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Abstract 36 

Local fatigue approaches, such as, the stress-life, strain-life or energetic approaches defines a 37 

framework to estimate the fatigue crack initiation from notches of structural details. Various 38 

engineering structures, such as, bridges, wind towers, among others, are subjected to cyclic 39 

dynamic loadings which may substantially reduce the strength of these structures. Nowadays, the 40 

structural systems tend to be more complex being necessary to find computationally efficient 41 

solutions to perform their fatigue analysis, accounting for dynamic actions corresponding to long 42 

complex loading events (e.g. diversity of trains crossing a bridge), mainly if local approaches are 43 

envisaged. Thus, this paper aims at presenting and validating a generalization of a methodology 44 

based on modal superposition technique, for fatigue damage parameters evaluation, which can be 45 

applied in fatigue analysis using local approaches. This technique was applied recently in the 46 

context of fatigue crack propagation based on fracture mechanics, although it can be extended to 47 

compute the history of local notch stresses and strains at notches. A very important conclusion is 48 

that the technique can be explored for the case of local confined plasticity at notches whenever the 49 

global elastic behaviour of the component prevails. Local submodelling can be explored with this 50 

technique to avoid the necessity of large computational models. Local models are only needed to be 51 

run under linear elastic conditions for the selected modal shapes of the structure, being the local 52 

time history of fatigue damage variable computed by modal superposition for each loading event. 53 

That time history may be further post-processed for elastoplastic conditions using Neuber or 54 

Glinka’s analyses. Comparisons with direct integration elastoplastic dynamic analysis confirmed 55 

the feasibility of the proposed approach. 56 

Keywords: Fatigue local models; Modal superposition; Dynamic analysis; Cyclic elastoplastic 57 

analysis; Structural notched components. 58 

 59 

 60 
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 61 

Nomenclature 62 

𝑎 half of the crack length (crack length in the case of a lateral crack) 63 

𝑏 cyclic fatigue strength exponent 64 

𝑐 fatigue ductility exponent 65 

𝐶  geometry-dependent factor of the stress intensity factor 66 

𝐶 damping matrix 67 

𝐷  fatigue damage 68 

𝐸  Young modulus 69 

𝐹 nodal forces vector dependent of the dynamic load 70 

𝑓 nodal forces vector dependent of the dynamic load of the ith mode of vibration 71 

𝑘𝑡 stress concentration factor 72 

𝑘𝑖 modal stiffness of the ith mode of vibration 73 

𝐾 stress intensity factor 74 

𝐾′ cyclic strain hardening coefficient 75 

𝐾 stiffness matrix 76 

𝐾𝑑𝑦𝑛 stress intensity factor due to the dynamic loading 77 

𝐾𝑖 stress intensity factor related with the ith mode of vibration 78 

𝐾𝑠𝑡𝑎𝑡 stress intensity factor due to the static loading 79 

𝑀 mass matrix 80 

𝑚𝑖 modal mass of the ith mode of vibration 81 

𝑛′ cyclic strain hardening exponent 82 

𝑁𝑓 number of cycles to the crack initiation 83 

𝑛𝑓 number of cycles to failure related with a certain ∆𝜎𝑛𝑜𝑚 84 
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𝑝 magnitude of the loading 85 

𝑡 time  86 

𝑣 load velocity 87 

𝑌 geometry-dependent stress intensity magnification factor 88 

𝑌𝑖 modal coordinate of the ith mode of vibration 89 

𝛼 Rayleigh law damping coefficient 90 

𝛽 Rayleigh law damping coefficient 91 

∆𝑡 time step increment 92 

∆𝜎 local stress range 93 

∆𝜎𝑛𝑜𝑚 nominal stress range 94 

∆𝜎𝐸 local elastic stress range 95 

∆𝜎𝐸𝑃 local elastoplastic stress range 96 

∆𝜀𝐸 local elastic stress range 97 

∆𝜀𝐸𝑃 local elastoplastic strain range  98 

∆𝜀 𝑝 plastic strain range  99 

∆𝜀 local elastoplastic strain range  100 

𝜀𝑓
′  fatigue ductility coefficient 101 

𝜉𝑖 damping coefficient associated to the ith mode of vibration 102 

𝜌 material density 103 

𝜎𝑠𝑡𝑎𝑡 nominal static stress 104 

𝜎𝑑𝑦𝑛 nominal dynamic stress 105 

𝜎𝑖 modal stress related with the ith mode of vibration 106 

𝜎𝑓
′ cyclic fatigue strength coefficient 107 

𝜎𝑚 mean stress 108 

ϕ𝑖 mode shape of the ith mode of vibration 109 
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ϕ𝑠𝑡𝑎𝑡 static deformed shape 110 

𝑤𝑖   natural frequency of the ith mode of vibration 111 

112 
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1. Introduction 113 

The local and global collapse of large structures due to progressive fatigue damage is a problem 114 

that, from a structural point of view, has been gaining importance in design, rehabilitation and 115 

maintenance of these structural systems. The development of fatigue damage can be divided in two 116 

different steps: firstly, a crack initiation phase takes place, which is followed by a crack propagation 117 

phase that is developed until an instability condition may occur, making unsafe the operation of the 118 

structure. 119 

Fatigue damage can be assessed using different methods, namely global S-N approaches, local 120 

stress, strain and energetic approaches and Fracture Mechanics based approaches. The global S-N 121 

approach has been proposed to establish a relation between the nominal or geometric stress range 122 

applied to the structural detail and the whole fatigue life of the detail, being the one that is most 123 

considered in design codes, including Eurocode 3, Part 1-9 [1]. This approach has some important 124 

limitations; among them the fact of being applicable only to a limited number of structural details 125 

and simple loading conditions as anticipated in the codes and also not accounting for the material 126 

influence since S-N curves are generally applicable for a broad range of materials. The local and the 127 

Fracture Mechanics approaches can be used as more precise alternatives to the S-N methodology. In 128 

fact, in the study of large metallic structures, the applicability of the local approaches has been 129 

gaining importance to evaluate the fatigue issues [2–5]. 130 

The number of cycles required for the fatigue crack initiation may be computed using a local notch 131 

approach which, considering the localized nature of the early stage fatigue damage, proposes a 132 

correlation between a local parameter (e.g. strain, energy) and the required cycles to initiate a 133 

macroscopy crack. The most well-known relations in this area derive from proposals by Basquin 134 

