
Sulphide Sinking in Magma Conduits: Evidence

from Mafic–Ultramafic Plugs on Rum and the

Wider North Atlantic Igneous Province

Hannah S. R. Hughes1*, Iain McDonald1, Adrian J. Boyce2,

David A. Holwell3 and Andrew C. Kerr1

1School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK; 2Scottish Universities

Environment Research Centre, Rankine Avenue, East Kilbride, Glasgow G75 0QF, UK; 3Department of Geology,

University of Leicester, University Road, Leicester LE1 7RH, UK

*Corresponding author. Present address: School of Geosciences, University of the Witwatersrand,

Private Bag 3, Wits 2050, Johannesburg, South Africa. Telephone: þ27(0) 11 717 6547.

E-mail: hannah.hughes@wits.ac.za

Received February 9, 2015; Accepted February 22, 2016

ABSTRACT

Ni–Cu–PGE (platinum group element) sulphide mineralization is commonly found in magmatic con-
duit systems. In many cases the trigger for formation of an immiscible sulphide liquid involves as-

similation of S-bearing crustal rocks. Conceptually, the fluid dynamics of sulphide liquid droplets

within such conduits is essentially a balance between gravitational sinking and upwards entrainment.

Thus, crustal contamination signatures may be present in sulphides preserved both up- and down-

flow from the point of interaction with the contaminant. We examine a suite of ultramafic volcanic

plugs on the Isle of Rum, Scotland, to decipher controls on sulphide accumulation in near-surface

magma conduits intruded into a variable sedimentary stratigraphy. The whole-rock compositions of
the plugs broadly overlap with the compositions of ultramafic units within the Rum Layered

Complex, although subtle differences between each plug highlight their individuality. Interstitial base

metal sulphide minerals occur in all ultramafic plugs on Rum. Sulphide minerals have magmatic

d34S (ranging from –1�3 to þ2�1ø) and S/Se ratios (mean ¼ 2299), and demonstrate that the conduit

magmas were already S-saturated. However, two plugs in NW Rum contain substantially coarser

(sometimes net-textured) sulphides with unusually light d34S (–14�7 to þ0�3ø) and elevated S/Se
ratios (mean¼ 4457), not represented by the immediate host-rocks. Based on the Hebrides Basin

sedimentary stratigraphy, it is likely that the volcanic con duits would have intruded through a pack-

age of Jurassic mudrocks with characteristically light d34S (–33�8 to –14�7ø). We propose that a sec-

ondary crustal S contamination event took place at a level above that currently exposed, and that

these sulphides sank back to their present position. Modelling suggests that upon the cessation of ac-

tive magma transport, sulphide liquids could have sunk back through the conduit over a distance of

several hundreds of metres, over a period of a few days. This sulphide ‘withdrawal’ process may be
observed in other vertical or steeply inclined magma conduits globally; for example, in the macro-

dykes of East Greenland. Sulphide liquid sinking within a non-active conduit or during magma

‘suck-back’ may help to explain crustal S-isotopic compositions in magma conduits that appear to

lack appropriate lithologies to support this contamination, either locally or deeper in the system.

Key words: sulphur isotopes; North Atlantic Igneous Province; sulphide sinking; S/Se; crustal
contamination

VC The Author 2016. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

J O U R N A L  O F

P E T R O L O G Y

Journal of Petrology, 2015, 1–33

doi: 10.1093/petrology/egw010

Original Article

 Journal of Petrology Advance Access published April 10, 2016

 at A
cquisitions on A

pril 14, 2016
http://petrology.oxfordjournals.org/

D
ow

nloaded from
 

http://www.oxfordjournals.org/
http://petrology.oxfordjournals.org/


INTRODUCTION

Upper crustal conduits (pipes, dykes and sills) within

mafic–ultramafic magmatic systems provide favourable

settings for magmatic sulphide genesis, promoted by

crustal contamination, resulting in some of the world’s

largest orthomagmatic Ni–Cu and platinum group

element (PGE) deposits. Contamination can trigger

S-saturation of the magma, particularly if the country

rocks contain significant amounts of S in the form of

sulphides or sulphates; this can be recognized by S iso-

tope signatures outside the typical mantle range of

0 6 2ø (e.g. Ohmoto & Rye, 1979; versus Li et al., 2002;

Ripley et al., 2003; Keays & Lightfoot, 2010; Hayes et al.,

2015; Smith et al., 2016). In addition, sulphide liquid that

ponds within conduits can become enriched in chalco-

phile elements, possibly to economic levels, as a result

of interaction with magma continuing to pass through

the conduit (e.g. Kerr & Leitch, 2005; Holwell et al.,

2014).

Sulphides within conduits commonly occur as mas-

sive to semi-massive accumulations and are present as

rounded globules or droplets of varying sizes; for ex-

ample, at Norilsk–Talnakh, Russia (Czamanske et al.,

1992), the Insizwa Complex, South Africa (Lightfoot

et al., 1984), Voisey’s Bay, Canada (Huminicki et al.,

2008), a mafic dyke in Uruguay (Prichard et al., 2004)

and in East Greenland macrodykes (Holwell et al.,

2012). Droplets are generally interpreted to represent

sulphide liquid that has been transported upwards,

downwards or laterally along the magmatic plumbing

system. The fluid dynamics involved in this transport,

such as settling rate versus entrainment rate, has been

the subject of many recent studies based on both em-

pirical and experimental evidence (e.g. de Bremond

d’Ars et al., 2001; Mungall & Su, 2005; Godel et al.,

2006, 2013; Barnes et al., 2008; Chung & Mungall, 2009;

Arndt, 2011).

Sulphide- and chromitite-bearing ultramafic units

hosting platinum group minerals (PGM) are docu-

mented within the British Paleogene Igneous Province

(BPIP) on the islands of Skye, Mull and Rum (Hulbert

et al., 1992; Butcher et al., 1999; Pirrie et al., 2000; Power

et al., 2000; Prout et al., 2002) and highlight the potential

for PGE mineralization in the Scottish portion of the

North Atlantic Igneous Province (NAIP; Andersen et al.,

2002). This is especially the case considering the poten-

tial for contamination offered by the thick crustal se-

quences of Mesozoic S-bearing rocks in the region (e.g.

Hesselbo & Coe, 2000; Yallup et al., 2013; Hughes et al.,

2015). Recent studies on Skye demonstrate the involve-

ment of sediments, with light S isotope tenors, in trig-

gering S-saturation in ascending BPIP magmas,

particularly in vertical dyke swarms (Hughes et al.,

2015). On Rum, ultramafic, vertical or steeply inclined

volcanic plugs (pipes) intrude a variety of country rocks,

including sediments at the base of the Mesozoic

Hebrides Basin. Power et al. (2003) identified a crustal

d34S signature for intercumulus (net-textured) sulphides

in one volcanic plug in NW Rum, but could not establish

whether the sulphide liquids that formed these had

been entrained upwards or had sunk through the

conduit.

In this study, we use the whole-rock S-isotope com-

position, and sulphide-specific (in situ) S-isotope and

trace element compositions, of ultramafic plugs on

Rum to constrain if crustal contamination took place.

The size range and textural associations, trace element

composition of sulphide minerals and S-isotopic com-

position are established for 12 plugs on the island to

understand the provenance of sulphide liquids in these

conduits. We use these data to decipher controls on sul-

phide accumulation and compare plug sulphide com-

positions with those from peridotitic cyclic units of the

Eastern Layered Series, part of the Rum Layered Suite.

Where crustal contamination is evident [e.g. in NW

Rum, as first discovered by Power et al. (2003)], these

data are combined with numerical modelling of settling

and entrainment rates to investigate the roles of

magma entrainment and gravitational settling and sink-

ing of sulphide liquids within conduit systems and to

assess the distances that sulphide liquids could sink

and over what timescale. We provide new constraints

on the development of orthomagmatic Ni–Cu–PGE min-

eralization in small BPIP intrusions and discuss these in

relation to wider processes of sulphide migration within

magmatic systems.

REGIONAL GEOLOGICAL SETTING

The North Atlantic Igneous Province (NAIP) formed

after the impingement of the Icelandic mantle plume

under thick continental lithosphere, during a period of

continental flood basalt magmatism (e.g. Saunders

et al., 1997). Magmatism initiated c. 62 Ma within what

is now the UK, Greenland and Baffin Island, and ultim-

ately led to the opening of the Atlantic Ocean (Saunders

et al., 1997). The main products of this prolonged period

of magmatism were tholeiitic and alkali basalts. The

British Palaeogene Igneous Province (BPIP) is part of

the earliest magmatic series of the NAIP, which includes

Palaeogene rocks in the Hebrides and along the west

coast of Scotland and Northern Ireland (Saunders et al.,

1997; Fig. 1).
In Scotland, the BPIP includes magmatic rocks on the

Isles of Mull, Skye and Arran, the Small Isles (Rum,

Eigg, Muck, Canna and Sanday), and on the mainland at

Ardnamurchan and Morvern (Emeleus & Bell, 2005).

The Scottish BPIP extends across a number of

Archaean and Proterozoic basement terranes (e.g.

Emeleus & Bell, 2005), covered by Neoproterozoic

(Dalradian and Moine) metasediments (Kinnaird et al.,

2007), which themselves are overlain by Mesozoic sedi-

ments from the Hebrides Basin (Hesselbo & Coe, 2000).

Volcanic plugs occur within or close to lava fields and

central intrusive complexes, and are primarily exposed

on the Isles of Mull and Rum (Emeleus & Bell, 2005).

Emeleus & Bell (2005) provided a detailed review of
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radiometric and palynological age determinations of

various intrusions and lavas across the BPIP.

Geology of the Isle of Rum
The Rum Central Complex straddles the Long Loch

Fault (Fig. 1), which probably acted as a crustal linea-

ment that facilitated magma ascent (e.g. Upton et al.,

2002). The complex developed during at least three

magmatic phases, forming in < 500 kyr (Emeleus &

Bell, 2005; Troll et al., 2008).

In Phase 1, silicic magmatism occurred along an ar-

cuate fault system (the Main Ring Fault) at

60�33 6 0�21 Ma (Troll et al., 2008) followed rapidly by
Phase 2, which formed the mafic–ultramafic Rum

Layered Suite (60�53 6 0�04 Ma; Hamilton et al., 1998).

Fig. 1. Simplified geology of the Isle of Rum and surrounding Small Isles. Inset shows outline map of Scotland. Rectangles show
map locations in Fig. 2. LLF, Long Loch Fault; MRF, Main Ring Fault; WLS, Western Layered Series; CS, Central Series; ELS, Eastern
Layered Series.
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Ultramafic magmas were intruded into the complex as

multiple intrusions and replenishment of the chamber

with picritic magma is thought to have disrupted previ-

ously formed cumulate layers (e.g. Bédard et al., 1988).

The mafic–ultramafic Rum Layered Suite can be divided

into the Western, Central and Eastern Layered Series,

bounded by the Main Ring Fault (Fig. 1). Rare late-stage

picrite dykes [described by Upton et al. (2002)] may rep-

resent feeders to the layered suites. However, the small

melt fraction (6–7%) inferred to have formed these

mildly alkalic dykes and two olivine phenocryst popula-

tions observed within single picrite dykes, such as M9

(e.g. Upton et al., 2002), preclude these feeders from

representing a parental magma composition. During

Phase 3, deep subaerial erosion and unroofing of the

complex followed caldera collapse and intermittent bur-

ial by basalt flows from the Skye lava field (Chambers

et al., 2005).

Ultramafic plugs of the Isle of Rum
In excess of 40 volcanic plugs occur on Rum, compris-

ing gabbros and feldspathic peridotite intrusions (senso

stricto olivine melagabbros) probably formed during

Phase 2. Plugs predominantly intrude through

Torridonian and Triassic sediments, as well as portions

of the Rum Layered Suite (McClurg, 1982; Wadsworth,

1994; Holness, 1999). The sedimentary host-rocks of

the volcanic plugs (Triassic, Fig. 2a; and Torridonian,

Fig. 2a–c) typically appear bleached, fissile and meta-

somatized. Locality details of the plugs sampled during

this study are given in Table 1 (also see Fig. 2a–c).

