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ABSTRACT

Volcanic ash poses an ongoing risk to the safety of airspace worldwide. The

accuracy to which we can forecast volcanic ash dispersion depends on the con-

ditions of the atmosphere into which it is emitted. In this paper we use mete-

orological ensemble forecasts to drive a volcanic ash transport and dispersion

model for the 2010 Eyjafjallajokull eruption. From analysis of these simu-

lations we determine why the skill of deterministic-meteorological forecasts

decrease with increasing ash residence time, and identify the atmospheric con-

ditions in which this drop in skill occurs most rapidly. Large forecast errors

are more likely when ash particles encounter regions of large horizontal flow

separation in the atmosphere. Nearby ash particle trajectories can rapidly di-

verge leading to a reduction in the forecast accuracy of deterministic forecasts

which do not represent variability in wind fields at the synoptic-scale. The

flow separation diagnostic identifies where and why large ensemble spread

may occur. This diagnostic can be used to alert forecasters to situations in

which the ensemble mean is not representative of the individual ensemble

member volcanic ash distributions. Knowledge of potential ensemble outliers

can be used to assess confidence in the forecast and to avoid potentially dan-

gerous situations in which forecasts fail to predict harmful levels of volcanic

ash.
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1. Introduction30

Volcanic ash poses a significant hazard to aircraft. It can cause both temporary engine failure31

and permanent engine damage (Guffanti et al. 2005). Flights are therefore restricted in ash con-32

taminated airspace, which disrupts air traffic leading to the potential for large financial loses. For33

example the 2010 Eyjafjallajökull eruption grounded over 95,000 flights, costing the airline in-34

dustry over 1 billion pounds. Analysis of the 1900-2010 Icelandic historical records shows that a35

volcanic eruption of the size of the 2010 Eyjafjallajökull eruption has a repeat period of between36

5 and 10 years (Thordarson and Larson 2007). Worldwide, volcanic eruptions 10 times the size37

of the 2010 Eyjafjallajökull eruption have repeat periods on a decadal timescale (e.g. Mount St38

Helens 1980, Hudson 1991, Puyehue 2011). Given the ongoing risk of volcanic eruptions it is39

important to continually evaluate and improve the accuracy of volcanic ash forecasts to ensure40

safe and optimised flight operations during future volcanic eruptions.41

The volcanic ash advisory centres (VAACs) are responsible for producing volcanic ash cloud42

analysis and forecasts to assist the aviation community in planning their operations and minimis-43

ing risks. There are currently 9 VAACs that together provide a comprehensive global modelling44

and warning system for the aviation community. These 9 VAACs use 6 different volcanic ash45

transport and dispersion (VATD) models to to produce volcanic ash charts showing the forecast46

location of volcanic ash in the atmosphere at different flight levels and out to forecast lead-times47

of 24 hours. VATD models are initialised using data about the location of the eruption, the time48

at which the eruption started and, if available, information about the plume rise height, vertical49

profile of volcanic ash and ash size distribution (known collectively as eruption source parameters,50

ESPs). They also use 3-D winds as input from numerical weather predictions to transport volcanic51

ash away from the source. Typically the meteorological input used has a horizontal resolution of52

3



between 10 and 50km. To represent dispersion on scales smaller than this horizontal diffusion53

is applied. The diffusion represents the dispersion by unresolved eddies and acts to increase the54

vertical and lateral spread of volcanic ash clouds (Dacre et al. 2015). This approach assumes55

that the small-scale dispersion processes are of an eddy viscosity character and thus can be repre-56

sented using a Gaussian description (Pasquill and Smith 1983). The simulated ash cloud therefore57

represents the time mean of an ensemble of realisations.58

At larger scales however, individual realisations can often display considerable deviations from59

the ensemble mean (Mylne and Mason 1991). The scale at which this occurs depends on the60

size of the dispersion processes relative to the width of the time averaged ash cloud. For aver-61

aging periods of a few hours, this scale is typically greater than 500 km. Variability on synoptic62

scales however differs for different atmospheric circulation patterns, meaning that the traditional63

