w||h−1/3)



 (2)

where h is water depth, w is velocity vector, composed of u and v that are the velocity components in the

x and y direction respectively, g is gravitational acceleration, Bx and By are the bed slope in the x and y
direction respectively.

Shallow Water Equations

In matrix form, for the Shallow Water equations, the expanded terms become:

U =





h
uh
vh



 (3)

W(U , x, y) =









uh vh
1

2
gh2 u2h+ uvh

v2h+ uvh
1

2
gh2









(4)

The domain is divided using a node-centred unstructured triangular mesh (Nikolos & Delis, 2009), with

staggered variables. The numerical fluxes are calculated using an upwind first order in time and space well

balanced Roe Riemann solver (Nikolos & Delis, 2009). The bed elevation flux is well balanced using the

Extended C-property thus achieving a perfect balance in hydrostatic conditions (Castro et al., 2005) and

the velocities used in the wetting-drying front are computed as proposed by Brufau, Vázquez-Cendón, and

Garcı́a-Navarro (2002). Entropy is enforced by the use of the entropy fix scheme by Harten (1983). The

friction source term is computed using a semi-implicit pointwise Runge-Kutta method (Liang & Marche,

2009). The Roe scheme is not a positivity-preserving scheme and therefore an ”a priori” analytically de-

ducted CFL condition cannot be defined, however, and in order to keep the scheme stable the CFL condition

used in the numerical calculations is the one presented in Nikolos and Delis (2009) for the SWE and Mar-

tins, Leandro, and Djordjević (2015) for the GWM.

Local Inertial Equations

The second model is the Gravity Wave Model (GWM) is based upon the non-linear local inertial equations.

This set of equations neglects the convective acceleration terms when compared to the SWE. In the matrix

3
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conservative form:

U =





h
uh
vh



 (5)

W(U , x, y) =









uh vh
1

2
gh2 0

0
1

2
gh2









(6)

A similar procedure to the one used for SWE is used to integrate Equations (5) and (6). It involves a

first order in space and time finite volume method (Martins et al., 2015) with a spatial 2D node-centred

staggered unstructured triangular mesh. Integration in space is divided in two steps – the numerical fluxes

and the bed elevation fluxes. The former are transformed from an area integral to a curve integral through

the use of Gauss divergence theorem that accounts for the fluxes over the boundaries of the cell. By creating

a Riemann problem between two generic adjacent points the inter-cell fluxes are then evaluated using a Roe

approximate Riemann solver with averaged values of the primitive variables. The bed elevation fluxes are

calculated using an upwind method derived specifically for this set of equations and this numerical method

by respecting the extended C-property (Castro et al., 2005) with the velocity for the wetting-drying fronts

as given by Brufau et al. (2002), thus avoiding spurious oscillations. This is achieved by projecting the

source term onto the eigenvectors (i.e. the wave-strengths) of the Jacobian of the fluxes. Once linearised it

is evaluated at the same state as the inter-cell fluxes. Bed friction is calculated using Manning’s equations

and is computed with a point-wise semi implicit method (Song, Zhou, Guo, Zou, & Liu, 2011). The time

integral is an explicit first order Euler method with an increment of time controlled by the CFL condition.

More details about this model can be found in Martins et al. (2015).

Discrete notation of the numerical schemes

Both systems (3), (4) and (5), (6) are solved using the Roe solver presented in detail by Martins et al. (2015)

using a node centred triangular cell. The conservative discrete form on a mesh computational cell is:

U
t+1
P = U

t
P +

∆t

AP





∑

∀Q ∈ KnP

ψt
PQ −

∑

∀Q∈KnP

φtPQ −
∑

∀Q∈KnP

φtPQ
Out



+ Sf (UP)
t

(7)

where P is a generic cell represented by its centre, Q is a generic adjacent neighbour across the set of

neighbour points KnP of P , AP the area of cell P , φtPQ, φtPQ
Out

and ψt
PQ are the numerical fluxes

evaluated based on the upwind Roe solver at time step t.