[6], Coffin [7], Manson [8] and Morrow [9,10]. Very often the application of these relations requires 135 

elastoplastic analyses since plasticity may develop at notch roots and their vicinities. With this 136 

respect, the approximate analytical tools, such as the ones provided by the combination of the 137 
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Ramberg-Osgood [11], Neuber [11] and Glinka [13–15] approaches, can be applied to establish the 138 

relation between the local assumed elastic stress/strain histories and the actual elastoplastic 139 

stress/strain histories. 140 

The Fracture Mechanics can be applied to study the fatigue crack propagation problem, 141 

complementing the local approaches or allowing the calculation of the residual fatigue life of a 142 

structural detail with an initial crack. This approach is supported by fatigue crack propagation laws, 143 

being the Paris’ law the most important one [16,17]. 144 

The feasibility and accuracy of the determination of the stress ranges or other local fatigue damage 145 

variables, is related to the quality of the modelling. The increment of the complexity of the 146 

structural system leads, naturally, to significant numerical modelling challenges which appear to be, 147 

in most of the cases, associated to complex geometries and to difficulties in defining completely the 148 

dynamic loading. Algorithms for solving the dynamic numerical problems, as Newmark [18] or 149 

Hilber-Hughes-Taylor (HHT) [19], often require the calculation of thousands of load steps, leading 150 

to a process with excessive computation time that hinders refined analyses aiming at computing the 151 

local fatigue damage. Having in mind the referred limitations, it was proposed by Albuquerque et 152 

al. [20,21] the modal superposition technique for the computation of stress intensity factors for a 153 

propagating crack, assuming a linear global behaviour, and combining structural global and local 154 

submodels, a fact that allows the global model of the structure to be simplified without neglecting 155 

the correct numerical representation of the structural behaviour [2,3,22–24]. 156 

The crack initiation mechanisms from notches may involve the development of a localized plastic 157 

zone around the stress concentrator apex. However in most practical structural applications it can be 158 

said that local elastoplastic response does not interfere with the global behaviour of the structure 159 

which is still expected to be linear. Also even with local crack initiation the structural system, 160 

globally, behaves as linear. Such conditions should allow the application of the modal superposition 161 



Engineering Fracture Mechanics 

9 

which can lead to significant gains in terms of computational times. Computational costs could be 162 

further optimized, in the study of large structures, adopting submodelling techniques [25].  163 

Considering the above mentioned, the aim of this paper is to propose the use of the modal 164 

superposition technique to determine the dynamic structural response, in particular to compute the 165 

notch elastoplastic stress/strain histories including the stress and strain ranges, in order to allow 166 

evaluating the fatigue crack initiation phase, using the local fatigue approaches. Two different 167 

routes, involving the suggested modal superposition methodology for fatigue crack initiation 168 

assessment and the consideration or not of submodelling technique, are proposed. Moreover, the 169 

efficiency of suggested technique is evaluated using a case study of a simple supported beam 170 

submitted to dynamic load events, being the structural behaviour analysed through the proposed 171 

modal superposition technique and compared with the results provided by the application of the 172 

HHT algorithm [2], the latter considered as reference values.  173 

 174 

2. Theoretical background 175 

The theoretical background underlying to the proposed methodology in this paper, linking the 176 

concepts of the modal superposition method, local approaches, either to perform elastoplastic 177 

analysis or to compute the necessary number of cycles of a dynamic loading for crack initiation and 178 

the possibility of using submodelling techniques is presented in this section. 179 

 180 

2.1. Analysis of dynamic structural behaviour using modal superposition 181 

A cyclic loading acting on a structural system gives origin to a dynamic behaviour highly dependent 182 

of the characteristics of the structure and of the loading history. If this loading is known and well 183 

characterized, the dynamic behaviour of the structure can be simulated using a numerical finite 184 

element model, which allows computing the nodal forces for each time step. These values, related 185 

to the loading on a certain time, added to the knowledge of the structural properties like mass, 186 
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stiffness and damping allows characterizing the structural system and its dynamic behaviour 187 

through the consideration of a direct time integration method or using the modal superposition 188 

technique. The dynamic behaviour of the structural system can be defined by the system of 189 

equations (1): 190 

𝑀. �̈�(𝑡) + 𝐶. �̇�(𝑡) + 𝐾. 𝑢(𝑡) = 𝐹(𝑡) (1) 

where 𝑀 is the mass matrix, 𝐶 the damping matrix, 𝐾 the stifness matrix, each with a dimension of 191 

N×N, 𝐹 the nodal forces vector, N×1, for a certain time step, 𝑢(𝑡), �̇�(𝑡) and �̈�(𝑡), respectively, the 192 

vectors of displacement, velocities and acceleration whose terms are associated to the N degrees of 193 

freedom. The computation of equation (1) can be done using a direct time integration method for 194 

each time step, although it is easily understood that for structural systems with a large number of 195 

degrees of freedom the computational costs starts to be very significant or even unsustainable. 196 

The modal superposition technique is computationally more efficient than the direct time 197 

integration once the global dynamic behavior of the structure can be properly reproduced 198 

considering the superposition of a limited number of vibration modes, being this possible if the 199 

structure has a global elastic behavior and has invariant properties along the time. Using the modal 200 

superposition method, the system of NxN simultaneous equations is converted in N uncoupled 201 

equations that can be solved independently [26]: 202 

�̈�𝑖(𝑡) + 2𝑤𝑖. 𝜉𝑖. �̇�𝑖(𝑡) + 𝑤𝑖
2. 𝑌𝑖(𝑡) = 𝑓𝑖(𝑡) (2) 

As already referred, equation (2) is the decoupled equation related to the vibration mode i, where 203 

𝑌𝑖(𝑡) is the modal coordinate vector, 𝑤𝑖 the natural frequency, 𝜉𝑖 the damping coefficient, and 𝑓𝑖(𝑡) 204 

the vector of nodal forces associated to the N degrees of freedom for the vibration mode i. Besides 205 

the decoupling of the vibration modes, and subsequent transformation of the N simultaneous 206 

equations system into i decoupled equations, the efficiency of the modal superposition is further 207 
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increased by the fact of the number of modes being in general much smaller than the number N of 208 

the degrees of freedom. 209 

Albuquerque et al. [20,21] proposed the use of modal superposition technique to study the dynamic 210 

behavior of a structure with an initial elliptical crack aiming at computing the stress intensity factor 211 

histories, 𝐾(𝑡), being such information essential to predict the fatigue crack propagation through 212 

fatigue crack propagation laws, such as the Paris’ law. The stress intensity factor can be computed 213 

by the following equation: 214 

𝐾(𝑡) = 𝐶. 𝜎(𝑡). √𝜋𝑎 (3) 

where 𝐶 is a parameter that depends on the geometry of the structure and on the crack dimensions, 215 