Gaussian diffusion approach used for small-scale dispersion processes cannot be used. Current64

operational VATD models do not represent variability at the synoptic scale. They use meteorolog-65

ical input from a single realisation of the flow field to produce a volcanic ash forecast (referred66

to as deterministic-met volcanic ash forecast in this paper). The aim of this paper is to identify67

the atmospheric conditions in which there is a higher chance that deterministic-met volcanic ash68

forecast skill may rapidly decrease and to discuss the potential use of ensemble meteorological69

input to VATD models as a method to address the missing synoptic-scale variability in volcanic70

ash forecasts (referred to as ensemble-met volcanic ash forecasts in this paper).71

Several studies have investigated the space and time-dependent skill of deterministic-met vol-72

canic ash forecasts. For example, Stunder et al. (2007) analysed the forecast skill for 7 different73

volcanic eruptions by comparing deterministic-met volcanic ash forecasts with satellite observa-74

tions. They showed that these forecasts were generally good for short-term (18 hours from start75

of the eruption) forecasts but that forecast skill appeared to decrease at longer lead-times. This76
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relationship between volcanic ash forecast skill and forecast lead-time is due to (i) increasing er-77

rors in the forecast wind fields and ESPs at longer forecast lead-times and (ii) longer lead-time78

forecasts include particles with longer residence times. These particles experience an accumula-79

tion of errors in the wind field leading to larger positional errors on average than particles with80

shorter residence times. Dacre et al. (2016) examined the second of these sources of error by per-81

forming hindcast simulations of the Eyjafjallajökull eruption (using analysis wind fields). They82

showed that generally skill decreases as the residence time of ash increases but that the rate of83

skill decrease depends on the meteorological situation. In some situations only the position of ash84

particles with residence time less than 24 hours are correctly simulated whereas in other situations85

the position of ash particles with residence times longer than 72 hours can be accurately simulated.86

Other studies have shown that the inclusion of buffer zones, to account for positional errors in the87

deterministic-met volcanic ash clouds, can lead to significant improvement in the agreement with88

observations (Webster et al. 2012; Grant et al. 2012). These buffer zones are a simplistic attempt89

to account for uncertainty in the synoptic-scale wind fields.90

For some time the use of ensemble-met volcanic ash forecasts has been advocated by the wider91

volcanic ash community (Bonadonna et al. 2012) as a more rigorous way of accounting for uncer-92

tainty in large-scale wind field. Stefanescu et al. (2014) and Madankan et al. (2014) include both93

ensemble meteorology and an ensemble of ESPs in their study to quantify overall uncertainty in94

volcanic ash forecasts. They demonstrate that the range of predicted concentrations can be large95

at forecast lead-times of 48 hours. Similarly Vogel et al. (2014) performed time-lagged ensemble96

simulations of volcanic ash dispersion from the Eyjafjallajökull plume and found that for some97

times the spread in ensemble-met forecasts is small but at others it is large. They attribute this to98

the nonlinear behaviour of the atmosphere. Dare et al. (2016) performed a comparison of both99

deterministic and ensemble-met volcanic ash forecasts for the 2014 Kelut eruption. They found100
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that both showed good agreement with satellite observations for the first 12 hours from the start101

of the eruption. However, for longer lead-times (18-24 hours) the ensemble-met forecast showed102

better agreement with observations than the deterministic-met forecast.103

While all these studies demonstrate that ensemble-met forecasts show better agreement with104

observations than the deterministic-met forecasts, particularly at longer lead-times, the dynamical105

reasons why they perform better has not been explored. The aim of our study therefore is to106

illustrate why the skill of deterministic-met forecasts decreases with increasing ash residence time,107

and furthermore to identify the atmospheric conditions in which this drop in skill occurs most108

rapidly. These conditions are identified using ECMWF meteorological ensembles as input to the109

NAME VATD model to simulate an ensemble of particle trajectories.110

2. Methodology111

a. Meteorological fields112

In order to determine the uncertainty associated with the synoptic scale meteorological flow113

field an ensemble of meteorological forecasts are used. Each forecast is produced from perturbed114

initial conditions that represent the likely initial analysis error distribution. In this paper the Eu-115

ropean Centre for Medium Range Weather Forecasting (ECMWF) Integrated Forecasting System116