The plugs have rounded or elongate- to teardrop-

shaped outlines (e.g. Fig. 2a). Their plan-view shapes

probably result from varying inclinations of conduits

intersecting the present-day topography. Plugs

sampled during this investigation are distinct from the

small ‘apophyses’ of peridotite within, or straddling, the

Main Ring Fault that may predate or be contiguous with

the Eastern Layered Series (e.g. Fig. 2b; Butcher et al.,

1985; Wadsworth, 1994). None of the plugs have been

radiometrically dated, and the timing of their intrusion

is based upon cross-cutting field relationships alone.

Most of the plugs lie within 1–2 km of the Long Loch

Fault (Fig. 1) and range in size from �100 to 600 m diam-

eter (McClurg, 1982; Volker & Upton, 1990). The plugs

may have fed lava flows, but no associated lavas have

been proven (Emeleus & Bell, 2005).

The structural setting and silicate mineralogy of vol-

canic plugs on Rum has been studied in detail by Volker

& Upton (1990), Wadsworth (1994), Holness (1999) and

Holness et al. (2012). Ultramafic plugs are thought to

represent the conduits of olivine-rich melts or ‘crystal

mushes’, fed from an underlying magma chamber

along faults such as the Long Loch Fault. These crystal

mushes were lubricated by interstitial basaltic magma,

hence the contemporaneous series of gabbroic plugs

on the island could represent similar conduits without

the entrained olivine mush. Rare plugs in the south of

Rum contain rounded troctolite, dunite and chromitite

xenoliths, probably derived from part of the Rum

Layered Suite (Volker & Upton, 1990).

Plagioclase (10–15 modal %) and clinopyroxene (up

to 8%, sometimes poikilitic) are interstitial to cumulus

olivine and euhedral and rounded Cr-spinel; accessory

amphibole and biotite are also observed (Wadsworth,

1994). Layering (defined by olivine cumulates) is re-

corded in the ultramafic peridotite plugs and typically

dips shallowly at the margins (striking parallel to the

margins) with the central portions of plugs taking on a

colloform texture. Changes in modal mineralogy can

also define layering, now weathered to ‘indentation

layering’. At the West Sgaorishal plug (Fig. 2a, Plug 1)

indentation layering is particularly well developed

and is observed to be closely spaced at the margins

(5–10 cm), dipping inwards towards the plug centre at

30–50�, with layer spacing increasing towards, and ul-

timately disappearing, at the centre. In this plug, olivine

accounts for 55–60 vol. % of the rock, but olivine abun-

dance increases to 88 vol. % at the centre. In detail,

there is a marked asymmetry in the olivine content

from west to east, such that olivine is more concen-

trated on the western edge (see Holness et al., 2012). In

contrast, layering can be poorly developed, laterally dis-

continuous (e.g. Loch Sgaorishal plug; Fig. 2a, Plug 2)

or completely absent in other plugs. Overall, layering

developed after magma flow had ceased and/or during

magma withdrawal back into the feeder system [com-

pare ‘withdrawal’ of magmas in Hawaiian conduits, as

suggested by Upton (2004)].

Olivine compositions in plugs are equivalent to those

from feldspathic peridotites in the Eastern Layered

Series (Fo89–82) and Western Layered Series

(Wadsworth, 1994; Emeleus, 1997, and references

therein; Holness et al., 2012) and distinct from olivine

compositions in the troctolite portions of the Rum

Layered Suite (Fo84–70; Emeleus, 1997, and references

therein).

The sedimentary host-rocks of the volcanic plugs

(Triassic, Fig 2a; Torridonian, Fig. 2a–c) typically appear

bleached, fissile and metasomatized. Studies of in situ

anatexis of country rocks (e.g. Holness, 1999; Holness

et al., 2012) and thermal modelling of the West

Sgaorishal plug (Plug 1; Fig. 2a) suggest that the plugs

were active magma conduit for only a few months and

cooled over a period of c. 30 years (Holness et al., 2012).

The Hebridean sedimentary succession and
country rocks to the Rum plugs
The crustal sequence on the Isle of Rum includes

Archaean basement rocks of the Lewisian Gneiss

Complex, Mesoproterozoic Torridonian sediments, and

Triassic sediments in NW Rum. A thick sequence of

Jurassic and Cretaceous sediments probably also cov-

ered the island (at least in part), as suggested by exten-

sive outcrops of these rocks preserved on the

neighbouring Isle of Skye and ‘wedges’ of Jurassic
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mudrocks preserved in the Main Ring Fault of the Rum

Central Complex (Emeleus, 1997; for stratigraphic log

see Hughes et al., 2015).

S isotope signatures in western Scotland
Lewisian gneisses generally have variable but low sul-

phur concentrations [median 789 ppm according to

Cameron (1994)] and d34S ranging from –1�4 to þ5�5ø
on the NW Scottish mainland (Lowry et al., 2005;

Hughes et al., 2015). The Neoproterozoic Dalradian and

Moine metasedimentary successions (Grampian and

Northern Highland Terranes, respectively) are mostly

dominated by 34S-enriched metasedimentary se-

quences (Lowry et al., 2005). Moine metapelites have

low or very low concentrations of sulphur, and where

measurable have d34S¼þ2�5ø (Hughes et al., 2015)

and þ3�4 to þ4�6ø in some psammites (Lowry, 1991).

Dalradian metasediments (with disseminated diagen-
etic and metamorphic sulphides, mostly pyrite and pyr-

rhotite) have a mean d34S of þ8ø (614ø; Lowry et al.,

2005).

The Mesoproterozoic Torridonian formations of NW

Scotland include the Stoer, Sleat and Torridon Groups

(Stewart, 2002; Kinnaird et al., 2007); however, the

Stoer Group is thought to be absent on the Isles of Skye
and Rum (Figs 1 and 2). Mudrocks are present within

the Sleat (and, to a lesser extent, Torridon) Group; how-

ever, they are less extensive and thinner than the

Jurassic mudrocks of the Hebrides Basin. Sulphur iso-

tope studies of Torridonian sulphates and sulphides in

Stoer Group mudrocks have identified the light isotopic
shift of d34S associated with bacterial sulphate reduc-

tion in small freshwater pools (Parnell et al., 2010,

Fig. 2. Geology of areas surrounding the peridotite and gabbro plugs sampled during this study. (a) NW Rum; (b) central Rum
across the Long Loch Fault; (c) SE Rum near Dibidil. Sample locations are shown as dots. Plugs are numbered and correspond to
Table 1.
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2012). Hughes et al. (2015) established a whole-rock

d34S range of þ1�4 to þ4�7ø for Mesoproterozoic

Torridonian sediments on Skye and Rum. They also

found that these rocks contained low concentrations of

sulphur (<0�018 wt %).

The stratigraphy of the Triassic to Cretaceous rocks

of the Hebrides Basin is well correlated (e.g. Morton &

Hudson, 1995; Hesselbo & Coe, 2000, and references

therein) and the S concentration of this Mesozoic se-

quence is generally much greater than that of the older

Torridonian sediments, Moinian metasediments, or

crystalline basement (Hughes et al., 2015). Therefore

the Mesozoic Hebrides Basin represents the most ef-

fective source of crustal S available for magmatic con-

tamination. Sulphur isotopes for Mesozoic (specifically

Jurassic) sediments have been reported by Raiswell

et al. (1993) and Hudson et al. (2001) from elsewhere in

the British Isles, but Hughes et al. (2015), together with

results from Yallup et al. (2013), have provided the first

detailed Hebridean S-isotopic framework.

In summary, Jurassic mudrocks and ironstones have

the highest S abundance in the Hebrides Basin, with

d34S ranging from –33�8 to –14�7ø (Hughes et al., 2015).

d34S generally becomes lighter from the Lower Jurassic

(–18�4 to –14�7ø) to the Upper Jurassic (–33�8 to –

29�2ø), although the ironstones in the Lower Jurassic

(e.g. Raasay Ironstone Formation) generally have the

highest bulk S content (up to c. 28 wt %, in comparison

with some Upper Jurassic shales with 0�1 wt %). In con-

trast, sediments of the Triassic and Cretaceous succes-

sion have volumetrically very few mudrocks and no

ironstones, and are therefore less likely to act as major

crustal S sources (Hughes et al., 2015). Triassic sedi-

ments from Rum (sandstones, conglomerates, breccia

and cornstone of the Monadh Dubh Formation) and the

wider Hebrides Basin contain calcretes—thus if S were

to be present in these rocks, it would most probably be

present as sulphate with a heavy d34S composition (e.g.

Power et al., 2003).

Magmatic sulphide mineralization and S
contamination in the NAIP
On the Isle of Rum, disseminated and net-textured

coarse sulphides (up to 5% modal abundance; Power

et al., 2003) occur in the West Sgaorishal peridotite plug

(Plug 1; Fig. 2a) within a few metres of the margin.

Sulphides are most abundant at the plug margin, and

become increasingly rare and fine grained towards the

centre (Power et al., 2003). Sulphide-rich zones have not

been identified in the other plugs on Rum. PGM are

associated with sulphides in Plug 1 and include Pt- and

Pd-tellurides, bismuth-tellurides and electrum (Power

et al., 2003). Previously reported d34S values of the

coarse sulphides in Plug 1 range from –18�3 to –9�2ø,

and suggest that the magmas forming the plug experi-

enced crustal contamination by Jurassic sedimentary

rocks (Power et al., 2003). However, given the absence

of crustal rocks with low d34S currently surrounding the

plug, Power et al. (2003) suggested that either

S contamination took place in a now-eroded parental

magma chamber, or Jurassic sediments originally sur-

rounded the plug locally (and have also since been

eroded).

Hughes et al. (2015) found that for steeply dipping in-

trusions, such as basaltic dykes, incorporation of

bacterially reduced sulphur from wall-rock shales pro-

duced d34S signatures in magmatic sulphides ranging

from –30�7 to –2�3ø, depending on the degree of con-

tamination and the d34S signature of the local crustal

contaminant. In contrast, horizontal picritic sills on Skye

do not record such crustal contamination and lack the

anomalous d34S (Hughes et al., 2015), indicating that

the mechanism by which a conduit intruded the sur-

rounding country rock (vertical or horizontal) and the

ambient flow regime within it (i.e. turbulent or non-

turbulent) were important factors in the contamination

process; for example, a turbulent regime is more likely

to result in brecciation of the conduit wall rocks, allow-

ing for more efficient S incorporation into the magma

(Robertson et al., 2015).

Magmatic Cu–Ni–PGE–Au sulphide mineralization in

the wider NAIP is recorded in a number of settings. The

largest deposit is the Au- and Pd-dominant Platinova

Reef in the Skaergaard Intrusion, formed through pro-

longed fractional crystallization that eventually trig-

gered S-saturation (e.g. Bird et al., 1991; Andersen

et al., 1998; Holwell & Keays, 2014). In this instance,

crustal contamination played no role in the formation of

an immiscible sulphide liquid. Mineralization is also

found as sulphide globules in small hyperbyssal intru-

sions, such as the Miki Fjord and Togeda Macrodykes

of East Greenland (Holwell et al., 2012). Sulphur isotope

analyses identified a strong crustal contribution attrib-

uted to pyritic Cretaceous black shales, and therefore in

these instances crustal S contamination was the trigger

for S-saturation (Holwell et al., 2012).

Overall, if crustal contamination is suspected to be

the main cause for S-saturation, the isotopic compos-

ition of disseminated sulphide mineralization in magma

conduits, such as sills, dykes and plugs, can be used as

a vectoring tool towards areas of more massive sul-

phide mineralization (e.g. Lightfoot et al., 1984;

Czamanske et al., 1992; Huminicki et al., 2008; Barnes

et al., 2016). Hence understanding the source and loca-

tion of crustal contamination, and the potential crustal

horizon(s) that triggered S-saturation in relation to the

prevailing fluid dynamic regime in the magmatic con-

duit, is a valuable method for targeting sulphide-hosted

mineralization up- or downstream within the magmatic

plumbing systems.