𝜎(t) is the nominal stress history acting on the detail and 𝑎 the crack dimension. Taking into 216 

account that the loading acting on a structure can be composed by static and dynamic components, 217 

the stress intensity factor can result from the sum of two different values, 𝐾𝑠𝑡𝑎𝑡 and 𝐾𝑑𝑦𝑛(𝑡), one 218 

that depends on the static stress level, 𝜎𝑠𝑡𝑎𝑡, and another that depends on the dynamic stress, 219 

𝜎𝑑𝑦𝑛(𝑡): 220 

𝐾(𝑡) = 𝐾𝑠𝑡𝑎𝑡 + 𝐾𝑑𝑦𝑛(𝑡)  (4) 

𝐾𝑠𝑡𝑎𝑡 = 𝐶. 𝜎𝑠𝑡𝑎𝑡. √𝜋𝑎  (5) 

𝐾𝑑𝑦𝑛(𝑡) = 𝐶. 𝜎𝑑𝑦𝑛(𝑡). √𝜋𝑎  (6) 

As already referred, the modal superposition method can be applied to structures with a global 221 

linear behavior which means that it is only applicable to assess the crack initiation or crack 222 

propagation due to fatigue when the local plasticity phenomenon or the non-linear contact between 223 

crack faces do not influence the linearity of global behavior. Thus, if these assumptions are verified, 224 

the dynamic stress can be determined by: 225 

𝜎𝑑𝑦𝑛(𝑡) = ∑ 𝜎𝑖𝑖 . 𝑌𝑖 (𝑡)  (7) 
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where 𝜎𝑖 is the nominal stress associated to the ith mode shape and 𝑌𝑖 (𝑡) is, as already referred, the 226 

modal coordinate of the ith mode of vibration. Considering equations (6) and (7), the determination 227 

of the stress intensity factor is performed according to: 228 

𝐾𝑑𝑦𝑛(𝑡) = 𝐶. ∑ 𝜎𝑖𝑖 . 𝑌𝑖 (𝑡). √𝜋𝑎 = ∑ 𝐾𝑖𝑖 . 𝑌𝑖  (𝑡) (8) 

𝐾𝑖 can be defined as the stress intensity factor obtained for the mode shape of the ith mode of 229 

vibration, which means the modal stress intensity factor.  Thus, the total stress intensity factor can 230 

be computed by: 231 

𝐾(𝑡) = 𝐾𝑠𝑡𝑎𝑡 + ∑ 𝐾𝑖𝑖 . 𝑌𝑖 (𝑡)  (9) 

The logic underlying the concept of the modal stress intensity factors can be extended to other local 232 

structural quantities as stresses, strains or energetic parameters. Thus equations (4) and (8) can be 233 

written in the following general form: 234 

𝜓(𝑡) = 𝜓𝑠𝑡𝑎𝑡 + ∑ 𝜓𝑖𝑖 . 𝑌𝑖 (𝑡)  (10) 

where 𝜓 can be a generic fatigue damage quantity (e.g. stress, strain, energy, stress intensity, J-235 

Integral, COD), being 𝜓𝑠𝑡𝑎𝑡 the part of this quantity that depends on the static loading and  𝜓𝑖 the 236 

modal value determined considering the mode shape of the ith mode of vibration. Taking into 237 

account equation (10) it is easily understandable that the modal superposition can be extended to 238 

compute local quantities required to assess the crack initiation due to fatigue phenomenon. 239 

 240 

2.2. Crack initiation assessment 241 

The fatigue crack initiation can be analyzed considering local approaches which require the 242 

computation of local fatigue damage parameters in order to establish a relation between these local 243 

parameters and the number of cycles required to the crack initiation. The most well-known relations 244 

in this area are the Basquin [6], equation (11), Coffin [7] and Manson [8], equation (12), Basquin-245 

Coffin-Manson [5], equation (13), and Morrow [10], equation (14): 246 
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∆𝜎 

2
= 𝜎𝑓

′(2𝑁𝑓)
𝑏
  (11) 

∆𝜀𝑃

2
= 𝜀𝑓

′ (2𝑁𝑓)
𝑐
  

(12) 

∆𝜀𝐸𝑃

2
=

𝜎𝑓
′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐
  

(13) 

∆𝜀𝐸𝑃

2
=

𝜎𝑓
′ −𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐
  

(14) 

where ∆𝜎 is the local stress range, ∆𝜀𝑝 the plastic stress range, ∆𝜀𝐸𝑃 the local elastoplastic strain 247 

range, 𝜎𝑓
′ and b, respectively, the cyclic fatigue strength coefficient and exponent, 𝜀𝑓

′  and c, 248 

respectively, the fatigue ductility coefficient and exponent, 𝜎𝑚 the mean stress, 𝑁𝑓 the number of 249 

cycles to the crack initiation, and E the Young modulus. Taking into account these quantities, and in 250 

order to use the stress/strain results after a linear elastic finite element analysis, a relation between 251 

the nominal elastic stress and the local notch elastoplastic stress/strain range can be established 252 

using the Neuber [12], equation (15), or Glinka [13–15], equation (16), and the Ramberg-Osgood 253 

[11], equation (17), relations. 254 

(𝑘𝑡∆𝜎𝑛𝑜𝑚)2

𝐸
=

∆𝜎2

𝐸
+ 2∆𝜎 (

∆𝜎

2𝐾′
)

1
𝑛′⁄

  (15) 

(𝑘𝑡∆𝜎𝑛𝑜𝑚)2

𝐸
=

∆𝜎2

𝐸
+

4∆𝜎

𝑛′+1
(

∆𝜎

2𝐾′
)

1
𝑛′⁄

  (16) 

∆𝜀 =
∆𝜎

𝐸
+ 2 (

∆𝜎

2𝐾′
)

1
𝑛′⁄

  (17) 

