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Summary 

Forward programming of human pluripotent stem cells to a megakaryocyte-erythrocyte bi-potent 

progenitor population: an in vitro system for the production of platelets and red blood cells for 

transfusion medicine. 

Amanda Louise Dalby. 

 

There exists a need to produce platelets in vitro for use in transfusion medicine, due to increased 

platelet demands and short shelf life. Our lab uses human induced pluripotent stem cells (iPSCs), as 

an attractive alternative supply, as iPSCs can be cultured indefinitely and differentiate into almost 

any cell type. Using a technique called forward programming, we over express three key 

haematological transcription factors (TFs), pushing iPSCs towards the megakaryocyte lineage, to 

produce mature megakaryocytes, the platelet precursor cell type. 

A major limitation of the forward programming technique is a reliance of lentiviral transduction to 

overexpress the three TFs, which leads to a number of issues including heterogeneity and high 

experimental costs. To overcome this, I have developed an inducible iPSC line by inserting the 

forward programming TFs into a genomic safe harbour, using genome editing techniques. TF 

expression is strictly controlled, with the TFs expressed only after chemical induction. Inducing 

forward programming is an efficient method for producing mature megakaryocytes and these cells 

maintain higher purity in long-term cultures, when compared to cells produced by the lentiviral 

method.  

Removing the requirement of lentiviral transduction is a major advancement, making forward 

programming more amenable to scaling-up, thus moving this technology closer towards our goal of 

producing in vitro platelets for use in transfusion medicine. I have also shown that forward 

programming generates a bi-potent progenitor population, from which erythroblasts can be 

generated, by altering only media conditions. As for megakaryocyte cultures, inducing forward 

programming improves the purity of erythroblasts produced, compared to the lentiviral method.  

I have developed single cell progenitor assays combined with index sorting of different cell surface 

markers, to allow retrospective analysis of cells which successfully generate colonies. The aim of this 

work is to better characterise the progenitor cells produced by forward programming, to allow 

further study of this cell type. Single cell RNA-seq of megakaryocytes revealed heterogeneity in long-

term cultures and also identified novel candidate surface markers that may help to further 

characterise the progenitor cell population. 
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Abstract 

 

Forward Programming to Produce Megakaryocytes and Platelets 

There exists a need for the production of platelets in vitro, to overcome several issues surrounding 

current platelet collection including; donor-dependency, cost, biosafety and increasing demands. 

Our lab uses a technique called ‘Forward Programming’ (FoP), whereby three key haematological 

transcription factors (TFs) are overexpressed in human pluripotent stem cells (PSCs), in order to 

produce mature megakaryocytes (MKs), as an in vitro alternative to providing platelets. The mature 

MKs produced are higher in number and purity compared to existing methods of MK production 

from PSC that use a directed differentiation approach. FoP-MKs are capable of producing functional 

platelets and have been shown to activate and take part in thrombus formation both in vitro and in 

vivo. Our protocol uses a minimal number of cytokines, follows good medical practice (GMP) 

guidelines and is currently being employed by a commercial company (Platelet Biogenesis, of the 

USA) to produce a high number of in vitro MKs, with the goal of producing platelets for use in 

transfusion medicine.  

Forward Programming Produces Bi-Potent Progenitor Cells 

During my PhD I have shown that FoP, using the same three TFs (GATA1, TAL1 and FLI1), generates a 

bi-potent progenitor cell population, which can produce MKs as well as immature red blood cells, 

erythroblasts. I have shown that FoP produces a high number of erythroblasts when culture 

conditions are altered to favour red cell development by the exchange of thrombopoietin (TPO) used 

in MK culture conditions, for erythropoietin (EPO). The maturation of these cells is currently limited 

and reflects similar maturation levels found by other researchers producing red cells from PSCs, with 

poor enucleation and expression of embryonic and foetal, but not adult, globins. The bi-potent 

progenitor cell population produced mimics the Megakaryocyte-Erythroid Progenitor (MEP) cell 

found in vivo. MEPs are difficult to study in vitro, as they cannot be easily isolated or cultured.  

Therefore, the discovery that FoP can generate this cell type has important implications for 

understanding the basic biology of this cell type and what governs the cell-fate making process, and 

also offers new perspectives for translational medicine.  

Removing Lentiviral Requirement by Producing an Inducible Stem Cell Line for Forward 

Programming  

During my PhD I have worked on overcoming a major limitation of the forward programming 
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technique, which is a reliance of lentiviral vector transduction to overexpress the three TFs. The use 

of lentiviruses is costly, results in heterogeneous cultures and presents regulatory issues, potentially 

limiting the use of the resulting cell product in humans. The main aim of my work was to remove the 

need for lentiviral transduction to effect forward programming. To do this, I first demonstrated that 

the three TFs inserted into the same lentiviral vector backbone resulting in a polycistronic cassette, 

allowed forward programming to occur. I produced a number of polycistronic cassettes, with the 

three TFs in different configurations, and found that when FLI1 was placed in the centre of the three 

TFs an erythroblast bias was observed. A vector containing FLI1 in the final gene position however, 

gave promising results for both MK and erythroblast production, high-lighting that the polycistronic 

vector was also able to produce a bi-potent progenitor population. This vector was subsequently 

chosen to target to a genomic safe harbour, using genome editing techniques, to generate an 

inducible PSC line.  

The resulting inducible PSC cell line stably expresses the three TFs directly from its genome after 

chemical induction with doxycycline, utilising the TET-ON inducible system. I have shown that TF 

expression is strictly controlled, meaning the inducible line can be kept in culture long term, as for 

normal PSCs. An advantage of inducible FoP over the lentiviral method is that it results in minimal 

cell death at the start of programming and overall efficiency of programming is higher. Data from 

multiple clones show that inducible FoP is a highly efficient method for producing mature MKs. Over 

long-term culture, of up to 100 days, the purity of the MKs produced is higher (>90%) when the 

inducible cell line is used, compared to cells produced by the lentiviral method, which decrease in 

purity overtime (to approximately 60%).  

Using the inducible PSC line, FoP in EPO produces a highly pure red cell culture (98%) in 20 days, 

including a percentage of red blood cells expressing maturity markers, such as Rhesus D, and 

showing enucleation. These cells are indicative of maturation to the final reticulocyte red cell stage. 

Similar to what I observed for MK cultures, purity is also improved in induced cells cultured in EPO, 

compared to those which are forward programmed using the lentiviral method (98% versus 

approximately 50%). 

Removing the requirement of lentiviral transduction in FoP reduces the complexity and the biosafety 

risk of the method. It also increases efficiency and improves cell outcome, as well as greatly reduces 

the cost. This work demonstrates a major advancement in forward programming that will make it 

more amenable to scaling-up, which will help to make the jump from bench to bedside more 

attainable in the near future, moving this technology closer towards our goal of producing in vitro 

platelets for use in transfusion medicine.  
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Characterising the Megakaryocyte Progenitor Population 

Finally, I have developed single cell progenitor assays to try and identify the progenitor population in 

FoP-MK cultures at early (day 9-13) and late (day 40) time-points. Early-time point progenitors 

appear to be characterised by CD41 and CD235 co-expression. Long-term progenitors appear to be 

characterised by low CD42 expression and high CD235 expression. 

Understanding Megakaryocyte Heterogeneity in Long-Term Cultures  

I performed single cell RNA-seq (scRNA-seq) on long-term FoP-MKs, which expressed different 

Rainbow vector combinations, therefore, expressed different combinations of transgenes (TGs). The 

results show that despite the absence or presence of different TG markers, all cells showed equal 

expression of total (endogenous plus exogenous) GATA1, TAL1 and FLI1. Within the cells sequenced, 

four populations of cells were discovered; mature MKs, MKs, MK progenitors and cells which were 

dying and potentially represent mature MKs that are poised to give rise to platelets. scRNA-seq has 

provided a new list of novel candidate genes which can help in future to isolate and study the 

progenitor cells identified.  

  

  



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 
 

 

Introduction 

 

 

 

 

 

 



 

6 
 

1. Clinical Overview of Transfusion Medicine 

1.1 The History of Blood Transfusion 

The transfusion of blood refers to the administration of whole blood or blood components. The first 

human-to-human transfusion was performed in 1818, by the English obstetrician James Blundell, in 

order to treat a patient experiencing major bleeding (Blundell J, 1818). Blundell described the use of 

a syringe for this transfusion and made note of avoiding air intake into the veins, as well as the 

incompatibility of heterologous donors. It the year 1900 the ABO blood system was classified by 

Landsteiner, for which he was later awarded a Nobel Prize, after observing that red cells from certain 

patients would agglutinate with the serum of others (Landsteiner K, 1900). Currently there are 36 

recognised red blood group systems, representing more than 300 different antigens, as listed by the 

International Society of Blood Transfusion. As such, matching blood products to patients is 

imperative to avoid the risk of severe and potentially fatal transfusion reactions, with all transfusion 

being antigen matched for the two most common antigens, ABO and Rhesus D (RhD). 

1.2 Blood Donation 

Blood donations are made by two methods; either as a whole blood donation which can be 

processed subsequently into separate platelet, red blood cell and plasma components, or 

alternatively as a single compartment donation, using apheresis to return the remaining 

compartments back to the donor. In industrialised countries blood component therapy replaced 

whole blood therapy in the middle of the twentieth century, thanks to a large number of inventions 

including refrigeration, anticoagulant and preservative solutions, plastic blood bags and infectious 

disease testing (Arya RC, 2011). As such, blood component therapy is currently considered the gold 

standard treatment for the majority of transfused patients. The most important consideration for 

any blood product intended for transfusion is that it remains of high-quality and will deliver the 

intended benefits to a patient. This is a complicated task, considering that some blood components 

are stored for considerable lengths of time before use, and with each blood component requiring 

specific storage conditions. For example, red cells require cold temperature storage, just above 

freezing, while platelets require room temperature storage and continuous agitation to prevent 

aggregation (Arya RC, 2011). Additionally, some blood components undergo additional steps after 

collection, such as irradiation, leukodepletion or cryopreservation, which adds further complexity to 

their storage and usage (Acker JP, 2016). 
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1.3 Regional Procedures and Dependence on Transfusions 

Differences between regional health service regulations means that there is no global standard 

procedure for the storage of blood cell components. For example, in the United States of America 

(USA) standard red cells units can be stored for up to 42 days while in the United Kingdom (UK) they 

are stored for just 35 days. In the USA platelets are stored for 5 days, while in the UK this can be 

extended to 7 days if bacterial screening has been implemented (Arya RC, 2011; Harris AM, 2012). 

Fifty to eighty percent, depending on the country, of administered transfusions relate to very few 

clinical situations. These are; severe haemorrhage related to pregnancy or childbirth, trauma- usually 

as a result of road traffic accidents and severe anaemia in the young- often a consequence of malaria 

(Ala F, 2012).  

While most wealthy countries have an adequate supply of blood, the use of which is largely pre-

planned and predictable, this is not the case for certain areas of the world. In wealthy countries 

blood donors and donated blood are rigorously screened, meaning the frequency of disease 

transmission from transfusions is very low, but certain regions lack the infrastructure or resources to 

implement such screening measures (Leparc GF, 2015). In sub-Saharan Africa there are two major 

issues surrounding transfusions: unsafe blood and blood shortages. These issues can often lead to 

serious health consequences, such as the transmission of life threatening conditions including 

hepatitis and HIV, and can lead to fatalities. The lack of blood for emergency situations in sub-

Saharan Africa is the leading cause of maternal death due to postpartum haemorrhage. Blood 

shortages can be the result of; non-affordable blood, a lack of donors, unwillingness of relatives to 

donate and inadequate supplies or transport (Bates I, 2008).  

1.4 Use of Donated Blood 

In low-income countries, the majority (67%) of blood transfusions are administered to children 

below the age of 5, whereas in high-income countries the majority (79%) are used in the over 60s. In 

high-income countries transfusions are used as supportive care for patients undergoing 

cardiovascular or transplant surgery, after major trauma, or as therapy for patients with cancer and 

haematological malignancies (WHO, 2016). The World Health Organisation (WHO) recommends 

whole blood use in severe malarial cases of anaemia and overall whole blood use remains high in 

low-income countries (85%) (WHO, 2015). However, the majority of transfusions in high-income 

countries deliver blood components, not whole blood, due to improved diagnostic and treatment 

options, as a result of better developed healthcare.  
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Red cell units are administered with the main aim of improving oxygen delivery to organs and are 

primarily used to treat anaemia. Anaemia can develop; as the result of severe blood loss (during 

surgery or as a result of trauma), in situations affecting the normal production of red cells (such as 

during chemotherapy treatment), as a consequence of defective haemoglobin (such as in 

thalassaemia or sickle cell anaemia), or by the increased destruction of red blood cells (during 

malaria infections) (Acker JP, 2016).  

Platelet concentrates are administered for treating patients with acute haemorrhage and for 

preventing bleeding in patients with a severe reduction in their platelet count, known as 

thrombocytopenia, which is a common complication arising from haematological malignancies or 

their treatment (Stanworth SJ, 2015). Platelet concentrates are kept at room temperature, 

increasing the risk of bacterial infection, and their the haemostatic and metabolic function are 

known are deteriorate overtime, in a process called platelet storage lesion, owing to their short shelf 

life (Védy D, 2008; Thon JN, 2008). Due to the short shelf life of platelets it can be difficult to keep up 

with the demand for their use, especially over holiday periods when typically fewer donors are 

available, and also makes administration difficult in remote areas. 

1.5 Limitations of Transfusion Medicine 

The major limitation of transfusion medicine is maintaining an adequate and safe supply of blood or 

blood components from donors. Many countries rely solely on voluntary non-remunerated donors, 

based on the assumption that donors may lie about their health if donation is accompanied by a 

monetary reward, which can increase the prevalence of HIV infected blood (Ala F, 2012). There is 

good evidence for avoiding unnecessary red cell transfusions, to minimize the risk of transfusion-

transmitted infections or adverse reactions, which has accounted for a 3-4% annual decrease in the 

demand for red blood cell transfusions in the UK, a trend which is also reflected globally (Carson JL, 

2016; NHSBT, 2016). Conversely, the demand for platelet transfusions in recent years has risen due 

to an ageing population, an increase in the incidence and prevalence of patients suffering from 

haematological malignancies, and changes in the treatment of such malignancies (Estcourt LJ, 2014).  

An increase in platelet transfusion demand, alongside the short shelf life and issues surrounding 

their biosafety, means there exists a clinical need to find an alternative supply of platelets for use in 

transfusion medicine. The pursuit of generating red blood cells in vitro is also being heavily 

investigated, since some global regions still have higher demands than can be met by supply. 

Therefore, deriving blood cells from alternative sources, such as embryonic or induced pluripotent 

stem cells, could offer a number of benefits. Deriving blood cells in vitro could offer the opportunity 



 

9 
 

to produce universal cells that are pathogen free and abundantly available. There are a number of 

labs in the world pursuing different avenues to try and achieve these goals (discussed later), 

including our own. In order to understand how researchers are attempting to produce blood cells in 

vitro, it is important to first understand how this process occurs in vivo. 

2. Haematopoietic Overview 

2.1 Blood Cell Development 

Haematopoiesis describes the process of blood cell production. More than 100 billion mature blood 

cells are produced per day in human adults. In haematopoiesis, haematopoietic stem cells (HSCs) 

differentiate into the entire repertoire of blood cells found in the vascular system, generating a huge 

diversity of cell types with broad-ranging functions; from carrying oxygen, to thrombus formation, to 

fighting infection. HSCs normally reside in the bone marrow of adults and have been extensively 

studied, especially in mouse models of transplantation, due to the fact that it has been possible to 

purify these cells. It has been shown that a single HSC, transplanted into a lethally irradiated mouse, 

is capable of reconstituting the entire repertoire of cells of the blood system (Osawa, 1996).  

‘The Haematopoietic Tree’ (Diagram 1) shows the main cell types produced during haematopoiesis, 

with HSCs sitting at the top of this hierarchy. HSCs have multipotent potential, while each branch of 

the haematopoietic tree below it represents a cell which is more restricted in its differentiation 

potential. The range of cells produced can be separated into two main lineages; the lymphoid and 

myeloid lineages. The earliest differentiation event for HSCs results in a multipotent progenitor cell 

(MMP), a cell which maintains multi-potent potential but has lost the ability to self-renew.  MMPs 

further differentiate into the oligo-potent common lymphoid progenitor (CLP), or, common myeloid 

progenitor (CMP) (Reya T, 2001). Mature lymphoid cells include T lymphocytes, B lymphocytes and 

natural killer (NK) cells. Mature myeloid cells include megakaryocytes, erythrocytes, monocytes, 

macrophages, dendritic cells, eosinophils, basophils and neutrophils.  

Recently the hierarchical view of haematopoiesis has been challenged by several research groups, 

following the advent of single-cell profiling. Using eleven surface markers to index sort and perform 

single-cell RNA-seq alongside functional characterisation of cells, it has been proposed that HSCs and 

their immediate progenitors represent a continuum of low-primed undifferentiated haematopoietic 

stem and progenitor cells, so called ‘CLOUD-HSPCs’, from which uni-lineage-restricted cells arise 

directly (Velten L, 2017). The model of differentiation proposed is incompatible with the hierarchical 

model, where HSCs pass through distinct progenitor stages, becoming more lineage restricted with 

every branch-point crossed. Instead, it has provided evidence that CLOUD-HSPCs gradually acquire 
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lineage priming at the transcript level in multiple directions, with a bias towards certain cell-fates. In 

this study, HSCs were found to express genes related to the lymphoid/myeloid and 

megakaryocyte/erythroid lineages, suggesting this is one of the earliest transcriptional priming 

events occurring in primitive HSCs, which was confirmed by functional data.  