(cycle 41r1) has been used to create bespoke ensemble forecasts of the meteorological conditions117

during the 2010 eruption of Eyjafjallajökull. Global forecasts are initialised every 12 hours be-118

tween 00 UTC on 1 May - 12 UTC on 8 May 2010. Each forecast is 42 hours long and has119

20 ensemble members. Data is archived every 6 hours on 26 levels and at T639 spectral trunca-120

tion (approximately 32km horizontal grid spacing). Initial perturbations are constructed using the121

singular-vector approach (Buizza and Palmer 1995) and model uncertainty is taken into account122
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through the use of a simple stochastic physics scheme (Buizza et al. 1995). Data is extracted from123

the ECMWF archive at 0.25◦×0.25◦ on a regular lat/lon grid and several fields (surface stresses,124

sensible heat flux and precipitation fields) are post-processed as data extracted from the ECMWF125

archive cannot be used directly as input to the VATD model described in section b.126

b. NAME dispersion simulations127

The VATD model used in this study is the Numerical Atmospheric-dispersion Modelling Envi-128

ronment (NAME). NAME is used by the London Volcanic Ash Advisory centre to forecast the129

spatial distribution of volcanic ash following an eruption. In this study we use NAME III (version130

6.3) and ECMWF numerical weather prediction meteorological data to disperse particles released131

into the atmosphere at the position of the Eyjafjallajökull volcano in Iceland. The dispersion of132

volcanic ash by small-scale three-dimensional atmospheric turbulence and unresolved mesoscale133

motions are parametrized within NAME using random-walk techniques. The aim of the random-134

walk dispersion is to compute an ensemble of random trajectories of Lagrangian particles through135

a flow field whose statistics are based on observations of vertical and horizontal velocity variances136

and diffusivities (Thomson and Wilson 2013). The position of the particles is tracked for 42 hours137

to create particle trajectories. The volcanic ash density is assumed to be 2300kg m−3 based on the138

value used in the operational version of NAME (Leadbetter and Hort 2011) and the particle size139

is assumed to be 2 µm based on in-situ observations of the ash cloud by the FAAM aircraft over140

and around the UK in the Eyjafjallajokull ash cloud (Johnson et al. 2012). Particles are subject to141

removal processes including sedimentation, wet and dry deposition (Jones et al. 2007). Note that142

the choice of particle size does not affect the conclusions reached in the paper.143
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c. SEVIRI satellite observations144

To qualitatively evaluate the performance of the NAME forecasts we compare simulated ash145

cloud distributions with data from the Spinning Enhanced Visible and Infrared imager (SEVIRI).146

SEVIRI volcanic ash retrievals are calculated using brightness temperature difference measure-147

ments (see Francis et al. (2012) for more details). The advantage of using volcanic ash retrievals148

from an instrument onboard a geostationary satellite is that they are available at high temporal res-149

olution, every hour, allowing us to track the evolution of the volcanic ash cloud and to interpolate150

between timesteps when water or ice clouds obscure the volcanic ash. Following the method of151

Harvey and Dacre (2016) we composite satellite observations over a 5 hour time window. This has152

been shown to be sufficient to create a continuous time series while remaining highly correlated153

with the noncompostied fields. The satellite volcanic ash retrievals are averaged onto a 0.5◦×0.5◦154

latitude/longitude grid to allow direct comparison with the NAME output.155

d. Ensemble spread and flow separation diagnostics156

One measure of the uncertainty in meteorological flow conditions is the time evolution of spatial157

spread in particle trajectories. In this paper the ensemble spread is calculated using the root-158

mean-square (RMS) distance between individual ensemble particle positions (1 particle from each159

ensemble simulation), (xi), and the mean position of the particles, (x̄i), summed over all N particles160

(thus N equals 20 as there are 20 ensemble simulations). The distance is measured perpendicular161

to the mean direction travelled by the particles during the previous 10 minutes to capture lateral162

spreading of the trajectories only.163

RMS =

√
1
N

N

∑
i
(xi − x̄i)2 (1)
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The diagnostic used to characterise the synoptic-scale flow conditions is the 2-D horizontal flow164

separation diagnostic introduced in Dacre et al. (2016). This flow separation is calculated as the165

velocity gradient perpendicular to the flow.166

∂v
∂n

=
1
q2

[
v2 ∂u

∂x
−uv

(
∂u
∂y

+
∂v
∂x

)
+u2 ∂v

∂y

]
(2)

where v is the velocity vector, q is the wind speed, n is distance in the direction perpendicular to167

the flow, and x and y are distances in longitude and latitude directions, respectively. Where this168

diagnostic is positive, the atmospheric flow separates, and where it is negative, the flow contracts.169

