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Abstract

mCP-nets are an expressive and intuitive formalism based on
CP-nets to reason about preferences of groups of agents. The
dominance semantics of mCP-nets is based on the concept
of voting, and different voting schemes give rise to different
dominance semantics for the group. Unlike CP-nets, which
received an extensive complexity analysis, mCP-nets, as re-
ported multiple times in the literature, lack a precise study
of the voting tasks’ complexity. Prior to this work, only a
complexity analysis of brute-force algorithms for these tasks
was available, and this analysis only gave EXPTIME up-
per bounds for most of those problems. In this paper, we
start to fill this gap by carrying out a precise computational
complexity analysis of voting tasks on acyclic binary polyno-
mially connected mCP-nets whose constituents are standard
CP-nets. Interestingly, all these problems actually belong to
various levels of the polynomial hierarchy, and some of them
even belong to PTIME or LOGSPACE. Furthermore, for most
of these problems, we provide completeness results, which
show tight lower bounds for problems that (up to date) did
not have any explicit non-obvious lower bound.

Introduction
Modeling and reasoning about user preferences is a vast
area in AI with an extensive variety of applications. Among
them, there is the one of query answering under (group) pref-
erences. For example, in a Web that is moving forward from
a document-centric paradigm to a user-centric one, it will
be more and more important to present Web search results
ranked according user preferences. In fact, in this example,
the problem is twofold: How to present a query answer to
a user who is known to belong to a group, and hence how
to rank results according to group preferences, and, on the
other hand, how to rank the answer when the specific user is
known along with her own preferences.

In the literature, various models for representing user
preferences were proposed, and among them one of the most
studied is that of CP-nets (Boutilier et al. 2004), as a vast lit-
erature on them demonstrates. This model has proven itself
to be useful and intuitive. In CP-nets, user preferences are
encoded via a directed graph whose vertices represent the
various features of the domain at hand. In the graph of a
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CP-net, there is an edge from vertex A to vertex B if the
value of the feature A influences the choice of the value of
featureB. Intuitively, this model captures preferences of the
type “given that all the other characteristics are equal, I pre-
fer this value for feature A to that value of feature A”.

CP-nets were used to model preferences of groups, ob-
taining mCP-nets (Rossi, Venable, and Walsh 2004). This
multi-agent model is essentially a set of CP-nets, one for
each user. Preferences for groups of agents in mCP-nets
are defined through voting schemes. In fact, through their
own individual CP-nets, each agent votes whether an out-
come is preferred to another, and different ways of collect-
ing votes (i.e., different voting schemes) give rise to dif-
ferent dominance semantics for mCP-nets. Various voting
schemes were proposed for mCP-nets (Rossi, Venable, and
Walsh 2004; Li, Vo, and Kowalczyk 2015). Unlike CP-nets,
which received an extensive complexity analysis, a precise
complexity analysis of voting tasks on mCP-nets is still
missing, as explicitly mentioned multiple times in the lit-
erature (Lang 2007; Li, Vo, and Kowalczyk 2010a; 2010b;
2011; 2015). In the original paper (Rossi, Venable, and
Walsh 2004), an initial investigation of these complexities
was carried out by studying the complexity of brute-force
algorithms to solve these problems. Our aim in this paper
is to settle these problems in their exact complexity classes,
showing, if possible, completeness results.

Contributions. In this paper, we focus on acyclic binary
polynomially connected mCP-nets with standard CP-nets,
i.e., the constituent CP-nets of an mCP-net rank all the fea-
tures, and they are not partial CP-nets (see preliminaries).
Our contributions are briefly as follows:

B We carry out a thorough complexity analysis, for the
(a) Pareto, (b) Majority, (c) Max, and (d) Ranking vot-
ing schemes, of deciding (1) dominance, (2) optimal and
(3) optimum outcomes, (4) the existence of optimal and
(5) optimum outcomes (see Fig. 1). In most cases, we
show completeness, i.e., we provide tight lower bounds
for problems that (up to date) did not have any explicit
lower bound transcending the obvious hardness due to the
dominance test over the underlying CP-nets.

B In the complexity analysis, we distinguish between op-
timal and optimum outcomes for each voting scheme
(based on the idea of distinguishing weak and strong Con-
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dorcet winners). An outcome is optimal if it is not domi-
nated by another, and optimum if it dominates all others.

Many of our results are intractability results, where the
problems are put at various levels of the polynomial hier-
archy. However, although intractability is usually a “bad”
news, these results are quite interesting, because (for most
of these tasks) in the original study of Rossi, Venable, and
Walsh (2004), only EXPTIME upper-bounds were given.
Even more interestingly, some of these problems are actually
tractable, since they belong to PTIME or even LOGSPACE.
Note that, although our hardness results are given for a sub-
class of mCP-nets, they are lower bounds also over the
broader class of mCP-nets with partial CP-nets.