In equations (15)-(17), 𝑘𝑡 is the elastic stress concentration factor, 𝐾′ are 𝑛′ are, respectively, the 255 

cyclic strain hardening coefficient and exponent and ∆𝜎𝑛𝑜𝑚 the nominal elastic stress range, 256 

computed near the notch. Analyzing the expressions presented above, equations (11)-(17), it is clear 257 

that besides the material constants/parameters, 𝑘𝑡 and ∆𝜎𝑛𝑜𝑚 are the only unknowns. If the value of 258 

𝑘𝑡 can be eventually determined through a static analysis using the finite element model, the 259 

nominal stress range can only be obtained after the dynamic analysis of the structural system, which 260 
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means that ∆𝜎𝑛𝑜𝑚 can be computed solving equation (1) applying a direct time integration method 261 

or, more efficiently, the modal superposition technique.  262 

In the case of complex structures, the elastic stress concentration factor, 𝑘𝑡, is not easy to compute 263 

since the definition of the nominal stress is generally not clear. The application of the Neuber [12] 264 

and Glinka [13-15] approaches need to be performed without the stress concentration factor 265 

formulation, relating directly the local elastic stress/strain field with the local elastoplastic 266 

stress/strain field: 267 

∆𝜎𝐸 . ∆𝜀𝐸 =
∆𝜎𝐸𝑃2

𝐸
+ 2∆𝜎𝐸𝑃 (

∆𝜎𝐸𝑃

2𝐾′
)

1
𝑛′⁄

  (18) 

∆𝜎𝐸 . ∆𝜀𝐸 =
∆𝜎𝐸𝑃2

𝐸
+

4∆𝜎𝐸𝑃

𝑛′+1
(

∆𝜎𝐸𝑃

2𝐾′
)

1
𝑛′⁄

  (19) 

where ∆𝜎𝐸 and ∆𝜀𝐸 are, respectively, the local elastic stress and strain ranges at the notch, and 268 

∆𝜎𝐸𝑃 and ∆𝜀𝐸𝑃 the local elastoplastic stress and strain ranges at the same point. In simple cases the 269 

value of ∆𝜎𝐸 is indirectly calculated through 𝑘𝑡.∆𝜎𝑛𝑜𝑚, something that is not expected when the 270 

structural geometry and loading are complex. Also, in the simpler version of Neuber/Glinka 271 

relations ∆𝜀𝐸  is computed from ∆𝜎𝐸/E but this is an approximation only valid for near uniaxial 272 

stress conditions. For multiaxial stress states, the numerical model will provide a better 273 

approximation for the elastic strain and consequently the energy term, ∆𝜎𝐸. ∆𝜀𝐸 . 274 

 275 

2.3. Submodelling 276 

Generally, the global numerical model of a large structure, even when built with beam or shell 277 

elements discretized with a coarse mesh, is able to properly reproduce the dynamic global 278 

behaviour [2,3,24]. However, despite the accuracy of these results, a local fatigue analysis demands 279 

a much more refined model, typically built with shell or brick elements, which tend to be hard to 280 

handle using a global model because it increases significantly the computational costs. 281 
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An alternative approach, lighter in terms of computational costs, consists in the analysis of the 282 

global model and the subsequent imposition of the obtained displacement field to a refined local 283 

model. Hence, the utilization of submodelling techniques, such as beam-to-shell, shell-to-shell, 284 

shell-to-solid, beam-to-solid, are particularly useful since the displacement fields from the global 285 

model is applied to the local model using shape functions which means that there are not any 286 

constraints to the global or local modelling. 287 

 288 

2.4. Computational algorithm 289 

Considering the main objectives of this paper, the simulation of fatigue crack initiation using local 290 

approaches and the modal superposition method to assess the local damage parameters, the 291 

following steps are proposed: 292 

• Computation of nominal stress, 𝜎𝑠𝑡𝑎𝑡, and displacement field, 𝜙𝑠𝑡𝑎𝑡, due to the static loading; 293 

• Modal analysis of the structure and consequent calculation, for each ith vibration mode, of the 294 

modal frequencies, 𝑤𝑖, the modal mass, 𝑚𝑖, the modal stiffness, 𝑘𝑖, and the vibration mode 295 

shapes, Φ𝑖; 296 

• Evaluation of the dynamic loading, 𝐹(𝑡), and determination of the nodal forces, 𝑓𝑖(𝑡); 297 

• Calculation of the time histories of the modal coordinates, 𝑌𝑖(𝑡); 298 

• Computation of the nominal stress spectrum, 𝜎𝑛𝑜𝑚(𝑡), considering the static and dynamic parts: 299 

𝜎𝑛𝑜𝑚(𝑡) = 𝜎𝑠𝑡𝑎𝑡 + ∑ 𝜎𝑖𝑖 . 𝑌𝑖 (𝑡)  (20) 

• Determination of the mean stress, 𝜎𝑚; 300 

• Selection of the local approach depending on whether the detail remains elastic or not; 301 

• Calculation of the nominal stress range, ∆𝜎𝑛𝑜𝑚, and the corresponding number of cycles, 𝑛𝑓, 302 

applying the rainflow method to the nominal stress spectrum, 𝜎𝑛𝑜𝑚(𝑡); 303 

• Determination of the required number of cycles to the crack initiation , 𝑁𝑓, applying a local 304 

approach; 305 
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• Computation of the linear accumulation damage, 𝐷, using the Miner’s relation: 306 

𝐷 = ∑
𝑛𝑓

𝑁𝑓
  (21) 

Taking into account the presented computational algorithm, the steps sequence to assess the 307 

necessary number of cycles to the crack initiation can be summarized as shown in Fig. 1. The 308 

computational algorithm may include, or not, the consideration of the submodeling techniques. If it 309 

is not considered a submodel, the nominal stress spectrum is computed after the application of the 310 

modal superposition method to the global model (Fig. 2). 311 

The proposed methodology, besides the already referred advantages, presents a major value in 312 

terms of the computation process when several calculations related with different loading scenarios 313 

are needed. More specifically, for each time step, the consideration of several dynamic events only 314 

requires the definition of 𝑓𝑖(𝑡) and 𝑌𝑖(𝑡) for each loading and not the solution of the N×N system of 315 

simultaneous equations for each dynamic event.  316 

 317 
 

 