Thus it is a good diagnostic for identifying where particle trajectories will spread apart. The flow170

separation diagnostic is related to the 3-D Lyapunov exponents used by Legras et al. (2005) and171

Pisso and Legras (2008) to characterise the rate of separation of infinitesimally close trajectories172

in phase space.173

3. Results174

a. Satellite-detected ash clouds175

Figure 1(a) and (b) show the ash cloud from the Eyjafjallajökull eruption, as detected by the176

SEVIRI instrument. At 12 UTC on 7 May (figure 1(a)) the ash was detected in a coherent plume177

extending southward from Iceland to the west of the UK. The ash cloud exhibits an anticyclonic178

curvature as ash particles were transported anticyclonically around a high-pressure centre in the179

North-Atlantic. At around 50◦N the ash cloud has started to bifurcate with one branch of volcanic180

ash continuing to follow an anticyclonic trajectory whilst another branch was advected cycloni-181

cally towards southern Europe. This cyclonic branch reaches the coast of Portugal at 00 UTC182

on the 8 May (figure 1(b)) whilst the majority of the volcanic ash continues to travel anticycloni-183

cally. The ability of VATD models to capture this complex ash cloud bifurcation is dependent on184
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the accurate representation of the input meteorological wind fields. For example, Wilkins et al.185

(2016) showed that their NAME deterministic-met volcanic ash forecast was not able to capture186

the structure the thin filament of ash extending over northern Spain on 8 May 2010.187

b. Ensemble member forecasts188

Figures 1(c),(d) and (e),(f) show two volcanic ash forecasts using different ECMWF ensemble189

member flow fields, both initialised at 00 UTC on 6 May 2010. Particles are released at the loca-190

tion of Eyjafjallajökull volcano at a rate of 3600/hr. All of the particles were released at a height191

consistent with the maximum observed plume height at that time. It can be seen that close to the192

volcano the volcanic ash distribution for both forecasts is very similar, with both forecasts pro-193

ducing an ash cloud extending southward from Iceland to the west of the UK, consistent with the194

satellite detected ash cloud location. However, at 50◦N the forecasts start to diverge. In figures 1(e)195

and (f) the majority of the volcanic ash is transported cyclonically and is advected towards Europe.196

In contrast in figures 1(c) and (d) the majority of the volcanic ash cloud continues to travel anticy-197

clonically and is advected into the North Atlantic. For this example, the deterministic-met forecast198

shown in figures 1(c) and (d) would be considered a good forecast as it closely matches the evo-199

lution of the ash cloud seen in the satellite observations. However the deterministic-met forecast200

shown in figures 1(e) and (f) would be considered a poor forecast as it does not forecast the ob-201

served ash in the North Atlantic. This is despite both forecasts using equally plausible realisations202

of the flow field. This example highlights the danger of using a single deterministic-met flow field203

as input to a VATD model to forecast the ash cloud distribution. These 2 ensemble members are204

chosen because they exhibit very different volcanic ash cloud evolutions, the other 18 ensemble205

members result in ash distributions which resemble a mixture of the two extremes.206
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c. Flow separation207

In this section we explain why the ensemble member forecasts differ so much from each other.208

In order to do this we examine the flow pattern at approximately 50◦N and 15◦W, the location at209

which the ash particle trajectories show an increase in spread.210

Figures 2(a) and (b) shows the streamlines and flow separation at 12UTC and 18UTC on 6 May211

respectively, for a single deterministic-met ensemble member forecast. The streamlines evolve212

over time but broadly show a low pressure to the west of the domain, a large region of high213

pressure in the centre of the domain and low pressure in the east of the domain. Figures 2(a) and214