As side products of our work, we furthermore provide two
interesting results on complexity theory more in general:

B We are the first, to our knowledge, to define the ΘP
2 -com-

plete COMP-SAT problem of deciding whether a set con-
tains more satisfiable Boolean formulas than those be-
longing to another set. COMP-SAT is very intuitive and
useful as a ΘP

2 -hard problem for a reduction.
B One of the problems analyzed here is shown to be among

the very few known natural DP
2 -complete problems.

Organization of the paper. After preliminaries on CP-nets
and mCP-nets, we give an overview of the results. Then, we
show some of the nets that are used in our hardness proofs,
next we report some basic results on CP-nets, and subse-
quently each further section is devoted to the complexity
analysis of a specific voting scheme. For most of the results,
we give only proof sketches and intuitions. Details will be
provided in a forthcoming extended paper.

Preliminaries
CP-nets. A CP-net N is a triple 〈GN ,DomN ,CPTN 〉,
where GN = 〈FN , EN 〉 is a directed graph whose vertices
in FN (also called features) are labelled through two func-
tions DomN and CPTN , which associate with every feature
F ∈ FN a domain DomN (F ) and a CP table CPTN (F ),
respectively. The domain of F is the set of all the values
that F may assume in the possible outcomes. CP tables en-
code preferences over feature values. The CP table of F is a
two column table with a row for any possible values’ combi-
nation of all the parent features of F in GN , and in each row
there is a total order over DomN (F ). This order encodes the
agent preferences for F ’s values when specific values of F ’s
parents are considered: f � f denotes that value f is pre-
ferred to value f . If F has no parents, its CP table has only
one row with a total order over DomN (F ).

A CP-net N is acyclic if GN is acyclic; N is singly con-
nected, or polynomially connected, if, given any two distinct
features G and F , in GN there is only one path, or there are
at most polynomially many distinct paths, respectively, con-
necting G to F ; N is binary if each feature of N has two
domain values. If N is a binary CP-net, and A is one of its
features, then we usually assume that DomN (A) = {a, a}.

CP-nets’ semantics is based on the concepts of improving
and worsening flip, which are symmetric concepts leading
to the same definition: In this paper, we consider improving

flips. An outcome is an object in which all the features of
N have a specific value. For a feature F and an outcome
α, α[F ] is the value of F in α. Let F be a feature, and
let α, β be two outcomes differing only on the value of F .
Flipping variable F from α[F ] to β[F ] is an improving flip
(of F in N ) iff, in the row of F ’s CP table associated with the
specific values of the parents of F in α, β[F ] � α[F ]. For a
CP-net N , we define the (extended) preference graphGN =
〈VN , EN 〉 of N , where the nodes VN are all the possible
outcomes of N , and given two nodes (outcomes) α, β ∈ VN
the directed edge 〈α, β〉 is in EN iff there is an improving
flipping (of any single feature) from α to β. To conclude,
an agent prefers outcome β to α, and β dominates α (in N ),
denoted β �N α, iff there is path from α to β in GN . If
there is not such a path in GN , then β does not dominate α,
and it is denoted by β 6�N α. If β 6�N α and α 6�N β, then
β and α are incomparable, and we denote it by β ./N α.

For an acyclic CP-net N , GN is acyclic, and the prefer-
ences encoded by N are consistent (Boutilier et al. 2004),
i.e., there is no outcome α with α �N α. Furthermore, in
GN there is only one outcome oN , called the optimal or op-
timum, which is not dominated by any other outcome and
dominates all the others (Boutilier et al. 2004). RankN (α),
denoting the rank of α in N , is the length of the shortest path
in GN from α to oN (Rossi, Venable, and Walsh 2004).

In this paper, unless stated otherwise, all the CP-nets con-
sidered are acyclic, binary, and polynomially connected.
mCP-nets. An mCP-net M is a collection 〈N1, . . . ,Nm〉
of m CP-nets defined over the same set of features which,
in turn, have the same domain. The “m” of an mCP-net
stands for “multiple” agents and also indicates that the pref-
erences of m agents are modeled in the net, so a 3CP-net
is an mCP-net with m = 3. In the original definition of
mCP-nets, partial CP-nets are allowed to be constituent
of mCP-nets. In this paper, we restrict our attention to
mCP-nets in which agents’ individual nets are standard
CP-nets. The difference is that we do not allow for non-
ranked features in agents’ CP-nets, and hence for us there
is no distinction between private, shared, and visible fea-
tures (see Rossi, Venable, and Walsh 2004 for a definition
of them). Note that, although the features of the individual
CP-nets are the same, the graph structure of the individual
nets may be different, i.e., the links between the features in
the various individual CP-nets may vary.