2.2 Wetting-drying numerical treatments

Five numerical treatments are tested. In SWE and GWM simulation a threshold value (εwd) is often used

instead of zero to limit negative depths and spurious velocities. For the sake of comparability the value used

herein is 10−5 (m). Table 1 presents a summary of the characteristics of the WD numerical treatments used.

Element removal numerical treatment – ER1

ER1 is an element removal numerical treatment that corrects depth to zero in a cell whenever it becomes

lower than a threshold depth, thus avoiding negative depths and some spurious velocity values, and allowing

4
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Table 1 Summary of the tested WD numerical treatments’ characteristics

regarding mass conservation and if only negative depths are corrected or is

εwd higher than zero

numerical treatment Global Mass Local Mass Only negative
Conservation Conservation depths

ER1 No No Yes
ER2 Yes No No
ER3 Yes Yesa No
P1 No No Yes

FR1 Yes Yes/Nob Yes/Nob

aUp to a predefined degree

bUsing only negative depths treatment / Using ER2 as a secondary treatment

computation of the next time step (i.e. hP > 0 ∀P ). The equations used are:

hP =

{

hP if hP ≥ εwd

0 if hP < εwd
(8)

wP =

{

wP if hP ≥ εwd

0 if hP < εwd
(9)

This treatment eliminates negative depth cells, however it does not preserve mass nor momentum and

can therefore introduce large errors in the model if not kept within reasonable limits. A way to do so is

through reduction of CFL number, and therefore ∆t. This process, however, might result in an exponential

increase of computational time.

Element removal numerical treatment – ER2

ER2 is an element removal numerical treatment based on ER1, however instead of just correcting the depth

it insures a global mass continuity. Computationally, ER1 is applied to identify wet and dry cells, followed

by an algorithm that redistributes the volume removed or added to each cell by the full domain according to

the volume in each cell. Nikolos and Delis (2009) apply a similar numerical treatment however the volume

is redistributed uniformly all over the domain. First, for each point:







VPWet
= AP hP if εwd ≤ hP

VPDry−
= AP |hP | if hP < 0

VPDry+
= AP hP if 0 < hP < εwd

(10)

Followed by:

hP =

{

hP if hP ≥ εwd

0 if hP < εwd
(11)

Correcting the depth to:

hwd
P = hP











1 +

N
∑

P=1

(

VPDry+
− VPDry−

)

N
∑

P=1

VPWet











(12)

5
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is redistributed uniformly all over the domain. First, for each point:

Followed by:

Correcting the depth to:
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where hP is the depth at point P , VPWet
is the total volume of water above the threshold at point P , VPDry+

is the total volume of water below the threshold but above 0, and VPDry−
is the volume for negative water

depths. The momentum suffers no correction.

Element removal numerical treatment – ER3

ER3 is a novel numerical treatment proposed herein. It is based on the concept of gravitational attraction

and relies on two variables (proximity and volume) to redistribute water along neighbour cells. The neigh-

bourhood degree of proximity can be defined as an input parameter along with ”gravitational” constants.

The algorithm defines a cell as wet or dry by setting variable WetP as 0 or 1 if the depth is lower or

higher than the wetting-drying threshold (εwd), respectively. The volume in each cell VP is calculated and

the original depths stored in new variables, higher (hwP ) and lower (hwd
P ) than the threshold (εwd):

WetP =

{

0 if hP < εwd

1 if hP ≥ εwd
(13)

VP = hPAP (14)

hwP =

{

0 if hP < εwd

hP if hP ≥ εwd
(15)

hwd
P =

{

hP if hP < εwd

0 if hP ≥ εwd
(16)

The maximum (MV ) and minimum (mV ) volumes for the time step in the domain are computed along

with the smallest (mD) and largest (MD) distance between cell centres:

mV = min(VP ) , MV = max(VP ) , mD = min(DPQ) , MD = max(DPQ) (17)