 

Diagram 1- The Haematopoietic Tree. Haematopoietic stem cells (HSCs) sit at the top of the 

hierarchy and are capable of producing all types of haematopoietic cells found in the body. 
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2.2 Lineage Commitment in Haematopoietic Progenitors 

The way in which a progenitor cell can give rise to more than one differentiated cell type has been 

an area of intense study, as scientists are keen to understand the biological mechanisms driving fate-

decision choices. It is well documented that transcription factors (TFs) play a major determining role 

in deciding a progenitor cells fate. For example the TFs GATA1 and PU.1 act in opposing lineage 

specific and indeed lineage-specifying ways. GATA1 and PU.1 switch on separate networks of 

effector genes to instruct a common myeloid progenitor (CMP) to differentiate into either a 

megakaryocyte-erythroid progenitor (MEP) or granulocyte-macrophage progenitor (GMP), 

respectively (Ferreira R, 2005; Rosmarin AG, 2005). 

Two main mechanisms were proposed to try and describe events leading to the decision-making 

process, and the resulting gene regulatory network changes, in progenitor cells. The first is described 

as the ‘intrinsic’ or stochastic model of cell fate control. In this model, cell-fate is thought of as a pre-

existing program, adopted by a progenitor cell in a random fashion. This model considers external 

factors, such as cytokines, to lack fate determining capacity. Instead, they simply act as growth or 

survival signals in a cell which is already lineage committed. The second model is described as the 

‘extrinsic’ or deterministic model, where external signals are considered to be responsible for 

altering the genetic program of a cell. Acting to either switch on or switch off the appropriate set of 

genes governing a differentiation state, thus, initiating the signal transduction cascades responsible 

for determining a differentiated cell fate (Enver T, 1998).  

It has been shown that these two mechanisms actually work together to decide the cell-fate decision 

of progenitors (Diagram 2). Mathematical modelling of the well-established interactions of GATA1 

and PU.1 describes CMPs as being in a ‘metastable’ cell state, between the two cell fates it can 

differentiate into. It was modelled that to leave this metastable state two processes had to occur. 

First, the cell had to leave its progenitor state. The way in which MEPs or GMPs did this was 

determined by distinct signals, resulting in a change of their global transcriptomes. This global 

change occurred in a very similar fashion whether a CMP differentiated into a MEP or GMP. This has 

been described as a common destabilisation phase, occurring over a time period of 24-48 hours. The 

second process that occurs is an abrupt change in the transcriptome, after which point cells cannot 

be forced to change their differentiation trajectory by changing media signals, indicating that the 

point of commitment occurs between 24-48 hours of exiting the progenitor state. The near 

symmetrical bifurcation model that occurs at the start of the destabilisation phase coincides with 

experimental evidence of the observed stochasticity of fate determination (Enver T, 1998).  

However, cytokines can skew the bias of this bifurcation process, by initiating small intrinsic changes 
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of gene expression which contribute to the larger transcriptome changes later acquired, since cell 

death is low in media conditions which promote either the MEP or GMP lineage.  Thus, both the 

‘intrinsic’ and ‘extrinsic’ mechanisms control the cell-fate decision making in progenitors (Huang S, 

2007).  

 

Diagram 2- The two stages of progenitor cell fate decision. Progenitor cells exit their progenitor 

state, towards a more differentiated cell type. This step, known as the common destabilisation 

phase, occurs similarly in cells following different cell fate trajectories. At this stage, cytokines are 

able to re-direct the cell fate trajectory. The second step involves abrupt global transcriptome 

changes, after which point cells are committed to their final cell fate.     
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2.3 Megakaryopoiesis 

A common bi-potent megakaryocyte erythroid progenitor (MEP) cell has been identified at the last 

branch point before the differentiation of erythrocytes and megakaryocytes (MKs) (Klimchenko, 

2009). MKs are very large polynucleated cells that reside in the bone marrow in small numbers. They 

are the precursor cells responsible for producing platelets, with over 1011 platelets being produced 

on average per day (Bluteau, 2009). Megakaryopoiesis describes the formation of MK cells from 

HSCs. Megakaryopoiesis and platelet production can be described in four main biological steps;  

1. Haematopoietic stem cell (HSC) maintenance in the bone marrow (BM).  

2. HSC differentiation of megakaryocyte progenitor cells.  

3. Megakaryocyte production, maturation and endomitosis. 

4. Platelet assembly and release. 

2.3.1 HSC Maintenance in the Bone Marrow  

Adult stem cells are present in self-renewing tissues such as the skin, intestinal epithelium and 

haematopoietic system. Typically a stem cell niche is an environment in which stem cells reside in 

order to self-renew, proliferate, and produce a sub-set of progenitor cells. These can then 

differentiate and mature, producing a large number of specialised cell types, enabling tissue repair 

and maintenance. In 1978, a stem cell niche for HSCs in the BM was first hypothesised as an 

environment that tightly controls stem cells entering the cell-cycle, to prevent them from exhaustion 

and DNA damage (Schofield, 1978). The BM is made up of different types of niche environments that 

play an important role in HSC maintenance and differentiation, by providing a complex mixture of 

cellular, physical, chemical and structural cues. It has long been known that a small number of HSCs 

and progenitors can also be found in the peripheral blood (Goodman, 1962), and that these cells are 

capable of homing back to the bone marrow (Wright, 2001).  

Single cell tracking of HSCs and progenitors has found that the most multipotent cells (HSCs) home 

to the endosteal region of the BM, found close to the bone surface, while more committed 

haematopoietic cells are found localized in the more central bone marrow region (Nilsson, 2001). 

Due to the observed preference in environment of HSCs, many investigators have tried to identify 

the cell types found in the endosteal niche, to try and elucidate the exact factors which are essential 

for stem cell maintenance. While the full picture still remains elusive, progress has been made in 

discovering a number of cell types and factors that play a role in this tightly regulated process. 

A large number of different cell types are important for maintaining stem cells in a niche 

environment. In the BM, mesenchymal stem cell derived cells, such as osteoblasts, play an important 
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role in HSC maintenance. In vitro, osteoblasts have been shown to support the expansion of human 

CD34+ haematopoietic progenitor derived cells, through their secretion of hepatocyte growth factor 

(HGF) and granulocyte colony-stimulating factor (G-CSF) (Taichman, 2001). Not only important for 

HSC maintenance, osteoblasts have also been implemented in maintaining quiescence in HSCs in the 

adult BM, through a number of signalling pathways. Angiotensin-1 produced by osteoblasts activates 

the receptor tyrosine kinase Tie2, found on the surface of HSCs. When bound to Tie2, angiotensin-1 

causes HSCs to tightly adhere to osteoblasts in the niche, resulting in enhanced HSC survival and 

quiescence (Arai, 2004). It has also been demonstrated that thrombopoietin, produced by 

osteoblasts, binds to its receptor, cMPL, on the surface of long-term HSCs (LT-HSCs), resulting in cell 

contact with the osteoblasts and quiescence (Qian, 2007). Activated osteoblasts, found at sites of 

bone-remodelling, have also been demonstrated to negatively regulated HSC pool size, thus reduce 

expansion by producing osteopontin, an acidic matrix glycoprotein which binds to CD44 and α4 

integrin receptors on the HSC surface (Stier, 2005). 

Another cell type, osteoclasts, help to maintain the HSC pool in the endosteal niche. Osteoclasts 

regulate a process known as bone resportion, where bone tissue is broken down to assist in repair, 

remodelling and maintenance of bones. This process results in secreted calcium, which also helps to 

maintain blood calcium levels. During development, HSCs translocate to the BM for adult 

haematopoiesis, from the fetal level. It is thought that the calcium rich environment found in the 

endosteal niche is an important signal for HSCs, detected by the calcium sensing receptor (CaR) on 

their cell surface, that helps HSCs home to the BM (Adams, 2006).  

Nestin positive mesenchymal stem cells (MSCs) have also been shown to be important niche cells, 

that highly express HSC maintenance genes and downregulate these genes when stimulated. MSCs 

closely associated with HSCs physically, and if deleted result in a significant reduction in the number 

of HSCs found in the BM (Méndez-Ferrer, 2010). MSCs can be split into two populations. Of interest, 

one sub-population is comprised of very rare cells (~0.002% of bone marrow) that highly express 

nestin and are found only along small arterioles within the endosteal niche, known as periarteriolar 

cells (Kunisaki, 2013). Depleting periarteriolar cells alters the location of HSCs away from arterioles, 

and is associated with HSCs phenotypically switching from a quiescent to non-quiescent state. This 

leads to a statistically reduced frequency of HSCs in both the BM and the spleen, indicating that 

periarteriolar cells help to maintain the pool of HSCs. As evidenced by the large body of work gone 

into trying to identify the main components of HSC maintenance, the BM niche responsible is very 

complex and populated by a large number of cell types which are important to this.  
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2.3.2 HSC Differentiation of Megakaryocyte Progenitor Cells 

As previously described, HSCs give rise to multipotent progenitor cells, which in turn give rise to the 

megakaryocyte erythroid progenitor (MEP) cell. Historically, studies on HSCs and their progenitors 

have relied on fluorescence-activated cell sorting (FACS), using monoclonal antibodies to stain a 

specific panel of surface receptors. This has been done with limited success due to many antibodies 

staining more than one cell type. At best, typically only 50% of HSCs isolated in this way are active in 

transplantation assays (Kent DG, 2009). However, in more recent years, thanks to the development 

of new sequencing and transcriptomics techniques, as well as the scaling down of these technologies 

to the single-cell level, the classical hierarchical view of haematopoiesis is changing.  

A new era of single-cell biology is emerging, with investigators no longer satisfied at looking at cells 

at the whole population level, because this can lead to heterogeneity when looking at gene 

expression, for example. Multiple cell types may be present in a ‘purified’ population and different 

cell cycle or transcriptional states of a specific population of cells can lead to heterogeneity. When 

looking at gene expression change in a population, it is hard to decipher whether the change is 

happening at the level of a few individual cells, or in a much larger sub-set of the population. Thus, 

information can be lost when looking at cells at a whole population level. There is also an issue with 

rare cell types, such as HSCs. These can be difficult to isolate and investigate for conventional 

population studies that often require large cell numbers. A major advancement in redefining the HSC 

phenotype was achieved using a combination of single-cell RNA-seq, to interrogate gene expression, 

and functional transplantation assays. A sub-set of HSCs was identified and enriched for, using a 

molecular dataset that linked long-term self-renewal and functional stem cell activity. This improved 

the purification of true HSCs to 67%, compared to the 50% previously achievable (Wilson, 2015).  

The distribution and transcriptional states of myeloid progenitor cells has been reported with 

conflicting messages historically. A study using index sorting set to settle this, by measuring common 

surface markers of CMPs, and their two distinct progeny cell types; MEPs and GMPs (Paul F, 2015). 

Massively parallel single-cell RNA-seq (MARS-seq) and clustering analysis was performed on almost 

3000 single-cells, allowing very rare cell types to be sequenced with a cell frequency as little as 0.2% 

(5–6 cells). From differential expression pattern analysis of almost 3500 genes, 19 transcriptionally 

distinct populations of cells were identified. Some of these sub-populations formed groups which 

expressed marker genes corresponding to expected cell phenotypes (erythrocyte, monocyte, and 

neutrophil progenitors). However, some had overlapping gene expression distribution, not in line 

with the classical hierarchical model of haematopoiesis. In fact, in contrast to the classical model, 

their study established that all myeloid progenitors are transcriptionally primed towards one of 
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seven (or more) different fates; MKs, erythrocytes, monocytes, neutrophils, eosinophils, basophils or 

dendritic cells. This diversity of primed cell types may represent earlier commitment in development 

than previously believed, or a more plastic regulation of different states.  

Focusing on the MEP lineage, 8 sub-populations were index sorted based on MEP cell surface 

markers. Only one of the 8 sub-populations represented MK progenitors and showed expression of 

well-established MK markers, CD41 and platelet factor 4 (Pf4), and MK TFs, pre-B cell leukaemia 

transcription factor 1, friend leukaemia integration 1 transcription factor and myocyte-specific 

enhancer 2c (Pbx1, Fli1, Mef2c). The other 7 sub-populations were separated along a gradient of 

erythrocyte transcription, from an early progenitor expression profile, with progressive erythrocyte 

functional gene activation to a mature profile that highly expressed haemoglobin. The authors 

suggest that this represents a developmental continuum of differentiation. The least mature of 

these erythrocyte sub-populations, with the most progenitor potential, along with the MK 

progenitor sub-population shared some major transcriptional regulators such as GATA binding factor 

2 (GATA2), not shared with the monocyte or granulocyte lineages.  

In functional competitive assays, CD41+ MK progenitors gave rise to a large proportion of 

erythrocytes, despite having a transcriptional association distinct to the MK, not the erythrocyte, 

lineage. CD41+ progenitors also display an epigenetic profile partially compatible with HSCs, 

determined by chromatin analysis. This highlights that although transcriptional state is clearly an 

important factor in dictating cell fate outcome, MK progenitors are not completely lineage 

restricted. The observation of this plastic, rather than strictly controlled, progenitor cell fate may 

offer advantages to an organism when it encounters haematological stress. This study demonstrates 

how single-cell analysis is challenging the classical idea of haematopoiesis. It presents strong 

evidence for the transcriptional state of a cell determining its functional commitment, however, 

highlight that this process can be fluid and cell fate can be changed. Despite single-cell analysis not 

identifying a distinct MEP population, rather a couple of progenitor sub-populations that are already 

transcriptionally primed towards either the MK or erythrocyte lineage, this study identifies that the 

two cell lineages are closely connected developmentally.  

2.3.3 Megakaryocyte Production, Maturation and Endomitosis 

MKs account for only 1% of all myeloid cells, thus are a very rare cell type, making them difficult to 

study (Ogawa M, 1993). They are found primarily in the bone marrow, but also in the lungs and 

peripheral blood. A recent study in mice has suggested that the lungs, previously thought to play 

only a minor role in megakaryopoiesis, may in fact be a major site of platelet production (Lefrançais 
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E, 2017). Once HSC differentiate to increase the number of MK progenitors, these cells differentiate 

further into immature MKs with limited self-renewal capacity that must undergo maturation. The 

first step of maturation involves a MK-specific type of cell division, called endomitosis.  

During endomitosis MKs undergo multiple rounds of cell division, replicating their DNA content as 

expected, but without cellular division. This is due to a failure of cytokinesis (cytoplasmic) division, 

often coupled with failure of karyokinesis (nuclear) division (Lordier L, 2008). Multiple rounds of 

endomitosis occur, resulting in MKs with many times the normal compliment of chromosomes (46), 

leading to a polylobulated nucleus. A single MK can accumulate a DNA content of up to 128n 

through endomitosis (Zimmet J, 2000). After this, cytoplasmic enlargement occurs, by a process 

called cytoplasmic maturation. This, along with endomitosis, is considered a fundamental property 

specifically acquired by the MK lineage to facilitate a high quantity of platelet production, by 

increasing mRNA and protein content (Reems JA, 2010; Zimmet J, 2000).  

During cytoplasmic maturation, platelet-specific granules form, along with a network of specialised 

membranes that forms the invaginated membrane system (IMS, also known as the demarcation 

system- DMS), which adds to the MK cell volume (Yamane A, 2008). The IMS, a marker of MK 

maturation, is found throughout the cytoplasm as a complex of cisternae and tubules. For some time 

this system was thought to function by separating MK cytoplasm into small areas where platelets 

were assembled before release (Yamada E, 1957). Since, it has been shown that the IMS complex is 

continuous with the plasma membrane, and it is now thought to exist as a reservoir of membranes 

utilised during proplatelet formation (Schulze H, 2006). A protein often found in the plasma 

membrane skeleton of cells, spectrin, is important for stabilising the IMS, as it provides structural 

support by forming a 2D lattice. A study which disrupted the assembly of spectrin tetramers in 

mouse MKs resulted in mature MKs with an underdeveloped IMS, that were unable to produce 

proplatelets (Patel-Hett S, 2011). This suggests that spectrin is intimately involved in the assembly or 

stabilisation of the IMS, which is critical for proplatelet formation. 

Other markers of MK maturation include the development of a dense tubular system, found to be 

the site of platelet prostaglandin biosynthesis, important for vasoconstriction and platelet 

aggregation (Gerrard JM, 1976). Another important structure found in mature MKs is the open 

canalicular system, a surface-connected channelled system important for granule release (Patel SR, 

2005). Proteins specifically associated with platelets are found on the surface of mature MKs, such 

as the Von Willebrand Factor (vWF) and fibrinogen receptors. Other proteins, including vWF, are 

packaged into secretory granules and loaded into α-granules derived from Golgi complexes. Other 

proteins, including fibrinogen, are added to platelet-specific granules through endocytosis or 
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pinocytosis of plasma (Heijnen HF, 1998). Mitochondria and dense granules, also derived from Golgi 

complexes, are assembled during MK maturation. The resulting MK cell is terminally differentiated 

and equipped with all the necessary apparatus required to perform the major undertaking of 

platelet biogenesis. 

2.3.4 Platelet Assembly and Release 

Diagram 3- Platelet formation. A mature megakaryocyte produces a single pseudopodia, marking 

the initiation of proplatelet formation. This extends branches and bends, forming long proplatelet 

extensions. Nascent platelets are found at the end of proplatelet extensions and are released, 

most commonly, as barbells. 