METHODS

Twenty-six whole-rock samples from 12 volcanic plugs

from across the Isle of Rum were sampled for major

and trace elements, S isotopes (bulk and in situ), and

mineralogical investigations (sample details are given
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in Table 1; localities are shown in Fig. 2a–c; bulk-rock

geochemical data are presented in the Supplementary

Material, available for downloading at http://www.pet

rology.oxfordjournals.org). Additionally, 15 samples of

various Torridonian and Triassic sediments were col-

lected from areas adjacent to the plugs, and elsewhere

across the island, to assess the crustal S isotopic frame-

work of the island (Table 1).

Bulk-rock and in situ S-isotope analysis
For samples with visible sulphide minerals >500mm2,

polished blocks were subjected to sulphide in situ laser

combustion, following Wagner et al. (2002). Raw in situ

d34S data were corrected by the factor d34Spyrite¼
d34SSO2laserþ 0�8ø, as laser combustion causes a small

and predictable fractionation of sulphur isotope com-

positions for the SO2 gas produced, compared with the

actual d34S of the sulphide mineral (Wagner et al.,

2002). At the Scottish Universities Environment

Research Centre (SUERC), SO2 gases released by com-

bustion were analysed on a ThermoFisher Scientific

MAT 253 dual inlet mass spectrometer (conventional

samples) and VG Isotech SIRA II mass spectrometer (for

laser samples).

Samples without sufficiently large sulphides under-

went whole-rock chemical S extraction by the chro-

mium reducible sulphur method (CRS) followed by

conventional sulphur analysis: a detailed description

and evaluation of this method has been given by

Hughes et al. (2015). In summary, CRS is based on and

adapted from the techniques of Zhabina & Volkov

(1978), Canfield et al. (1986), Tuttle et al. (1986), Hall

et al. (1988), Newton et al. (1995), Nielsen & Hanken

(2002) and Labidi et al. (2012). Powdered rock samples

were loaded into a flat-bottomed glass reaction vessel

under a nitrogen atmosphere and connected to a gas

bell jar containing 0�1 M AgNO3 solution. A 1M solution

of chromous chloride (CrCl2) was injected through a

septum to cover the powdered sample and was heated

to 150�C for 3 h to react as follows:

2Cr2þ þ S0 þ 2Hþ ! 2Cr3þ þ H2S:

This process leads to the complete breakdown of elem-

ental and reduced sulphur species into H2S, even in the

presence of Fe3þ. H2S produced is streamed to the gas

bell jar to react with AgNO3 solution, precipitating

Ag2S. At the end of the reaction, this black precipitate

was filtered under vacuum, freeze dried and collected

ready for conventional S analysis. During conventional

analysis, SO2 gas samples were run at SUERC using a

ThermoFisher Scientific MAT 253 dual inlet mass

spectrometer.

Reproducibility for both the laser combustion and

conventional analysis is 60�4ø (see Hughes et al.,

2015) with 2r of standards <60�2ø. Standards used

throughout all analyses were IAEA-S-3 (–31�5ø) and

NBS-123 (sphalerite, þ17�1ø) international standards,

alongside an SUERC laboratory chalcopyrite standard,

CP-1 (–4�6ø).

Bulk-rock S concentrations were determined using a

LECO CS230 Carbon/Sulphur Determinator at the

University of Leicester. Sample mass ranged from 0�1
to 1�0 g depending on relative bulk S content. Each sam-

ple was run in triplicate to monitor precision. Accuracy

was monitored by regular analysis of the reference ma-

terial BAS ECRM 877-1. The limit of minimum detection

for this method is 0�018 wt % S (3 � standard deviation

of the mean blank).

Mineralogy and mineral composition
Quantitative microanalysis was carried out on a

Cambridge Instruments S360 scanning election micro-

scope (SEM), using an Oxford Instruments INCA Energy

energy-dispersive X-ray spectroscopy (EDX) analyser,

with operating conditions set at 20 kV and specimen

calibration current of �2 nA at a fixed working distance

of 25 mm. Analytical drift checks were carried out every

2 h using a Co reference standard and a comprehensive

suite of standards from MicroAnalysis Consultants Ltd

were used to calibrate the EDX analyser.

Sulphide trace element concentrations were deter-

mined by laser ablation inductively coupled plasma

mass spectrometry (LA-ICP-MS) using polished sam-

ples and a New Wave Research UP213 UV laser system

attached to a Thermo X Series 2 ICP-MS system, follow-

ing procedures outlined by Prichard et al. (2013) and

Smith et al. (2014). Further details are available in the

Supplementary Material.

As part of our study, we also analysed the sulphide

compositions of a selection of peridotites from each of

the major cyclic units in the Eastern Layered Series

(ELS), to place plug compositions into context. The re-

sults are presented in Table C of the Supplementary

Material, alongside whole-rock d34S for corresponding

ELS samples (Tables D and E, Supplementary Material).

RESULTS

Sulphide mineralogy and trace element
compositions
Details of the mineralogy, including size, texture and

mineral association of base metal sulphides in the Rum

plugs are presented in Table 2 together with a record of

any PGM present. SEM-based PGM searches were car-

ried out only on samples from Plugs 1, 2 and 10, as pre-

vious work had identified a correspondence between

sulphide and PGM occurrences (e.g. Power et al., 2003).

As our study focuses on the S-isotopic composition of

the plugs and trace element compositions of base metal

sulphides within the plugs, we did not undertake a com-

prehensive search for PGM across all plug samples.

Selected back-scattered electron (BSE) images of sul-

phide mineral textures are shown in Fig. 3.
With the exception of plugs 1 and 2, all the peridotite

plugs contain small sulphide blebs (e.g. Fig. 3a),
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Fig. 3. Back-scattered electron images of sulphides in peridotite plugs from scanning electron microscope investigations. (a) Small
sulphide nucleating onto and between two cumulus olivine crystals, within intercumulus plagioclase, plug 6. (b) Close-up of sul-
phide in (a) with contrast adjusted to show sulphide mineralogy. (c) Sulphide grain nucleating on small Cr-spinel at the margin of
granular cumulus olivine, plug 6. (d) Close-up of sulphide minerals and Cr-spinel in (c). (e) Sulphides and Cr-spinel within
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typically 20–150 mm in length, rounded and equant,

composed of chalcopyrite, pyrrhotite and pentlandite,

with rare bornite and chalcocite (Table 2). Occasionally

a rim of iron oxide is present around the sulphide blebs

in more altered samples (e.g. Fig. 3b). Sulphides nor-

mally occur at the margins of cumulus olivine (Fig. 3a

and c), or within intercumulus plagioclase and clinopyr-

oxene, and sulphides are locally in contact with granu-

lar Cr-spinel (e.g. Fig. 3d). In rare cases, sulphides occur

within the fractured and serpentine-filled margins of cu-

mulus olivine (e.g. Fig. 3e). In contrast, plug 1 at West

Sgaorishal contains coarser sulphide minerals, up to

4 mm in length, which occur interstitially to pyroxene

and plagioclase, or as net-textured assemblages

(Fig. 3f–h; Table 2). Sulphides have been observed to al-

most enclose cumulus olivine, as well as ilmenite and

Cr-spinel (e.g. Fig. 3g and h), and include pyrrhotite and

pentlandite (and pyrrhotite–pentlandite flames) as well

as chalcopyrite. Minor galena is also observed; how-

ever, unlike the other plugs, no bornite or chalcocite

was encountered in plug 1. Finer sulphide minerals are

of the same species as the course sulphides occurring

in the centre of plug 1.

PGM (plugs 1 and 2 only) are found within sulphide

minerals or at silicate–sulphide mineral contacts. These

range in size from 0�5 to 7mm wide and include Pd- and

Pt-tellurides, bismuth-tellurides, Pt-arsenides and Pt–Sb-

arsenides (Table 2). In plug 2 (Loch Sgaorishal) sulphides

range from 50 to 500mm and are interstitial to cumulus

olivine, with rare rounded sulphides (�50mm) occurring

as inclusions within cumulus olivine, albeit in serpentine-

filled fractures. Pentlandite in plug 2 contains small

(<1 mm wide) Ir and Pt sulpharsenides of the irarsite–

platarsite series. In both plugs 1 and 2, small grains of

electrum were observed in pyrrhotite (normally <5mm)

as well as one crystal of Pb-telluride (Table 2).

Representative trace element compositions, includ-

ing S/Se ratios of sulphide minerals and PGE abun-

dances in plug sulphides (grouped per region of Rum),

are presented in Table 3 (full data are available in

Supplementary Material Tables C and D). Overall, the

variation of PGE concentrations in sulphide minerals

from plugs in various areas of Rum (NW, SE and cen-

tral) overlaps significantly (Fig. 4a–d), such that there is

no systematic difference in PGE tenor between plugs.

Pentlandite is the principal carrier of Pd but there is no

correlation between Pd and Rh for any of the plugs

(Fig. 4a), nor are Rh concentrations higher in pentland-

ite or correlated with Ni content (Fig. 4b). By contrast,

Rh and IPGE (Os, Ir, Ru) abundances in pentlandite are

not distinct from other base metal sulphides or ‘mixed

sulphide’ analyses (Figs. 5b and d).

The chondrite-normalized PGE composition of

coarse sulphides at the margins of plug 1 (Fig. 5a–c) is

subtly different from the composition of fine sulphides

at the centre (Fig. 5d). This difference is particularly no-

ticeable for Os, Ir and Ru, with the concentration of all

PGE in marginal sulphides being lower than in finer sul-

phides at the centre. Overall, for each type of base

metal sulphide (chalcopyrite, pentlandite, pyrrhotite),

the sulphide PGE patterns of plug 1 (particularly the

margins) are fairly consistent and parallel to one an-

other. However, chalcopyrite (Fig. 5a) generally has

lower PGE abundances than pentlandite and pyrrhotite

(Fig. 5b and c, respectively), but the overall normalized

PGE spectra are similar or parallel between Ni–Fe min-

eral species (e.g. Fig. 5b and c). Sulphides in plug 2

(Fig. 5e) also have two distinctive PGE patterns, with

sulphides at the margin being comparatively homoge-

neous, and of a similar composition to those from the

margin of plug 1. However, two sulphides analysed

from the centre of plug 2 have differing PGE

compositions—one that overlaps the sulphide compos-

itions of the margins, and one entirely different sulphide

composition with notably elevated IPGE. In the instance

of plug 2, this may be due to a fundamental difference

in sulphide mineralogy, as the sulphide analysed in

sample RM35 has a notably lower Cu content (Table 3).

Overall, sulphide compositions from plugs 4–12 are

heterogeneous (Fig. 6). This may in part be explained

by their being analyses of ‘mixed sulphide’ species

(owing to their small size) but this cannot account for all

the observed variation, as even sulphides with compar-

able Fe, Cu and/or Ni contents fluctuate between plugs.

We note that whole-rock geochemistry is similarly vari-

able between these plugs (albeit subtly) (see

Supplementary Material). Broadly, peridotite plug sul-

phide compositions resemble those from peridotite

units in the Eastern Layered Series (Fig. 6).

S-isotope compositions and S/Se ratios of the
Rum plugs
Figure 7a shows the average d34S value for whole-rock

samples per plug (data in Table 4, along with S wt %)

and for the ELS, plotted against S/Se ratio per sulphide.