A “gravitational” attraction coefficient for the interaction between each pair of adjacent cells (GP,Q) is

calculated using the proximity and volume of each neighbour cell:

GP,Q = CVwd

(

1−
VQ −mV

mV −MV

)αVwd

+ CDwd

(

DPQ −MD

mD −MD
+ 1

)αDwd

(18)

Volume “gravitational” attraction increases with volume in the neighbourhood cell while distance “grav-

itational” attraction is reduced with distance. Equation (17) implies that as the distance diminishes and the

volume increases the volume received becomes higher. Adjustments of the exchanged volume are allowed

with the introduction of four coefficients defined at the beginning of simulation: CVwd
, CDwd

, αVwd
, αDwd

.

CVwd
andCDwd

control the linear proportionality weighting of the distribution relating to the volume “grav-

itational” attraction (Vwd
) or distance “gravitational” attraction (Dwd

). αVwd
and αDwd

control the amount of

linearity, allowing for a non-linear distribution.

This “gravitational” coefficient can be adjusted to one degree of proximity or two (i.e. only the neigh-

bourhood cells accept volume, or the neighbourhood of the neighbourhood cell accept volume transfer).

This numerical treatment guarantees that the negative or below threshold cell only contributes volume to

the adjacent neighbour in case one degree is selected.

6
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depths. The momentum suffers no correction.
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The coefficients are normalized during the computations, therefore, there are no range restrictions. Each

cell has a total amount of neighbour “gravitational” attraction that is calculated using:

TGP =

NQ
∑

Q=1

GP,Q (19)

Each wet cell updates their neighbour cells as:

hw
′

Q = hwQ + VP
GP,Q

TGPAQ
(20)

In addition to being globally mass conservative, this numerical treatment is also ”locally” conservative

(up to the degree of proximity predefined) as water is kept within the neighbourhood of the cell.

Porosity numerical treatment – P1

P1 is a porosity numerical treatment. The algorithm assumes that a cell stays negative and is removed from

the calculations until the depth is again greater than zero with the negative depth stored in an auxiliary

variable (hnP ). At the end of flux calculation, the cells have a trigger that defines if they are included in the

next time step calculation or not (WetP ). If they have a depth lower than zero, for computational purposes

it is temporarily adjusted to zero.

{

hP = hP and hnP = 0 if hP ≥ 0
hP = 0 and hnP = hP if hP < 0

(21)

When the depth becomes larger than 0 the negative depth is removed from the new depth.

{

hP = hP + hnP and hnP = 0 if hP + hnP ≥ 0
hnP = hP + hnP and hP = 0 if hP + hnP < 0

(22)

Flux restricting numerical treatment – FR1

FR1 is based on the numerical treatment presented by Leandro et al. (2014), extended to GWM in Martins,

Leandro, and Djordjević (2016) and herein for SWE. It implies a redefinition of the flux and can be consid-

ered a flux restricting, depth extrapolation numerical treatment or predictor-corrector. The computational

steps are:

• Step 1: Calculation of the fluxes between all pair of cells: numerical fluxes (φPQ), source term fluxes

(ψPQ) and boundary fluxes (φOut
PQ ).

• Step 2: Sum of the fluxes in each cell: numerical fluxes (φP =
∑

φPQ), source term fluxes (ψP =
∑

ψPQ) and boundary fluxes (φBP =
∑

φOut
PQ ).

• Step 3: Calculating temporary depths from the fluxes by temporal integration (ΦP = (ψP − φP −
φOut
P )/AP ).

ht+1
P = ht +∆tΦP (23)

• Step 4: Tracing the cells to be recomputed based on the temporary depth (ht+1
P <0).
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• Step 5: Calculation of transfer coefficients between pairs of cells:

CP =
hP

∆tΦP
, CQ =

hQ
∆tΦQ

, CPQ =
min(hQ, hP )

∆t(ψPQ − φPQ − φOut
PQ )

(24)

Cf
PQ = min(CP , CQ, CPQ, 1.0) (25)

• Step 6: Recomputing of fluxes in each cell:

φP =
∑

Cf
PQφPQ, ψP =

∑

Cf
PQψPQ, φ

Out
P =

∑

Cf
PQφ

Out
PQ (26)

• Step 7: Calculating corrected depths and momentum.