Fig. 1. Flow chart for the application of the proposed modal superposition methodology for fatigue crack initiation assessment (with submodeling). 
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Fig. 2. Flow chart for the application of the proposed modal superposition methodology for fatigue crack initiation assessment (without submodeling). 
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to know in advance the elastic stress concentration factor. If the structural engineer has to deal with 321 

a complex structure, as already mentioned, the value of 𝑘𝑡 is not easily computed, being necessary 322 
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principles to the fatigue crack propagation analysis [2,3,20,21]. In the present paper a generalization 330 
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applied. For large structures the fatigue crack initiation process does not influence the global 335 

behaviour of the structure, therefore modal analysis only needs to be performed one time. However, 336 

when fatigue crack propagation is performed, it is worthwhile to refer that the propagating fatigue 337 

crack may change the global behaviour of the structure which may require periodic updates of the 338 

structural vibration modes. 339 

 340 

3. Crack initiation assessment – application to a notched structural member 341 

In order to validate the applicability of the modal superposition methodology for fatigue crack 342 

initiation assessment, a numerical model of a notched simple structure was developed and duly 343 

characterized from a geometric and material point of view. According to the computational 344 

algorithm presented in the section 2.4, the flow chart pictured in Fig. 2 was implemented, i.e., the 345 

explicit submodelling was not applied. The option for a simple structure was taken in order to 346 

control all the parameters with direct or indirect influence in the structural dynamic behaviour. 347 

The effectiveness of the proposed methodology is naturally dependent on the analytical 348 

elastoplastic approach considered, hence the referred influence was tested through the consideration 349 

of the Neuber [12] and Glinka [13-15] proposals. Instead of kt-𝜎𝑛𝑜𝑚 based elastoplastic 350 

formulations, elastoplastic analyses formulated from the local elastic stress/strain computed directly 351 

from the finite element model, Equations (18)-(19), are used. 352 

The finite element model was submitted to dynamic loadings with variable intensity obtained 353 

through the moving loads approach. The dynamic analyses were carried out using the proposed 354 

modal superposition methodology with post-processing elastoplastic analysis and HHT algorithm 355 

[18] coupled with elastoplastic material behaviour, being compared the obtained stress-strain 356 

diagrams. Additionally, the necessary number of cycles to the crack initiation, 𝑁𝑓 , is computed 357 

using the Morrow approach [10]. The extension of local plastic volume is also evaluated and 358 

commented as regards the reliability of the simulated modal superposition methodology. 359 
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 360 

3.1. Structure description 361 

A notched simply supported steel beam, with a 10m span and a HEB 700 cross section was 362 

idealised. At mid span a circular hole with 10mm of radius was admitted to simulate a notch/defect 363 

on the inferior flange. The numerical model was conceived using the ANSYS software [27] (Fig. 364 

3). 365 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Finite element model of a simple supported beam with a circular hole at the lower flange. 

 366 

The finite element model was built with 20-node brick elements with mesh refinement on the 367 

notched zone to improve the description of the local stress and strain fields [28]. The beam is 368 

assumed of S355 steel which was characterized in terms of elastoplastic behaviour and fatigue by 369 

De Jesus et al. [29]. In the HHT analysis, the material is assumed elastoplastic in a central length of 370 

4m of the bottom flange and web. The remaining of the structure was assumed linear elastic with 371 

the same density (𝜌), Young modulus (𝐸) and Poisson ratio (𝜐) of the elastoplastic material. These 372 

two materials option corresponds to a partial submodelling that helps numerical convergence and 373 

computation costs reduction. Fig. 4 represents the elastoplastic stress-strain cyclic curve of the S355 374 

steel grade, adapted from De Jesus et al. [29]. 375 
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• Density, 𝜌=7850kg/m3 

• Young modulus, 𝐸=209.4GPa 

• Poisson’s ratio, 𝜐=0.3 

 

• Cyclic curve parameters: 

     𝑘′=595.85MPa 

     𝑛′=0.757 

     𝜎𝑓′=952.2MPa 

     𝜀𝑓′=0.737MPa 

     𝑏=-0.089 

     𝑐=-0.664 

Fig. 4. Cyclic stress-strain curve of the S355 grade (adapted from [29]). 

 376 

In Fig. 4., the material parameters required to perform a cyclic elastoplastic analysis taking into 377 

account the Neuber [12], Eqs. (15) or (18), or Glinka [13-15], Eqs. (16) or (19), approaches and, 378 

subsequently, to compute the necessary number of cycles to the crack initiation, 𝑁𝑓, according to 379 

Morrow [10], eq. (14), are presented.  380 

 381 

3.2. Dynamic analysis assumptions 382 

The structural mass was calibrated in order the main natural frequencies being close to available 383 

data in the literature [30], seeking to approximate the idealized structure of a practical case. The 384 

stiffness was determined for the described simple supported beam considering the defined cross 385 

section, although it should be noted that the out of plane degrees of freedom were also restrained in 386 

order to eliminate purely local modes, without contributions to the global dynamic behavior, and 387 

whose existence is only possible due to the absence of transverse bracing. 388 

In the modal superposition analysis, a constant modal damping ratio, 𝜉, of 0.5% was assumed for all 389 

the considered modes; concerning the calculation considering the HHT algorithm [19] it was 390 

assumed a Rayleigh damping law characterized with the coefficients 𝛼 equal to 0.682414 and 𝛽 to 391 

0.000024, values computed considering the first and third modes of vibration [26]. In the analyses, 392 
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a time step increment, ∆𝑡, equal to 0.0001s and a residual free vibration period of 0.1s were 393 

admitted.  394 

Taking into account the simplicity of the structure, it was expected a small number of modes to 395 

contributed significantly to the total dynamic response. A sensitivity analysis allowed to prove such 396 

assumption, being considered only the first 5 vibration modes to capture accurately the total 397 

structural response.  398 

 399 

3.3. Dynamic loading 400 

Several dynamic loadings were considered to evaluate the efficiency of the proposed methodology 401 

and the influence of the plasticity phenomenon at the notched bottom flange. In a given time 402 

instant, 𝑡, the nodal loads were computed with base on their position along the beam and on the 403 

node coordinates. Each loading, characterized by a given magnitude, 𝑝, and by a certain velocity, 𝑣, 404 

applies only one cycle to the structure, 𝑛𝑓. The considered dynamic loads are summarized in Table 405 

1. 406 

Table 1. Considered dynamic loading: moving concentrated loadings. 407 

Loading Id (1) (2) (3) (4) (5) (6) 