(b) also show the flow separation diagnostic averaged over 100hPa at the release height of the ash215

particles. The flow separation is positive in regions where the streamlines spread apart and negative216

where the streamlines contract. For the purposes of illustrating why different ensemble members217

diverge and under what conditions, it is not feasible to visualise the trajectories of thousands of218

particles. Therefore, for simplicity, we have chosen to visualise a single particle trajectory (that is219

not subject to stochastic motions) from each ensemble member. The thick black trajectory shown220

in figures 2(a) and (b) is a single 42 hr particle trajectory from the same ensemble simulation shown221

in figure 1(e) and (f)). This particle was released from the volcano source at 06 UTC and is subject222

to the flow field shown in figures 2(a) and (b). In order to isolate transport by the resolved-scale223

flow it is not subject to perturbations representing unresolved eddies, hence its smooth trajectory.224

The black star indicates the location of the particle at the time of the flow separation field. 12 hours225

after the particle is released into the atmosphere (figure 2(a)) the particle is at 57◦N, 13◦W where226

the streamlines are roughly parallel to one another and hence flow separation is small. 24 hours227

after the particle is released into the atmosphere (figure 2(b)) the particle is at 51◦N, 17◦W and is228
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in a region of strong positive flow separation. The streamlines spread apart as they approach the229

point of intersection between the trough and ridge region (known as a col or saddle point).230

It is difficult to analyse the along-trajectory flow separation in this Eulerian framework, therefore231

figure 2(c) shows the flow separation extracted at the relevant time along the Lagrangian particle232

trajectory. This Lagrangian analysis demonstrates that the particle advected in this deterministic-233

met forecast enters a region of strong flow separation at 52◦N, 17◦W. In order to determine whether234

this is specific to a single ensemble-met member forecast or to all of the meteorological ensemble235

forecasts initialised at 06UTC on 6 May the along-trajectory flow separation has been calculated236

for each of the meteorological ensemble forecast members. Figure 2(d) shows the evolution of237

flow separation along 20 particle trajectories released at the same time, a single particle trajectory238

in each ensemble-met forecast. The flow separation in each ensemble-met forecast is very similar239

up until the point at which the trajectories start to diverge. This is expected since the regions of240

positive and negative flow separation are spatially coherent. It also illustrates how the trajectory241

separation rapidly increases after the point at which the trajectories encounter the region of positive242

flow separation. Performing an ensemble-met volcanic ash forecast for this case accounts for the243

variability in the synoptic flow field and is necessary to fully encompass the ash cloud distribution244

uncertainty due to the flow field.245

d. Trajectory spread246

To establish if trajectory spreading always rapidly increases after trajectories encounter regions247

of positive flow separation similar experiments were performed for meteorological ensemble fore-248

casts initialised at 06UTC on the 15 April - 7 May 2010. For each of these ensemble forecasts a249

single particle were released at a height corresponding to the observed plume top from the Eyjaf-250

jallajökull volcano. It is well known that in low wind-speed conditions wind direction can vary251
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significantly in a short period of time causing particle trajectories can rapidly diverge (Venkatram252

et al. 2004). In this paper we choose to focus on the less well studied uncertainty occurring in253

moderate-strong wind conditions and thus only analyse the situations in which the wind speed at254

the release height was greater than 10m s−1. Figure 3 shows the ensemble-met member forecasts255

with the 4 highest (figures 3(a)-(d)) and 4 lowest (figures 3(e)-(h)) trajectory spreads. Individual256

particle trajectories correspond to a single particle released at the same time in each ensemble-met257

member forecast. It can be seen that on some days, figures 3(a)-(d), the trajectories diverge after258

encountering regions of positive flow separation, consistent with the analysis for the 6 May 2010259

(figures 2(d)). By comparison on other days, figures 3(e)-(h) the trajectories remain close together260

for 42 hours.261

Figure 4 quantitatively describes the relationship between residence time and ensemble-met262

forecast trajectory spread (measured using the RMS perpendicular distance described in section d).263

As observed in figure 3 trajectory spread generally increases with residence time but not always at264

the same rate. The rate of trajectory spread depends on the synoptic situation. Figure 4 also shows265

the maximum along-trajectory flow separation from each ensemble-met forecast, accumulated266

over 42 hours for each set of simulations. The simulation with the smallest trajectory spread after267