The semantics of mCP-nets is based on voting. Let
M = 〈N1, . . . ,Nm〉 be an mCP-net, and let α, β be two
outcomes. We define the sets S�M(α, β) = {i | α �Ni β},
S≺M(α, β) = {i | α ≺Ni β}, and S./M(α, β) = {i | α ./Ni

β}. RankM(α) =
∑

1≤i≤mRankNi (α) is the rank of α in
M (Rossi, Venable, and Walsh 2004).
Pareto: β pareto dominates α, denoted by β �p

M α, if all
the agents ofM prefer β to α, i.e., |S�M(β, α)| = m.

Majority: β majority dominates α, denoted by β �maj
M α,

if the majority of the agents of M prefers β to α, i.e.,
|S�M(β, α)| > |S≺M(β, α)|+ |S./M(β, α)|.

Max: β max dominates α, denoted by β �max
M α, if the

group of the agents ofM preferring β to α is the biggest,
i.e., |S�M(β, α)| > max(|S≺M(β, α)|, |S./M(β, α)|).



Rank: β rank dominates α, denoted by β �r
M α, if

RankM(β) < RankM(α).

For a voting scheme s, α is s optimal inM if, for all β 6= α,
β 6�s

M α, while α is s optimum in M if, for all β 6= α,
α �s

M β. Optimum outcomes, if they exist, are unique.
An mCP-net is acyclic, binary, singly connected, or poly-

nomially connected, if all its CP-nets are acyclic, binary,
singly connected, or polynomially connected, respectively.
Also for mCP-nets, unless stated otherwise, the considered
mCP-nets are acyclic, binary, and polynomially connected.

Complexity classes. We assume the reader to be familiar
with basic concepts of computational complexity and of the
polynomial hierarchy (PH); see (Johnson 1990). We next
recall some less usual classes that we encounter in our re-
sults. ΘP

2 is the class of languages recognizable by determin-
istic Turing machines in polynomial time querying at most
logarithmic-many times an NP oracle. DP

2 and DP
3 (see, e.g.,

Wooldridge and Dunne 2004) generalize the class DP (Pa-
padimitriou and Yannakakis 1984): more generally, the class
DP
k = {L | L = L′ ∩L′′, L′ ∈ ΣP

k , L
′′ ∈ ΠP

k }, k ≥ 1, is the
“conjunction” of ΣP

k and ΠP
k ; in particular, DP

1 = DP.

Overview of the Results
Given an mCP-net M, for a voting scheme s, we analyze
five tasks: Given two outcomes α, β, decide wether α �s

M
β (s-DOMINANCE); decide whether an outcome α is s opti-
mal or s optimum (IS-s-OPTIMAL and IS-s-OPTIMUM, re-
spectively); and decide whether M has an s optimal or an
s optimum outcome at all (EXISTS-s-OPTIMAL and EX-
ISTS-s-OPTIMUM, respectively). For the majority voting,
the problems’ names reflect the fact that a majority optimal
outcome and a majority optimum outcome are also called
a weak Condorcet winner and a (strong) Condorcet winner,
respectively. A summary of our results is in Figure 1.

We observe that Rank voting is the easiest semantics to
evaluate. This is due to the fact that rank dominance is fea-
sible in polynomial time, and hence all the other tasks are
tractable. Pareto voting is the second least difficult seman-
tics to compute. Pareto dominance is NP-complete, how-
ever, this complexity does not carry over to the other tasks
and cause a substantial increase of their complexity, because
compared to majority and max voting, Pareto voting is struc-
turally simpler. In fact, since Pareto voting is based on
unanimity, to disprove Pareto dominance between two out-
comes it suffices to find one agent that does not agree with
the dominance relationship. This particular structure of the
Pareto voting makes the other tasks not more difficult than
the dominance test, or even tractable. Max voting turns out
to be more complex than majority voting, as the dominance
test of the former is more complex than the one of the latter.
In fact, if to show that an outcome majority dominates an-
other, it suffices to guess a big enough set of agents (indeed,
the majority) voting for that dominance (feasible in NP), for
max voting this is not enough. In fact, to decide whether an
outcome α max dominates an outcome β, we have to carry
out a precise counting of the agents preferring α to β, and
vice-versa, and this is more complex than plain NP.

Problem Complexity

PA
R

E
T

O

PARETO-DOMINANCE NP-complete
IS-PARETO-OPTIMAL co-NP-complete
EXISTS-PARETO-OPTIMAL Θ(1)∗

IS-PARETO-OPTIMUM in LOGSPACE
EXISTS-PARETO-OPTIMUM in PTIME

M
A

JO
R

IT
Y MAJORITY-DOMINANCE NP-complete

IS-WEAK-CONDORCET co-NP-complete
EXISTS-WEAK-CONDORCET ΣP

2 -complete
IS-STRONG-CONDORCET ΠP

2 -complete
EXISTS-STRONG-CONDORCET DP

2 -complete

M
A

X

MAX-DOMINANCE ΘP
2 -complete

IS-MAX-OPTIMAL ΠP
2 -complete

EXISTS-MAX-OPTIMAL in ΣP
3

IS-MAX-OPTIMUM ΠP
2 -complete

EXISTS-MAX-OPTIMUM in DP
3

R
A

N
K

RANK-DOMINANCE in PTIME
IS-RANK-OPTIMAL in PTIME
EXISTS-RANK-OPTIMAL Θ(1)∗

IS-RANK-OPTIMUM in PTIME
EXISTS-RANK-OPTIMUM in PTIME

Figure 1: Summary of the results on acyclic binary poly-
nomially connected mCP-Nets. ∗Descends from results in
(Rossi, Venable, and Walsh 2004).