S/Se was calculated from LA-ICP-MS analyses of Se

and calibrated by prior quantitative SEM analyses of S

from the same sulphide grain (or in cases of small

mixed sulphides a mean stoichiometric S abundance

was assumed) and therefore quantifies S/Se on a min-

eral-by-mineral basis per sample. Sulphide minerals

large enough to be analysed by laser combustion (i.e.

only in plug 1) on a sulphide mineral-by-mineral basis

(Table 5) have been averaged to the mean d34S value

serpentinized fracture at margin of cumulus olivine, with intercumulus clinopyroxene, plug 5. (f) Coarse sulphides as a poikilitic
phase with clinopyroxene and plagioclase, plug 1 margin. (g) Poikilitic sulphides surrounding cumulus olivine and elongate ilmen-
ite, with intercumulus plagioclase, plug 1 margin. (h) Similar to (g), demonstrating poikilitic, sometimes ‘net-textured’ sulphides
surrounding granular cumulus olivine phenocrysts. In both (g) and (h) the contrast has been adjusted to display the sulphide in-
ternal texture and mineralogy. A summary of sulphide characteristics and PGM is presented in Table 2. ol, olivine; cpx, clinopyrox-
ene; pl, plagioclase; ilm, ilmenite; chr, Cr-spinel; serp, serpentine; Fe-ox, iron oxide; pn, pentlandite; po, pyrrhotite; cp, chalcopyrite;
bo, bornite.

14 Journal of Petrology, 2015, Vol. 0, No. 0

 at A
cquisitions on A

pril 14, 2016
http://petrology.oxfordjournals.org/

D
ow

nloaded from
 

http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egw010/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egw010/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egw010/-/DC1
http://petrology.oxfordjournals.org/


listed in Supplementary Material Table A, so as to be

comparable with other samples analysed by whole-rock

S extraction and conventional analysis. The d34S results

of Hughes et al. (2015) for various sediments on the

isles of Rum and Skye are also shown in Fig. 7b.

The S/Se ratios of ELS samples are mostly outside
the mantle sulphide range (2550–3750; Lorand et al.,

2003) with only 8% of analyses falling within this range,

84% of analyses being below mantle values (see

Supplementary Material Table D). The full range of ELS

S/Se ratios is 489–5416 (Fig. 7a) and d34S ranges from

–4�4 to þ1�2ø. Excluding plug 1 and one anomalous

value from plug 8, the S/Se ratios of plug sulphides are

up to 4000. With the exception of plugs 1 and 2, the peri-
dotite plugs have d34S ranging from –0�6 to þ2�1ø, in

comparison with the ELS peridotites, which range from

Table 3: Representative LA-ICP-MS data for plug sulphides

Sample Mineral n Plug Spot S* Se S/Se Co Ni Cu Zn Os Ir Ru
number number or line (wt %) (ppm) (ppm) (wt %) (wt %) (ppm) (ppm) (ppm) (ppm)

RM30 Sulph (mean) 4 1 spot 36 137 2911 3451 28�09 1�45 1252 3�90 0�35 2�90
RM32 Cp (mean) 2 1 line 35�27 74 4961 290 1�61 23�54 8491 0�08 0�04 <0�09
RM32 Pn 1 1 line 33�38 111 3015 4540 27�59 1�48 466 1�06 0�37 0�84
RM32 Pn–Po (mean) 2 1 line 39�61 79 5067 2200 14�21 2�63 889 0�91 0�19 0�24
RM32 Po (mean) 4 1 line 41�62 104 4054 311 2�51 0�06 99 1�30 0�48 1�02
RM33 Cp 1 1 line 40�78 38 10812 7 0�19 13�36 1804 <0�02 <0�02 <0�09
RM33 Pn (mean) 2 1 line 32�34 53 6120 3440 28�21 0�12 38 1�16 0�25 0�50
RM33 Pn–Po 1 1 line 37�40 31 12128 472 1�96 0�49 36 0�53 0�13 0�13
RM33 Po (mean) 3 1 line 36�39 46 8195 72 0�81 0�16 34 0�52 0�16 0�35
RM91 Cp (mean) 3 1 line 32�03 76 4248 617 5�88 15�41 3778 0�18 0�71 0�54
RM91 Pn (mean) 3 1 line 35�00 113 3094 2493 30�31 0�50 239 2�39 1�10 2�00
RM91 Po (mean) 3 1 line 41�89 111 3827 51 0�61 0�22 1200 1�33 0�61 1�35
RM95 Cp (mean) 2 1 line 33�62 44 7694 298 3�29 28�59 6725 0�02 0�02 <0�09
RM95 Pn (mean) 6 1 line 35�49 76 4878 6121 27�78 1�28 1295 0�49 0�20 0�23
RM95 Po (mean) 2 1 line 39�36 65 6055 191 1�69 0�52 115 0�33 0�07 0�10
RM35 Sulph (mean) 2 2 spot 36 359 1030 3571 25�61 0�23 1529 72�78 21�86 13�84
RM70 Sulph (mean) 4 2 spot 36 237 1721 2260 13�91 6�07 8199 0�68 0�24 1�07
RM75 Sulph (mean) 3 2 spot 36 301 1339 3135 20�12 1�57 907 1�71 0�80 5�32
RM87 Sulph (mean) 3 4 spot 36 137 2885 1064 3�46 7�18 10617 4�25 1�58 3�90
RM85 Sulph (mean) 2 5 spot 36 630 647 6451 36�24 1�11 1203 1�73 0�10 0�10
RM64 Sulph (mean) 4 6 spot 36 292 1450 1621 12�03 8�83 7667 1�52 1�12 2�04
RM58 Sulph 1 7 spot 36 146 2463 1015 8�65 9�19 9124 0�16 0�10 0�14
RM61 Sulph (mean) 3 8 spot 36 240 1539 1876 7�30 13�20 13940 0�40 0�17 0�12
RM61 Po 1 8 line 36�19 34 10530 400 0�76 3�58 6767 0�09 0�02 <0�09
RM18 Sulph 1 10 spot 36 328 1099 805 5�60 8�45 3966 0�50 0�35 0�61
RM81 Sulph (mean) 4 12 spot 36 159 2304 1699 12�00 3�96 4295 1�20 0�13 1�79

Sample Rh Pt Pd Au Cd As Bi Te
number (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

RM30 0�18 0�40 8�92 0�23 6�99 143�58 5�57 43�62
RM32 <0�22 <0�02 0�34 0�02 51�51 <15 0�69 16�63
RM32 <0�22 <0�02 0�59 0�02 10�64 <15 1�29 15�71
RM32 <0�22 <0�02 3�49 0�22 9�64 <15 2�33 4�32
RM32 0�51 <0�02 1�29 0�10 3�88 <15 1�79 10�15
RM33 <0�22 <0�02 0�43 0�03 45�53 <15 0�36 17�35
RM33 0�40 <0�02 22�50 1�87 <1�1 <15 0�31 7�90
RM33 <0�22 <0�02 2�96 <0�01 <1�1 <15 0�60 1�60
RM33 0�29 <0�02 0�25 <0�01 <1�1 <15 0�34 2�96
RM91 <0�22 0�02 6�25 0�02 25�78 20�03 0�61 9�06
RM91 1�16 0�04 40�11 <0�01 1�35 20�42 1�52 21�87
RM91 0�71 0�02 0�98 <0�01 7�42 <15 1�41 11�18
RM95 0�24 <0�02 <0�2 0�04 66�06 <15 2�17 12�42
RM95 0�24 0�06 28�11 0�02 6�01 46�11 1�39 12�17
RM95 <0�22 <0�02 1�02 <0�01 <1�1 <15 1�61 11�15
RM35 1�49 4�79 9�03 0�01 1�25 38�58 5�43 27�39
RM70 0�23 1�14 6�48 <0�01 36�32 54�86 0�64 15�55
RM75 0�70 0�23 8�23 0�07 3�29 36�13 11�33 20�03
RM87 0�42 0�12 0�71 0�03 14�97 16�50 0�33 1�17
RM85 0�13 0�23 13�84 0�06 7�35 637�68 3�28 110�73
RM64 0�74 3�03 46�60 0�04 13�02 <9 1�87 <0�9
RM58 <0�11 <0�02 <0�25 <0�01 2�72 <9 3�59 5�28
RM61 0�12 <0�02 0�61 0�27 15�99 <9 0�24 3�92
RM61 <0�22 0�03 <0�2 <0�01 5�70 <15 <0�05 1�30
RM18 1�78 <0�02 1�24 0�20 8�72 <9 0�59 9�98
RM81 0�18 0�52 2�61 1�64 24�90 27�48 0�48 13�75

*S content of sulphide is from quantitative analyses of the sulphide mineral or assumed as 36 wt % for spot analyses.
(See Supplementary Data Table C for all plug sulphide analyses and Table D for all ELS sulphide data.)
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–1�0 to 0�9ø. Thus, most of the peridotite plug sul-

phides have d34S and S/Se ratios comparable with, and

within range of, sulphides from ELS peridotite units. In

contrast, sulphides from plug 1 have extremely light

d34S, ranging from –14�7 to –8�0ø, and S/Se ratios rang-

ing from 3000 to 12 000. The centre of Plug 1 shows

least variation and deviation of S/Se from the ELS; how-

ever, d34S is –10�9ø. Whereas the S/Se ratios of plug 2

are within range of the ELS, the d34S composition

ranges from –6�5 to –2�9ø (Fig. 7a and Table 4).

DISCUSSION

Magmatic context of the Rum plugs in relation to
the Rum Central Complex
The peridotite plugs included in this study have whole-

rock major and trace element and PGE signatures that are

subtly distinctive from one another (Supplementary

Material Table B) but, broadly, the range of major element

compositions overlaps with those recorded for the various

portions of the Rum Layered Suite, including peridotite

units from the Eastern, Western and Central Layered

Series (see Emeleus, 1997; O’Driscoll et al., 2009, and refer-

ences therein) and the M9 picritic dyke (Upton et al., 2002).

The Layered Suites on Rum are the result of multiple

injections of ultramafic magma, in an open magmatic

system (e.g. Wager et al., 1960). Current consensus pos-

tulates that layering resulted from interaction between

cumulates and later magmatic pulses derived from sub-

sequent intruding picrites (e.g. Bédard et al., 1988;

Volker & Upton, 1990; Emeleus, 1997; Holness, 2005;

O’Driscoll et al., 2007; Leuthold et al., 2014). The S/Se

data for the ELS display a broad range from 489 to

5416 (Fig. 7 and Supplementary Material Table D).

Fig. 4. Trace element variation diagrams for all sulphide minerals analysed by LA-ICP-MS, grouped by area on Rum (NW,
Central, and SE). Open circles represent pentlandite where it could visually be recognized and targeted by LA-ICP-MS. This
serves to highlight PGE vs Ni abundance for known pentlandite, for comparison with fine sulphide grains where analysis by indi-
vidual base metal sulphide was not possible, resulting in a ‘mixed sulphide’ analysis. Grey shaded area in (b)–(d) delineates the
pentlandite field (based on a minimum of 17 wt % Ni, assuming a 50:50 mix between pentlandite and pyrrhotite). Note that
where PGE abundances were less than the detection limit, results are calculated as half the detection limit and delineated by a
small downward arrow.
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Mantle S/Se ratios typically range from 2550 to 3750

(Lorand et al., 2003) and although most of the ELS data

are within this range there are significant deviations.