• Step 8: Check if any cell is below εwd to avoid spurious oscillations due to localized high velocities.

• Step 9: Apply ER2 numerical treatment if cell is below εwd.

3 Numerical tests and discussion

Four tests are performed: (1) wave propagation over an horizontal plane (comparison of the numerical

treatments in slow moving waves) (2) non-breaking wave propagation over a planar beach (analysis of

wetting-drying fronts/rears); (3) slow moving flood wave propagating over a 2D plain (radial symmetry);

(4) valley flooding complex test following a rapid dam failure. All tests comprise an initial dry bed con-

dition and the threshold constant is defined at εwd =10−5 (m). The CFL coefficient was set to 1. The

computational time (Intel Core i7 2630QM Processor) and average time step for each simulation (∆t) are

shown in Table 2.

Table 2 Average time steps and computational times for the simulations performed

GWM SWE
Test ER1 ER2 ER3 P1 FR1 ER1 ER2 ER3 P1 FR1

∆
t

(s
)

1 1.486 1.486 1.486 1.486 1.486 1.213 1.213 1.213 1.213 1.213
2 1.203 1.202 1.194 1.201 1.189 0.967 0.966 0.966 0.967 0.966
3 2.223 2.223 2.223 2.223 2.223 1.612 1.612 1.612 1.612 1.612
4 3.018 4.174 4.215 4.204 4.092 2.807 3.790 3.855 3.845 4.092

C
P
U
t

(s
) 1 11 11 13 11 12 18 19 19 16 19

2 36 36 50 40 49 133 134 167 157 164
3 146 157 169 149 177 231 243 292 236 325
4 119 76 116 81 136 131 160 175 224 176

3.1 Non-breaking wave propagation over an horizontal plane

The first test is the non-breaking wave propagation over an horizontal plane with friction. The test was

first proposed by Hunter, Horritt, Bates, Wilson, and Werner (2005) and is performed in a 2D channel with

constant width and constant friction thus rendering it a 1D problem with a flat bed. The test domain is 5000

(m) × 400 (m) discretized as 5,273 points and 10,112 cells with an average edge of 21.48 (m) and was run

with a Manning’s friction constant of 0.03 (m1/3s−1). The final simulation time was 3600 (s).

The test allows an analytical solution by assuming constant velocity in the test:

∂h

∂t
+ u

∂h

∂x
= 0 (27)
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∂h

∂x
+
n2u2

h4/3
= 0 (28)

This can be integrated analytically obtaining (Hunter et al., 2005):

h(x, t) =

[

−
7

3

(

n2u2(x− ut)
)

]3/7

(29)

By integration of Equation (28) assuming that Equation (27) is the advection equation at constant velocity

whose solution is h(x, t) = h(x− ut,0) the boundary condition for x =0 (m) is:

h(0, t) =

(

7

3
n2u3t

)3/7

(30)
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Figure 1 Non-breaking wave propagation over an horizontal plane for t =900 (s), t =1800 (s), t =2700 (s) and t =3600 (s). Top: relative depth

difference between numerical treatments using GWM; Centre: relative depth difference using SWE; Bottom: Free surface position for the analytical

solution, GWM, and SWE.

Depth results for the y centre profile are plotted in Fig. 1 – the top figure shows relative differences

between each pair of WD numerical treatments for the GWM model, the centre figure displays the relative

differences between SWE numerical treatments, and the bottom figure the simulated depth plotted for the

average of all GWM and all SWE models. The average was chosen because the curves almost overlap and

the differences between numerical treatments for the same model were not visible. Results are plotted for

four times: t =900 (s), t =1800 (s), t =2700 (s) and t =3600 (s) sequentially.