Figure 2: An interconnecting net HC(9). Not all the CP
tables are reported in the figure.

Building Blocks
We introduce some CP-nets used as parts of bigger nets.

The “interconnecting” CP-net HC(m) aims at “propagat-
ing the information” that all the features of a set S have been
flipped to their overlined value. See Figure 2 for an HC(9)
interconnecting net. HC(m) is an acyclic DAG partitioned
into layers. In HC(m), each feature of a layer has two or
three distinct parents in the previous layer, and at most one
child in the next layer. Features of the same layer have no
common parents, and in every layer at most one feature has
three parents. In the first layer, these connection properties
hold w.r.t. the features of S . The layer with a unique feature,
called the apex, is the last layer of the net. For each feature
A of HC(m), a � a iff the value of all A’s parents is over-
lined. It is easy to see that, when all the features in S have
overlined values in an outcome α, there is an improving flip-
ping sequence from α to an outcome β in which the values
of all the features of HC(m) are overlined.

Many of our complexity results exploit two CP-nets en-
coding satisfiability of 3CNF Boolean formulas. The first



Figure 3: The CP-net F (φ), where φ(x1, x2, x3, x4) =
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4). Not all the CP ta-
bles are reported in the figure.

net is inspired by a similar net in (Boutilier et al. 2004). Ours
has a smaller indegree (three instead of six) allowing us to
show a stronger result for dominance hardness on CP-nets.

Let φ(X) be a 3CNF Boolean formula defined over vari-
ables X = {x1, . . . , xn}, with set of clauses C = {c1, . . . ,
cm}. `j,k denotes the k-th literal of the j-th clause. From φ,
we build the CP-net F (φ), called formula net, as follows
(see Figure 3 for an illustration). Features of F (φ) are: For
each xi ∈ X , there are variable features V Ti and V Fi ; for
each cj ∈ C, there is the clause feature Dj ; for each `j,k,
there is the literal feature Pj,k.

Edges of F (φ) are: for each literal `j,k = xi or `j,k =
¬xi, there are edges 〈V Ti , Pj,k〉, 〈V Fi , Pj,k〉, and 〈Pj,k, Dj〉.

CP tables of F (φ) are as follows. For each variable fea-
ture F , f � f . For each literal `j,k, if `j,k = xi, then, for the
literal feature Pj,k, pj,k � pj,k iff features V Ti and V Fi have
values vTi and vFi , respectively; otherwise, if `j,k = ¬xi,
pj,k � pj,k iff features V Ti and V Fi have values vTi and vFi ,
respectively. For each clause cj ∈ C, clause feature Dj has
CP table dj � dj iff there is at least one among the features
Pj,1, Pj,2, and Pj,3 having an overlined value.

Net F (φ) is similar to F (φ). All the CP tables of F (φ)
are similar to those of F (φ) with the difference that, for all
the variable and clause features, non-overlined values are
exchanged with overlined values, and vice-versa. F (φ) and
F (φ) are binary, acyclic, singly connected, the indegree of
their features is at most three, and they can be built in poly-
nomial time in the size of φ. The following can be proven.
Lemma 1. Let φ be a 3CNF Boolean formula, and let α
and β be two outcomes such that in α the values of all the
features are non-overlined, and in β the values of all and
only the variable and clause features are overlined. Then:
φ is satisfiable iff β �F(φ) α (resp., α �F(φ) β); and φ is
unsatisfiable iff α ./F(φ) β (resp., α ./F(φ) β).

Summarized formula nets Fs(φ) improve on F (φ). Fs(φ)
relates φ’s satisfiability with the flip of only two features, U1

and U2, instead of with all the variable and clause features.
This advantage causes the loss of the single connectedness.

Let φ(X) be a 3CNF Boolean formula defined over vari-
ables X = {x1, . . . , xn}, with set of clauses C = {c1, . . . ,
cm}. From φ, we build CP-net Fs(φ) as follows. Net Fs(φ)
embeds a net F (φ) with its features and links. In Fs(φ),
there is a net HC(m) attached to all the clause features of

F (φ), and there are two more features U1 and U2. There
is a link from U1 to all the variable and literal features of
F (φ); and a link from the apex of HC(m) to U2. CP tables
of the features are: For U1, u1 � u1. For variable and lit-
eral features F , CP tables are as in F (φ) with the additional
requirement that, for f � f to hold, the value of U1 must
be u1. CP tables of features in HC(m) are as usual. For U2,
u2 � u2 iff the value of the apex of HC(m) is a.