A single mature MK is capable of releasing 1000-2000 platelets by undergoing massive cytoskeletal 

reorganisation. Platelets are very small, 2-3µm across, enucleated fragments with a distinctive disc 

shape that are formed from the cytoplasmic content of a mature MK. The process of platelet 

assembly has been studied for over a century (Diagram 3). It was first proposed in 1906 that 

platelets detach from MK pseudopods, initially introducing the idea that platelets were formed by 

MK extensions (Wright J, 1906). Currently, the most widely accepted theory of platelet formation is 

based on the proplatelet theory, which was first described in 1976. This built on the earlier 

observations and described psudeopod-like extensions forming from the mature MK that broke 

apart to produce individual platelets (Becker RP, 1976). The term proplatelet was introduced to 
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describe these long cytoplasmic processes, originating from the MK cell body. At the time, it was still 

believed that the IMS marked out specific regions inside the mature MK, where platelets were 

formed. Nowadays, a revised version of this theory is generally accepted, known as the ‘flow model’. 

The flow model describes the IMS as a membrane reserve that undergoes evagination during 

proplatelet formation, enveloping putative platelets (Radley JM, 1982).  

In vitro time-lapse microscopy capturing the process in real time has greatly improved our 

understanding of exactly how proplatelet formation occurs (Italiano JE Jr, 1999). Proplatelets are 

distinguished by numerous platelet-sized swellings, joined together by cytoplasmic bridges, giving 

them a ‘beads-on-a-string’ appearance. The mature MK organises cytoplasm into long extensions, 

100-500µm in length, forming the ‘string’. The ‘beads’ found along the proplatelet string are sites 

where the microtubule bundles diverge and reconvene, creating thickened areas within the 

proplatelet shaft. The branching process often starts at a single site of the mature MK where one or 

more broad pseudopodia form. This process has been visualised in vitro and over a period of 4-10 

hours the processes lengthen, finally forming proplatelets with a diameter of 2-4µm. Microtubules, 

made up of αβ-tubulin dimers, are essential structural components driving proplatelet formation. 

When cultured MKs were treated with nocodazole, a drug which inhibits microtubule assembly, 

proplatelets were no longer able to form (Italiano JE Jr, 1999).  

Prior to proplatelet formation, these microtubules form a condensed mass, just below the plasma 

membrane of the first pseudopodia that forms, before aligning into bundles which fill the cortex of 

the first process, marking the start of proplatelet formation. Each proplatelet extension contains 

bundles of microtubules in their core, which form tear-drop loops of 3-5µm at their distal end, 

referred to as bulbous tips. It is only at these tips that microtubule coiling occurs, a signature 

property of circulating platelets whereby a single long microtubule coils 8-12 times around the 

cortex of a platelet, which maintains the platelets hallmark disc shape (White JG, 1967). This 

indicates that the bulbous tip is the site of platelet assembly. The proplatelet extensions can bend 

and from these bends new branches form, amplifying the number of extensions and increasing the 

number of platelets produced by a single MK. At a bend, the proplatelet shaft folds back on itself, 

generating a new loop, which eventually elongates and becomes a new bulbous tip.  

Tubulin microtubules also function to transport organelles from the cell body to the site of de novo 

platelet production in the bulbous tip. The movement of organelles can be bidirectional, due to the 

bipolar organisation of microtubules within the proplatelet shaft, however, the organelles appear to 

be become trapped at the tip. Organelle movement occurs due to two mechanisms; organelles 
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travelling along microtubules and microtubules moving relative to one another to indirectly 

transport organelles (Richardson JL, 2005).   

Individual proplatelets in vitro are released from the residual cell body by a rapid retraction event. 

The processes of extension and retraction occur in continuous cycles, revealing that proplatelets are 

dynamic and unstable structures. The most common shaped proplatelet to be released after 

retraction is a barbell, where two platelet-like particles are joined by a single, thin cytoplasmic 

bridge. More recently an intermediate stage between proplatelet and barbell production has been 

described, termed the preplatelet (Thon JN, 2010). Preplatelets are 3-10µm and are able to convert 

between their ‘giant’ platelet state and the barbell state that has been described previously. 

Curiously, despite being believed to be the last step before individual platelet release, the barbell 

structures still undergo granule content exchange. Therefore, it has been proposed that the 

interconversion between preplatelets and barbell structures may represent a novel mechanism for 

distributing and sorting granule content in platelets before their final release.  

In vivo the release of platelets remains difficult to study due to the rarity of MKs, although 

proplatelets are known to extend into the vascular sinusoids of the BM, where they enter the 

bloodstream and are released under shear stress. The process of retraction seen in vitro is believed 

to mimic what occurs in vivo, where the barbell structures are believed to break down further in the 

blood stream to generate singular platelets. In vivo platelet generation has been possible in mice 

using multiphoton intravital microscopy of the BM, which confirmed the concept that blood-flow 

induced shear stress is a biophysical determinant of platelet production (Junt T, 2007). While a lot of 

invaluable data and observations have been collected due to improved techniques for culturing MKs 

in vitro, our understanding of the final steps of platelet release remains incomplete.  

2.4 Platelet Role: Thrombus Formation 

Once released into the bloodstream, platelets make up one of the most abundant vascular 

components (Diagram 4). They are equipped with a huge array of granular contents that allow them 

to function in many ways in the vasculature. Platelet-specific alpha (α) granules contain a high 

number of proteins which are released only once a platelet has become activated. The rich granular 

content of platelets enables them to perform a multitude of functions including; maintaining normal 

haemostasis, forming thrombi at sites of vascular injury, promoting new vessel production and 

playing a role in inflammatory processes.  
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Diagram 4- Platelet structure. Platelets contain a large number of organelles, including alpha and 

dense granules.  

During the short 10 day lifetime of a platelet it is unlikely to come into substantial contact with the 

endothelial wall lining the blood vessels. This is not the case, however, at sites of blood vessel injury, 

where the sub-endothelial extracellular matrix becomes exposed to circulating blood components. 

Platelets adhere to such sites of injury and subsequently become activated in order to limit blood 

loss and promote vessel healing. Upon extracellular matrix exposure, adhesion molecules such as 

collagen, von Willebrand factor (vWF), thrombospondin, laminin and fibronectin are exposed, all of 

which function as ligands to multiple platelet-surface receptors (Broos K, 2011). A number of tightly 

controlled processes are vital for stabilising platelet adhesion and promoting thrombus formation 

after initial platelet binding, these are; tethering, rolling, activation and firm adhesion. Since larger 

vessels, such as veins and arteries, are under a lower shear rate of blood flow than smaller vessels in 

the microvasculature, the methods for how these processes occur are different, depending on the 

site of adhesion.  

At sites of low shear rates, collagen, fibronectin and laminin binding plays the primary role, while in 

high shear rates the binding of vWF to the platelet receptor glycoprotein Ibα (GPIbα) is vital to 

recruit fast moving platelets. GPIbα binds vWF that is either exposed by the damaged endothelial 

extracellular matrix or immobilised on exposed collagen. vWF can also self-associate, thus increasing 
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the amount of exposed vWF in the vicinity of vascular damage. Once immobilised, vWF captures 

platelets via an interaction with GPIbα. Mediated through fast association and disassociation bond 

rates, this allows platelets to tether to the region of injury by providing a high resistance to the 

tensile stress caused by the high shear rates in the veins and arteries (Savage B, 1996). This tethering 

is insufficient to produce stable binding but instead it acts to decelerate platelets, allowing them to 

roll in the direction of the blood flow. This rolling process puts non-activated platelets into close and 

continuous contact with the exposed extracellular matrix, crucially allowing further platelet-matrix 

interactions to stabilise the adhesion (Diagram 5).  
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Diagram 5- Thrombus formation. Damaged vessel walls expose adhesion molecules, which bind to 

the surface receptors of platelets. In high shear environments, platelets are first decelerated 

through vWF binding, causing them to roll over the damaged surface. This leads to further platelet 

recruitment through multiple receptor-ligand interactions, causing platelets to adhere to the site 

of injury. Platelets become activated, releasing their granule content and micro-particles. These 

release even more adhesion molecules, add to the pro-coagulant rich surface and amplify adhesion 

signals, forming a thrombus.  

Collagen type I and II are particularly potent adhesion molecules exposed by the endothelial 

extracellular matrix. They bind to the platelet-specific receptor, glycoprotein VI (GPVI), found 

constitutively on resting platelets. Upon collagen binding, dimers of GPVI form clusters, increasing 

the receptors avidity for collagen and also increasing the proximity of GPVI-associated signalling 

molecules, thought to be crucial for initiating and maintaining the downstream activation signal 



 

24 
 

(Poulter NS, 2017). A second important collagen receptor required for the binding of platelets, is the 

integrin α2β1 receptor. The platelet α2β1 receptor switches from a low-affinity conformation, 

through an intermediate, to a high-affinity conformation upon collagen binding (Van de Walle GR, 

2005). Another important integrin receptor on the platelet surface, integrin αIIbβ3, binds fibrinogen. 

This binding has a slow bond formation rate with low resistance to tensile stress, so occurs in low 

shear areas, or as a downstream event to the GPIbα-vWF initiated tethering and rolling found in high 

shear locations (Savage B, 1996).  

Platelet activation occurs once adhesion has been established, via a number of downstream signal 

transduction pathways. One way this is achieved is through the activation of a tyrosine-kinase 

cascade, which ultimately leads to an increase in cytosolic calcium ion (Ca2+) and 1,2-diacylglycerol 

(DAG) concentrations (Broos K, 2011). This activation results in the platelet changing shape, 

secreting its granule content and ultimately leads to aggregation. Increased cytosolic Ca2+ levels 

trigger exposure of phosphatidylserine (PtdSer) on the surface of the platelet. PtdSer binds Ca2+ and 

provides a pro-coagulant surface for other factors involved in the coagulation cascade to bind, such 

as vitamin-K dependent clotting factors. Micro-particles are also released, which present PtdSer and 

tissue factor, which also increase blood coagulation (Morel O, 2008).  

Once activated, platelets release the content of their granules to the local environment in order to 

amplify the signal transduction of platelet activation. By performing mass spectrometry to probe 

their proteome, the most abundant granule type, the α-granule, has been shown to contain over 

280 different proteins (Maynard DM, 2007). While many of the proteins identified have unknown 

functions, others have been implemented in inflammation, cell-matrix interactions, wound healing, 

promoting angiogenesis and even includes novel proteins that could in future be used for detecting 

Alzheimer’s disease from other forms of dementia. Unsurprisingly, such a large proteomic repertoire 

gives platelets the ability to mediate an impressively wide array of responses to activation, some of 

which remain poorly understood, as it is remains difficult to establish the exact effects of specific 

proteins. 

Several important pro-thrombotic factors, including vWF and fibrinogen, are released by α-granules. 

These increase the cross-linking of platelets through their receptor binding, increasing platelet-

platelet binding and aiding the recruitment of even more platelets to the site of thrombus 

formation. This is known as an outside-in signalling cascade, as the initial external stimulus (for 

example immobilised vWF on the collagen surface), leads to the secondary secretion of the same 

factor from within the platelet α-granule, and ultimately amplification of the aggregation potential. 

Alpha-granules, as well as the open canalicular system, also contain reserve supplies of a number of 
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receptors normally found on the membrane of a resting platelet (Suzuki H, 2003). These additional 

receptor copies become redistributed to the surface membrane or to released micro-particles, thus, 

further amplifying the adhesion potential and platelet response.   

Dense (δ) granules contain much fewer proteins than α-granules. They have a number of 

membrane-anchored proteins but also contain Ca2+ ions and metabolites such as histamine, involved 

in inflammation. The main role of δ-granules in amplification of the platelet response signal is 

through their release of the nucleotide adenosine diphosphate (ADP), which plays a major role in 

platelet activation. ADP binds to two G-protein coupled receptors, which results in the activation of 

two separate signalling pathways. The result of one of these activation pathways is to change the 

shape of the platelet, which occurs before aggregation. This increases the surface area exposed by 

the platelet, which helps to promote binding to other cell and matrix components (Kahner BN, 

2006). Together, these processes lead to an increase in the number of activated platelets at the site 

of injury, leading to aggregation and thrombus formation, preventing bleeding.  

2.5 Thrombopoietin- The Master Cytokine of Megakaryopoiesis 

The term thrombopoietin (TPO) was first introduced to describe a cytokine that was essential for the 

production of platelets in 1958, long before TPO had been cloned and purified (Kelemen E, 1958). 

However, it was not until the TPO receptor, cMPL (also known as the myeloproliferative leukemia 

protein, CD110 or MPL), was first cloned in 1992 that the quest to discover TPO really gained 

traction (Vigon I, 1992). cMPL was identified as a haematopoietic cytokine receptor by the presence 

of four spatially conserved cysteine residues, alongside a juxtamembrane pentapeptide sequence 

which is shared by other receptors of this family, including receptors for erythropoietin (EPO), 

granulocyte colony-stimulating factor, interleukin (IL)-3, IL-5, IL-7, IL-9, and IL-11, amongst others 

(Cosman D, 1993). Initially cMPL was considered to be an orphan receptor, but due to the cell line 

from which it was cloned, the bi-potent megakaryocyte erythroid progenitor human 

erythroleukaemia (HEL) cell line (Long MW, 1990), scientists began to postulate that TPO may be the 

cMPL ligand.  

In 1994, after years of trying to identify TPO, three groups almost simultaneously reported the 

cloning of TPO cDNA from a number of species including canine, murine and human (Bartley TD, 

1994; De Sauvage FJ, 1994; Lok S, 1994). The primary site of TPO production was identified as the 

liver, but other organs including the kidney were shown to also express TPO. Injections of the 

recombinant protein into mice increased the number of circulating platelets by fourfold, in a seven 

day time-period (Lok S, 1994). It was found that the 353 amino acid protein had a novel two-domain 



 

26 
 

structure. The N-terminal domain, sharing sequence homology with erythropoietin (EPO), was able 

to bind to cMPL (Bartley TD, 1994). It was later discovered that despite sharing N-terminal 

homology, EPO and TPO do not compete for binding to their respective receptors (Broudy VC, 1997). 

The C-terminal domain of TPO is unique, having not been identified in any other known protein and 

has been shown to function in two ways. First, it prolongs the half-life of the hormone in circulation, 

as it contains multiple sites of modified N- and O- linked carbohydrates (Harker LA, 1996). Secondly, 

it contains a glycan domain, responsible for increasing secretion of TPO and which additionally 

functions as an inter-molecular chaperone, likely within the endoplasmic reticulum, to prevent 

degradation of the hormone (Linden HM, 2002).  

Shortly after the identification of TPO and production of the recombinant protein, in vitro cultures of 

MKs improved greatly. MKs expanded from human CD34+ cells isolated from peripheral blood were 

shown to be able to generate proplatelets in culture in the presence of TPO (Choi ES, 1995). This was 

the first demonstration of MK expansion, growth and full maturation to produce platelets in vitro. 

TPO was also shown to be essential for platelet production in animal models. Mice deficient for 

either TPO or its receptor, show severe thrombocytopenia (low platelet count). They also show 

significantly reduced cell counts from other haematological lineages, including erythroid, 

granulocyte-macrophage and multipotent progenitors in the BM, spleen and peripheral blood 

(Carver-Moore K, 1996). In TPO-deficient mice, the administration of recombinant TPO increased the 

number of circulating platelets and MK progenitors, as well as the increasing the number of 

erythroid, myeloid and mixed progenitors in both the BM and spleen. This study showed that not 

only do TPO and c-MPL play an important role in MK development, but they also act much earlier on 

in haematopoiesis, at the stem cell or early progenitor cell level. 

Further evidence supported this idea when it was found that deleting TPO or cMPL resulted in the 

reduction of not only megakaryocytes and platelets, but also CMPs and HSCs (Kimura, 1998). The 

TPO receptor, cMPL, was later found to be highly enriched on the surface of HSCs, even more so 

than on CMP or MEPs (Terskikh, 2003). This was surprising, since TPO signalling is most closely 

associated with megakaryocytic fate decisions. However, a role for TPO as an early-acting cytokine in 

the induction of HSC proliferation was demonstrated in a study investigating the role of TPO, stem 

cell factor (SCF) and IL-3 on HSCs (Domen, 2000). Single plated mouse HSCs were prevented from 

undergoing growth factor deprivation–induced apoptosis, by overexpressing the protein B-cell 

lymphoma 2 (BCL-2), to block apoptosis. BCL-2 over-expressing HSCs, and wild type (WT) HSCs, were 

then cultured in different cytokines, in order to elucidate if those that induced a growth response 

could be separated from those which prevented apoptosis. Transgenic cells were not protected from 
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apoptosis in serum-free conditions, in contrast to when they were cultured in serum. However, they 

did survive and proliferate rapidly in the presence of SCF, whereas WT cells died. This suggests that 

both BCL-2 and SCF are required to prevent apoptosis, but signal through different pathways, in 

HSCs. SCF was found to provide a strong signal for proliferation, with the loss of HSC self-renewal 

and associated differentiation to all progenitor lineages. TPO stimulated the production of large 

mature MKs from both mutant and WT HSCs but the plating efficiency was higher in mutant cells, 

which shows that TPO alone does not prevent WT HSCs from undergoing apoptosis. IL-3 was shown 

to block both pathways of apoptosis, and stimulated proliferation and the rapid appearance of 

myeloid cells of various lineages (Domen, 2000). This demonstrated that TPO is a crucial key 

regulator of MK development and platelet production, but that it also plays an important role in HSC 

maintenance. Thus, TPO can be described as a pan-haematopoietic cytokine.   

One of the major regulation mechanisms for TPO is via receptor-mediated uptake and destruction, a 

mechanism first described for another haematopoietic growth factor, macrophage colony 

stimulating factor (Bartocci A, 1987). An auto-regulatory feedback loop is generated by platelets, as 

cMPL on the platelet surface removes TPO from circulation and it is degraded following binding 

(Diagram 6). If the number of platelets rises, the more TPO is removed from system, reducing MK 

production of platelets. Conversely, when there are less platelets in circulation TPO levels rise, thus, 

driving MKs to produce more platelets. However, there are a number of exceptions to this simple 

receptor-mediated uptake and destruction mechanism. For example, not all cMPL expressing cells 

contribute to this feedback loop. Endothelial cells also express cMPL but have been found not to 

contribute to blood levels of TPO (Geddis AE, 2006). The inflammatory marker IL-6 has also been 

implicated in increasing TPO levels by increasing TPO transcription in the liver, leading to 

inflammation-induced thrombocytosis (Kaser A, 2001).  