Small differences in the results are seen since the threshold (εwd) was not considered zero. This is par-

ticularly important in GWM WD were the absence of εwd would result in an overlap of all results. This

is because in a slow moving wave propagation, for the GWM the front wave speed is always the average

between the celerities of the cells adjacent to the front wave, which means that the front wave is never faster

than the perturbations travelling ahead of it. This is also valid to demonstrate that ER2 and FR1 share the

same results for this test, as FR1 was not activated. Mass conservation is kept within machine precision

for all numerical treatments except for ER1 that had a difference of −0.0004%. It should be noticed that

the maximum difference between numerical treatments for t =900 (s) is smaller than 0.01. ER1 tends to
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have a lower front wave depth when compared to the other numerical treatments. ER2 has the lower front

wave and ER3 has the highest front wave for the mass conservative numerical treatments. P1 has no mass

conservation error and no negative depths as the front wave always adjusts negative depths when they occur.

SWE has the ability to propagate front waves faster that the wave perturbations ahead of it therefore the

aforementioned considerations for GWM are not valid for SWE. Oscillations occur throughout the domain.

Relative difference is below 10−5 and is negligible. As in GWM, ER1 has the lower wave front, followed

by FR1, ER2, ER3 and the higher is P1. The maximum relative difference is 1 between P1 and FR1 at

t =2700 (s) when P1 has a cell depth of 2.6×10−6 and FR1 has no water. Except for this localised point,

the relative differences are kept well below 0.01.

The differences in depth values between the models and analytical solutions were also verified making

use of L2:

L2 =

√

√

√

√

√

√

√

n
∑

i=1

(

xNum
i − xAna

i

)2

n
∑

i=1

xAna
i

2
(31)

Since the difference between the numerical models and the analytical model are greater than between

models, in order to find a difference one has to analyse the 5th significant digit.

Table 3 Comparison of L2 depth values between the models and the analytical solution proposed by Hunter et al. (2005)

Model SWE GWM
t =900 (s) t =1800 (s) t =2700 (s) t =3600 (s) t =900 (s) t =1800 (s) t =2700 (s) t =3600 (s)

ER1 0.081517 0.061514 0.051903 0.046052 0.025716 0.021472 0.024725 0.028031
ER2 0.081519 0.061514 0.051903 0.046054 0.025717 0.021471 0.024724 0.028030
ER3 0.081521 0.061517 0.051905 0.046057 0.025717 0.021470 0.024722 0.028028
P1 0.081521 0.061517 0.051906 0.046056 0.025717 0.021470 0.024722 0.028028
FR1 0.081520 0.061515 0.051904 0.046054 0.025717 0.021471 0.024724 0.028030

3.2 Non-breaking Wave Run-up on a Planar Beach

The second test is an adaptation of the first test proposed by Hunter et al. (2005), by introducing a slope in

the bed elevation. The test has a domain of 5000 (m) × 400 (m) and a planar beach slope of 10−3 (m)/(m).

It was run with Manning’s friction coefficient of 0.01 (m1/3s−1). The domain is discretized as 5,273 points

and 10,112 cells with an average edge of 21.48 (m). The final simulation time was 7200 (s). The inlet

boundary condition is a singular positive sine wave with amplitude 8 (m), and 7200 (s) period:

h(0, t) = 4sin(tπ/3600) (32)

Results are plotted every 1800 (s) thus showing the beach wetting and drying. Comparison between

numerical treatments for GWM and SWE is shown in the top and centre Fig. 2, respectively, and the

average surface elevation is plotted in bottom Fig. 2.