The intuition behind the structure of Fs(φ) is that by link-
ing U1 to variable and literal features, these ones cannot be
flipped to their overlined values once U1 is u1. So, distinct
literal features, attached to the same features V Ti and V Fi ,
cannot be flipped to their overlined values according to con-
trasting values of V Ti and V Fi . The following can be proven.
Lemma 2. Let φ be a 3CNF Boolean formula, and let α
and β be two outcomes such that in α the values of all the
features are non-overlined, and in β the values of U1 and of
U2 are overlined. Then: φ is satisfiable iff β �Fs(φ) α; and
φ is unsatisfiable iff α ./Fs(φ) β.

Basic Tasks on CP-nets
We now discuss the complexity of tasks on CP-nets, which
will be at the base of the complexity analysis of voting tasks.

Given a CP-net N , computing its unique optimal outcome
oN is feasible in linear time through the “forward sweep”
procedure (Boutilier et al. 2004). Hence, as pointed out by
Rossi, Venable, and Walsh (2004), to decide whether α is
optimal, it suffices to compute oN (in polynomial time), and
then compare α to oN . However, this problem actually be-
longs to a subclass of PTIME. In fact, if α does not equal
oN , there is a feature for which there is an improving flip.
Theorem 3. Let N be a CP-net, and let α be an outcome.
Deciding whether α is optimal in N is in LOGSPACE.

Consider the task of computing RankN (α). Since N is
assumed acyclic, a shortest path in GN from α to oN is one
in which features are flipped, if necessary, according to a
topological order of GN . So, to evaluate RankN (α), we can
compute at first oN , and then count the number of features
whose value in α is different from the value in oN , i.e.,

RankN (α) = |{F | F ∈ FN ∧ α[F ] 6= oN [F ]}|. (1)

Observe that Equation (1) is computable in polynomial time.
Lemma 4. Let N be a CP-net, and let α be an outcome.
Computing RankN (α) is feasible in polynomial time.

To conclude this section, we recall the following results.
Theorem 5 (Boutilier et al. 2004). Let N be a CP-net.
Given outcomes α, β, deciding whether β �N α is in NP.

We emphasize here that the complexity of dominance,
stated in the theorem above, is valid for acyclic polynomially
connected CP-nets. The exact complexity for dominance on
general acyclic CP-nets is still open, and, in particular, it is
currently unknown whether it belongs to NP or not.

The following theorem descends from Lemma 1.
Theorem 6 (improved over Boutilier et al. 2004). Let N be
a CP-net, and let α, β be two outcomes. Deciding whether
β �N α is NP-hard. Hardness holds even if N is singly
connected, and the indegree of the features is at most three.



Figure 4: A schematic representation ofMipo(φ).

Pareto Voting
We now focus on Pareto voting, which is based on the con-
cept of unanimity. A witness for an outcome Pareto domi-
nating another is the set of the witnesses of all agents prefer-
ring one to the other (see Theorem 5). For the hardness, on
1CP-nets, �p and � are equivalent (see Theorem 6).

Theorem 7. LetM be anmCP-net, and let α, β be two out-
comes. Deciding whether β �p

M α is NP-complete. Hard-
ness holds even on 1CP-nets.

Consider the problem IS-PARETO-OPTIMAL: given an
mCP-net M and an outcome α, is α Pareto optimal? We
give details of the proofs only for IS-PARETO-OPTIMAL.
At first, observe that we can disprove α being Pareto opti-
mal by guessing an outcome β along with the witness that
β �p

M α, and checking the witness (in NP, see Theorem 7).

Theorem 8. Let M be an mCP-net, and let α be an out-
come. Deciding whether α is Pareto optimal is in co-NP.

For the hardness we use the following construction (see
Figure 4 for a schematic illustration). Let φ(X) be a 3CNF
Boolean formula defined over variables X = {x1, . . . , xn},
with set of clauses C = {c1, . . . , cm}. From φ we build the
2CP-netMipo(φ) = 〈N ipo

1 ,N ipo
2 〉.

In N ipo
1 , there are two complete copies of net F (φ), in

particular, F (φ)a and F (φ)b. Features of these two nets
have the superscript a or b to make them different. Clause
features of F (φ)a, i.e., D1

a, . . . , Dm
a, are attached to an

interconnecting net HC(m). Apex A of HC(m) is attached
to all the variable features of F (φ)b. Since variable features
of F (φ)b now have one parent (the apex A of HC(m)), their
CP tables are a bit different from those in F (φ): For variable
features F of F (φ)b, f � f iff the apex A has value a.