Ageing platelets also play a role in TPO production. As platelets age in circulation, they become 

disialylated and bind to the hepatic Ashwell-Morell receptor (AMR). Binding of the AMR induces 

hepatic TPO gene transcription and translation, resulting in platelet production regulation 

(Grozovsky R, 2015). 
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Diagram 6- Thrombopoietin regulatory feedback loop. TPO in the bloodstream binds cMPL found 

on the surface of platelets, which is subsequently degraded. If platelet levels rise, more TPO is 

bound, resulting in a decrease in circulating TPO levels. Reduced TPO levels signals to MKs to 

produce fewer platelets. When fewer platelets are detected, the circulating levels of TPO rise, 

signalling to MKs to increase their production of platelets. 

2.6 Thrombopoietin-independent Megakaryopoiesis 

TPO or cMPL null mice are severely thrombocytopenic, however, their platelet counts are not 

completely eliminated and remain at around 10% that of a WT mouse. A number of studies have 

therefore tried to determine which other cytokines may be playing a role in maintaining this residual 

platelet production. cMPL null mice have been crossed with several other mouse strains, lacking 

different cytokine receptors. From these studies, IL-3, 6, 11 and leukemia inhibitory factor (LIF) have 

all been shown not to play a role in platelet production (Chen Q, 1998; Gainsford T, 2000).  Two MK- 

active chemokines have been shown to mediate interactions of BM endothelial cells to promote 

platelet production in a TPO-independent manner. Stromal-derived factor 1 (SDF-1) together with 

fibroblast growth factor 4 (FGF-4) can restore platelet production in both TPO and cMPL null mice 
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(Avecilla ST, 2004). These two chemokines mediate MK progenitor localisation to the vascular niche 

in the bone marrow, promoting MK survival and maturation, as well as platelet release. Through 

this, it has been suggested that their major role is in allowing progenitors to relocate to a permissive 

microenvironment.  

2.7 Stem Cell Factor in Haematopoiesis and Megakaryopoiesis 

Mouse experiments in 1990 revealed two important factors required for HSC and niche 

maintenance; stem cell factor (SCF, also known as kit-ligand or steel factor) (Zsebo, 1990) and its 

receptor, cytokine receptor-tyrosine kinase (c-Kit, also known as CD117) (Reith, 1990). These factors 

were discovered after the mutations of the two loci where these genes are encoded, chromosome 

10 and 5 respectively in mice, were investigated. The mutated loci resulted in animals with a similar 

phenotype that included anaemia and mast cell deficiency. Haematopoiesis could not be corrected 

in mice with a SCF mutation, even after WT or mutant c-Kit BM cells had been transplanted, whereas 

haematopoiesis was fully restored in c-Kit mutant mice after similar transplantations were 

performed. These experiments demonstrated that the c-Kit receptor was essential for HSC function, 

as haematopoiesis was restored, while the SCF ligand was an essential environmental element for 

haematopoiesis but was not contained in BM cells, as transplants failed to restore HSC function. 

SCF has also been shown to play a role in MK maturation. When added to in vitro cultures of CD34+ 

cells derived from cord blood, SCF significantly increased the level of polyploidisation seen in CD41+ 

MKs, as well as reduced TPO-induced apoptosis (Kie JH, 2002). Testing the effects on MK growth of a 

number of different cytokines; Flt3 ligand, IL-3, IL-6, IL-11, LIF, EPO, granulocyte colony stimulating 

factor (G-CSF) and SCF, only SCF was found to reduce the apoptotic fraction of MKs cells, particularly 

in late-maturation stage MKs. This suggests that SCF delays TPO-induced apoptosis in mature MKs. 

MK-lineage specific TPO-induced apoptosis has been previously described in in vitro MK cultures, 

showing that although TPO is important for the proliferation of MK progenitors, alone it is not 

capable of sustaining their long-term expansion (Ryu KH, 2001). Thus a combination of TPO and SCF 

is beneficial for in vitro MK proliferation and maturation. 

2.8 Other Cytokines Controlling Megakaryopoiesis 

Applying a multi-step statistical model to quantify the individual and interactive effects of 13 

different cytokines on megakarypoiesis in vitro allowed the optimal concentrations and 

combinations of cytokines to obtain MK expansion, maturation and platelet production, to be 

obtained (Cortin V, 2005). In combination with TPO, the cytokines SCF, IL-6 and IL-9 significantly 

increased the number of mature MKs in culture. TPO in combination with just Flt3 ligand was found 
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to only increase the expansion of MK progenitor cells and had no effect on MK maturation. 

Cytokines which had a negative effect included EPO and IL-8, which both inhibited MK maturation. 

Optimising the concentrations of TPO, SCF, IL-6 and IL-9, resulted in a MK culture of high purity 

(90%), which maximised MK expansion and maturation. Increasing the concentration of SCF only in 

this cocktail further improved both MK expansion and maturation, although this had a negative 

effect on cell purity, reducing it by almost half.  

2.9 Erythropoiesis 

As previously described, the megakaryocyte-erythroid progenitor (MEP) cell is bi-potent and can give 

rise to cells from either the MK or erythrocyte lineage. Erythropoiesis describes the stages of 

maturation, from erythroblast progenitor to mature erythrocyte (red blood cell). During 

development, the initial stages of haematopoiesis occur in the yolk sac, where primitive erythrocytes 

are produced, vital for the survival of the embryo (Tavassoli M, 1991). This is followed by definitive 

waves of erythropoiesis in the foetal liver and postnatal bone marrow, occurring in three distinct 

stages. The first stage of definitive erythropoiesis gives rise to the earliest recognisable erythroid-

specific progenitor, the burst-forming unit erythroid progenitor (BFU-E). BFU-E progenitors give rise 

to colony forming unit erythroid (CFU-E) progenitors. The second stage describes progression of 

nucleated precursors, with the earliest identified as the proerythroblast.  

The proerythroblast undergoes 3-4 rounds of cell division as it progressively differentiates towards 

the reticulocyte, with each cell division being distinguished by a decrease in cell size, enhanced 

chromatin condensation, increased haemoglobinisation and by changes to the cell membrane 

organisation (Diagram 7). Morphologically distinct populations follow the proerythroblast, which 

are; basophilic, polychromatic and orthochromatic erythroblasts (Chen K, 2009). In the third stage, 

orthochromatic erythroblasts generate mature reticulocytes by expelling their nuclear content. A 

loss of intermediate filaments occurs during the cell divisions from proerythroblast to 

orthochromatic erythroblast, resulting in a free moving nucleus which is relocates to the cell 

periphery, occupying an acentric position, before enucleation.   
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Diagram 7- Erythropoiesis. Proerythroblasts undergo 3-4 rounds of division, producing cells which 

decrease in size, contain more condensed chromatin and increased levels of haemoglobin. The final 

stage of differentiation produces the enucleated erythrocyte found in circulation. 

The process of definitive erythropoiesis occurs in locations known as erythroblastic islands, 

specialised microenvironments, found in the BM. In the centre of an erythroblastic island, a 

macrophage known as a nurse cell, with a unique immunophenotypic signature, is responsible for 

nurturing erythropoietic cells throughout maturation. The nurse cell extends cytoplasmic 

protrusions, forming a ring around the erythroblasts and enabling nurse-erythroblast cell 

interactions, responsible for anchoring cells and maintaining erythroblastic island integrity. Nurse 

cells are thought to aid erythropoiesis in multiple ways. They have been attributed with providing 

nutrients required for erythropoiesis, as well as proliferative and survival signals. Nurse cells are also 

responsible for phagocytosing the expelled nuclei of mature reticulocytes. There is also evidence for 

nurse cells providing signals for enucleation, a role which has yet to be clearly defined. Erythroblasts 

are capable of proliferation, maturation and enucleation in vitro, but these processes are typically 

inefficient and very few cells complete the final stage of enucleation. Enucleation has been found to 

be greatly improved when erythrocytes are co-cultured with macrophages. It is thought that the 

nurse-erythroblast cell interactions allow cross-talk which controls regulatory feedback mechanisms 

within the erythoblastic island, that can trigger intracellular signalling pathways to regulate gene 

expression (Manwaani D, 2008).  

Reticulocytes produced straight after nuclear expulsions are immature, with a different cell and 

cytoskeletal membrane to mature reticulocytes. Immature reticulocytes are found in the BM in 

healthy individuals but can be released into circulation in times of erythropietic stress. Immature 
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reticulocytes are motile, multilobular and stain intensely for RNA, while more mature cells are non-

motile (Chasis JA, 1989). Mature reticulocytes circulate in the bloodstream for about a day before 

maturing into erythrocytes (Bessman JD, 1990). Erythrocytes are specialised cells responsible for 

transporting oxygen around the body and are the most abundant enucleated cell type found in the 

circulation. The human rate of reticulocyte production is 2 million per second. Erythrocytes are 

between 6-8µm wide, with a distinct biconcave disc shape, which aids to increase their surface area 

and therefore their capacity for binding oxygen and also to allow them to travel through narrow 

capillaries.  

2.10 Haemoglobin Expression During Development 

The most important component of erythrocytes, and the one which gives them their distinctive red 

colour, is the haemoglobin tetramer. Haemoglobin is composed of two α-like and two β-like globin 

peptide chains as well as the haem moieties required for carrying oxygen. A number of different β-

like globin molecules are produced during distinct stages of development, due to the fact that the 

human β-globin locus of chromosome 11 is developmentally regulated. Two distinct switching 

events occur in expression of the β-like globin genes in humans. The fist β-like globin gene to be 

expressed is the embryonic ε-globin, expressed during primitive haematopoiesis in the yolk sac. The 

first globin switching event coincides with the switch from primitive haematopoiesis to the first 

stage of definitive erythropoiesis in the foetal liver, from expression of ε-globin to foetal globin to γ-

globin (McGrath K, 2008). α and γ-globin chains make up the foetal haemaoglobin (HbF), which is the 

major haemoglobin found throughout gestation. The second globin switch occurs shortly after birth, 

with a switch from γ-globin to β-globin expression, a transcriptional switch which occurs at the level 

of erythroid progenitors, resulting in adult haemoglobin (HbA) (Sankaran VG, 2013).  

2.11 Erythropoietin- The Master Cytokine of Erythropoiesis 

CFU-E progenitors, generated during the first wave of definitive erythropoiesis, are dependent on 

the cytokine erythropoietin (EPO) and its receptor, EPOR, for proliferation and maturation. Studies 

on mice which lack functional EPO, or EPOR, die at around embryonic day 13, due to a block in 

definitive erythropoiesis at the CFU-E progenitor stage. These studies show that both EPO and EPOR 

are essential for the in vivo survival of CFU-E progenitors in the foetal liver and BM. However, a lack 

of either EPO or EPOR protein does not block lineage commitment occurring before this stage, in 

primitive erythropoiesis, as BFU-E progenitors were unaffected (Wu H, 1995). In the adult, EPO has 

been shown to slow down the breakdown of DNA, preventing apoptosis occurring in progenitors, 

enabling them to differentiate (Koury MJ, 1990).  
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EPO expression by the kidneys is tightly controlled during development. At the yolk sac stage, where 

primitive erythroid progenitors are abundant, the expression of EPOR but not EPO can be detected 

in mice. Primitive progenitors are not EPO dependent and so are able to mature in the yolk sac. EPO 

expression is first detected in the embryo when foetal circulation occurs, at the first stage of 

definitive erythropoiesis. Since primitive and definitive erythroid progenitors have been observed 

together in the yolk sac, it is proposed that the lack of EPO stimulation on EPO-dependent definitive 

progenitors allows definitive erythroid progenitors to exist which are poised for maturation once 

EPO is expressed. EPO expression marks a major control point for the second wave of erythropoiesis, 

showing EPO is a critical cytokine to signal and coordinate erythrocyte developmental pathways (Lee 

R, 2001). 

3. Transcriptional Regulation of Megakaryopoiesis and Erythropoiesis 

3.1 Transcriptional Regulation Overview 

Since the genetic content of every cell within an individual’s body is identical, multi-layered 

mechanisms exist that allow differentiated cells to be produced which fulfil distinct, specific 

requirements. The differences between distinct differentiated cell types, such as neurones and 

cardiomyocytes, or developmentally more closely associated cell types, such as megakaryocytes and 

erythrocytes, is due to their expression of different genomic and proteomic profiles. Most cells will 

differ at the level of gene expression patterns, but those that do not have different protein 

expression levels. Thus, the mechanisms controlling cell fate differ at the transcriptional (gene), 

translational (mRNA) and protein structure levels.  

Further to this, genetic expression can be controlled at the epigenetic level, whereby heritable 

changes to the structure and function of genes occur without altering the genetic code (Jaenisch R, 

2003). Small, non-coding RNA molecules such as microRNA (miRNA) alter protein translation, by 

targeting certain mRNA molecules for degradation or translation repression. A large repertoire of 

over 530 miRNAs has been identified in human platelets. The most abundant family of let-7 miRNAs 

in platelets has been shown to play a role in cell differentiation (Plé H, 2012). Lineage specific long 

noncoding RNAs (lncRNAs) regulate gene expression at both the transcriptional and post-

transcriptional level. Over 1100 lncRNAs have been identified in erythroblasts, megakaryocytes and 

MEPs and some have been shown to play a role in the terminal maturation of these cells. Many of 

these lncRNAs identified are regulated by important TFs for these lineages, such as GATA1 and TAL1 

(Vikram R. Paralkar, 2014). 
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3.2 GATA-binding Transcription Factors: GATA1 and GATA2 

The GATA family of TFs is made up of proteins which have high affinity binding for the consensus 

sequence T/A (GATA) A/G (Merika M, 1993). GATA proteins have two independent transactivation 

domains, at the N- and C- terminals, as well as 2 zinc finger DNA binding domains (Kaneko H, 2012). 

There are 6 GATA TFs in total, involved in proliferation, differentiation and cell survival. Of these, 

GATA1, GATA2 and GATA3 are known as haematopoietic GATA factors, and have distinct but often 

overlapping patterns of expression. GATA1 is expressed in erythroid and MK cells, as well as in mast 

cells, eosinophils and haematopoietic progenitor cells. GATA2 is also expressed in MKs, 

haematopoietic progenitors, mast cells and a wider variety of other cells and tissues. While the third 

haematopoietic GATA factor, GATA3, is highly expressed in T-lymphoid cells (Merika M, 1993).  

Targeted gene mutations of the GATA1 gene in mice showed that this factor is essential for erythroid 

development, as erythroid differentiation was blocked and these mice failed to give rise to mature 

reticulocytes (Pevny L, 1991). GATA1 is required for activating a number of erythroid genes involved 

in maturation, as well as for activating globin genes. This study demonstrated that despite similar 

binding motifs, the family of GATA-binding proteins cannot compensate for an absence of GATA1. 

GATA2-null mice have severe anemia and, as for GATA1-null mice, embryonic lethality. GATA2 gene 

dosage experiments on GATA2-null mice revealed that GATA2 plays two functionally distinct roles at 

the HSC level. The first is in the production and expansion of HSCs in the embryo during primitive 

haematopoiesis. And the second is in the proliferation of HSCs in the BM of adults during definitive 

haematopoiesis (Ling KW, 2004). 

GATA1 and GATA2 recognize similar DNA motifs and act sequentially during haematopoiesis in 

orchestrating a broad program of gene activation and repression. GATA2 is most highly expressed 

during early blood cell development, and its expression in erythropoiesis declines as cells become 

more differentiated, while the opposite is seen for GATA1 expression. GATA1 actually replaces 

GATA2 at a number of its chromatin occupancy sites, in a process which is known as ‘GATA 

switching’ (Weiss MJ, 1994). Genome wide chromatin occupancy analysis has revealed that GATA 

switching occurs at greater than one third of sites occupied by GATA1, in cells of both the MK and 

erythroid lineages, with GATA1 and GATA2 acting generally in opposing ways on their switch target 

genes (Doré LC, 2012). The main difference found between the two lineages was in their expression 

of GATA2. GATA2 expression was greatly reduced in erythroid cells compared to MK cells, despite 

the GATA switching events occurring at the GATA2 locus controlling its expression being the same in 

the two cell types. Thus, the difference in GATA2 expression is likely due to the differential 

recruitment of different co-factors to these sites, or different kinetics of GATA2 displacement. The 
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same study also found that GATA1 binds many of the same genes in MKs and erythroid cells, but 

that this occurs at different binding sites, allowing for differential control of the same genes 

between the lineages. As for differential GATA2 expression, these differences are most likely due to 

co-factors that associate with GATA1. MK-associated TFs containing an ETS domain were found more 

frequently associated with GATA1 in MK cells compared to erythroid cells.  

3.3 ETS-binding Transcription Factors: ETS-1 and FLI1 

ETS factors encompass a family of more than 40 members, which are characterized by an 85 amino-

acid region of homology known as the ETS domain. The ETS domain mediates binding to a core DNA 

motif, known as the ETS recognition element. The ETS recognition element has the following 

consensus sequence; 5′-GGA(A/T)-3′ (Karim FD, 1990). In the genome wide GATA1/2 chromatin 

occupancy site study mentioned previously, ETS-1 in particular was found by ChiP-PCR to co-occupy 

GATA2 sites at critical MK genes (Doré LC, 2012). ETS-1 expression is downregulated by the miRNA, 

MIRN155, which itself is highly expressed in haematopoietic progenitors but decreases sharply 

during MK differentiation. When MIRN155 is overexpressed, MK proliferation and differentiation is 

impaired (Romania P, 2008). Therefore, ETS-1 has been implicated in the regulatory axis of the MEP 

lineage fate choice, as the reduction in MIRN155 and increase in ETS-1 are required for MK 

proliferation and differentiation. 