𝑝 (kN) 800 800 900 900 1000 1000 

𝑣 (km/h) 100 200 100 200 100 200 

 408 

As shown in Table 1, six different loadings were admitted which gave origin to eighteen dynamic 409 

analyses. Twelve performed according the proposed modal superposition methodology, six 410 

considering the Neuber approach [12], eq. (15) or (18), and other six the one proposed by Glinka 411 

[13-15], eq. (16) or (19), according to the flow chart presented in Fig. 2, and the last six applying 412 

the HHT algorithm [18] in order to allow a validation process. To avoid local singularities or 413 

unexpected resonant effects that would cause problems to the numerical convergence of the results, 414 

the loading of the structure was made considering linear loads, perpendicular to the longitudinal 415 
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direction of the beam, with 0.085m of development. The resultants of the linear loads were equal to 416 

the magnitude, 𝑝. 417 

The implementation of the Neuber and Glinka approaches were made using the Fatigue Life 418 

Prediction –FLP software developed by Silva [31]. 419 

 420 

3.4. Results of the dynamic analysis 421 

Taking into account the established fundamentals, the aimed dynamic analyses were carried out. 422 

According to the eq. (10) the generic fatigue damage quantity, 𝜓, was defined as stresses and strains 423 

along the longitudinal direction, allowing to obtain the stress-strains diagrams at the notch apex. 424 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) 𝑝=800kN, 𝑣=100km/h (2) 𝑝=800kN, 𝑣=200km/h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) 𝑝=900kN, 𝑣=100km/h (4) 𝑝=900kN, 𝑣=200km/h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(5) 𝑝=1000kN, 𝑣=100km/h (6) 𝑝=1000kN, 𝑣=200km/h 

 

Fig. 5. Elastoplastic stress-strain diagrams under dynamic loading. 
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In Fig.5, it is possible to observe, for the loadings (1), (2), (3) and (4), a notorious agreement 426 

between the obtained stress-strain diagrams through the modal superposition combined with the 427 

Glinka approach [13-15] and the results of the direct time integrations using the HHT algorithm 428 

[19]. A discrepancy between the results was found when the modal superposition was use together 429 

with the Neuber approach [12], the Neuber approach resulting in higher average strains which is 430 

consistent with the conservatism usually associated to this rule. Therefore, despite the plasticity 431 

phenomenon, it was possible for the referred loadings to achieve satisfactory agreement in the 432 

stress-strain diagrams with the modal superposition analysis plus Glinka approach. In the cases of 433 

the loadings (5) and (6), the increment on the magnitude, 𝑝, resulted in the development of larger 434 

plastic zones, which explain the progressive discrepancy between the stress-strain diagrams from 435 

the two dynamic analyses. 436 

Table 2 presents the relevant results obtained after the two dynamic analyses, including cycles 437 

information in terms of strains and stresses and life estimations using the Morrow model, eq. (14). 438 

Percentage differences relative to the results obtained with the HHT algorithm [19], assumed as 439 

reference, (actual value/reference value-1), are also presented. The data from the table confirms the 440 

conclusions pointed out after the observation of Fig. 5. The necessary number of cycles for the 441 

crack initiation computed using the Morrow approach, confirmed the Neuber proposal as 442 

considerably conservative. Also the deviations in the stress computations are significantly lower 443 

than in strain computations. The computations of the stress and strain variations are also much more 444 

precise than the minimum and maximum stress and strain values. These two considerations led to 445 

accurate life predictions using the modal superposition analysis plus simplified analytical 446 

elastoplastic analysis, with maximum deviations of 21% using the Glinka approach for the loading 447 

(5), which is the loading generating the highest residual plastic zone (see Fig. 6). While Neuber 448 

approach generated maximum deviations of 3% on stress ranges and 35% on strain ranges, the 449 

Glinka approach generated deviations of -4.4% on stress range and 8.5% on stress range. 450 
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 451 

 452 

Table 2. Relevant results of the dynamic and fatigue analysis. 453 

Loading # 
𝜎𝑚𝑎𝑥 

(MPa) 

𝜎𝑚𝑖𝑛 
(MPa) 

𝜎𝑚 
(MPa) 

∆𝜎 
(MPa)  

𝜀𝑚𝑎𝑥 𝜀𝑚𝑖𝑛 𝜀𝑚 ∆𝜀 
 

𝑁𝑓  

(1) 

𝑝=800kN 

𝑣=100km/h 

HHT 396.25 -257.27 69.49 653.52 

 

0.00423 0.00070 0.00247 0.00353 
 

57953 

Neuber 394.31 -278.84 57.73 673.15 

 

0.00610 0.00193 0.00402 0.00417 
 

34387 

∆% -0.5% 8.4% -16.9% 3.0% 
 

44.2% 175.7% 62.8% 18.1% 
 

-40.7% 

Glinka 378.36 -273.66 52.35 652.02 

 

0.00423 0.00052 0.00238 0.00371 
 

48937 

∆% -4.5% 6.4% -24.7% -0.2% 
 

0.0% -25.7% -3.6% 5.1% 
 

-15.6% 

 

            

(2) 

𝑝=800kN 

𝑣=200km/h 

HHT 392.94 -282.37 55.28 675.31 
 

0.00396 0.00010 0.00203 0.00387 
 

39407 

Neuber 391.47 -298.11 46.68 689.58 
 

0.00570 0.00106 0.00338 0.00464 
 

21457 

∆% -0.4% 5.6% -15.6% 2.1% 
 

43.9% 960.0% 66.5% 19.9% 
 

-45.6% 

Glinka 375.70 -290.74 42.48 666.45 
 

0.00400 -0.00001 0.00199 0.00401 
 

35144 

∆% -4.4% 3.0% -23.2% -1.3% 
 

1.0% -110.0% -2.0% 3.6% 
 

-10.8% 

 

            

(3) 

𝑝=900kN 

𝑣=100km/h 

HHT 410.45 -274.78 67.83 685.23 
 

0.00543 0.00139 0.00341 0.00404 
 

30661 

Neuber 402.99 -298.41 52.29 701.39 
 

0.00757 0.00251 0.00504 0.00506 
 

15250 

∆% -1.8% 8.6% -22.9% 2.4% 
 

39.4% 80.6% 47.8% 25.2% 
 

-50.3% 

Glinka 386.47 -290.44 48.01 676.91 
 

0.00507 0.00080 0.00294 0.00427 
 

26074 

∆% -5.8% 5.7% -29.2% -1.2% 
 

-6.6% -42.4% -13.8% 5.7% 
 

-15.0% 

 