42 hours residence time corresponds to the 3 May 2010 (figure 3(h)) and the along-trajectory268

accumulated flow separation is small at all points along the trajectory. By contrast the simulation269

with the largest trajectory spread corresponds to the 19 April 2010 (figure 3(a)) and the along-270

trajectory accumulated flow separation is neutral or positive at all points along the trajectory. Thus,271

these simulations suggest that trajectories that experience large along-trajectory accumulated flow272

separation are more likely to spread apart than trajectories that experience no large along-trajectory273

flow separation, potentially leading to large error growth for a single deterministic forecast (as274

shown in figure 1)275
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4. Discussion and Conclusions276

In this paper we examine the atmospheric flow characteristics that lead to volcanic ash cloud277

bifurcation and a reduction in forecast skill. We performed multiple forecasts using the UK Met278

Office volcanic ash transport and dispersion model (NAME) and input from ensemble meteoro-279

logical flow fields from the ECMWF ensemble prediction system.280

In moderate to strong wind situations the atmospheric conditions leading to large variability281

in volcanic ash particle positions are associated with large flow separation. When ash particles282

encounter regions of large horizontal flow separation their future trajectories are very sensitive283

to their position at that time. Nearby ash particle trajectories can rapidly diverge leading to a284

reduction in forecast accuracy for deterministic-met volcanic ash forecasts. Potentially leading to285

predictions of ash-free airspace in regions that are in-reality contaminated with ash or vice versa.286

In order to fully represent the synoptic-scale meteorological uncertainty ensemble-met volcanic287

ash forecasts are needed. When volcanic ash clouds encounter regions of large flow separation the288

individual ensemble-met members may display considerable deviations from the ensemble mean.289

2-D fields of positive flow separation could be used as a flag to alert forecasters to this potential290

risk and the individual ensemble-met member forecasts analysed. A combination of the flow291

separation diagnostic and ensemble volcanic ash forecasts will help to identify where and why292

large uncertainty in the forecast occurs and provide an estimate of the confidence of the forecast.293

For example, a forecaster could reduce the size of the hazardous area whenever high confidence294

in the ash cloud forecast was indicated. Reductions in the hazard area would avoid unnecessary295

disruption to airspace.296

In this paper we have only considered the uncertainty in the horizontal wind fields. Uncertainty297

also exists in the magnitude and location of precipitation which leads to wet-deposition of volcanic298
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ash. This uncertainty may also cause large errors in the magnitude of volcanic ash forecasts as299

precipitation is a very efficient removal mechanism. We have also not considered the uncertainty300

associated with the volcanic eruption source parameters (ESPs). The best way to combine the301

meteorological and ESP uncertainty and effective ways of communicating this uncertainty with302

users is the subject of future work.303
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FIG. 1. 5 hour composite of satellite-detected ash clouds at (a) 12 UTC on 7 May, (b) 00 UTC on 8 May 2010.

(c)-(f) show ash column loading forecasts for two ensemble member forecasts both initialised at 06 UTC on 6

May 2010. (c),(e) valid at 12 UTC on 7 May, (d),(f) valid at 00 UTC on 8 May 2010
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FIG. 2. Flow separation averaged from 325-225hPa (filled contours) overlaid with 275hPa streamlines (grey)

at (a) 18TUC on 6 May 2010, and (b) 06 UTC on 7 May 2010. 42hr particle trajectory initialised at 06 UTC

on 6 May 2010 (thick black line) and position of particle at time of flow separation and streamline fields (black

star). (c) Flow separation along the particle trajectory shown in (a) and (b) from 12 hrs residence time onwards.

(d) Flow separation along 20 particle trajectories advected by 20 different forecast wind fields.
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FIG. 3. Ash particle trajectories for 42 hour forecasts with perturbed initial conditions. Forecasts with the

highest trajectory spread after 42 hours (a)-(d) and lowest trajectory spread after 42 hours (e)-(h). Colours show

6-hourly averaged flow separation.
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FIG. 4. Evolution of ensemble spread for 14 simulations initialised at 06UTC between 15 April and 7 May

2010. Colours show the along-trajectory accumulated maximum flow separation.
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