Loss of S via oxidation of sulphide minerals will lower

the primary S/Se ratio. This is also consistent with the

common observation of partially oxidized sulphide

minerals in thin sections of the ELS; we suggest that

this is the cause of ELS S/Se ratios <2000. In contrast,

the causes of an increase in S/Se ratio (i.e. >3750) are

two-fold: this can be the result of either hydrothermal

mobilization of S, forming a series of hydrothermal sul-

phide minerals, or contamination of the magmas by

Fig. 5. Chondrite-normalized PGE spectra for sulphide minerals, measured by LA-ICP-MS, for plugs 1 (centre and margin) and 2.
Diagrams for analyses from the margin of plug 1 are divided according to sulphide phase: chalcopyrite (a), pentlandite (b), and pyr-
rhotite (c). Also shown are ‘mixed sulphides’ in plug 1 [centre; (d)] and plug 2 (e). Normalizing values are from McDonough & Sun
(1995). (See Table 3 for summary of data.) It should be noted that where PGE abundances were less than the detection limit, results
are calculated as half the detection limit and delineated by a small downward arrow. Grey shaded areas show the range of compos-
itions for chalcopyrite (cp), pentlandite (pn) and pyrrhotite (po) measured in the Eastern Layered Series (ELS; see Supplementary
Data Table D) for comparison in plots (a)–(c). Dashed line shows the mean ‘mixed sulphide’ composition from the centre of plug 1.
In plots (d) and (e) the grey shaded area delineates ELS, pn only.
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Fig. 6. Chondrite-normalized PGE spectra for sulphide minerals, measured by LA-ICP-MS, for peridotite plugs 4, 5, 6, 7, 8, 10 and
12. Normalizing values from McDonough & Sun (1995). (See Table 3 for details.) It should be noted that where PGE abundances
were less than detection limit, results are calculated as half detection limit with small downward arrow. Grey shaded areas delin-
eate range of compositions for pentlandite (pn) in the Eastern Layered Series (ELS) for comparison.
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crustal S (which is devoid of Se, and thus has a high S/

Se ratio). Although d34S is commonly used as a proxy

for crustal S contamination, recent studies suggest that

with enough magma throughput in the magmatic (con-

duit) system, the ‘S signal’ can be swamped by mag-

matic d34S (–2�0 to þ0�4ø for the Iceland plume;

Torssander, 1989; and –2�3 6 1�5ø for the Isle of Skye

picrites; Hughes et al., 2015), whereas the S/Se ratio re-

mains a more reliable proxy for crustal contamination

(Ihlenfeld & Keays, 2011).

We record a minimum in d34S locally in unit 1 (ELS)

of –4�4ø, but earlier studies have reported d34S as low

as –14�8ø in ELS unit 1 rocks with sulphide concentra-

tions locally up to 3 modal % (Faithfull, 1985; Hulbert

et al., 1992). These lighter d34S values occur strictly

within unit 1 rocks in the vicinity of metre-scale rafts of

Jurassic mudrocks (Faithfull, 1985). In this study, we did

not obtain a d34S composition for the Jurassic mudrock

rafts, but we see no reason to disagree with the infer-

ence made by Hulbert et al. (1992). In general,

Hebridean Jurassic mudrocks, including those in

proximity to dolerite and picrite sills on Skye, have a

similarly light S-isotopic signature, although those adja-

cent to intrusions have been significantly degassed

owing to contact metamorphism and devolatilization,

thereby reducing their bulk S content (Yallup et al.,

2013; Hughes et al., 2015). In higher cyclic units in the

ELS, d34S falls within the typical magmatic range; how-

ever, sporadic increases in S/Se ratio (>4350) may indi-

cate localized crustal S contamination. This probably

took place during intrusion of magmas into the layered

suite, and may not be recorded in the d34S either be-

cause of the contaminant having an S-isotopic compos-

ition similar to the magma or because high volumes of

magma throughput have obliterated the signal.

Ultimately, the complexities of sulphide composition, S/

Se ratio and S-isotopic composition throughout the ELS

and Rum Layered Suite as a whole require further in-

vestigation, which is beyond the scope of this study.

The diversity of S/Se ratios and PGE compositions

measured in ELS sulphides from our study overlaps

with sulphide compositions from the plugs. Therefore

Fig. 7. (a) S-isotope composition (d34S) vs S/Se ratio of peridotite plug sulphides. Grey shaded area delineates the variation in S/Se
ratio for the ELS, and brackets show the range of S/Se for the mantle based on Lorand et al. (2003), and d34S for Jurassic shales,
Torridonian sediments and the Trotternish Sills (Isle of Skye) from Hughes et al. (2015). MORB d34S is from Labidi et al. (2012). d34S
for the ELS is also shown (see Supplementary Material Table E). (b) Histogram of d34S for Proterozoic (Torridonian from Rum and
Skye) and Mesozoic (specifically Jurassic mudrocks and ironstones from Skye and Ardnamurchan) sediments present in this area
of the Hebrides; data from Hughes et al. (2015).
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Table 4: Sulphur isotopic composition (d34S, mean per sample) and whole-rock sulphur concentration

Sample Location Plug no. Plug type Margin or centre d34S S
number (Fig. 1) (ø) (wt %)

RM81 Dibidil 12 peridotite centre –0�2 0�03
RM58 Kinloch Glen 7 peridotite margin –0�2 —
RM59 Kinloch Glen 7 peridotite centre — —
RM60 Kinloch Glen 9 gabbro margin — —
RM61 Kinloch Glen 8 peridotite centre þ1�1 —
RM63 Kinloch Glen 6 peridotite centre –0�6 —
RM64 Kinloch Glen 6 peridotite centre –0�1 —
RM17 Monadh Mhiltich 11 peridotite margin N/P —
RM18 Salisbury’s Dam 10 peridotite margin þ2�1 —
RM35 Loch Sgaorishal 2 peridotite centre –2�9 —
RM70 Loch Sgaorishal 2 peridotite NW margin (at contact) –5�7 0�05
RM71 Loch Sgaorishal 2 peridotite NW margin (5 m inwards from contact) –3�7 —
RM73 Loch Sgaorishal 2 peridotite centre –4�2 —
RM74 Loch Sgaorishal 2 peridotite NE margin –6�5 0�06
RM75 Loch Sgaorishal 2 peridotite NE margin (�20 m inwards from inferred contact) –3�9 0�03
RM85 Southern Sgaorishal 5 peridotite margin — —
RM86 Southern Sgaorishal 5 peridotite centre þ0�3 0�02
RM87 Southern Sgaorishal 4 peridotite margin –0�5 —
RM88 Southern Sgaorishal 4 peridotite centre –1�3 0�04
RM89 Southern Sgaorishal 3 gabbro S margin (�3 m inwards from inferred contact) — —
RM29* West Sgaorishal 1 peridotite N margin (�30 m inwards from inferred contact) –11�0 —
RM30* West Sgaorishal 1 peridotite centre –10�9 0�02
RM32* West Sgaorishal 1 peridotite NW margin (�35 m inwards from inferred contact) –14�7 0�08
RM33* West Sgaorishal 1 peridotite N margin –11�8 —
RM91* West Sgaorishal 1 peridotite S margin –8�0 0�18
RM95* West Sgaorishal 1 peridotite NW margin –14�3 —

Sample Location Period: Group, Formation Sediment type d34S S
number (ø) (wt %)

RM21 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

conglomerate
with calcrete
matrix

N/P —

RM22 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

coarse red
sandstone

N/P —

RM23 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

white limestone N/P —

RM24 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

micaceous red
arkose

— —

RM26 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

limestone with
calcretes

— —

RM28 Monadh Dubh Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

limestone N/P —

RM94 West Sgaorishal Triassic: New Red Sandstone Supergroup, Monadh
Dubh Sandstone Formation

limestone — —

RM3† Guirdil, Isle of Rum Mesoproterozoic: Torridon Group, Applecross
Formation, Scresort Sandstone Member

medium–coarse
sandstone

þ1�4 —

RM5† Guirdil, Isle of Rum Mesoproterozoic: Torridon Group, Applecross
Formation, Scresort Sandstone Member

medium–coarse
sandstone

þ3�0 —

RM69 Kinloch Glen Mesoproterozoic: Torridon Group, Applecross
Formation, Scresort Sandstone Member

medium–coarse
sandstone

N/P —

RM76 West Sgaorishal Mesoproterozoic: Torridon Group, Applecross
Formation, Scresort Sandstone Member

medium–coarse
sandstone

N/P —

RM78 Papadil Mesoproterozoic: Torridon Group, Aultbea
Formation, Sgor Mhor Member

sandstone (with
heavy min-
eral bands)

N/P —

RM82 Dibidil Mesoproterozoic: Torridon Group, Diabaig Shale
Formation, Laimhrig Shale Member

shale N/P —

RM90 West Sgaorishal Mesoproterozoic: Torridon Group, Applecross
Formation, Scresort Sandstone Member

medium–coarse
sandstone

N/P —

RM97 South shore of
Loch Scresort

Mesoproterozoic: Torridon Group, Applecross
Formation, Allt Mhor na h-Uamha Member

fine sandstone N/P —

Sulphur isotopic composition was measured via conventional methods (following whole-rock sulphur extraction), except for sam-
ples with asterisk.
*Sulphur isotopic composition measured via laser combustion methods (for plug 1 only).
—, analysis was not run for that sample. Detection limit of bulk S is 0�018 wt %. N/P, no Ag2S precipitate was recovered following
bulk-rock sulphur extraction.
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we suggest that the plugs (conduits) record various

crystal mush injection events broadly coincident with

magma (or mush) injections into the Rum Layered

Suite. As such, the magma conduits represented by the

peridotite plugs were not formed from a single eruption

event, and probably represent multiple eruptions.

Feeders and magma staging chamber for the
plugs and Rum Layered Suite
The presence of dunite, chromitite, and troctolite xeno-

liths within peridotite plugs situated inside or close to

the Main Ring Fault (Volker & Upton, 1990) suggests

that ejection of crystal mushes that fed these plugs

occurred whilst crystallization of the layered series was

taking place. This demands a physical brecciation of

wall-rock material, and does not provide evidence that

the conduit crystal mushes were derived from the lay-

ered suites directly, but instead indicates that they

erupted through them.

One striking observation regarding the Rum plugs is

the lack of troctolite plugs. In contrast, feldspathic peri-

dotites (strictly olivine melagabbros) described in our

study exist alongside gabbroic plugs that have no

phenocryst assemblage or other evidence for their hav-

ing been intruded as a crystal mush, unlike the perido-

tite plugs. It is possible that the gabbroic plugs

represent the basaltic magmas ejected from a staging

magma chamber, and there is no evidence to suggest

that these gabbroic plugs correlate strictly with the

troctolite portions of units in the Rum Layered Suite.

Indeed, per cyclic unit in the Rum Central Complex, the

peridotite base and troctolite tops are typically paired in

the Eastern Layered Series (Emeleus & Troll, 2011, and

references therein; O’Driscoll et al., 2014). Regardless of

the mechanism that formed the overall layering of this

suite, it is apparent that each of the troctolite layers is a

fractionation feature associated and paired with each

peridotite layer. Therefore because the peridotitic crys-

tal mush that was ejected through the volcanic pipes is

of a comparable composition to the peridotitic bases of

the layered suite cyclic units, this suggests that the crys-

tal mushes of both came from a common source, and

not necessarily that the layered suites directly fed the

plugs themselves. This is supported by the observation

that small entrained sulphide minerals in both the plugs

and layered suite peridotites are directly comparable

with one another (according to both S/Se and d34S, ex-

cept for plugs 1 and 2, which are discussed below). In

other words, there must have been a separate deeper

staging chamber in which a peridotitic crystal mush

evolved, before being tapped by the magmatic plumb-

ing system to both the layered suites and the plugs.

The origin of sulphides within the Rum plugs
With the exception of plugs 1 and 2, the sulphide min-

erals observed are of low abundance and are small,

often rounded phases (<150mm in diameter); some-

times these sulphides occur as embayments within

cumulus olivine (e.g. Fig. 3c and e, and Table 2). All

plugs have distinctive chondrite-normalized PGE and

Au patterns and S/Se ratios, some of which closely re-

semble the compositions of sulphides in peridotite units

of the ELS (e.g. Figs 6–8). The Fo content of cumulus

olivine in the plugs suggests that previously crystallized
olivine phenocrysts were entrained within a basaltic or

picritic magma, such that the peridotite plugs were es-

sentially crystal mush conduits (e.g. Wadsworth, 1994;

Holness et al., 2012) sometimes with entrained chromi-

tite, dunite or troctolite xenoliths (e.g. Volker & Upton,

1990). We propose a similar scenario for the entrain-

ment of sulphide liquids.

The magmatic temperature of the peridotite plugs on
Rum has previously been estimated at 1400�C, based

on picritic magma temperatures (Holness et al., 2012).