            

(4) 

𝑝=800kN 

𝑣=200km/h 

HHT 406.20 -304.26 50.97 710.45 
 

0.00508 0.00060 0.00284 0.00448 
 

21022 

Neuber 400.21 -315.06 42.57 715.27 
 

0.00706 0.00139 0.00423 0.00566 
 

10208 

∆% -1.5% 3.5% -16.5% 0.7% 
 

39.0% 131.7% 48.9% 26.3% 
 

-51.4% 

Glinka 383.88 -305.45 39.21 689.33 
 

0.00478 0.00014 0.00246 0.00463 
 

19169 

∆% -5.5% 0.4% -23.1% -3.0% 
 

-5.9% -76.7% -13.4% 3.3% 
 

-8.8% 

 

            

(5) 

𝑝=1000kN 

𝑣=100km/h 

HHT 426.93 -284.07 71.43 711.00 
 

0.00729 0.00280 0.00504 0.00449 
 

19658 

Neuber 410.32 -312.74 48.79 723.05 
 

0.00914 0.00308 0.00611 0.00606 
 

8157 

∆% -3.9% 10.1% -31.7% 1.7% 
 

25.4% 10.0% 21.2% 35.0% 
 

-58.5% 

Glinka 393.38 -302.97 45.20 696.35 
 

0.00597 0.00109 0.00353 0.00487 
 

15531 

∆% -7.9% 6.7% -36.7% -2.1% 
 

-18.1% -61.1% -30.0% 8.5% 
 

-21.0% 

 

            

(6) 

𝑝=1000kN 

𝑣=200km/h 

HHT 423.84 -316.37 53.73 740.21 

 

0.00687 0.00168 0.00428 0.00519 

 

12114 

Neuber 407.75 -327.64 40.05 735.40 

 

0.00855 0.00175 0.00515 0.00680 

 

5735 

∆% -3.8% 3.6% -25.5% -0.6% 

 

24.5% 4.2% 20.3% 31.0% 

 

-52.7% 

Glinka 390.96 -316.60 37.18 707.56 

 

0.00563 0.00032 0.00297 0.00531 

 

11650 

∆% -7.8% 0.1% -30.8% -4.4% 

 

-18.0% -81.0% -30.6% 2.3% 

 

-3.8% 

 454 

 455 
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(1) 𝑝=800kN, 𝑣=100km/h (2) 𝑝=800kN, 𝑣=200km/h 

  

(3) 𝑝=900kN, 𝑣=100km/h (4) 𝑝=900kN, 𝑣=200km/h 

  

(5) 𝑝=1000kN, 𝑣=100km/h (6) 𝑝=1000kN, 𝑣=200km/h 

 

Fig. 6. Residual equivalent plastic strain, evolution of the local plastic material volume. 

 456 

Fig. 6 shows the residual equivalent plastic strain fields [32] after the load passage which gives a 457 

measure of the volume of material plastically deformed. The evolution of the plastic zone with the 458 

magnitude, 𝑝, of the loading is notorious, but less important when the loading speed doubles. 459 

Nevertheless for all cases the plastic zone region is still confined and therefore no significant effect 460 

on stress and strain ranges is verified as well as in the life calculations. 461 
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 462 

4. Concluding remarks 463 

The fatigue damage is a structural problem that is fundamental to assess in order to extend the 464 

operational life of the existing structures. The scale of large structures puts significant problems in 465 

terms of numerical modelling and structural analysis, particularly in what refers to the application 466 

of local models to fatigue. 467 

The obtained results, after the validation of the proposed modal superposition technique for fatigue 468 

crack initiation assessment, allow concluding that they are promising for the analysis of more 469 

complex structural problems. The proposed technique presented in the present paper, under the 470 

condition of localized plasticity, combined with the work of Albuquerque et al. [20,21] enables the 471 

structural engineer to fully assess the fatigue phenomenon using the modal superposition method.  472 

The consideration of the approached technique permits to optimize the calculation process, making 473 

possible the dynamic structural analysis in an affordable computational time. Regarding the simple 474 

structure idealized and considering the assumption underlying the dynamic analysis, the calculation 475 

involving the proposed technique took 10 seconds to compute the stress and strain results, while the 476 

application of the HHT algorithm spent more than 5 hours, such difference giving a clear 477 

quantification of the potential of the proposed technique. Moreover, the use of this method 478 

conjugated with submodelling techniques can increase the accuracy and efficiency of refined 479 

analysis of complex notched details, which means the computation of the local stress and strain data 480 

required to assess the fatigue crack initiation at notches. The modal superposition analysis with the 481 

Glinka elastoplastic post-processing is more precise than using the Neuber post-processing. 482 

Further studies for more complex structures are needed, in particularly, the evaluation of the 483 

accuracy of the results when contact non-linearities are present at the notched area (e.g. riveted 484 

joints). 485 

 486 



Engineering Fracture Mechanics 

27 

Acknowledgments 487 

Authors acknowledge the Portuguese Foundation for Science and Technology for the funding, 488 

particularly through the iRail doctoral program and the grants PD/BD/114101/2015 and 489 

SFRH/BPD/107825/2015. Authors gratefully acknowledge the funding of SciTech - Science and 490 

Technology for Competitive and Sustainable Industries (NORTE-01-0145-FEDER-000022), R&D 491 

project co-financed by Programa Operacional Regional do Norte. 492 

 493 

References 494 

[1] CEN, Eurocode 3: Design of steel structures - Part 1-9: fatigue strength of steel strucutres, 495 

(2005). 496 

[2] C. Albuquerque, Advanced Methodologies for the Assessment of the Fatigue Behaviour of 497 

Railway Bridges, Phd Thesis, Faculty of Engineering of the University of Porto, 2015. 498 

[3] A.L.L. Silva, Advanced Methodologies for the Fatigue Analysis of Representative Details of 499 

Metallic Bridges, Phd Thesis, Faculty of Engineering of the University of Porto, 2015. 500 

[4] R.M. Teixeira, Metodologias para Modelagem e Análise da Fadiga em Ligações Rebitadas 501 

com Aplicação em Pontes Metálicas Ferroviárias, Phd Thesis, Escola Politécnica da 502 