N ipo
2 is similar to N ipo

1 , however HC(m) attaches clause
features of F (φ)b to variable features of F (φ)a, and CP ta-
bles are adjusted accordingly. Mipo(φ) is acyclic, binary,
polynomially connected, features’ indegree is at most three,
andMipo(φ) can be computed in polynomial time from φ.

Lemma 9. Let φ(X) be a 3CNF Boolean formula, consider
the 2CP-net Mipo(φ), and let α be the outcome assigning
non-overlined values to all the features. Then, φ(X) is sat-
isfiable iff α is not Pareto optimal.

Proof. At first, let us prove the following two claims that
will be used to prove the statement of the lemma.

Claim A. If φ(X) is unsatisfiable, then, for any outcome
β, β �N ipo

1
α⇒ β 6�N ipo

2
α, and β �N ipo

2
α⇒ β 6�N ipo

1
α.

Since φ is unsatisfiable, by Lemma 1, in N ipo
1 there is no

improving flipping sequence from α to outcomes in which
the values of all the clause features of F (φ)a are overlined,
or to outcomes in which the value of the apex of HC(m) is
overlined, or to outcomes in which the value of any of the
features of F (φ)b is overlined. Thus, in N ipo

1 , any improv-
ing flipping sequence from α leads to outcomes in which
values of features of F (φ)a are overlined, while values of
feature of F (φ)b are non-overlined. Symmetrically, in N ipo

2 ,
any improving flipping sequence from α leads to outcomes
in which values of features of F (φ)a are non-overlined,
while values of feature of F (φ)b are overlined.

Therefore, if β is such that β �N ipo
1

α, then β 6�N ipo
2

α.
Symmetrically, if β �N ipo

2
α, then β 6�N ipo

1
α.

Claim B. If φ(X) is satisfiable, then the outcome β as-
signing overlined values to all the variable and clause fea-
tures of F (φ)a and F (φ)b, and to all the features of HC(m),
is such that β �N ipo

1
α and β �N ipo

2
α.

Since φ is satisfiable, by Lemma 1, in N ipo
1 there is an

improving flipping sequence from α to an outcome α′ as-
signing overlined values to all the variable and clause fea-
tures of F (φ)a. By the definition of HC(m), in N ipo

1 there
is an improving flipping sequence from α′ to an outcome α′′
assigning overlined values to all the features of HC(m). α′′
can be further improved by a flipping sequence to an out-
come β assigning overlined values to all the variable and
clause features of F (φ)b because φ is satisfiable. Symmetri-
cally, in N ipo

2 , there is an improving flipping sequence from
α to the same β. Therefore, β �N ipo

1
α and β �N ipo

2
α.

We now show that φ is satisfiable iff α is not Pareto opti-
mal. (⇒) Assume that φ is satisfiable. By Claim B, there is
an outcome β preferred to α by all the agents ofMipo(φ).
Thus, α is not Pareto optimal. (⇐) Assume that φ is not
satisfiable. By Claim A, no outcome β is preferred to α by
all the agents ofMipo(φ). Thus, α is Pareto optimal.

Now, observe that Lemma 9 essentially states that the UN-
SAT problem can be reduced to IS-PARETO-OPTIMAL.
Theorem 10. LetM be an mCP-net, and let α be an out-
come. Deciding whether α is Pareto optimal is co-NP-hard.
Hardness holds even if M is acyclic, binary, polynomially
connected, and is a 2CP-net.

Deciding whether an mCP-net has a Pareto optimal out-
come is trivial, because there is always one (Rossi, Venable,
and Walsh 2004). Observe that, due to the unanimity se-
mantics, an mCP-net has a Pareto optimum outcome iff all
its CP-nets have the very same individual optimal outcome
(that is also Pareto optimum). By combining this with The-
orem 3 and Lemma 4, we can state the following.
Theorem 11. Let M be an mCP-net. Deciding whether
M has a Pareto optimum outcome is in PTIME; deciding
whether an outcome α is Pareto optimum is in LOGSPACE.



Majority Voting
In this section, we concentrate on majority voting, which is
related to Condorcet winners. In fact, a majority optimal
outcome is a weak Condorcet winner, while a majority opti-
mum outcome is a (strong) Condorcet winner. Observe that
it is possible to design four different acyclic binary singly-
connected CP-nets with dominance relationships: ab �N1

ab �N1
ab �N1

ab; ab �N2
ab �N2

ab �N2
ab; ab �N3

ab �N3
ab �N3

ab; and ab �N4
ab �N4

ab �N4
ab. In-

terestingly, the 4CP-net constituted by the above nets do not
have weak and strong Condorcet winners.

Theorem 12. There are acyclic binary singly-connected
mCP-nets not having weak and strong Condorcet winners.