The solidus temperature of an Fe-bearing sulphide li-

quid is c. 1100�C (Bowles et al., 2011; after Kullerud &

Yoder, 1959; Arnold, 1971) suggesting that sulphides

would be liquid at the estimated temperature of em-

placement for the plugs. Given that the ‘lubricating’

magmas were energetic enough to entrain up to 50%

olivine crystals (e.g. Holness et al., 2012) and sizeable
xenoliths (e.g. Volker & Upton, 1990), it is highly likely

that these were also capable of entraining immiscible

sulphide droplets. A similar scenario of upward sul-

phide liquid entrainment has been suggested in the

vicinity of Grasvally in the Northern Limb of the

Bushveld Complex by Smith et al. (2016), suggesting

that S-saturation occurred in a deeper master chamber

(albeit via deep crustal contamination with a distinctive
S-isotopic and S/Se composition). Therefore, we sug-

gest that at least some sulphides (with mantle S/Se

ratios) were formed prior to intrusion of the plugs, and

were transported as sulphide liquid droplets into these

conduits.

Sulphur content at sulphide saturation (SCSS), as

defined by Li & Ripley (2005), is dependent upon the

bulk composition of the magma (MgO, FeOT, SiO2,
Na2O and K2O), pressure and temperature. Assuming

the magmatic temperature of 1400�C from Holness

et al. (2012) and using the bulk compositions of gab-

broic plugs (e.g. plugs 3 and 9) and ultramafic plugs

(e.g. plug 12 at Dibidil, and plug 1 at West Sgaorishal)

reported in the Supplementary Material, we find that

SCSS would be 2985 ppm (plug 12), 3510 ppm (plug 1)

and 1830 ppm for the two gabbroic plugs (plugs 3 and

9) at 1 km depth [using the equation of Li & Ripley
(2005)]. For the ultramafic plugs, this is apparently

well in excess of the measured bulk S concentration

(Table 4). However, we highlight that this bulk concen-

tration potentially incorporates up to 50% cumulus oliv-

ine, and therefore the actual S concentration of the

interstitial magma carrying the crystal mush will have

been significantly higher if this is taken into account (i.e.

up to double that measured). Further, a late picrite dyke
(M9) on Rum is calculated to reach an SCSS at 1400�C

and 1 km depth of 3000 ppm S. Upton et al. (2002)

observed up to 60 vol. % olivine phenocrysts and we
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observe two sets of olivine phenocrysts in the M9 dyke,

thus highlighting that the bulk composition of this dyke

is not suitable for use in modelling the parental magma.
According to the equation of Li & Ripley (2005), pres-

sure (i.e. depth) has little effect on SCSS in comparison

with temperature. Therefore if we reduce the ambient

temperature to 1200�C (i.e. still 100�C above

the liquidus temperature of sulphide) we see a signifi-

cant drop in SCSS, to �1600 ppm for the ultra-

mafic plugs and �1000 ppm for the gabbroic plugs.

Accommodating for the bulk geochemical analyses

incorporating up to 50% cumulus olivine for the ultra-

mafic plugs, and using this lower temperature, we sug-

gest that SCSS is within the range of the S content now

observed in plugs across Rum. Coupled with observa-

tions of sulphide mineral embayments in cumulus oliv-

ine (as noted above), and Li & Ripley’s calculations of

decreasing SCSS with fractional crystallization of a

magma, it is plausible to assume that sulphide satur-

ation could be achieved deeper in the magmatic system

of Rum, prior to plug emplacement.
Several examples of sulphide liquid entrainment in

magma conduits have been recorded worldwide; for ex-

ample, the Norilsk–Talnakh magma conduit setting for

orthomagmatic Ni–Cu–PGE mineralization, in which sul-

phides were initially exsolved in a deeper staging cham-

ber before being flushed out to higher magmatic

plumbing system levels (Brügmann et al., 1993;

Lightfoot & Keays, 2005). Sulphide entrainment is also

suggested for the Platreef (Bushveld Complex) where

sulphides were transported away from a deeper zone of

sulphide liquid formation (McDonald & Holwell, 2007;

McDonald et al., 2009; Ihlenfeld & Keays, 2011;

Sharman et al., 2013). In the Platreef, evidence for this

sulphide transportation was based on Cu/Pd, S/Se

ratios, S-isotope compositions and trapped sulphide

Fig. 8. Dynamic conduit modelling using the Hadamard–Rybczynski equation for sulphide settling: (a) sulphide velocity (Vs) vs size
of a sulphide droplets (radius in mm); (b) sulphide settling velocity through a conduit (Vd) vs sulphide droplet radius. Sulphides will
sink if Vd<0. (c, d) N-factor modelling: (c) N-factor (plotted as log N) vs Pd and Cu concentration in the sulphide liquid. Continuous
horizontal line delineates the Cu concentration in the sulphide liquid from the margin of plug 1 (RM33); the dashed horizontal line is
for Pd. Both Cu and Pd were calculated from the bulk-rock geochemistry normalized to 100% sulphide [using the method outlined
by Huminicki et al. (2005)]. Shaded rectangle shows the range of modelled log N values that fit Cu and Pd. (d) Modelled Cu and Pd
concentrations in sulphides according to various values of N (labelled). Plotted for comparison are the calculated mean Cu abun-
dances of the sulphide liquid [calculated by normalizing the bulk Cu concentration to 100% sulphide, using the method outlined by
Huminicki et al. (2005)] and weighted mean Pd abundances (per sample weighted according to the number of analyses of chalco-
pyrite, pentlandite and pyrrhotite) for sulphides from plug 1, centre and margins.
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melt inclusions (Holwell et al., 2011). Clearly, the pro-

cess of entrainment of pre-formed sulphides, other sili-

cate minerals and xenoliths is a common feature of

many magmatic systems. However, in many of these

cases only one part of the full system is exposed, with

earlier processes at depth being inferred. The volcanic

plugs and the Layered Suite of Rum provide a rare op-

portunity to compare layered intrusion and volcanic

pipe compositions and mechanisms of sulphide trans-

port at the same present-day erosional level.

The d34S composition of the peridotite plugs

(þ0�1 6 1�0ø, excluding plugs 1 and 2) and peridotite

cyclic units of the ELS (–0�5 6 1�4ø; Supplementary

Material Table E) overlap with the typical Icelandic man-

tle plume range of –2�0ø to þ0�4ø (Torssander, 1989),

mid-ocean ridge basalt (MORB) –0�91 6 0�5ø (Labidi

et al., 2012) and the picritic Trotternish Sills on the Isle

of Skye with average d34S of –2�3 6 1�5ø (Hughes et al.,

2015). Thus we suggest that, for most plugs and the

ELS, S-saturation was reached prior to emplacement, in

the deeper magmatic plumbing system where olivine

crystallization and fractionation was taking place, and

did not involve the addition of crustal sulphur with d34S

different from magmatic compositions. We note that

the d34S values observed in the ELS and plugs (exclud-

ing plugs 1 and 2), are slightly heavier (–0�5 to

þ0�1 6 1ø) than the Icelandic plume d34S signature of –

0�8ø to –2�3ø [Torssander (1989) and Hughes et al.

(2015), respectively] and that this may be due to small

changes in the magmatic source signature. With ejec-

tion of crystal mushes from a staging chamber, sul-

phide liquid was entrained and emplaced into the

peridotite plug magma conduits and Rum Layered

Suite alike. However, in the case of plugs 1 and 2 signifi-

cant deviation of d34S and elevation of S/Se ratio indi-

cates that localized crustal contamination also took

place.

Potential crustal S-sources for the West and Loch

Sgaorishal plugs (plugs 1 and 2)
The d34S of plug 1 (West Sgaorishal) ranges from –14�7
to –8�0ø with a S/Se ratio of sulphide minerals ranging

from 3000 to 12 000, whereas the d34S of plug 2 (Loch

Sgaorishal) varies from –6�5 to –2�9ø (Fig. 7a). Further,

the sulphide S/Se ratios of plug 1 are elevated above

the range of most ELS sulphides, and often exceed

10 000 (a critical value for crustal sedimentary sulphide

compositions; Ihlenfeld & Keays, 2011, and references

therein). These S-isotope compositions are significantly

lighter than typical mantle or Icelandic plume values,

and, together with S/Se, demonstrate that crustal S

must have been added to the plug 1 and 2 magmas.

There is also a change in textural character of the sul-

phides in plug 1, which became more abundant and

coarser grained. Hence the following questions arise:

what was this sulphur source, and why is this light d34S

recorded only in two plugs from NW Rum?

The d34S of sedimentary S (typically pyrite) can be

highly variable owing to bacterially mediated sulphate

reduction processes during diagenesis. The range of

d34S can be of the order of tens of per mil (ø) with both

negative and positive values. Palaeozoic and Mesozoic

sedimentary sulphides generally have more negative
values than those observed in Precambrian rocks

(Canfield & Teske, 1996; Parnell et al., 2010).

Most plugs on Rum have intruded through

Torridonian (Applecross Formation) sandstones at the

current erosion level, but the NW tip of plug 1 also in-

trudes the unconformable base of a sequence of

Triassic limestones and calcretes (Binns et al., 1974;

Fyfe et al., 1993). Hughes et al. (2015) established that
the d34S of these Triassic sediments is isotopically

heavy (with very low S concentrations) and thus cannot

account for the d34S of plugs 1 and 2 via assimilation.

This leaves three possible explanations: (1) Torridonian

lacustrine sediments with a light d34S (e.g. Parnell et al.,

2010) are present below plugs 1 and 2; (2) a segment of

Jurassic mudrock with suitably light d34S occurs in a

downthrown faulted block of a major fault zone (e.g.

Main Ring Fault) through which plugs 1 and 2 have
intruded; or (3) the d34S signature of plugs 1 and 2 is

derived from above the current erosion level and in-

volves the Lower Jurassic Broadford Group that prob-

ably covered this area at the time of conduit activity.

Despite some Torridonian lacustrine sediments from

the mainland Stoer Group having d34S as low as –

30�1 6 17�3ø (Parnell et al., 2010), all the Sleat and

Torridon Group Mesoproterozoic sediments analysed
by Hughes et al. (2015) had values> 0�0ø. Further, the

Stoer Group is not recorded in the sedimentary pile

exposed on either Skye or Rum, suggesting that scen-

ario (1) is extremely unlikely.

Hebridean Jurassic mudrock and ironstone d34S val-

ues range from –10 to –35ø, and associated basaltic

dykes intruded through this sequence record d34S val-

ues as light as –30�7ø (Hughes et al., 2015). Blocks of
Jurassic mudrock are recorded as being present within

the Main Ring Fault on Rum at Allt nam B�a and near

Dibidil (Emeleus & Troll, 2008; Figs 1 and 2c). In con-

trast, no such sedimentary blocks are reported from the

Long Loch Fault, not least owing to this being a strike-

slip fault with no vertical motion that would have down-

thrown these sedimentary units. It is possible, however,

that the subsurface route of the plug magma conduits
could have intersected a downthrown block of Jurassic

mudrocks, assuming that these conduits were fed from

somewhere near the centre of the Rum volcanic edifice.

However, only plugs 1 and 2 from the NW quadrant of

the island record this light d34S and the absence of such

a light d34S in plugs 3–5 renders this scenario highly im-

probable; and necessarily very localized, if true.

By a process of elimination, to account for the light
d34S, we are left with a scenario whereby crustal sul-

phur contamination demonstrably took place only in

plugs 1 and 2. If contamination were taking place above

the current erosion level, in Lower Jurassic sediments
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that very probably overlay this region, there remains a

problem as to how these crustally contaminated sul-

phides are now present below the level of the potential

contaminant. One possibility may be that the sulphides

moved down the plug or conduit. Below we consider

whether this is feasible given the upward injection of

magma in a conduit, and whether the observed charac-

teristics of the sulphides in plugs 1 and 2 support this

model. What were the physical constraints on sulphides

sinking and could this effect have been so localized that

the other plugs (3–5) further ‘downhill’ on the NW quad-

rant of Rum, be too low in altitude to record this

process?