Differences of relative magnitude occur in both the GWM and SWE. GWM has more oscillations, mainly

upstream. This is the consequence of the combination of two issues: (1) the imposed boundary conditions

are those for SWE in both models; (2) GWM has a steeper, slower front wave front when compared to SWE,

which, in an ascending run-up might introduce more oscillations. The amount of oscillation is however

very small as the maximum difference is roughly 1%. GWM results also show that the wetting of the beach

has higher differences than the drying, indicating that the model is more stable during drying processes

than during wetting. This is noticeable in the front/rear wave propagation, where the magnitude of the

differences between models at t =1800 (s) and t =3600 (s) is higher than at t =5400 (s) and t =7200

(s). Moreover, the main instabilities occur near the inlet and during the wetting process. SWE shows a less
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Figure 2 Non-breaking wave run-up on a planar beach centre profile for t =1800 (s), t =3600 (s), t =5400 (s), and t =7200 (s). Top: Depth

difference between numerical treatments using GWM; Centre: Depth difference between numerical treatments using SWE; Bottom: Free surface

position in time for both GWM and SWE.

unstable wetting and drying, with the main differences between numerical treatments at the wave front/rear

whether the wave is wetting or drying the beach. Main differences are about 0.1%.

Table 4 summarises the order of numerical treatments from lower to higher peak at the front/rear wave

for the time steps selected. ER3, P1, and FR1, although very different numerical treatments, tend to have

similar positions relative to each other in both the SWE and GWM. ER2 tends to be the most oscillatory

numerical treatment for GWM as it oscillates between the lower and the higher front/rear wave, which is

due to the global redistribution.

Table 4 Order of numerical treatments from lower to higher peak at the front/rear

wave for the four time steps selected for SWE and GWM

Model t =1800 (s) t =3600 (s) t =5400 (s) t =7200 (s)

SWE

Higher ER2 ER1 ER3 ER3

↑

P1 ER3 P1 P1
FR1 P1 FR1 ER2
ER3 ER2 ER2 ER1

Lower ER1 FR1 ER1 FR1

GWM

Higher P1 ER2 ER3 ER3

↑

ER3 ER1 P1 P1
FR1 ER3 ER1 ER1
ER2 P1 FR1 ER2

Lower ER1 FR1 ER2 FR1

3.3 Flood propagation over an extended floodplain

The third test is the propagation of a flood wave over an extended floodplain. This test differs from the non-

breaking wave propagation over an horizontal plane in two aspects. The first difference is in the boundary

condition – instead of a stage hydrograph, a flow hydrograph is used. This changes the way SWE and

GWM treat the boundary conditions and hence the discrepancies between the two models. The second
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difference is the 2D radial propagation that is introduced in this test. The test consists of a (x × y) =
(1000 (m) ×2000 (m)) domain discretized as 7,563 points and 14,347 cells with an average edge of 10.03

(m). The final simulation time was 10800 (s) and the roughness used is 0.05 (m1/3s−1). Inlet conditions

are imposed at x =0 (m) and 990 (m) < y < 1010 (m) as the inflow hydrograph presented in Table

5 with intermediary values interpolated. All numerical treatments had absolute global mass conservation

within machine precision except ER1 that presented a deficit of 3266 and 4748 (m3) for GWM and SWE

respectively. This represents 1.85% and 2.68% relative error, respectively.

Table 5 Flood propagation over an ex-

tended floodplain inflow hydrograph

t (s) 300 3600 10800

Inflow (m3/s) 0 20 20

Results obtained for the central profile are presented in Fig. 3 and the 2D overview of the differences in

Fig. 4.
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Figure 3 Flood propagation over an extended floodplain centre (y =1000 (m)) profile for t =1800 (s), t =3600 (s), t =5400 (s), t =7200 (s),

and t =9000 (s). Left: Difference between numerical treatments using GWM; Centre: Difference between numerical treatments using SWE; Right:

Free surface for all WD numerical treatments for both GWM and SWE.

Figure 3 shows in the top the comparison between numerical treatments for the GWM, on the centre

the comparison for SWE and on the bottom the surface profile for the two models. In Figure 3, unlike the

non-breaking wave propagation over an horizontal plane and the non-breaking wave run-up on a planar

beach, there are no oscillations in the boundary condition as the values are not imposed as in previous tests.