Universidade de São Paulo, 2015. 503 

[5] D. Radaj, C.M. Sonsino, W. Fricke, Fatigue Assessment of Welded Joints by Local 504 

Approaches, Woodhead publishing, 2006. 505 

[6] O.H. Basquin, The Exponential Law of Endurance Tests, Am. Soc. Test. Mater. Proc. Vol. 506 

10 (1910) 625–630. 507 

[7] L.F. Coffin, A Study of the Effects of the Cyclic Thermal Stresses on a Ductile metal, Trans. 508 

ASME. Vol. 76 (1954) 931–950. 509 

[8] S.S. Manson, Behaviour of Materials under Conditions of Thermal Stress, NACA, USA, 510 

1954. 511 



Engineering Fracture Mechanics 

28 

[9] J. Morrow, Cyclic Plastic Strain Energy and Fatigue of Metals, in: Intern. Frict. Damping, 512 

Cycl. Plast., ASTM International, 1965: pp. 45–87. doi:10.1520/STP43764S. 513 

[10] J. Morrow, Fatigue design handbook, in: Fatigue Prop. Met., No. AE-4, Society of 514 

Automotive Engineers, Warrendale, PA., 1968: pp. 21–29. 515 

[11] W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, (1943). 516 

[12] H. Neuber, Theory of stress concentration for shear-strained prismatical bodies with arbitrary 517 

nonlinear stress-strain law, J. Appl. Mech. 28 (1961) 544–550. 518 

[13] G. Glinka, Energy density approach to calculation of inelastic strain-stress near notches and 519 

cracks, Eng. Fract. Mech. 22 (1985) 485–508. doi:http://dx.doi.org/10.1016/0013-520 

7944(85)90148-1. 521 

[14] G. Glinka, Calculation of inelastic notch-tip strain-stress histories under cyclic loading, Eng. 522 

Fract. Mech. 22 (1985) 839–854. doi:http://dx.doi.org/10.1016/0013-7944(85)90112-2. 523 

[15] G. Glinka, Relations Between the Strain Energy Density Distribution and Elastic-Plastic 524 

Stress-Strain Fields Near Cracks and Notches and Fatigue Life Calculation, ASTM STP 942. 525 

(1988) 1022–1047. doi:10.1520/STP24538S. 526 

[16] D. Broek, Elementary Engineering Fracture Mechanics, 3rd ed., Martinus Nijhoff Publishers, 527 

The Hague, Netherlands, 1982. 528 

[17] C.A.G. de M. Branco, A.A. Fernandes, P.M.S.T. de Castro, Fadiga de Estruturas Soldadas, 2a 529 

ed, Fundação Calouste Gulbenkian, Lisboa, 1999. 530 

[18] K.-J. Bathe, Finite Element Procedures, Prentice Hall Inc, New Jersey, 1996. 531 

[19] J. Chung, G.M. Hulbert, A time integration algorithm for structural dynamics with improved 532 

numerical dissipation: the generalized-α method, J. Appl. Mech. 60 (1993) 371–375. 533 

[20] C. Albuquerque, P.M.S.T. de Castro, R. Calçada, Efficient crack analysis of dynamically 534 

loaded structures using a modal superposition of stress intensity factors, Eng. Fract. Mech. 93 535 

(2012) 75–91. doi:http://dx.doi.org/10.1016/j.engfracmech.2012.06.009. 536 



Engineering Fracture Mechanics 

29 

[21] C. Albuquerque, A.L.L. Silva, A.M.P. de Jesus, R. Calçada, An efficient methodology for 537 

fatigue damage assessment of bridge details using modal superposition of stress intensity 538 

factors, Int. J. Fatigue. 81 (2015) 61–77. 539 

doi:http://dx.doi.org/10.1016/j.ijfatigue.2015.07.002. 540 

[22] K. Kiss, L. Dunai, Stress history generation for truss bridges using multi-level models, 541 

Comput. Struct. 78 (2000) 329–339. doi:10.1016/s0045-7949(00)00079-1. 542 

[23] K. Kiss, L. Dunai, Fracture mechanics based fatigue analysis of steel bridge decks by two-543 

level cracked models, Comput. Struct. 80 (2002) 2321–2331. doi:10.1016/s0045-544 

7949(02)00254-7. 545 

[24] H. Zhou, G. Shi, Y. Wang, H. Chen, G. De Roeck, Fatigue evaluation of a composite railway 546 

bridge based on fracture mechanics through global-local dynamic analysis, J. Constr. Steel 547 

Res. 122 (2016). doi:10.1016/j.jcsr.2016.01.014. 548 

[25] Z.X. Li, T.Q. Zhou, T.H.T. Chan, Y. Yu, Multi-scale numerical analysis on dynamic 549 

response and local damage in long-span bridges, Eng. Struct. 29 (2007) 1507–1524. 550 

doi:http://dx.doi.org/10.1016/j.engstruct.2006.08.004. 551 

[26] R.W. Clough, J. Penzien, Dynamics of structures, McGraw-Hill, 1975. 552 

[27] ANSYS® Academic Research, Release 17.1, 2017. 553 

[28] ANSYS® Academic Research, Release 17.1, Element Reference, Coupled Field Analysis 554 

Guide, ANSYS, Inc., 2017. 555 

[29] A.M.P. de Jesus, R. Matos, B.F.C. Fontoura, C. Rebelo, L. Simões da Silva, M. Veljkovic, A 556 

comparison of the fatigue behavior between S355 and S690 steel grades, J. Constr. Steel Res. 557 

79 (2012) 140–150. doi:http://dx.doi.org/10.1016/j.jcsr.2012.07.021. 558 

[30] L.R.T. Melo, Estudo de Efeitos Dinâmicos de Pontes Ferroviárias considerando Interação 559 

Veículo-Estrutura, Phd Thesis, Universidade de São Paulo, 2016. 560 

[31] A.L.L. Silva, Fatigue behavior of an ancient bridge material under complex loads, Master 561 



Engineering Fracture Mechanics 

30 

Thesis, Trás-os-Montes and Alto Douro University, 2009. 562 

[32] ANSYS® Academic Research, Release 17.1, Theory Reference, Coupled Field Analysis 563 

Guide, ANSYS, Inc., 2017. 564 

 565 