Dynamic conduit modelling and sulphide sinking
Hadamard–Rybczynski conduit modelling
The settling of sulphide liquid droplets through a

magma conduit can be modelled either by using

Stoke’s Law or by the Hadamard–Rybczynski equation

(e.g. Lightfoot et al., 1984) as established by the experi-

ments of de Bremond d’Ars et al. (2001). The latter takes

into account the non-Newtonian fluid properties in the

conduit, as well as the differences in both density and

viscosity of the silicate and sulphide liquids present in

the system, and is expressed as

Vs ¼
1

3

Dqgr2

lf

� �
½lf þ ld �
½lf þ 3

2 ld �
(1)

where Vs is settling velocity (m s–1), r is sulphide droplet

radius (m), Dq is the difference in density between sul-

phide liquid and silicate magma (¼ 1400 kg m–3), mf and

md are the viscosities of silicate magma (0�1 Pa s;

Paterson et al., 1998) and sulphide liquid (0�01 Pa s) re-

spectively, and g is the acceleration due to gravity

(9�8 m s–2). Sulphide droplets will sink (with velocity Vd)

through the conduit pipe once the settling velocity (Vs)

exceeds the upward velocity of magma intruding into

and through the pipe (Vz), such that

Vd ¼ Vz � Vs : (2)

Sulphide droplet settling occurs when Vd< 0 m s–1. The

analogue experiments of de Bremond d’Ars et al. (2001)

indicated that sulphide droplets can be transported in

suspension by flowing magmas, and that owing to the

large surface tension of the droplets, they do not co-

alesce during active transport. In part, this could explain

the disparity and size of sulphide minerals in peridotite

plugs 4–12. These plugs generally do not record matrix

banding or indentation layering, suggesting that pro-

longed quiescent periods were not prevalent during

cooling, hence perturbing the ability of the conduit to

form crystal layering (e.g. Wadsworth, 1994) and thus

arresting sulphide droplet settling and coalescence.

Further, the low abundance of sulphides in plugs 4–12

would also hamper coalescence. The size and distribu-

tion of fine sulphides in these plugs probably reflects

the mode of transportation and entrainment that

occurred during conduit activity.

For scenarios involving higher volumes of sulphide

liquid, plots of Vs and Vd according to sulphide droplet

radius are presented in Fig. 8a and b. Sulphides in the

margins of plug 1 range in diameter from 0�5 to 4 mm

(Table 2); most intercumulus sulphides are 1–3 mm in

diameter. Vz was varied in equation (2) until sulphides

of the minimum average radius observed in the margin

of plug 1 (r�0�5 mm) had Vd< 0 m s–1. This required an

upward magma velocity of 0�01 m s–1 (Fig. 8a and b),

such that sulphide droplets would sink through the con-

duit at a rate of 0�001 m s–1 (Vd). By lowering Vz further

to 0�001 m s–1, sulphides with r¼ 0�2 mm would also

begin to sink at a similar rate. Thus, the upward flow of

magma through the conduit would essentially have to

have ceased before sulphide droplets of the sizes

observed in the margins of plug 1 would settle. The vis-

cosity of the silicate magma was assumed to be 0�1 Pa s

(Paterson et al., 1998); however, if the conduit was in-

stead filled with olivine phenocrysts entrained in bas-

altic magma then the overall effective viscosity of the

‘silicate magma’ would be higher. Holness et al. (2012)

suggested a crystal load in the range of 10–40 vol. % for

the peridotite plugs, based on the volume of pheno-

crysts entrained in picrite dykes on Rum. Even by

increasing viscosity to 1 Pa s [i.e. an assumed 50% crys-

tal mush entrained in a mafic magma, with

viscosity¼ 1 Pa s based on Paterson et al. (1998)] at

Vz¼ 0�001 m s–1, sulphides of r� 0�5 mm would still be

capable of sinking through the conduit. In summary, it

is possible that sulphide liquids forming through crustal

contamination above the present-day level of erosion

and exposure of plug 1 (and plug 2) would have sunk

through the conduit once active upwards magma injec-

tion had ceased. Sulphide liquid sinking may have taken

place either in a passively cooling (stationary) environ-

ment and/or sulphide liquid was ‘sucked’ downwards if

magma withdrawal were taking place.

By assuming that the cooling rate of a stationary

magma is controlled by Newton’s Law of Cooling,

T ¼ Ta þ ðTo � TaÞe�jt (3)

it would take the margin of plug 1 c. 5 days to cool

below 1100�C, where Ta is the temperature of the coun-

try rock [assumed to be 600�C, based on Holness et al.

(2012)], To is the initial magma temperature of the con-

duit [assumed to be 1400�C; Holness et al. (2012)], T is

the target temperature of 1100�C for the sulphide

liquidus (e.g. Bowles et al., 2011) and j is a thermal dif-

fusivity constant of 10–6 m2 s–1. Given a downward vel-

ocity Vd of 0�001 m s–1 for sulphide droplets through the

quiescent conduit, sulphides would be capable of set-

tling through a distance of the order of 400 m, down-

wards from the initial level of S-saturation. As

mentioned above, however, constraints on the SCSS of

these plugs may suggest that their emplacement tem-

perature was lower than 1400�C. Therefore if we use

1200�C as the emplacement temperature, we estimate
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that sulphides could still have settled more than 100 m

down the conduit.

Ultimately, this settling distance is likely to be sub-

ject to estimation errors; for example, as sulphide drop-

lets coalesce during settling, their settling velocity will

change. In addition, as the conduit cools towards
1100�C, the effective viscosity of both the sulphide li-

quid and silicate magma will increase, thus slowing its

descent. The ‘permeability’ of the host silicate mush

(i.e. amount of partial melt and degree of ponding of

sulphide liquid above areas of low permeability; e.g.

Holwell & McDonald, 2006; Hutchinson & McDonald,

2008) may not be uniform throughout a single volcanic

plug. However, the interfacial tension at silicate–
sulphide liquid interfaces may preclude sinking of sul-

phide droplets below a critical size range (e.g. Mungall

& Su, 2005). This depends on the proportions of silicate

melt to solidified silicate minerals in the system, and

would suggest that compaction-driven sulphide segre-

gation is possible (Rose & Brenan, 2001).

The estimated thickness of Triassic sediments in the

Hebrides Basin in the vicinity of Rum on the ‘Skye High’

of this Mesozoic sedimentary basin ranges from tens of
metres on Ardnamurchan, to 100 m at Raasay off the

Isle of Skye, and 300 m at Gruinard Bay on the Scottish

mainland (Steel et al., 1975). Given that the current ero-

sion level of plug 1 occurs at the base of these Triassic

sediments (Figs 2a and 9a) and the estimated minimum

potential settling distance of sulphide droplets is 100 m

(assuming a lower emplacement temperature of

1200�C) to 400 m [using the Holness et al. (2012) em-
placement temperature of 1400�C], this is within reach

of S-rich lower Jurassic sediment horizon(s), assumed

to have been present above the current erosion level

(Fig. 9a). Assimilation of wall-rock sediments, particu-

larly light d34S crustal sulphur from Jurassic units,

would induce sulphide saturation at a high level in the

conduit (above the current erosion level; e.g. Fig. 9b).

Thus, we can reasonably envisage that once active
magma-mush injection had ceased, silicate and sul-

phide liquids from above sank through the conduit,

forming olivine cumulates with interstitial sulphide li-

quid that recorded light crustal S isotope compositions

and high S/Se ratios inherited from hundreds of metres

above (e.g. Fig. 9c).

Although plug 2 also records d34S in sulphides sig-

nificantly less than the local magmatic compositions of
around 0ø, it has lower abundances of sulphide than

plug 1. Projecting the dip of the base of the Triassic

sedimentary units near plug 1 (approximately 20� NW;

Fig. 9a) and even accounting for the current topography

and elevation of the area between plugs 1 and 2, the

lower sulphide abundance in plug 2 may reflect the

greater distance between the potential Lower Jurassic

contamination zone and the present-day level of expos-

ure (Fig. 9a). Further, the lack of a crustal d34S signature
in plugs 3, 4 and 5 is consistent with the model, in that

their current level of exposure is >400 m below the pro-

jected contamination horizon, so that any sulphides that

did settle downwards are likely to have been removed

by erosion (i.e. Fig. 9a). The lack of a crustal d34S signa-

ture in plugs from elsewhere on the island, particularly

farther east, may also suggest that the Mesozoic sedi-

mentary sequence of the Hebrides Basin was not pre-

sent, as the Isle of Rum sits on the ‘Skye High’ within

the basin such that only the feather-edge of the basin’s

sediments could have been deposited over part of the

island (see Hughes et al., 2015).

Jurassic shale geochemical interaction with
volcanic plugs
The sedimentary host rocks to the volcanic plugs

(Triassic, Fig. 2a; Torridonian, Fig. 2a–c) typically appear

bleached, fissile and metasomatized. Detailed studies of

in situ anatexis of these rocks have provided insights

into the longevity of the plugs as active magma con-

duits (e.g. Holness, 1999; Holness et al., 2012). Static

melting occurred up to 15 m from the gabbro plugs and

6 m from the larger peridotite plugs, suggesting that the

peridotite plugs were a relatively short-lived magma

conduits (active for c. 1–2 years; Holness et al., 2012)

whereas the gabbro plugs were longer lived features (c.

40 years; Holness, 1999). However, Holness (1999) con-

cluded that anatectic melt migration did not occur, so

that very limited contamination of the plug margins

was likely to have taken place. However, Yallup et al.

(2013) and Hughes et al. (2015) (and references therein)

demonstrated that the volatile content (S, C, H2O, etc.)

of mudrocks is particularly vulnerable to mobilization

by magmas during contact metamorphism of wall-

rocks and/or their brecciation. In this way, we envisage

a scenario whereby S is preferentially mobilized, im-

parting a strong crustal contamination signature onto

the plug magmas, but without other non-volatile trace

element contamination.

Comparison with Paleogene macrodykes in East
Greenland and other similar intrusions
A similar set of geological circumstances exists in East

Greenland, where Holwell et al. (2012) described a suite

of mineralized macrodykes, radiating away from the

Skaergaard intrusion and intruding Archaean basement

and overlying pyrite-rich Cretaceous black shales (with

d34S –23 to –30ø) and Paleogene flood basalts.

Magmatic Cu–PGE–Au sulphide mineralization, with

crustal d34S signatures (–10 to –26ø), is present along

the margins of the subvertical Miki Fjord Macrodyke,

which is observed to intrude all three lithological units.

Further north, the Togeda Macrodyke, which is exposed

at a level where it intrudes the basement gneiss, has

similar sulphides that have a light S-isotope signature

(Holwell et al., 2012). Holwell et al. (2012) concluded in

both cases that Cretaceous shales were the trigger for

sulphide saturation and that sulphide droplets were en-

trained within the macrodyke magmas during intrusion.

The presence of sulphides in the Togeda Macrodyke,

beneath the stratigraphic level of the contaminant, was
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Fig. 9. Schematic cross-sections of the crustal sulphur contamination scenario for NW Rum. (a) Schematic cross-section of NW
Rum showing plugs 1–5 in the vicinity of Sgaorishal. Owing to the orientation of the Mesozoic Hebridean Basin Triassic and
Jurassic sediments relative to the present-day topography, the current exposures of plugs 3, 4 and 5 are too great a distance below
the Jurassic contamination horizon to record crustal d34S and voluminous sulphide liquids. However, plugs 1 and 2 still record light
crustal d34S. (b) Active volcanic plug intrudes through Torridonian sediments, and Triassic and Jurassic sediments of the Hebrides
Basin (since eroded) above. The plug entrains tiny droplets of high-tenor sulphide liquid from a staging chamber. Wall-rock meta-
somatism and partial melting (especially recorded in the siliceous Torridonian Applecross Formation sandstones) takes place. In
the upper portions of the plug, S-rich shales and siltstones from the Jurassic sediments contaminate the magmas with isotopically
light crustal S. (c) Active magma intrusion of volcanic plug ceases, and magma-entrained olivine mushes are left to settle through
the conduit (forming cumulate layers, particularly at the conduit margins). Sulphide droplets entrained in the plug, including more
voluminous sulphide liquids from crustal S contamination horizons (above) in Jurassic sedimentary units, settle through the con-
duit. Sulphide liquids amalgamate during settling, and form an interstitial or intercumulus phase around the cumulate olivine.
Sulphide liquid is particularly abundant around the conduit margins (owing to wall-rock S contamination) and has a higher concen-
tration of PGE, higher S/Se ratio and lighter d34S.
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explained by northward injection of magma, which

could then incorporate S from sediments exposed

deeper to the south (Holwell et al., 2012).