Differences between the WD numerical treatments are very similar between the two models. ER3 is the

numerical treatment with the higher peak difference in surface level with a very similar value to P1, and

ER1 is the lowest. P1 is the faster front wave followed by ER3 whilst the ER1 is slower for both SWE and

GWM. Differences are up to 0.01 (m) which, translated to relative difference can go as high as 100. As seen

by the top and centre image the main difference between GWM and SWE WD numerical treatments is the

magnitude of the difference as the lines are very similar. FR1 and ER2 have the same results, as explained

in the non-breaking wave propagation over an horizontal plane, due to non-existence of negative depths.
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Again, ER3 and P1, although different in concept have a very high degree of similitude.

Figure 4 Depth differences between WD numerical treatments for the flood propagation over an extended floodplain for GWM and SWE. GWM

representation in the lower triangle, SWE representation in the upper triangle; Model 1 vertical and Model 2 horizontal.

Figure 4 shows the difference in simulated depth between all the numerical treatments for the two models

studied: SWE and GWM. ER1 mass conservation error is visible through the difference between ER1 and

the other treatments, as the depth is always below the remaining numerical treatments. ER2 shows a lower

front wave and a higher depth behind the front wave as expected since the water is redistributed along the

whole domain. ER3 shows a lower depth in the front wave and a slightly higher depth behind it. The rest of

the domain is similar between ER3 and P1. All the numerical treatments keep a very high degree of radial

symmetry. FR1 cannot be evaluated by this test as no negative depth occur and therefore is not activated.

3.4 Valley flooding

The last test is the Valley flooding (Néelz & Pender, 2012). The test consists of a river valley with length of

approximately 17000 (m) and a width of 800 (m) with slopes between 1% upstream and 0.1% downstream.

All the boundaries are reflective except for the upstream inlet with length of 260 (m). The inflow hydro-

graph is a skewed trapezoid with 3000 (m3/s) peak (Table 6). Both super and subcritical flows occur in the

simulation. The simulation runs for 54000 (s) with an average cell edge size of 73.9 (m) (7,562 nodes), and

a constant 0.04 (m1/3s−1) roughness value.

Table 6 Valley flooding inflow hydrograph

t (s) 300 600 1200 6000

Inflow (m3/s) 0 3000 3000 0

Cm coefficient is used to compare all modelling results:

Cm =
cw,w − (cw,d + cd,w)

cw,w + cw,d + cd,w
(33)

where, cw,w is the number of wet cells common to all models, cw,d the number of wet cells in the model

that are dry in any of the other models, and cd,w the number of dry cells that are wet in any of the other

models. The Cm coefficient ranges from −1 to 1, where 1 is a perfect fit, 0 when the number of correctly

and erroneously predicted cells is equal, and -1 for the case when all cells differ. Results for all models and
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all numerical treatment are presented in Table 7. It should be noticed that the coefficient only provides a

degree of agreement between all of the treatments and not an absolute comparison.

Table 7 Cm coefficient values for all models and numerical treat-

ments

Model C ER1 ER2 ER3 P1 FR1

SWE 0.7266 0.8549 0.9906 0.9795 0.945
GWM 0.7056 0.8262 0.9926 0.9760 0.9562

Table 7 shows an excellent agreement for ER3, P1 and FR1, whilst ER1 and ER2 do not perform so well.

This comparison shows that ER3 is the model that predicts less erroneous wet or dry cells.

Figure 5 shows the contour for h=0.001 (m) for all the numerical treatments used (i.e. ER1, ER2, ER3,

P1, FR1) and models (i.e. SWE and GWM) for both the front and rear waves at t =9000 (s). SWE results

are presented at the top and GWM at the bottom. All models present a somewhat similar result. Overlap-

ping of contours happens upstream, where small ponds are left behind due to the topography. ER1 clearly

shows a larger contour, upstream and downstream, due to the excess of water erroneously introduced in the

simulation.