Let us focus now on the majority dominance. Observe
that, β �maj

M α iff |S�M(β, α)| > m
2 . Hence, a certificate

consists in the witnesses of more than m
2 agents preferring

β to α (see Theorem 5). On the hardness side, on 1CP-nets,
�maj and � are equivalent (see Theorem 6).

Theorem 13. Let M be an mCP-net, and let α, β be two
outcomes. Deciding whether β �maj

M α is NP-complete.
Hardness holds even on 1CP-nets.

To prove an outcome α not to be a weak Condorcet win-
ner, we guess an outcome β and the witness of β �maj

M α (in
NP, see Theorem 13). For the hardness, on 2CP-nets, �maj

and �p are equivalent (see Theorem 10).

Theorem 14. LetM be an mCP-net. Deciding whether an
outcome α is a weak Condorcet winner is co-NP-complete.
Hardness holds even on 2CP-nets.

We now focus on deciding the existence of a weak Con-
dorcet winner. We can prove thatM has a weak Condorcet
winner by guessing an outcome α (in NP), and checking
that α is a weak Condorcet winner (in co-NP, see The-
orem 14). To show the hardness, an involved construc-
tion is required. We give just an intuition. The reduc-
tion is from the problem QBFCNF

2,∃ : given a 3CNF formula
φ(Y,X) defined on two disjoint sets of variables X and Y ,
is Φ = (∃X)(∀Y )¬φ(X,Y ) valid? QBFCNF

2,∃ is ΣP
2 -hard

(Stockmeyer 1976). From φ(X,Y ), it is possible to build
a 6CP-net Mewc(φ) such that φ(X,Y ) is a ‘yes’-instance
of QBFCNF

2,∃ iff Mewc(φ) has a weak Condorcet winner.
The guiding principle is that of relating assignments on X
and outcomes. Two of the nets of Mewc(φ) are Fs(φ), in
which a distinction between variable features from X and
from Y is made, and the roles of U1 and U2 are exchanged.
An assignment σX to variables in X is associated with out-
come βσX

in which βσX
[V Ti ] = vTi iff σX [xi] = true , and

βσX
[V Fi ] = vFi iff σX [xi] = false . This is the core idea:

Let α be the outcome assigning overlined values to U1 and
U2. If σX is a not a witness for Φ, i.e., φ(X/σX , Y ) is sat-
isfiable, then, in the nets Fs(φ), there is an improving flip-
ping sequence from βσX

to α, and, in the overall mCP-net
Mewc(φ), α �maj

Mewc(φ)
β. If σX is a witness for Φ, i.e.,

φ(X/σX , Y ) is not satisfiable, then, in the nets Fs(φ), there
is no improving flipping sequence from βσX

to α, and, in the

overall mCP-netMewc(φ), βσX
is not majority dominated

by any outcome. To have the reduction working,Mewc(φ)
has CP-nets designed such that any outcome not in the form
of a βσX

is majority dominated by some other outcome.
Theorem 15. LetM be an mCP-net. Deciding whetherM
has a weak Condorcet winner is ΣP

2 -complete. Hardness
holds even on 6CP-nets.

Let us focus on the problem of deciding whether an out-
come is a Condorcet winner. We can show that α is not a
Condorcet winner by guessing an outcome β (in NP) and
checking that α 6�maj

M β (in co-NP, see Theorem 13). The
proof of the hardness uses similar ideas to those for hardness
in Theorem 15. However, in this reduction, outcomes not in
the form of a βσX

are all majority dominated by α.
Theorem 16. LetM be an mCP-net. Deciding whether an
outcome α is a Condorcet winner is ΠP

2 -complete. Hardness
holds even on 3CP-nets.

Deciding the existence of a Condorcet winner is a very
interesting problem, since it is one of the very few natu-
ral problems known to be DP

2 -complete. Observe that the
set S of mCP-nets having a Condorcet winner is such that
S = A∩B, whereA is the set ofmCP-nets having at least a
weak Condorcet winner, and B = C ∩D, where C is the set
of mCP-nets having less than two distinct weak Condorcet
winners, and D is the set of mCP-nets having no weak Con-
dorcet winner that is not strong. DecidingA is ΣP

2 -complete
(see Theorem 15), while deciding B can be shown to be
in ΠP

2 , and it can be shown to be ΠP
2 -hard by the reduction

for hardness in Theorem 15.
Theorem 17. LetM be an mCP-net. Deciding whetherM
has a Condorcet winner is DP

2 -complete. Hardness holds
even on 6CP-nets.