ETS-1 and GATA1 have been shown to bind to the promoter of the human Glycoprotein IIB (GPIIB) 

gene, which is only expressed in MKs. Their trans-acting activity was shown to act additively on the 

GPIIB gene promoter, in co-transfection assays in HeLa cells. This GATA-ETS association was also 

shown at the human GPIIB enhancer and at the rat platelet factor 4 promoter (Lemarchandel V, 

1993). These results indicated that GATA and ETS cis-acting sequences are important for determining 

the expression of MK-specific genes. 

FLI1 is another member of the ETS family of transcriptional activators and is also an important 

regulator of differentiation in MKs. FLI1 was originally discovered as a gene that was commonly 

activated as a result of pro-viral insertion of the Friend leukemia virus in mice (Ben-David Y, 1990). 

FLI1, along with ETS-1, is located at the chromosome region of 11q23.1. Patients identified carrying a 

deletion of this chromosomal region, suffer from thrombocytopenia (Breton-Gorius J, 1995). Both 

the FLI1 and ETS-1 gene products bind to and trans-activate the cMPL and gene promoter, along 

with GATA1 (Deveaux S, 1996) . The effects of these three TFs binding at the cMPL promoter are 

additive, and led to the proposal that the presence of GATA and ETS binding sites, closely spaced, is a 

hallmark of MK regulatory regions (Deveaux S, 1996). 
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FLI1 has also been identified as playing a major role at the top of a genetic hierarchy of blood and 

endothelial cell development (Liu F, 2008). During embryogenesis, the haemangioblast precursor cell 

gives rise to both endothelial and blood cells. Using an antisense morpholino to the FLI1 start codon 

in Xenopus and zebrafish embryos resulted in a substantial reduction of haemangioblasts. Loss of 

FLI1 led to reduced expression of haemangioblast genes, as well as genes later expressed in 

erythroid, myeloid and endothelial cells. Therefore, FLI1 is required to form haemangioblast cells in 

the mesoderm germ layer in the early embryo, and in turn, for producing endothelial and blood 

cells. 

3.4 TAL1 

The TAL1/SCL (stem cell leukaemia) gene, was first identified due to the translocation 

t(1;14)(p34;q11), which generates a fusion gene with TAL1 and the T-cell receptor (TCR) gene. This 

translocation is responsible for 3% of T-cell acute lymphoblastic leukaemia (T-ALL) cases, and a 

further 23% of T-ALL cases are the result of a constitutively active TAL1 gene (Aifantis I, 2008). TAL1 

has been described as a master regulator of haematopoiesis, after being identified as an important 

gene product in multipotent haematopoietic stem cells, as well as being an essential protein for the 

differentiation of almost all cells in the haematopoietic lineages, with the exception of T cells (Green 

T, 1996).  

TAL1 belongs to the basic helix-loop-helix (bHLH) family of TFs. The bHLH domain is capable of 

protein-dimerisation as well as DNA binding. TAL1 proteins do not have intrinsic DNA binding 

activity, due to its bHLH domain being unable to form homodimers, therefore both its DNA binding 

and TF properties rely on its interaction with other proteins. TAL1 is capable of dimerising with 

certain other bHLH proteins and will readily bind any of the ubiquitously expressed class A bHLH TFs, 

such as the products of the E2A gene, E12 and E47 (Hsu HL, 1994). Once TAL1 has formed a 

heterodimer, it is able to recognise and bind to DNA in a sequence-specific manner. These 

heterodimers preferentially recognise a subset of the E-box element motifs, with the consensus 

sequence AACAGATGGT, a cis-acting element found in a variety of eukaryotic transcription 

enhancers. In this consensus sequence AACAG is the recognition site for the class A bHLH 

polypeptide, while ATGGT is the recognition site for the TAL1 polypeptide (Hsu HL, 1994). 

A second study by Hsu showed how TAL1 binding can regulate a single target gene in a positive or 

negative manner, depending on the cellular environment. The study found that E47-E47 

homodimers were more potent activators of an artificial reporter gene, than TAL1-E47 

heterodimers. In the presence of TAL1, E47 would more readily form heterodimers, than 
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homodimers, and that these TAL1-E47 heterodimers were more stable. E47-E47 homodimers would 

readily dissociate in the presence of Id peptides, a family of HLH proteins that regulate the 

transcriptional activities of bHLH proteins (Benezra R, 1990). Thus, in an environment which permits 

E47-E47 homodimer formation, TAL1 can act to repress a gene by recruiting E47 to form TAL1-E47 

heterodimers, which has lower transcriptional activity. Conversely, TAL1 acts as an activator of gene 

expression in the presence of Id proteins, as TAL1-E47 are more resistant to Id directed dissociation, 

compared to E47-E47, despite being a less potent activator. Id protein levels have been observed to 

fluctuate during differentiation in response to growth factors, with Id1 and Id2 protein levels seen to 

rapidly decrease in erythroid cells as they are induced to differentiate (Benezra R, 1990).  

TAL1 has been shown to be essential for haematopoiesis and it is thought its role in blood formation 

has been conserved throughout vertebrate evolution, as TAL1 homologues are expressed in the 

mesodermal precursors to both endothelial and blood cells in mice, zebrafish and Xenopus (Elefanty 

AG, 1997). Mice embryos lacking TAL1 display retarded growth and die between embryonic stages 

E9.5-10.5, with absolute anaemia. By assessing the contribution of TAL1-/- embryonic stem cells 

(ESCs) to haematopoietic cells in chimeric adult mice, Elefanty et al showed that expression of the 

TAL1 protein is localised to the neural, vascular and haematopoietic tissues. They have also shown 

that TAL1-null ESCs fail to express haematopoietic-restricted genes, such as GATA1, when 

differentiated in vitro. However, genes responsible for ventral mesoderm formation, such as 

BRACHYURY, as well as genes co-expressed in both haematopoietic and endothelial lineages, such as 

GATA2, are expressed at the same levels as in TAL1 heterozygous and wild type ESCs. This study 

gives further evidence to support the fact that TAL1 is essential for putative hemangioblasts to 

commit to the haematopoietic lineage, but that its expression is not an essential requirement of 

endothelial differentiation (Elefanty AG, 1997).   

A TAL1 stem cell enhancer has been identified by the Göttgens et al, 19 kilobases (Kb) from the TAL1 

promoter, termed +19. The +19 enhancer contains three regions of conserved critical TF binding 

sites; region 1 containing ETS (GGAT) and Myb (TAACAG) binding sites, region 2 containing an ETS 

(GGAA) binding site and region 3 containing a GATA binding site. These sites were shown to be on 

the same surface of the DNA strand, allowing a multi-protein complex of ETS and GATA factors to 

assemble and activate the enhancer. FLI1, GATA2 and ELF1 form this complex, to initiate the 

expression of TAL1 and establish a transcriptional programme for both HSC and blood cell 

development. This ‘enhanceosome’ acts to integrate lineage commitment signals, and it is likely that 

its composition alters during development. The authors propose that different GATA and ETS family 
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members might bind to it in response to distinct signals, or in different cell types, allowing multi-

lineage control (Göttgens B, 2002).  

TAL1 has been shown to interact with growth factors during adult haematopoiesis. For example the 

TAL1 protein, through interactions with vascular endothelial growth factor (VEGF) protein, functions 

to suppress apoptosis at the onset of haematopoiesis. In particular, overexpression of TAL1 can 

rescue the near absence of primitive erythroid precursors in VEGF perturbed mouse yolk sacs, by re-

establishing the survival of erythroid cells and increasing expression of erythroid specific genes 

(Martin R, 2004).  Also, the TAL1 gene occupies the regulatory sequences of the SCF receptor in 

primary hematopoietic progenitors. It has been found that TAL1 enhances the sensitivity of these 

progenitors to SCF, reducing apoptosis. It also support the survival of MEPs, by acting downstream of 

the SCF receptor, c-KIT, and establishing a positive feedback loop in multipotent and MEP cells 

(Lacombe J, 2013). 

3.5 Transcription Factor complexes in Haematopoiesis 

A heptad of key TFs expressed in haematopoietic stem and progenitor cells (HSPC), binds to and 

primes an extensive set of MK specific genes, alongside a smaller number of erythroid-specific 

genes, during the early stages of haematopoiesis (Wilson NK, 2010). This heptad of TFs includes; 

TAL1, FLI1, RUNX1, GATA2, LYL1, LMO2 and ERG1 (Diagram 8). A combination of global 

transcriptome profiling and chromatin immunoprecipitation with massively parallel DNA sequencing 

(ChIP-seq) found that the principal TFs in this complex- the ETS and GATA factors plus TAL1, remain 

bound to their cis-regulatory modules even after a gene undergoes further transcriptional activation 

upon lineage commitment (Pimkin M, 2014). This study also identified that the majority of genes 

bound by this core complex of TFs undergo GATA switching. This suggests that GATA switching 

regulates the change from low levels of expression in HSPCs to high expression levels after lineage 

commitment, which was found to be particularly true of MK genes. It also provided evidence that 

the GATA switch is associated preferentially with genes undergoing transcriptional activation, 

supported by the fact that many genes primed in HSPCs which are activated in MKs, are silenced in 

erythrocytes. 
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Diagram 8- Potential transcription factor binding mechanisms in developmental gene regulation 

during megakaryopoiesis and erythropoiesis. A heptad of TFs (TAL1, FLI1, RUNX1, GATA2, LYL1, 

LMO2 and ERG1), plus LDB1 which mediates binding of several of these TF proteins, primes a 

number of MK-associated genes, resulting in low levels of expression in haematopoietic stem and 

progenitor cells (HSPCs). In MKs, further transcriptional induction of MK genes is mediated by the 

GATA switch from GATA2 to GATA1, plus additional mechanisms such as increased levels of FLI1, 

binding of further co-activators and removal of repressors. In erythroblasts, terminal MK genes are 

silenced by the departure of MK-specific activators, such as the GATA proteins and ETS factors. 

Erythrocyte gene expression is achieved by GATA switching, along with the binding of erythrocyte 

co-activators and loss of FLI1. 
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Genome-wide analysis of the binding of GATA1, GATA2, RUNX1, FLI1 and TAL1 in primary human 

MKs was investigated through ChIP-seq. The simultaneous binding of all five factors was the most 

common binding pattern observed, occurring near to known haematopoietic regulators. These five 

TFs are controlled by a positive auto-regulatory feedback loop and contain extensive cross-

regulatory links, forming a densely connected core network that largely acts as a positive regulator 

of MK gene expression (Diagram 9) (Tijssen MR, 2011). This study also highlighted that a large 

number of MK genes are bound by GATA1 and FLI1 plus additional factors, most likely forming 

larger, multi-protein complexes in order to elicit a positive regulatory effect. Of these additional 

factors, RUNX1 was highly represented and is known to bind to both GATA1 and FLI1 proteins. 

Expression levels of RUNX1 remain high during MK differentiation but become diminished in 

erythroid differentiation. These results suggest a role for RUNX1, plus additional factors, to work in 

combination with FLI1 and GATA1 in activating MK genes, but that its absence inhibits the 

expression of these genes which acts to promote erythroid differentiation. 

 

Diagram 9- Auto-regulatory and cross-regulatory links between the transcription factors FLI1, 

GATA1, TAL1, RUNX1 and GATA2. 

4. Stem Cell Biology 

4.1 Stem Cell Definitions 

Cells which fulfil the following two requirements; self-renewal (the ability to replicate into identical 

daughter cells without differentiating) and maintain pluri/multi-potency (the ability to generate 

multiple cell types), are classified as stem cells. The concept of such a cell type was first described in 

1963, through the pioneering in vivo work on blood system regeneration. Bone marrow (BM) cells 
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from immunogenic donor mice were transplanted into recipient mice and ten days later it was found 

that cellular colonies had formed in the recipient’s spleen. Analysis of these colonies showed that 

they had been generated from a small sub-set of the donor BM cells, and that these cells possessed 

unusual cellular qualities enabling them to both self-renew and produce multiple myeloerythroid 

cells (Becker, 1963). The stem cell and regenerative medicine fields have since identified multiple 

types of stem cells, responsible for different roles depending on the level of potency they retain. 

Table 1 describes different types of stems cells, along with examples of each.  

Type of Stem Cell Can generate: Example of cell: 

Toti-potent All embryonic and 
extraembryonic 
tissues 

Zygote 

Pluri-potent All embryonic tissues Embryonic stem cell (ESC), induced 
pluripotent stem cell (iPSC) 

Multi-potent All lineages of a tissue/organ Haematopoietic stem cell (HSC), 
neural stem cell (NSC) 

Oligo-potent A limited number of lineages Common myeloid progenitor (CMP), 
common lymphoid progenitor (CLP) 

Bi-potent Two different lineages  Megakaryocyte erythroid progenitor 
(MEP) 

Uni-potent/Progenitor cell One lineage  Macrophage progenitor 

Table 1. List of stem cell definitions. 

4.2 Embryonic Stem Cells 

The term ‘embryonic stem cell’ (ESC) was first coined in 1981. Cells isolated from the inner cell mass 

of late blastocysts of mice were cultured in conditioned media before being injected into recipient 

mice. They were shown to be capable of producing teratocarcinomas, a hallmark quality of 

pluripotent stem cells (Martin GR, 1981). ESCs were also shown to be able to survive in culture 

indefinitely, while maintaining their pluripotent potential (Evans MJ, 1981). These discoveries 

marked a turning point in the investigation of mammalian development and expanded the field of 

experimental genetics. In 1991, a series of experiments were reported in which ES cells were 

transduced with promoter traps, using a promoter-less novel reporter which encoded both β-

galactosidase and neomycin phosphotransferase for selection. These ES cells led to the derivation of 

transgenic mice with mutated target genes, whose expression could be visualised by staining with X-

gal. 24 heterozygous mice were inter-crossed, identifying 9 strains in which homozygosity resulted in 

embryonic lethality. This approach offered a unique feature of being able to study genes that were 

inaccessible by classical genetic approaches, as it allowed genes which were not essential for 

development to be studied by combining the ability to select for insertions within genes, with the 

ability to track their activity during development (Friedrich G, 1991).  
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4.3 Induced Pluripotent Stem Cells 

ESCs, despite offering huge promise in areas such as disease-modelling and drug efficacy screening, 

remain surrounded by ethical controversy. This is especially true for human ESCs, as their isolation 

involves the destruction of an embryo. In 2006, these ethics-related issues were alleviated, with the 

generation of pluripotent stem cells directly from mouse embryonic and adult fibroblasts (Takahashi 

K, 2006). This was the first demonstration that fully differentiated, mature, somatic cells could be 

reprogrammed to an embryonic-like state, by overexpressing a minimal number of defined TFs 

through retrovirus-mediated transfection. The four factors used were; Oct3/4, Sox2, c-Myc and Klf4. 

These factors are often referred to as the ‘Yamanaka’ factors when describing the derivation of 

induced pluripotent stem cells (iPSCs). iPSCs exhibit similar morphological and growth properties as 

ESCs, express ESC marker genes, and also give rise to tumours containing tissues from all three germ 

layers when injected into nude mice. In 2007, human iPSCs were first derived using the same 

method (Takahashi K, 2007).  

The fields of translational and regenerative medicine greatly expanded after the discovery of iPSCs 

as it offered the opportunity to easily derive patient-specific iPSC lines for disease modelling and to 

investigate the development of difficult to isolate cell types, such as cardiac tissue. There are now 

multiple ways of producing human iPSCs from somatic cells, as the focus of work over the past 

decade has been to try and improve reprogramming efficiency, which was very low (approximately 

0.01-0.02%) for the retrovirus-mediated method described previously (Takahashi K, 2007). There 

have also been advancements to eliminate the tumorigenic potential associated with the use of the 

oncogenes c-Myc and Klf4 to derive iPSCs. Different protocols differ in their choice of somatic cell 

type, reprogramming factors used, delivery methods of these factors and culture conditions. 

Different methods have their own advantages and disadvantages. For example, adenovirus delivery 

has the advantage of being transgene and vector-free, resulting in no genomic DNA integration but 

has the disadvantage of being slow and inefficient. Other non-integrative methods for generating 

iPSCs include the use of RNA Sendai virus and episomes (Ono M, 2012, Yu J, 2009). Whereas, 

lentiviral or retroviral delivery have the advantages of being very efficient and stable, but the 

disadvantage that transgenes (TGs) are integrated into genomic DNA and residual expression of TGs 

is a possibility (González F, 2011). Therefore, when considering iPSC derivation, the downstream 

application of the cells should also be considered.  
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4.4 Pluripotent Stems Cells: A Potential Source of Blood Cells 

Most ex vivo human megakaryopoiesis relies on the donation of cord blood or peripheral blood 

apheresis samples, in order to isolate HSCs for culture and differentiation. A huge limitation with this 

technique is the limited number of HSCs that can be isolated, compounded by the fact that primary 

haematopoietic stem cells cannot be expanded and maintained for long periods in culture. Due to 

the difficulty in both obtaining and maintaining HSC cultures in vitro, pluripotent stems cells (PSCs- 

either ESCs or iPSCs) offer an attractive alternative cell source, since they can be cultured 

indefinitely, with many characterised lines readily available for use.  