Figure 5 Contour for h=0.001 (m) for all the numerical treatments used (i.e. ER1,ER2,ER3,P1,FR1) and models (i.e. SWE and GWM) for both

the front and rear waves at t =9000 (s). SWE results are presented on the top and GWM on the bottom.

ER1 stands out with the largest differences with all other numerical treatments, because it adds water in

the rear waves that become negative both for GWM and SWE. ER1 has a mass error of 96% and 98% for

the GWM and SWE, respectively. ER1 is deemed completely incorrect and therefore inadequate for this

simulation since it doubled the volume of water in the domain. ER1 and ER2 differ in some points for more

than 1 metre from the rest of numerical treatments. ER2 tends to have a slower front wave, with a greater

depth upstream, as seen in Fig. 5, a clear result of the global redistribution of the volume to upstream cells.

P1 has a mass error of 1.08% and 1.19% for the GWM and SWE respectively. This value is much smaller

than ER1. ER3 has a very similar result to P1 and FR1 with a slightly lower wave front than P1. FR1 has

a different behaviour between GWM and SWE since in GWM the front wave is higher whilst in SWE it is

lower when compared to ER3 and P1. The difference between numerical treatments clearly shows that the

choice of WD numerical treatment is of the utmost importance as a simple treatment of the WD front can

lead to very different results given complex flows and geometries.

4 Conclusions

A novel wetting-drying (WD) numerical treatment (ER3) was proposed and thoroughly tested by applying it

to an approximate Roe Riemann solver. Testing was done for four flow situations by comparing differences

between pairs of WD numerical treatments including the novel numerical treatment and four numerical

treatments known from literature adapted to SWE and GWM equations. WD numerical treatments were
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shown to be of the utmost importance as a small difference in the WD numerical treatment can lead to large

errors in the waves’ propagation. A simple adjustment of the negative depths obtained from the numerical

calculations is not sufficient as it can lead to large mass errors (≈200% in the simulation made). Simple

element removal global distributing WD numerical treatments can introduce errors and degenerate the solu-

tion transporting volume of water upstream. Overall local correction WD numerical treatments (ER3) and

flux restricting numerical treatments (FR1) have shown the best results. Although with mass conservation

errors the negative depth numerical treatment (P1) provided similar results to the local correction numerical

treatment and flux restricting numerical treatment.

The presented set of simulations indicate that the novel WD numerical treatment based on the “grav-

itational” attraction coefficient presented in this paper (ER3) shows at least similar performance to FR1

without the need to compute twice the fluxes, which usually translates into a lower computational time and

is overall superior to all other tested numerical treatments.
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Notation

h = water depth (m)

w = velocity vector

u = velocity components in the x direction (ms−1)

v = velocity components in the y direction (ms−1)

g = gravitational acceleration (ms−2)

Bx = bed slope in the y direction (–)

By = bed slope in the x direction (–)

P = generic cell

Q = generic adjacent neighbour

KnP = set of neighbour points

AP = area of cell P
φPQ = Inter-cell numerical flux

φPQ
Out = Boundary numerical flux

ψPQ = Bed elevation source term flux

t = current time (s)

εwd = Wetting and Drying threshold

∆t = computational time step (s)

VPWet
= total volume of water above the threshold at point P (m3)

VPDry+
= total volume of water below the threshold but above 0 (m3)

VPDry−
= total volume of water for negative water depths (m3)

WetP = Variable that defines if cell is Wet or Dry

VP = Volume at cell P (m3)

hwP = depth in cell P if hP ≥ εwd (m)

hwd
P = depth in cell P if hP < εwd (m)

MV = maximum cell volume (m3)

mV = minimum cell volume (m3)

MD = largest distance between cell centres

mD = smallest distance between cell centres

GP,Q = “gravitational” attraction coefficient between P and Q
TGP = total amount of neighbour “gravitational” attraction for cell P

Cf
PQ = transfer coefficients between pairs of cells
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