Max Voting
We now analyze the complexity of max voting tasks. At first,
observe that Theorem 12 implies also that there are acyclic
binary singly-connectedmCP-nets without max optimal and
optimum outcomes. Let us consider max dominance. Ob-
serve that |S�M(β, α)| > max(|S≺M(β, α)|, |S./M(β, α)|) iff
|S�M(β, α)| > |S≺M(β, α)| and 2|S�M(β, α)| > m−|S≺M(β,
α)|. So, to decide whether β �max

M α, it suffices to com-
pute |S�M(β, α)| and |S≺M(β, α)|, which can be carried out
in polynomial time via binary searches on the range [0,m]
by querying an NP oracle. For the hardness, there is a reduc-
tion from COMP-SAT: given two sets 〈A,B〉 of 3CNF for-
mulas, is the number of the satisfiable formulas in A greater
than the number of the satisfiable ones in B? COMP-SAT
can be shown to be ΘP

2 -hard from a problem in (Spakowski
and Vogel 2000). The idea of the reduction is to encode each
formula φ of A in a CP-net F (φ), and each formula ϕ of B
in a CP-net F (ϕ). Outcomes α and β are that assigning
non-overlined values to all the features, and that assigning
overlined values to all the variable and clause features, re-
spectively. Some more nets are added to have the max se-
mantics working according to the semantics of COMP-SAT.
With this construction, it can be shown that 〈A,B〉 is a ‘yes’-
instance of COMP-SAT iff β max dominates α.



Theorem 18. Let M be an mCP-net, and let α, β be two
outcomes. Deciding whether β �max

M α is ΘP
2 -complete.

Let us see how to decide whether an outcome α is max
optimal. To disprove it, we can guess an outcome β (in NP),
and check that β �max

M α (in ΘP
2 , see Theorem 18). More-

over, for the hardness, we can show a reduction using simi-
lar ideas to those for the hardness in Theorem 15, however
CP-nets are designed to exploit the max voting semantics.

Theorem 19. LetM be an mCP-net, and let α be an out-
come. Deciding whether α is max optimal is ΠP

2 -complete.
Hardness holds even on 4CP-nets.

To verify thatM has a max optimal outcome, we guess an
outcome α (in NP), and then we check that α is max optimal
(in ΠP

2 , see Theorem 19).

Theorem 20. LetM be an mCP-net. Deciding whetherM
has a max optimal outcome is in ΣP

3 .

To prove an outcome α not to be a max optimum, we
guess an outcome β (in NP), and check that α 6�max

M β (in
ΘP

2 , see Theorem 18). For the hardness, on 3CP-nets, �max

and �maj are equivalent (see Theorem 16).

Theorem 21. LetM be an mCP-net, and let α be an out-
come. Deciding whether α is a max optimum is ΠP

2 -com-
plete. Hardness holds even on 3CP-nets.

We next focus on deciding whether anmCP-net has a max
optimum outcome. Observe that the set S of mCP-nets hav-
ing a max optimum outcome is such that S = A∩B, where
A is the set of mCP-nets having at least a max optimal out-
come, and B = C ∩ D, where C is the set of mCP-nets
having less than two distinct max optimal outcomes, and D
is the set of mCP-nets having no max optimal outcome that
is not optimum. Deciding A is in ΣP

3 (see Theorem 20), and
deciding B can be shown to be in ΠP

3 .

Theorem 22. LetM be an mCP-net. Deciding whetherM
has a max optimum outcome is in DP

3 .

Rank Voting
In this last section, we focus on rank voting. The rank
voting complexity results are based on this observation:
Given an mCP-net M = 〈N1, . . . ,Nm〉, RankM(α) =∑

1≤i≤mRankNi
(α) =

∑
1≤i≤m |{F | F ∈ FM ∧ α[F ] 6=

oNi [F ]}| =
∑
F∈FM

|{i | 1 ≤ i ≤ m ∧ α[F ] 6= oNi [F ]}|.
This, together with Lemma 4, implies the following result.

Theorem 23. Let M be an mCP-net, and let α, β be two
outcomes. Deciding whether β �r

M α is in PTIME.

An outcome α is average optimal if, for each feature F ,
α[F ] ∈ arg minv∈DomM(F ) |{i | 1 ≤ i ≤ m ∧ v 6=
oNi

[F ]}|. It can be shown that an outcome is rank optimal
iff it is average optimal, because only an average optimal
outcome minimizes the value of RankM(α). Computing an
average optimal outcome of an mCP-net is feasible in poly-
nomial time (we just need to compute the individual optimal
outcomes to perform the counting operations).

Theorem 24. LetM be an mCP-net, and let α be an out-
come. Deciding whether α is rank optimal is in PTIME.

It was shown in (Rossi, Venable, and Walsh 2004) that an
mCP-nets has always a rank optimal outcome. Therefore, it
is trivial to decide whether an mCP-nets has one.

Since all and only the average optimal outcomes are rank
optimal, if there were more than one average optimal out-
come, then there would be no rank optimum one. Observe
that checking whether an mCP-net has a unique average op-
timal outcome is feasible in polynomial time.
Theorem 25. LetM be an mCP-net, and let α be an out-
come. Deciding whether M has a rank optimum outcome
and deciding whether α is rank optimum are in PTIME.
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