Due to the fact that platelets and red blood cells are enucleated, they will survive γ-radiation 

treatment. This would allow these cell types to be irradiated prior to clinical use, in order to 

eradicate any remaining undifferentiated cells with oncogenic potential. This would generate a pure 

and safe population of cells for transfusion. Other advantages, such as being able to more easily 

match blood cells to recipients based on human leukocyte antigen (HLA) class I expression, could be 

achieved by the careful selection of very few starting iPSC lines of selected HLA haplotypes. These 

considerations could reduce the number of patients suffering from platelet refractoriness, where an 

immune reaction to the transfused platelets eliminates them, often the result of repeat transfusions 

(Jia et al, 2014). Or they could provide support to patients who are already alloimmunised, such as 

multiparous women. 

These advantages mean PSCs are currently the source of much excitement in the field of transfusion 

medicine, as they offer a promising avenue for the production of blood cells in vitro. The most 

commonly used method to derive mature cell types from PSCs is through directed differentiation. In 

this technique, cytokines and growth factors are used to supplement media, directing PSCs through 

the different developmental stages that they would undergo during normal development in vivo. 

Methods exist for differentiating PSCs into almost all cell types, including megakaryocytes and 

reticulocytes.  

4.5 Generating Megakaryocytes in vitro 

The first study to show that MK differentiation from hESCs was possible demonstrated a yield of 0.1-

0.4 MKs per input ESC (Gaur M, 2006). The second report of hESC-derived MKs, which promoted the 

emergence of sac-like structures termed embryonic stem cell-derived sacs (ES-sacs) by culturing with 

vascular endothelial growth factor (VEGF), increased MK yield to 2-5 per input ESC (Takayama N, 

2008). Despite this improvement in MK yield, neither protocol was feasible to give rise to the 



 

44 
 

number of cells required for clinical use and had other disadvantages, namely the reliance on 

xenogeneic cell co-culture, as well as the use of animal serum.  

In 2011, hESC-derived platelets were first shown to be able to function in vivo by contributing to 

thrombus formation in a laser injury mouse model (Lu SJ, 2011). This study brought two advantages 

compared to previous ones;  the MKs derived were in feeder and serum-free conditions  (although 

these were subsequently plated onto animal feeder cells to maximise platelet production) and they 

showed increased MK yield, with a range of 18-118 MKs produced per hESC, across three lines 

tested. More recently, immortalised MK progenitor cell lines (imMKCLs) have been reported, 

through the overexpression of BMI1 and BCL-XI, to supress senescence and apoptosis respectively, 

and the controlled expression of c-MYC, to promote proliferation (Nakamura S, 2014). This approach 

enables cells to expand for up to 5 months of culture, which can produce platelet-sized particles 

expressing MK markers CD41 and CD42, by halting the expression of the three immortalising genes. 

However, this study approximated the requirement of 2.5E+10 imMKCLs for the production of a 

single platelet unit for transfusion (1.0E+11 platelets), which would require considerable large-scale 

production. 

4.6 Forward Programming to Generate Megakaryocytes 

Our lab developed a novel method of differentiating PSCs, termed ‘Forward Programming’ (Moreau 

T, 2016). Unlike the majority of directed differentiation protocols, forward programming of PSCs into 

MKs is feeder-free, chemically defined, performed in a reduced cytokine setting and adheres to strict 

good manufacturing practice (GMP) guidelines. This method produces an increased number of 

mature MKs, up to 26 times more, compared to directed differentiation methods, in just 20 days. 

Furthermore, the forward programming strategy generates a MK biased progenitor, capable of 

sustaining long term, pure MK cultures over several months, resulting in 2.0E+05 mature MKs per 

input PSC. The mature MKs produced by forward programming release functional platelets, allowing 

the prospective collection of several platelet transfusion units from as few as 1 million input PSCs. 

Forward programming was designed with a long-term goal of being scaled up to allow for the 

production of MKs ex vivo for use in transfusion medicine, hence, the advantage of working in feeder 

and serum free conditions. The MKs produced can also be cryopreserved at any stage throughout 

culture. Due to this, the massive mature MK expansion achieved and the high purity of cells, forward 

programming has a major advantage over most existing directed differentiation protocols, as it is 

closer to being a clinically compatible method for this goal.  
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Forward programming was developed after identifying three key haematopoietic transcription 

factors (TFs) that, when ectopically expressed in PSCs, push them to ‘jump’ developmentally from 

iPSC to MK cell. Forward programming uses the three TFs; TAL1, GATA1 and FLI1, which have been 

identified as master regulators of haematopoiesis and are capable of generating MKs directly from 

PSCs. In silico predictions, based on ChIP-seq data, suggests that these three TFs potentially activate 

51% of the genes involved in megakaryopoiesis (Tijssen MR, 2011). Once these genes have been 

switched on, they potentially in turn switch on a further 45% of the genes responsible for 

megakaryopoiesis, based on interaction databases, resulting in a total of 98% of the genes involved 

being activated (Gieger C, 2011). Without any one of the three TFs, TAL1, GATA1 and FLI1, MK 

production from iPSCs is completely abolished in forward programming.  

4.7 Methods of Targeting Human Pluripotent Stem Cells 

Owing to their self-renewal and pluripotent cell properties, genome editing in PSCs is often 

desirable, for example in order to correct patient-specific mutations, considering all other cell types 

have limited culture periods meaning any gene modifications in them cannot always be studied 

extensively before a culture dies. Also, since PSCs are amenable to cryopreservation, modified cell 

lines can be banked and used for future purposes. Below is a description of the most widely used 

gene-editing techniques utilised in PSCs. 

4.7.1 Zinc Finger Nucleases (ZFNs) 

The first report to describe the successful electroporation of hESCs to insert vector DNA by 

homologous recombination (HR) was published in 2007. The protocol required a high cell volume 

(1.0E+07) and resulted in a low yield of colonies surviving selection (20-500), as extensive mortality is 

associated with electroporating hESCs (Costa, 2007). The difficulty in culturing such large volumes of 

stem cells at the time, as well as the high mortality following electroporation, led to few reports of 

successful HR, highlighting that this approach was difficult in such cells and that methods to achieve 

it were lacking.  

The discovery and use of zinc-finger nucleases (ZFNs) was reported around the same time, which 

propelled work in targeting both hESCs and iPSCs. ZFNs consist of a Fokl nuclease domain fused to a 

DNA recognition domain. The DNA recognition domain is made up of C2H2 zinc-finger motifs, 

engineered to recognise a specific sequence of DNA that can be tailored to target almost any genetic 

locus of choice. Once the target DNA is bound by two ZFN fusion proteins, the Fokl nuclease domains 

dimerize, become activated and cut the DNA. This results in a double-strand break, which can be 

repaired through error-prone non-homologous end joining (NHEJ), or homology-directed repair 
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(HDR). If homologous vector DNA is present, HDR enables the incorporation of exogenous DNA 

(Lombardo, 2007).  

The Jaenisch lab demonstrated the use of ZFNs for developing a highly efficient and robust 

expression system, targeting five distinct genetic loci of three different genes in hESCs and iPSCs 

(Hockemeyer, 2009). One of the gene loci studied, the AAVS1 locus on chromosome 19, encodes the 

ubiquitously expressed PPP1R12C gene. This is a well characterized genomic site, shown previously 

to allow the long-term, stable expression of TGs in a number of cell types, including hESCs (Smith, 

2008). The ZFNs used had short homology arms (~500 bases) and were used to incorporate two 

different donor vectors into the first intron of PPP1R12C. One of these vectors coded for a splice 

acceptor, 2A sequence and a Puromycin resistance gene. It relied on the endogenous promotor to 

drive expression of Puro, to allow antibitoic selection of targeted clones. The second vector tested 

an exogenous PGK promotor to drive puromycin resistance. Each vector was incorporated with ~50% 

efficiency in hESCs and iPSCs, with successful targeting to one or both alleles, without off-target 

integrations. Importantly, targeted cells remained pluripotent and maintained a normal karyotype.  

The same study also used the AAVS1 locus to demonstrate the over-expression of an inducible 

vector; containing a minimal CMV promoter, the tetracycline operator minimal promotor and eGFP. 

Targeting the vector in the same and reverse orientation to the PPP1R12C gene resulted in similar 

targeting efficencies (40-47%). Clones were transduced with an rTTA rLV and showed doxycycline-

inducible GFP expression, with loss of expression after doxycyline removal. This work elegantly 

showed that the integration of exogenous genes could be achieved at specified sites of the genome. 

The expression of the targeted TGs could be driven using both endogenous and exogenous 

promotors and induced using the TET-ON system,  in hESCs or iPSCs. 

4.7.2 Transcription Activator-Like Effector Nucleases (TALENs) 

Shortly after the discovery of ZFNs, another genome editing tool was discovered; transcription 

activator-like effector nucleases (TALENs). Similar to ZFNs, TALENs consist of a non-specific Fokl 

nuclease domain, fused to a customizable DNA-binding domain containing highly conserved 

repetitive units, derived from transcription activator-like effectors (TALEs) (Joung, 2010). TALEs are 

secreted proteins of the Xanthomonas bacteria that alter gene transcription in the host cells of 

plants that it infects (Boch, 2010). TALENs can be designed easily and rapidly, using a simple protein-

DNA code, to regulate modular TALE domains to specific target DNA sequences. A follow up study by 

the Jaenisch lab showed that TALENs could genetically modify hESCs and iPSCs with a similar 

efficiency to ZFNs (Hockemeyer, 2011). TALE repeats recognise a single base-pair, unlike ZFNs which 
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are slightly more restricted due to a triplet DNA recognition motif, allowing greater flexibility during 

their design. This, along with the ease of design over ZFNs, quickly propelled TALENs to become the 

most popular method at the time for achieving genome editing (Gaj, 2013). 

4.7.3 Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) 

More recently, the use of CRISPR/Cas9 genome editing tools have propelled the targeting of PSCs, as 

well as many other cell types. Clustered regularly interspaced short palindromic repeats (CRISPR) 

and CRISPR-associated (Cas) proteins with helicase and nuclease activity were first demonstrated to 

mediate adaptive immunity in infection experiments of the lactic acid bacterium Streptococcus 

thermophilus with lytic phages (Barrangou R, 2007). Based on these finding, researchers were able to 

determine the exact sequences required for Cas9 recruitment to enable DNA cleavage, and combine 

these into a single chimeric RNA-guide, directing the Cas9 nuclease type II enzyme, to exploit their 

use in mammalian cells for genome editing (Jinek M, 2012). Through the engineering of several 

chimeric guides they found they could rationally design chimeric RNA guides to target any DNA 

sequence of interest, with limited design constraints. The single constraint found was that the target 

DNA sequence must contain an adjacent GG dinucleotide, known as a protospacer adjacent motif 

(PAM), which is essential for Cas9 binding and cleavage of the target sequence.  

The designed chimeric RNA fused together 20 nucleotides from the 3’ end of a CRISPR-RNA (crRNA), 

for target recognition, followed by a hairpin structure which allows interaction with the 5′ end of 

trans-activating crRNA (tracrRNA). This guide RNA recruits the Cas9 protein to the target DNA, where 

two distinct endonuclease domains perform DNA cleavage. A HNH nuclease domain cleaves the 

complimentary strand to the guide RNA, while a RuvC-like domain cleaves the non-complimentary 

strand, forming a double strand (DS) break in the target DNA. Due to the introduction of DS breaks 

through CRISPR-Cas9, two different DNA repair pathways can be exploited (Takata M, 1998). Gene 

knock outs can be generated through the error-prone non-homologous end joining (NHEJ) pathway, 

if a repair template is not provided. NHEJ creates small insertions or deletions (indels), which often 

leads to frameshifts or premature stop codons in the DNA sequence. Alternatively, the DS break can 

be used to insert DNA, by homologous recombination (HR), by providing a homologous repair 

template.  

Due to the ease of design and minimal restraints on the target DNA sequence, the CRISPR-Cas9 

system has quickly been established as an efficient, versatile and programmable tool for genome 

editing. Despite being a relatively new technology, there are many examples to date of CRISPR/Cas9 

being used to generate modified PSCs, demonstrating their ease of use and design. 
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Aims and Hypotheses 

1) Evidence based on clonogenic assays performed on day 9 forward programmed cells, 

resulting in both MK and CFU-E colonies, suggests that the MK forward programming (FoP) 

protocol produces a bi-potent progenitor cell population. The first aim of my PhD is to show 

whether this is the case, and whether these cells are capable of maturing into both MKs and 

erythroblasts. It will be important to fully characterise the erythroblasts produced to see if 

they share a similar phenotype to erythrocytes produced in vivo, as has been done for FoP-

MKs previously (Moreau et al, 2016). 

2) The existing FoP protocol requires lentiviral transduction to achieve overexpression of the 

three transcription factors (GATA1, TAL1 and FLI1) in iPSCs. This step leads to a number of 

issues (discussed in further detail in Chapter 2), namely; poor reproducibility and limitations 

for future large scale production of in vitro platelets. Therefore, the second aim of my PhD is 

to show whether it is possible to FoP with a single lentivirus, containing all three TFs in 

tandem, by generating a polycistronic cassette. A polycistronic cassette will ensure that all 

three TFs have been overexpressed and we hypothesise this will result in a more 

homogenous population of cells that will FoP more efficiently, improve MK and erythroblast 

yield and importantly, lead to better reproducibility.  

3) If the polycistronic cassette enables forward programming, this will be a good proof of 

principle that an equal copy number of the three TFs can produce MKs and erythroblasts. 

This will allow us to move onto the third aim of my PhD, to produce an inducible, stable iPSC 

line for forward programming. The aim would be to insert the polycistronic cassette into a 

genomic safe harbour of iPSCs, under the control of an inducible system, to allow 

controllable expression of the three TFs. In doing so, I aim to achieve more reproducible 

results and provide a more scalable forward programming platform for moving towards the 

production of platelets for clinical transfusion purposes. 

4) Long-term forward programmed MK cultures can be maintained for up to 100 days, after 

which the cultures crash. We hypothesise this is due to an exhaustion of MK-progenitors in 

the culture, which have yet to be well defined. The final aim of my PhD is to look at the 

whole transcriptome of long-term cells, to try and identify whether multiple populations are 

indeed present and to try and identify a progenitor signature that will enable future isolation 

for further study. 
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Tissue culture 

All tissue culture (TC) is performed in a biosafety containment level 2 (CL2) TC laboratory, with 

appropriate safety measures taken including personal protective equipment (PPE), TC handling in 

microsafety cabinet Class 2 (MSCII), biohazardous waste specific disposal route and dedicated 

laboratory space. Care must be taken to keep all equipment is sterile to avoid contamination of 

samples and maintain highest TC standards while avoiding use of antibiotics in all cultures.  Standard 

TC-treated polystyrene culture plates are used for adherent and suspension cultures (Corning; 6, 12, 

24-well plates, T25, T75 and T150 ventilated flasks). All TC is carried in normoxic conditions in 

incubators set at 37°C, 5% CO2. All culture media are kept at 4°C, brought to room temperature 

before use and have a shelf-life of a month after opening. The cytokine stock solutions are kept as 

frozen aliquots at -20°C (BMP4, FGF2, SCF) or -80°C (TPO) and for up to five days at 4°C after thawing 

(except TPO which is maintained at -20°C after the first thaw); the cytokines are never freeze-

thawed more than twice.    

Human Cell lines 

Induced PSC lines used: Bob (ID: A1ATD1), BobC (ID: A1ATD1-c), BBNX (BRC iPSC Cambridge Facility) 

were all derived from skin fibroblasts with the monocistronic iPS reprogramming kit (Vectalys), 

consisting of four retroviral vectors encoding: OCT4, SOX2, KLF4, v-MYC. Passages: 20-55. The Bob 

line was derived from a patient with an alpha1 anti-trypsin gene mutant, which has been corrected 

in the BobC line (Yusa et al, 2011). Qolg (ID: HPSI1113i-qolg_3, Wellcome Trust Sanger Institute, 

HipSCI project) and S4 (ID: S4 -SF5, BRC iPSC Cambridge Facility) were both derived from skin 

fibroblasts, with Sendai reprogramming kit CytoTune 1 (Thermo Fisher Scientific) with virus 

encoding: OCT4, SOX2, KLF4, v-MYC. Passages: 31-47. FFDK (ID: FSFE11a, Wellcome Trust Sanger 

Institute, Cellular Generation and Phenotyping (cGAP)) was derived from human skin fibroblasts 

using episomal vectors encoding: OCT4, SOX2, KLF4, v-MYC. Passages: 25-60.  

Embryonic PSC line used: H9, derived from totipotent cells of the inner cell mass of a human embryo 

(Thomson et al. 1998); Passages: 30-42 (WiCell, hPSC Reg ID: WAe009-A).  

No karyotyping has taken place for any of the above lines in the Ghevaert lab during the time taken 

to produce this thesis.  

Other cell lines used: HEK293T cells (human embryonic kidney, ATCC CRL-11268), HCT116 cells 

(human colon carcinoma, ATCC CCL-247). 
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Media 

PSC lines: AE6 media is supplemented with Zebrafish fibroblast growth factor 2 (FGF2) 15ng/ml 

(R&D) and Human Activin A 15ng/ml (Cambridge Stem Cell Institute) for culturing PSC lines. AE6 

media (in house version of commercial Essential-6): DMEM/F12 (Life Technologies, with L-Glutamine 

2.5mM, HEPES 15mM, D-Glucose 3.2g/L, Phenol red 0.02mM), supplemented by 0.054% NaHCO3 

(Thermo Fisher Scientific), 64mg/L L-Ascorbic Acid (Thermo Fisher Scientific), 20mg/L Insulin, 11mg/L 

Transferrin and 0.0134mg/L Selenium (ITS, Life Technologies). 

HEK293T cells: DMEM+Glutamax (Life Technologies) supplemented with 10% Fetal Bovine Serum 

(FBS, Fisher Scientific) and 1% Penicillin and Streptomycin (PenStrep, Life Technologies). 