A similar situation to that described above for the

Rum plugs is also possible for the Togeda Macrodyke.

The Cretaceous sedimentary units are inferred to have

been present some 500 m or so above the present ero-

sion level. Given the much larger size of the droplets

(up to 10 mm) in the macrodykes compared with the

Rum plugs (mostly 1–3 mm), the likelihood of large

droplets settling down through the dyke conduit by a

vertical distance of up to 500 m is plausible. For ex-

ample, assuming a sulphide droplet with radius (r) of

0�5 mm and a silicate liquid (not crystal mush) of viscos-

ity 0�1 Pa s, then owing to the silicate–sulphide liquid

density difference, the sulphide droplets would be cap-

able of sinking through a magma conduit with upward

silicate magma velocities (Vz) of up to 1�1 m s–1.

However, in a dyke scenario, lateral movement of mag-

mas along the dyke (owing to a pressure gradient from

the point of intrusion along an opening fracture) must

also be factored in. Hence both lateral and downward

migration of sulphide droplets may be envisaged for

planar features such as dykes (e.g. Todega Macrodyke),

in contrast to pipe-shaped conduits.
The downward movement of sulphide liquids in a

cooling magmatic system has also been suggested for

ultramafic complexes in Madagascar (McDonald, 2008).

In this model, sulphide liquids migrate laterally, as well

as downwards, towards the centre of the intrusion dur-

ing crystallization. During their migration, the sulphide

liquids fractionated such that Pt- and Pd-bearing PGM

exsolved from, and detached from, the sulphide liquid

(becoming trapped in olivine mushes), leaving Cu-rich

sulphide liquid to continue sinking towards the centre

of the intrusion (McDonald, 2008).
Our model of sulphide sinking in a cooling magmatic

system (where magma flow has recently ceased) differs

markedly from sulphide sinking models suggested for

other mineralized conduit settings; for example, at

Norilsk–Talnakh where Arndt (2011) envisaged that sul-

phide liquids sank (or were re-injected) through an ac-

tive silicate magma conduit, with a significant upward

velocity of magma injected from beneath. Sulphide

pools may be re-entrained by pulses or batches of new

magma (e.g. Robertson et al., 2014), leading to complex

scenarios of re-deposition within large, dynamic or

long-lived conduit systems, with ultimate sulphide

tenor upgrading (Barnes et al., 2016, and references

therein).

N-factor modelling: silicate/sulphide liquid ratios
Another parameter that can be calculated for a sul-

phide-bearing conduit is the proportion of sulphide li-

quid to silicate magma within the system. In a closed

system, this is typically denoted by the ‘R-factor’; how-

ever, in the case of open-system conduits this is termed

the ‘N-factor’ and was modelled for the sill-hosted

Norilsk–Talnakh Ni–Cu–PGE orthomagmatic mineraliza-

tion in Siberia (Brügmann et al., 1993; Naldrett &

Fedorenko, 1995; Naldrett et al., 1996). In an open sys-

tem such as a magma conduit silicate magma batches

are flushed through the conduit system. If this system is

Fig. 9. Continued
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S-saturated, sulphide liquids may become trapped

within the conduit whilst silicate magmas continue to

flush through. Owing to their strong chalcophile nature,

PGE and Cu will partition from each fresh silicate

magma batch into the resident sulphide liquid, thereby

upgrading the PGE tenor of this sulphide in a mechan-

ism analogous to zone refining (Brügmann et al., 1993;

Naldrett & Fedorenko, 1995; Naldrett et al., 1996). The

proportion of silicate magma (as a time integrated vol-

ume) relative to the volume of the sulphide liquid will

determine this degree of PGE upgrading.

The N-factor is typically used for conduits in which

magmas move upwards past sulphide accumulations.

However, in the situation we propose for Rum, sulphide

droplets are formed at the top of the magma conduit

and slowly settle through it (e.g. Brügmann et al., 1993).

The effect is the same; in both cases silicate magma

and sulphide liquids must migrate past one another to

achieve upgrading of PGE tenor. Thus the N-factor

model is appropriate in this instance to assess the vol-

umes of ambient sulphide liquid in the conduit.

The N-factor equation, based on Cox et al. (1979) is

as follows:

Yi ¼ XifD � ½ðD � 1Þe�ð1=DÞN �g (4)

where Yi is the concentration of metal i in the sulphide,

Xi is the initial concentration of metal i in the silicate,

and D is the partition coefficient for metal i between sili-

cate and sulphide;

N ¼ volume silicate magma

volume sulphide liquid
: (5)

As the value of N increases, the concentration of

strongly chalcophile metals such as Pt and Pd rapidly

increases. For plug 1, the concentration of trace elem-

ents such as Pd and Cu according to the volume ratio of

silicate magma to sulphide liquid (N-factor) can be mod-

elled using equation (4), assuming DCu¼1470 and

DPd¼ 190 000 (Mungall & Brenan, 2014), with an initial

silicate magma composition of 50 ppm Cu and 10 ppb

Pd (comparable with picritic compositions and Cu and

Pd abundances in other low-sulphide plugs such as

plug 12). By finding the intersection between the model

curves for Pd and Cu and the measured concentration

of these metals in the plug, we can estimate that the

ratio of silicate magma to sulphide liquid (N-factor)

ranged from 1000 to 1500 (specifically using sample

RM33 from plug 1) (Fig. 8c).

To cross-check if the N-factor calculated is reason-

able, we have used the average abundance of Pd meas-

ured in sulphides (Table 3) calculated per sample for

plug 1, and plotted this against the calculated Cu abun-

dance for a homogenized sulphide liquid, based on

assigning all bulk-rock Cu to chalcopyrite, and normaliz-

ing to 100% sulphides. As sulphide assemblages com-

prise pyrrhotite, pentlandite and chalcopyrite (with only

accessory bornite, chalcocite and galena), we have fol-

lowed the method of Huminicki et al. (2005) using the

whole-rock measured abundances of S, Cu, Ni and Fe.

All of the whole-rock Cu budget was assigned to chalco-

pyrite, and after subtracting the mass of S required, and

the mass of Ni bound within olivine [assuming a Ni con-

tent of 2400 ppm in olivine and an average of 60% oliv-

ine in the plug, based on Holness et al. (2012)] all of the

remaining Ni was assigned to pentlandite. The propor-

tion of pyrrhotite was then estimated from the remain-

ing S. Following the observations and methods of

Holwell & McDonald (2007), such that chalcopyrite con-

tains negligible PGE in solid solution, we then recalcu-

late the measured whole-rock PGE content to 100%

pyrrhotiteþpentlandite, as these are the principal PGE-

bearing base metal sulphides. By this method, the Cu

and Pd compositions of sulphides in plug 1 can be mod-

elled by equation (4) if N¼ 1000–1500 (Fig. 8c and d).

This includes the centre of the plug (e.g. RM30).

However, the outlier RM95 at the southern plug margin

has a substantially higher concentration of Cu (almost

120 000 ppm), which may suggest that the margin of the

plug (as represented by RM95) has acquired extra Cu

from the surrounding wall-rock. The Triassic Sandstone

Formation in this area contains rare malachite reported

with carbonate calcretions (Emeleus & Troll, 2008).

The significance of sulphide sinking versus
upward entrainment
Comparison with examples outside the BPIP shows that

a process of sulphide sinking through cooling, recently

inactive conduits may well be widespread and could ac-

count for the presence of high-volume sulphides with

crustal S compositions at levels stratigraphically lower

than that at which they originally formed. Thus, the

study of mineralized magmatic sulphide systems also

needs to consider the possibility of contamination from

sources above the level of mineralization, which may

no longer be exposed. In terms of exploration models,

this is significant in that intrusions exposed below the

stratigraphic level of any potential contaminant (or

where possible contaminants have been eroded) still

have the potential to host magmatic sulphides. If a set-

tling sulphide liquid had the ability to pond in a depres-

sion in the magmatic plumbing system, then massive

sulphide accumulations that result from crustal contam-

ination could potentially be found hundreds of metres

below the level of the contaminant that triggered sul-

phide saturation. Our work provides quantifiable and

traceable evidence for the processes of sulphide sink-

ing. As such, it offers support to the growing number

of studies that cite sulphide sinking, slumping and/or

re-injection within conduits as a mechanism for mag-

matic sulphide accumulation and upgrading (Benko

et al., 2015; Saumur et al., 2015; Barnes et al., 2016, and

references therein; Saumur & Cruden, 2016). This con-

trasts with the more traditional view of upward entrain-

ment of sulphides into higher level intrusions (e.g.

Holwell & McDonald, 2007; Naldrett et al., 2009, 2011).
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CONCLUSIONS

1. The peridotite plugs on the Isle of Rum were

intruded as olivine-rich crystal mushes suspended in

a basaltic or picritic magma that also entrained sul-

phide liquid.

2. Based on the elevation and corresponding compos-

itions of the plugs and cyclic units, it is unlikely that

the Rum Layered Suite directly fed all these volcanic

conduits. Instead we suggest that a separate,

deeper, staging chamber was responsible for the

periodic and discrete intrusion of peridotitic crystal

mushes with entrained sulphide into both the Rum

Layered Suite and the volcanic conduits represented

by the plugs.

3. Most plugs have a magmatic whole-rock d34S signa-

ture of þ0�1 6 1�0ø, which overlaps with the whole-

rock d34S signature of the ELS (–0�5 6 1�4ø) and

proto-Icelandic plume values recorded elsewhere in

the NAIP (–2�3 6 1�5ø; Hughes et al., 2015). In add-

ition, whole-rock and sulphide-specific PGE abun-

dances in plugs lacking crustal contamination

signatures overlap compositions in the ELS.

4. Two plugs in the NW of the island have a distinctive

crustal d34S signature (ranging from –14�7 to þ0�3ø)

and elevated S/Se ratios (up to 12 130), unlike any of

the other plugs on Rum. Projecting the Hebrides

Basin sediment stratigraphy above the preserved

unconformable base of Triassic rocks (Fig. 9a), the

volcanic conduits would probably have been

emplaced through a thick package of Jurassic

mudrocks with characteristically light d34S (–33�8 to

–14�7ø), forcing sulphide supersaturation and the

formation of voluminous immiscible sulphide liquid,

locally and at a near-surface level (Fig. 9b).

5. Once active magma transport had ceased, the sul-

phide liquids would sink back through the conduit.

Based on modelling of the conduit mush viscosity

and cooling rates, this settling would take place over

a distance of up to 400 m and over a period of a few

days, resulting in the poikilitic and net-textures pre-

served today. Sulphides previously entrained in the

crystal mush from the staging chamber, and this

secondary immiscible sulphide liquid, became amal-

gamated upon sulphide supersaturation. Thus the

d34S of these plugs (1 and 2) is a mixture of both

early and later sulphide liquids, although the crustal

isotopic contamination signature dominates owing

to the production of greater volumes of sulphide.

6. Given the current topography in the NW of Rum, the

other plugs probably record deeper level sulphides

in the plug conduit plumbing system (i.e. with un-

contaminated magmatic d34S), and any crustal S in-

fluence (if originally present) has since been

removed by erosion.

7. N-factor modelling for the crustally contaminated

plugs (1 and 2) suggests a silicate magma to sul-

phide liquid ratio of 1000–1500.

8. We suggest that this sulphide sinking process

(within a cooling non-active conduit or during

magma ‘suck-back’) may be observed in other verti-

cal or inclined magma conduits globally; for ex-

ample, in the macrodykes of East Greenland. This

model may be used to explain S-isotopic and S/Se

ratios that are indicative of contamination of mag-

mas by crustal S although no suitable lithology is

present either in the immediate host rocks or deeper

in the system.
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