HCT116 cells: McCoy’s 5A (Life Technologies) supplemented with 10% FBS and 1% PenStrep. 

Passaging Cell lines 

Cells are split when they reach approximately 70-80% confluency. When required, cells were 

counted after staining with Trypan Blue solution (0.4%, Thermo Fisher Scientific), using disposable C-

Chip haemocytometers (Neubauer). 

PSC lines: PBS (Sigma Aldrich) + EDTA (1mM) is applied to PBS washed wells and left to incubate 5 

min, RT. PBS/EDTA solution is aspirated, 1ml media added, then the well is scraped using the end of 

a 5ml serological pipette (Sigma Aldrich). Clumps of cells are collected in AE6 before re-suspending 

with a P1000 tip before plating at the required dilution (usually 1:30 for routine maintenance). For 

the clean-up of background differentiation, 1mg/ml Collagenase Type IV and Dispase II (both Life 

Technologies) are added to PBS washed wells, before being incubated for 30 min-1 hour at 37oC, 5% 

CO2. Wells are then washed to collect clumps, further broken by gentle pipetting, and added to a 

15ml falcon. 10ml media is added and clumps are left to settle to the bottom for 10 min. This wash 

step is repeated twice, before cells are re-suspended in AE6 and plated. When required, PSCs are 

split as single cells using TrypLE (described below) and spun at 100g, 5 mins. Single cell PSCs require 

the addition of Rho-associated protein kinase (ROCK) Inhibitor Y-27632 (Stemcell Technologies) for 

24 hours at 37oC, 5% CO2. 

HEK239T and HCT116 cells: 

To split cells into single cells, TrypLE (Life Technologies) is added to washed cells (1x PBS) and 

incubated, 37oC, 5% CO2, 5min. At least 3 times volume of media is added to TrypLE, before 

collecting cells. Cells are spun at 300g, 5mins. Care is taken when feeding these cells lines as they 

detach easily from TC plastic, so media is added to the top of the flask. 
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Cryopreserving and Thawing cells 

PSC lines: Cells are cryopreserved in 90% (vol:vol) KnockOut Serum Replacement (KOSR, Life 

Technologies), with 10% (vol:vol) Dimethyl Sulfoxide (DMSO, Sigma Aldrich), at a concentration of 

approximately 1-2E+06 cells/ml. 

HEK293T and HCT116 cells: Cells are cryopreserved in 90% Fetal Bovine Serum (FBS, Life 

Technologies), with 10% DMSO, at a concentration of approximately 5E+06cells/ml. 

Forward Programmed MKs and Erythroblasts: Cells are cryopreserved in Ivscove’s Modified 

Dulbecco’s Medium (IMDM, Life Technologies) + 20% (vol:vol) FBS and 5% (vol:vol) DMSO at a 

concentration of approximately 1-2E+06 cells/ml.  

Cells are stored in 1.5ml cryotubes (Nunc) then stored at -80oC, inside a My Frosty Freezing container 

(Thermo Fisher) to control freezing to -1oC/min, before being transferred for long-term storage at -

150oC. Cells are thawed at 37°C and then slowly adding 1ml of basal medium, dropwise, while 

agitating cells. Cells are then quenched in 10ml basal medium before being centrifuging at 300g, 5 

min. Cell pellets are then re-suspending in appropriate media before plating. PSCs recovery after 

thawing can be improved by the addition of ROCK Inhibitor Y-27632 (Stemcell Technologies) for 24 

hours at 37oC, 5% CO2. 

Recombinant Lentiviral Vector Production 

This protocol describes the production of amphotrope (VSV-G pseudotyped particles) recombinant 

HIV-1 lentiviral particles using transient co-transfection into HEK 293T cells. The method has been 

optimized for a 2nd generation production system using three plasmids (vector, helper and envelope) 

developed in Didier Trono lab (pWPT-GFP, psPAX2 and pMD2.G respectively - Addgene references: 

12255, 12260, 12259). The transfection method used is cationic polymer based. Resulting lentiviral 

particles are self-inactivating (SIN vectors) due to deletion of the U3 region in the 3’LTR of the vector 

plasmid. Transgene expression is under the control of the internal EF1α promoter. 

 (Day 0) 18x106 293T cells per T150/flask are seeded and left to reattach for 24 hours, 37oC, 5% CO2. 

All subsequent stages of this protocol must be performed in a dedicated biosafety level 2 (CL2) viral 

laboratory including reinforced safety measures and decontamination procedures. (Day 1) Per T150: 

In a sterile 15ml tube, add 1.5ml RPMI media (basal media, without serum), plus 25µg vector 

plasmid pWPT (Addgene #12255), 6µg HIV-1 envelope plasmid, pMD2.G (Addgene #12259), 14µg 

HIV-1 helper plasmid, psPAX2 (Addgene #12260) and 1.5µl Turbofect Transfection Reagent 

(Fermentas)/µg total DNA. Mix and incubate 30 mins, RT. (Note for larger vector plasmids (such as 
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Polycistronic vectors) 30µg DNA was used). Add transfection solution dropwise to cells, to ensure 

even distribution of DNA-polymer complexes and incubate 24 hours, 37oC, 5% CO2. (Day 2) Wash 

cells 1x PBS and add 25ml fresh media, incubate 24-48 hours, 37oC, 5% CO2. (Day 3/4) Filter 

supernatant containing viral particles, through a 0.45µm minisart filter (Sartorius) with a 50ml 

syringe, into a 50ml tube. Add DNaseI 5U/ml (Roche) and 1mM MgCl2, and incubate 30’ at RT. Add 

8ml Lenti-X concentrator solution (Takara/Clontech) mix well, incubate 30mins, 4oC. Centrifuge in an 

aerosol-tight container 1500g, 45mins, 4oC. Aspirate supernatant keeping viral pellet and re-

centrifuge for a further 5mins and aspirate remaining supernatant. Re-suspend pellet in 250µl AE6 

media and aliquot into small volumes into 1ml conical cryotubes (Nunc) and keep at -80oC.  

Lentiviral Vector Titration 

The principle relies on parallel quantification of the copy number of the HIV-1 specific RRE sequence 

and the HMBS endogene after transduction of the HCT116 cell line (colon carcinoma, ATCC CCL-247). 

Cells are transduced in parallel by LV batches to be titered and by a control vector ubiquitously 

expressing a reporter gene that can be detected by flow cytometry (e.g. a GFP expressing vector). 

Three days after transduction, genomic DNA is purified; in addition, fluorescence is analysed by flow 

cytometry for GFP transduced control cells. The viral RRE sequence versus HMBS endogene copy 

number ratio is then measured by QPCR for each sample using a plasmid standard curve. From GFP 

transduced control sample data, a standard curve correlating the RRE/HMBS ratio to TU values 

(deduced from flow cytometry data) is obtained. Eventually, TU present in the initial LV volume used 

for transduction can be deduced from the RRE/HMBS value of test samples and LV titre calculated 

(TU/mL).  

 (Day 0) Seed 1x105 HCT116 cells per well of a 24 well plate. Seed enough wells to transduce 2 wells 

per virus produced to titre, plus a non-transduced well, plus 4 wells for transducing with a GFP virus 

of a known titre.  Incubate ON, 37oC, 5% CO2. All subsequent steps of this protocol, until gDNA 

processing, must be performed in a CAT2 viral laboratory. (Day 1) Add Polybrene (PB) to media to 

get final concentration of 10ug/ml per well. Thaw lentiviral batches on ice and add 2µl and 1µl of the 

test virus to 2 wells. Dilute GFP virus (known titre >5E+8TU/mL) 1/100 and add 125µl, 25 µl, 5 µl and 

1µl to 4 wells. Gently shake and incubate 24 hours, 37oC, 5% CO2. (Day 2) Wash wells 1x PBS and add 

1ml fresh media/well. Incubate 48 hours, 37oC, 5% CO2. (Day 4) Collect GFP-transduced well and any 

other well containing GFP in the construct, after 1x wash with PBS, with 100µl TrypLE, incubate 

5mins, 37oC, 5% CO2. Add 300µl media to collect cells take a one quater for flow analysis by putting 

directly into 500µl PBS + 1% formaldehyde (FA, Sigma). Add large volume of PBS and spin 300g, 

5mins, RT. Resuspend pellet in 150µl cell lysis buffer (Wizard SV genomic DNA purification system, 
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Promega). All other wells, perform cell lysis directly in well after 1x PBS wash. These samples are 

then processed as per the instruction for gDNA extraction with Wizard SV genomic DNA purification 

system. GFP samples are analysed by flow cytometry to get an accurate titre for standard curve. 

qPCR is performed with the gDNA samples, to amplify the lentiviral provirus (RRE primers) and the 

human endogene HMBS. Serial dilutions of a lentiviral pWPT plasmid encompassing the HMBS 

sequence are used to provide standard curve points and absolute quantification of RRE/HMBS copy 

number. From flow cytometry data the following equation allows you to calculate the average titre 

of the GFP: (10E+5 cells) x (% GFP +ve) / (volume lentivirus in ml) = Titre (TU/ml). Based on this you 

can calculate the absolute number of TU added to cells on day 1 eg if the calculated titre is 4.5x108 

TU/ml, then 4500 TU were added to cells in 0.01uL sample. From qPCR data calculate the RRE/HMBS 

copy number ratio and draw a standard curve using the GFP control sample TU values (Y-axis) and 

the RRE/HMBS values (X-axis). Using the GFP standard curve it is possible to calculate the mean 

functional titre for each lentiviral batch tested, based on the RRE/HMBS ratio obtained by qPCR from 

the 2 transduction points. 

 

Diagram 2.1- The Main Steps of the Forward Programming Protocol. Briefly: iPSCs are seeded 24 

hours before lentiviral transduction at day 0, at the same time mesoderm media is added to cells. 

After 2 days in mesoderm media, cells are then grown in either TPO (for MK FoP) or EPO (for 

erythroblast FoP). At day 9/10, cells are dissociated and analysis performed. This is routinely flow 

cytometry, and occasionally by cytospin, CFU assays, qPCR. After further culture in TPO or EPO 

medium, cells are analysed at day 20, routinely by flow cytometry and occasionally by cytospin, 

qPCR, Western blot. Cultures can be maintained further than 20 days. 
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MK Forward Programming 

(Day -1) ~1x105 cells are collected using PBS+EDTA method and reseeded as small clumps onto a 

vitronectin coated well of a 12-well plate, in AE6 media +FGF2 +Activin A (as above) and allowed to 

reattach for 24 hours. Single cells can also be seeded, following the same protocol as described 

above for PSCs. The single cell method is stated in specific chapters when used. All subsequent steps 

of this protocol must be performed in a CL2 viral laboratory. (Day 0) Cells are transduced with the 

appropriate volume of recombinant lentivirus to get the desired multiplicity of infection (MOI). 

Conventional forward programming requires GATA1, TAL1 and FLI1 lentiviruses, thawed on ice, all 

used at an MOI 20 (unless otherwise stated). All lentiviruses used were either produced in-house (by 

method described above), or produced commercially (Vectalys). Lentivirus mix is added to 0.5ml 

mesoderm-inducing FLyB medium: AE6 + FGF2 20ng/ml + BMP4 10ng/ml (R&D) + PI3K Inhibitor LY-

294002 10µM (Sigma)/ well of a 12-well plate. For transduction of multiple wells a master mix is 

prepared.  At this stage protamine sulphate (PS) 10µg/ml (Sigma) is also added to the FLyB-virus mix. 

Cells and transduction mix are left to incubate for 24 hours. (Day 1) Cells are washed 1x PBS before 

0.5ml fresh FLyB media is added and incubated for 24 hours. (Day 2) Medium is changed to 0.5ml 

MK-1 media: CellGro SCGM (CellGenix) + Human TPO 100ng/ml (CellGenix) + Human SCF 25ng/ml 

(Life Technologies), for MK differentiation (unless otherwise stated in specific chapter methods). 

Cells can be left for 48-72 hours before fresh medium is added. The first medium addition requires 

0.5ml MK media with 2x concentration of cytokines. Subsequent medium changes (50% exchange)  

involve careful removal of half the medium by titling the plate and collecting only medium, not cells, 

before adding half the volume fresh medium (2x cytokines). (Day 9/10) The supernatant of each well 

is collected into a 15ml falcon tube and the well rinsed 1x PBS (0.5ml), before being pooled with the 

supernatant. To collect the adherent cell fraction 300μl TrypLE is added to wells and incubated for 

10 mins at 37oC, 5% CO2. The TrypLE-cell mix is added to the corresponding falcon tube and 

quenched with 10 ml PBS before being centrifuged 300g, 5min, RT. Cell pellet is then re-suspended 

in 0.2ml MK-2 media (TPO 20ng/ml, SCF 25ng/ml). 5%-10% cells are used for flow cytometry analysis 

to monitor MEP and MK markers (see below). Remaining cells are re-plated onto TC 6 well plates in a 

total of 2ml MK-2 media. At this stage it is safe to remove cells from the CL2 viral laboratory to be 

subsequently handled in a standard CL2 TC laboratory. Medium is refreshed every 48-72 hours, (50% 

exchange). (Day 20/21) Cells are collected and stained again to monitor MK maturation by flow 

cytometry. Cells can be re-plated and maintained long-term by refreshing the MK-2 media every 3 

days (50% exchange) and checking MK purity every 7-10 days. Cell density can be adjusted once an 

accurate cell count has been obtained by flow cytometry. Optimal cell density is 2E+5-1.5E+06 

cells/ml. Cells can be split 1:5 when cell density exceeds 1.5E+06 cells/ml. Forward programmed MKs 
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(FoP-MKs) can be frozen in IMDM 20% FBS 5% DMSO ideally at 0.5-1E+6 cells per vial. Upon thawing, 

these cells can be placed back in MK-2 media (TPO 20ng/ml, SCF 25ng/ml), refreshing every 2-3 days.  

Erythroblast Forward Programming 

Performed as for MK forward programming, with TPO containing MK medium substituted for EPO 

containing Ery media; CellGro SCGM (CellGenix) +  recombinant human EPO 2U/ml (R&D) + SCF 

50ng/ml (Life Technologies ) + Insulin 10μ/ml (Roche) + Transferrin 30μg/ml (Roche) + IL-3 10ng/ml 

(R&D).  

Flow Cytometry 

Flow cytometry was performed on a Gallios Flow Cytometer (Beckman Coulter) and analysed using 

the Kaluza analysis 1.5a software. Background fluorescence was set against matched isotype control 

antibodies and compensation matrix defined using single-color stained cells. Flow count 

fluorospheres and DAPI were used to determine viable cell count in samples.  

 

An example of the gating strategy used for all flow cytometry analysis presented throughout this 

thesis. Cells are initially gated, removing debris and fluorospheres from analysis. Next, cells are 

gating on singlets, to remove doublets from analysis. Finally, DAPI negative viable cells are gated, to 

remove dead cells from downstream analysis. The resulting viable, single cell population are then 

analysed for routine FoP markers (found in Table 2). 

Immunostaining for flow cytometry analysis is routinely done in 20uL culture medium or flow buffer 

(DPBS 0.5% BSA 2mM EDTA) in an Eppendorf tube, including separate unstained and single colour 

stained controls, prepared from pooled samples. Routine day 9/10 MKFOP analysis requires 

CD41a/CD235a/CD42a staining. Abs and suppliers are listed in Table 2. An Ab master mix is prepared 



 

57 
 

before Abs are added to cells (1:10-200 dilution depending on Ab and determined after titration; 

Table 2), mixed and incubated 20-30mins, RT, in the dark. 1ml Flow buffer is added to Ab-cell mix 

and spun at 300g, 5mins, RT. Cell pellet is re-suspended in 0.5ml flow buffer + DAPI, flow count 

fluorospheres (1000/100µl, Beckman Coulter) + 0.5% FA (Sigma). Flow count fluorospheres require 

mixing and incubation at 37oC for 30 mins prior to use. Day 20+ cells, now MKs, must be centrifuged 

at 120g, 8min (acceleration and brake 3). Routine day 20 analysis is as for day 9/10 

(CD41a/CD235a/CD42a or CD42b. At this stage cells do not need to be fixed, so are re-suspended in 

flow buffer. 

Colony Forming Unit (CFU) Assays 

To determine the progenitor amount in FOP cultures, we used clonogenic assays in semi-solid 

medium. MethoCult methylcellulose with recombinant cytokines for human cells (#4435, StemCell 

Technologies), for assessing both MK and Erythroid potential, or MethoCult methylcellulose without 

cytokines for human cells (#4230, StemCell Technologies) supplemented with TPO 100ng/mL and 

SCF 50ng/mL for assessing MK potential only, were used for CFU assays. 15,000 cells in 300μL IMDM 

are added to 3ml methylcellulose (MC) medium and vortexed well before being incubated for 10 

mins to remove air bubbles. Using a P1000, 600ul is pipetted into a 35mm round dish (non-treated, 

Corning #430588), starting in the middle and spiralling outwards towards the sides. Another 600ul is 

added to the same dish, before gently swirling to make sure all the way to the edge of the plate is 

coated. This is then repeated with a second 35mm dish to duplicate the same condition resulting in a 

duplicate assay with approximately 5000 cells/replicate dish. A 3rd 35mm dish has dH2O added, and 

the lid removed to keep CFU dish fully humidified. All 3 dishes are placed into a 10cm2 Petri dish and 

placed in an incubator. CFU assays should be disturbed as little as possible, and not removed from 

the incubator for 14 days, before counting colonies. Colony types counted include mixed, CFU-E, MK 

and MK progenitor colonies. 

Cell Morphology Analysis 

Cells were spun onto a glass slide using CytoSep single funnel (Simport), at 400g for 5 mins before 

being methanol fixed and stained using the Rapid Romanowsky staining kit (TCS Biosciences Ltd), 

following manufacturer instructions. 

Mammalian Cell RNA extraction and cDNA synthesis 

Cells were collected and processed with the Qiagen RNeasy mini kit for total RNA extraction as per 

the manufacturer guidelines, including the optional DNAse I treatment (NEB). RNA concentrations 

were obtained using the Qubit Fluorometer (Thermo Fisher) using the Qubit RNA HS Assay kit 
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(Thermo Fisher), following manufacturer guidelines. cDNA synthesis was performed using Maxima 

first strand cDNA synthesis kit for RT-qPCR (Thermo Scientific) following manufacturer guidelines, 

including minus reverse transcriptase and no template controls. Equal starting RNA concentrations 

were used for cDNA synthesis, usually 50ng. RNA is kept at -80°C and cDNA -20°C for long-term 

storage. 

Recombinant DNA Cloning 

Cloning strategies are described in specific chapter methods sections. Plasmids were grown ON in LB 

broth + appropriate antibiotic (in text) or on plates made from LB Agar + appropriate antibiotic. All 

restriction enzymes (RE) used were supplied from New England Biolabs (NEB) and were used with 

optimal buffer supplied. RE digests were routinely performed at 37oC for 1 hour. 1-2% TAE or TBE 

gels were used to analyse DNA fragments (TAE gels were used when the product needed to be gel 

purified). SafeView Nucleic acid stain (NBS Biologicals Ltd) or SYBR safe DNA gel stain (Invitrogen) 

was added to visualise DNA or for DNA extraction. 6x Orange G loading buffer (Sigma) was added to 

DNA samples before loading into a gel. Gel purification was done following the manufacturer 

instructions for the QIAquick gel extraction kit (Qiagen). Dephosphorylation was performed with 

either Antarctic phosphatase (NEB), or using calf intestinal alkaline phosphatase (NEB), as per 

manufacturer instructions.  Klenow (NEB) was also used for modifying DNA ends, following 

manufacturer instructions. PCR products intended for cloning were purified using the QIAquick PCR 

purification kit (Qiagen), following manufacturer instructions. Ligations were performed with T4 DNA 

ligase (NEB or Takara). Chemically competent cells used for transformations include One shot DBH10 

cells (Invitrogen), One shot Stbl3 (Life Technologies) and Mix & Go cells (Zymo Research), following 

manufacturer guidelines.  

PCRs performed to generate fragments for Gibson cloning, were performed using Q5 Hot start high-

fidelity DNA polymerase (NEB) and the Gibson Assembly master mix (NEB) was used for Gibson 

cloning, following manufacturer’s instructions. Gateway reactions were performed with Gateway LR 

Clonase II Plus Reaction mix (Invitrogen), following manufacturer instructions. All primers, used for 

sequencing or PCR, were supplied by Sigma. 

Plasmid DNA preparation 

DNA was purified using both QIAGEN QIAprep spin miniprep kit or plasmid Midi kit for larger 

concentrations, after plasmids were grown up ON in LB broth + appropriate antibiotic. DNA 

concentrations were obtained using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher) or 
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the Qubit Fluorometer (Thermo Fisher) using the Qubit DNA Broad Range Assay kit (Thermo Fisher), 

following manufacturer guidelines. 

Analytical and Preparative PCR 

PCRs were performed with sequence specific primers (Sigma Aldrich) described in text, Table 4-5, 

using Phusion high fidelity DNA polymerase (NEB) following manufacturer guidelines. 

Real Time Quantitative PCR  

Quantitative PCR (qPCR) was performed using BrilliantII SYBR green master mix (Agilent) in 0.2ml 

non-skirted low profile 96-well PCR plates (Thermo Scientific), using optically clear flat 8 cap strips 

(Thermo scientific). Plates were run on the Stratagene Mx3000P machine (Agilent), with the thermal 

profile “normal 2 step” (95°C/10”, 60°C/30”; 40 cycles) including a terminal melting curve. Data was 

analysed using the software MxPro- Mx3000P. Duplicate wells were used for all samples. Minus 

reverse transcriptase negative controls and no template controls were included in qPCR samples to 

double check no contaminating gDNA remained after cDNA synthesis or that reagents used were 

contaminated. Relative gene expression was calculated by the 2-ΔCt method using HMBS as 

housekeeping gene for normalization. qPCR primer pairs (Table 3) designed to amplify only cDNA, to 

detect all known isoforms, and to have no reported off-target matches searching the human NCBI 

RefSeq database were tested within 80-120% PCR efficiencies with single dissociation curves. We 

used UTR targeting (absent from transgenes) to monitor endogene expression while transgene 

specific primer pairs used a common reverse primer specific to the viral vector. 

Statistical Analysis 

Two-tailed t-tests have been performed on all results presented where appropriate, with P values of 

0.05 or lower indicated to show statistically significant results. N values, along with details of 

technical and biological replicates, are indicated in figure legends. 
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Materials and Methods Tables 

Table 2. Antibodies used for Flow Cytometry and Western Blot 

Antibody Fluorochrome Assay 
concentration 

Catalogue Number Manufacturer 

CD14 FITC 1:10 dilution  345784 BD Pharmingen 

CD36 FITC 1:10 dilution  561820 BD Pharmingen 

CD36 Pe 1:10 dilution  555455 BD Pharmingen 

CD41a APC 1:10 dilution  559777 BD Pharmingen 

CD41a APC-H7 1:100 dilution 561422 BD Pharmingen 

CD42a FITC 1:10 dilution  558818 BD Pharmingen 

CD42b APC 1:20 diultion 551061 BD Pharmingen 

CD66c PE 1:10 dilution  551478 BD Pharmingen 

CD71 PE 1:10 dilution  561938 BD Pharmingen 

CD71 APC-H7 1:100 dilution 563671 BD Pharmingen 

CD235a PE 1:200 dilution  555570 BD Pharmingen 

CD235a PE-Cy7 1:100 dilution  563666 BD Pharmingen 

CD235a APC 1:10 dilution  551775 BD Pharmingen 

BAND3 PE 1:200 dilution  9439PE (BRIC 6-Pe) IBGRL Research Products 

Calcein-AM  1:20000 dilution  17783 Life Technologies 

For Western blot 

Gene name Probe name Assay concentration Manufacturer 

α-globin sc-514378 1:2000 dilution  Santa Cruz 

β -globin sc-21757 1:2000 dilution  Santa Cruz 

γ-globin sc-21756 1:2000 dilution  Santa Cruz 

ξ-globin ab156041 1:200 dilution  Abcam 

β-actin A5441 1:15000 dilution Sigma Aldrich 
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Table 3. Primers used for RT-qPCR (all human sequences) 

Taqman Probes 

Primer name Gene name Probe name (Life Technologies) 

GAPDH GAPDH Hs99999905_m1 

α-globin HBA1+HBA2 
Hs00361191_g1 

β -globin HBB Hs00758889 

γ-globin HBG1+HBG2 Hs00361131_g1 

ξ-globin HBE1 
Hs00362215_g1 

ζ-globin HBZ Hs00923579-m1 

RT-qPCR Primers 

Gene name Forward primer Reverse primer 

GAPDH AAGGTGAAGGTCGGAGTCAAC GGGGTCATTGATGGCAACAATA 

HMBS ATTACCCCGGGAGACTGAAC GGCTGTTGCTTGGACTTCTC 

MDH1 GGGTGTCCTGGACGGTGTCCT CCCTTCTTGGCATGGAGCCCAC 

FLI1 
endogenous 

GGGCTCGGCTGCAGACTTGG AGATGGGCTGCCGCTCCGTA 
 

GATA1 
endogenous 

TTGCCACATCCCCAAGGCGG 
 

GGGGGAGGGGCTCTGAGGTC 
 

TAL1 
endogenous 

AGCAAAGACCCGGGTGTGCATC 
 

CCTCTAGCTGGGGGTCACTGCG 
 

Polycistronic 
transgene 

CCAGACACAGAGTGCCTACC 
 

AGGCAGTTCAGCTGTCACA 
 

WPRE (pWPT 
Re) 

Use transgene forward primer GCAGCGTATCCACATAGCGTAAAAGG 
 

FLI1 transgene CCCGCCATCCTAACACCCACG 
 

Use WPRE 

GATA1 
transgene 

GGTGGCTCCGCTCAGCTCAT 
 

Use WPRE 

TAL1 transgene (in pTRIP) 
AGGCGGTGGACTTGAACTTT 
 

TCTAGCCAGGCACAATCAGC 
 

RT-qPCR primers for lentiviral vector titration 

HMBS ATTACCCCGGGAGACTGAAC GGCTGTTGCTTGGACTTCTC 

RRE TTTGTTCCTTGGGTTCTTGG GATGCCCCAGACTGTGAGTT 

 

 

 

 

 

 

 

 



 

62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 
 

 

 

Results 

Chapter 1 

Erythroblast Forward Programming 
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Introduction 

Forward programming (FoP) was established in our lab for the purpose of generating platelets in 

vitro. During the development of this technique, Dr Moreau observed that day 10 forward 

programmed cells had the ability to generate both MK and CFU-E colonies when cultured in enriched 

methylcellulose CFU assays, used to assess progenitor potential of haematopoietic cells. This led to 

the hypothesis that FoP must generate bi-potent progenitor cells, like the megakaryocyte-erythroid 

progenitors (MEPs) found in vivo, in order for these two colony types to arise. This observation 

therefore raised the question of whether FoP could potentially be used as a method for producing 

erythroblasts and reticulocytes (mature, enucleated red cells). 

Other methods exist for producing erythrocytes in vitro, however, these have a number of 

drawbacks. Firstly, some rely on using CD34+ cells derived from cord or peripheral blood, a non-

renewable source of cells (Olivier EN, 2006 and Giarratana MC, 2005). Those which utilise ESCs or 

iPSCs as the starting material, rely on directed differentiation approaches, which are often time 

consuming and involve complex cytokine cocktails at various stages of culture (Olivier EN, 2016 and 

Dias J, 2011). Additionally, they often require co-culture with mouse feeder cells, or serum use, 

which make these protocols unsuitable for producing clinical grade cells for human use. Finally, 

many ESC/iPSC protocols have a poor erythrocyte cell number outcome, are very poor at producing 

mature enucleated erythrocytes and fail to complete haemoglobin switching from an embryonic or 

foetal phenotype to adult (Dorn I, 2015). Thus, major drawbacks exist for current in vitro methods of 

deriving erythrocytes. 

A good manufacturing-compatible (GMP) protocol is still required, which additionally should be 

amenable to scaling-up when needed, in order to produce the large quantities of cells required for 

transfusion. Currently, few methods exist which would fulfil these requirements. One recently 

published protocol which shows promise, produces a highly pure population of erythrocytes 

(approximately 95% purity by day 31 of culture) in both feeder and serum-free conditions (Olivier 

EN, 2016). This protocol also supports the large expansion of cells, with a single iPSC giving rise to 

50,000-200,000 erythroid cells by day 31 of culture. However, this protocol requires many cytokines 

and a number of small molecules throughout various stages of culture, which would add substantial 

cost to large-scale manufacture. Despite achieving approximately 10% enucleation, the authors 

themselves discuss the need to attain more efficient enucleation in order to obtain a viable method 

for transfusion of cells into man, as transfusing nucleated cells into a patient has associated risks. 

The cells produced by their protocol express foetal alpha and gamma globins predominantly, with a 

small amount of adult beta globin expression, which the authors suggest could be improved with 
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additional stimuli. Encouragingly, since a predominantly foetal, not embryonic, phenotype is 

observed, similar to that of cord blood, these cells would be compatible with clinical benefits post-

transfusion.  

More recently, an alternative approach has been published, whereby an immortalised human 

erythroid line (BEL-A) was established by utilising a Tet-inducible HPV16-E6/E7 expression system in 

CD34+ cells, first developed in 2013 (Kurita R, 2013). The CD34+ cells were matured for several days 

before the addition of doxycycline to switch on the viral oncogenes. Immortalised cells were 

expanded for 100 days and show a pro- to early basophilic erythroblast phenotype. BEL-A cells are 

then transferred to a primary erythroid culture medium (containing doxycycline) for 6 days, then a 

tertiary medium (excluding doxycycline) to promote maturation towards orthochromatic 

normoblasts and reticulocytes (Trakarnsanga K, 2017). This approach negates two main issues with 

other existing in vitro methods of erythrocyte production. Firstly, this immortalised line can 

reproducibly generate large quantities of progenitor cells. Secondly, once differentiated, these cells 

display a mature adult phenotype, producing adult beta-globin and approximately 30% of cells 

enucleate. Additionally, BEL-A cells show a similar survival rate as donor RBCs in mice in vivo, and 

show further maturation after 24 hours of transfusion. However, drawbacks of this method include 

the expensive expansion media, StemSpan SFM (StemCell Technologies Inc, £349/500ml), used to 

maintain the immortalised BEL-A line, which could hinder cost-effective large scale culture, 

highlighting a requirement for advancements in the culturing very large cell quantities. 

Forward Programming: An Alternative Method to Generate Erythroblasts in vitro? 

As previously shown, to enable forward programming iPSCs must be transduced with all 3 

exogenous TFs used, in order to follow the FoP developmental pathway (Moreau T, 2016). Thus, to 

generate bi-potent progenitors requires GATA1, TAL1 and FLI1. However, it was not known whether 

the presence of the FLI1 TG in these cells, and the resulting FLI1 endogenous gene expression which 

it initiates, would inhibit differentiation along the erythrocyte lineage in liquid culture, since FLI1 is a 

known inhibitor of this pathway (Athanasiou M, 2000). Since the transduction of the 3TFs in iPSCs is 

stochastic, yet we see a highly pure population of MKs in a short time span, we hypothesised that a 

thrombopoietin (TPO) containing promoting medium is highly selective for only the cells that contain 

the ‘optimum’ levels of TGs for generating MKs. Therefore, we reasoned that if we tried FoP in 

erythroblast (EB) media conditions containing erythropoietin (EPO), this may select for cells which 

had received lower levels of FLI1 TG, and contain a more ‘optimal’ mix of TGs to generate 

erythroblasts.  
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In order to explore whether FoP had the potential to generate erythroblasts in liquid culture, the 

normal FoP protocol was adjusted, using an EB medium containing EPO instead of TPO. This resulted 

in an increase in the number of CD41-/CD235+ cells generated, compared to that obtained using MK 

medium. This was the first evidence to suggest that FoP does generate a truly bi-potent progenitor 

cell population and that FoP could be used to generate erythroblasts in culture in vitro. We wanted 

to know whether we could optimise the number of erythroblasts produced, and characterize these 

cells, to see if FoP would be an efficient means of generating erythroblasts in vitro. This would offer 

an exciting avenue of research for studying both erythropoiesis in vitro, but that could also lead to 

the generation of erythrocytes for use in transfusion medicine. It could also facilitate the work of 

disease modelling, in particular by providing a more reliable source of erythroid cells for researchers 

working on malarial infection. For example, genome editing in mESCs differentiated into 

erythrocytes has revealed that the glycohphorin C receptor, found on the surface membrane of 

erythrocytes, is crucial for the invasion of the parasite Plasmodium berghei (Yiangou L, 2016). This 

would not have been possible in erythrocytes, as their enucleation makes genetic approaches 

impossible. Crucially, it would have a major advantage over existing methods, as it could also 

provide an in vitro method for studying the cell-fate decision of the bi-potent MEP cell, which is 

currently not well understood and difficult to study. 

Chapter Overview 

The following chapter describes work which shows for the first time that FoP reproducibly generates 

a functional, bi-potent progenitor cell population which optimally produces erythroblasts in EPO-

containing medium, or MKs in TPO-containing medium, in three different iPSC lines. Medium 

conditions to produce erythroblasts from iPSCs have been optimised for FoP to produce 

erythroblasts. Characterisation of these erythroblasts show that FoP, like existing directed 

differentiation methods, does not produce adult-like cells, with embryonic and foetal globins but no 

adult beta globin detected. Cell expansion was good, with approximately 140 erythroblasts produced 

per starting iPSC, in just 20 days of culture. This shows an alternative approach for studying the 

development of erythroblasts, as well as bi-potent progenitor cells in vitro. 
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Materials and Methods 

Experiments described in this chapter used techniques, such as qPCR (for endogenous and TG 

expression only) and flow cytometry, described in the main Materials and Methods chapter. Only 

chapter-specific differences are described below. 

Testing Different Initial Forward Programming Media Conditions 

The experiment described in Fig 1.2- Fig 1.5 of this chapter was performed to try and establish the 

best media conditions for generating erythroblasts by FoP. The iPSC line Bob, cultured in CDM12 

supplemented with FGF2 (R&D) and Activin-A (Cambridge Stem Cell Research), both 15ng/ml, was 

seeded in clumps at a density of approximately 10E+05 cells/well of a Gel-MEF pre-coated 12 well 

plate, into 24 wells. Transduction with GATA1, TAL1 and FLI1 rLV was performed as described in the 

main Materials and Methods chapter, and mesoderm induction for day 0 and 1 followed as 

described. At day 2, different cytokine conditions were added to duplicate wells, in CellGro SCGM 

serum free media (CellGenix). The following table describes the conditions and concentrations of 

cytokines used until day 20 of programming. Media was changed every 2-3 days, by removing 

approximately half of the old media and replacing with 2x concentrated media. 

Media conditions day 2-8 

TPO and SCF TPO 100ng/ml, SCF 50ng/ml 

EPO and SCF EPO 2U/ml, SCF 50ng/ml 

TPO only TPO 100ng/ml 

EPO only EPO 2U/ml 

SCF only SCF 50ng/ml 

No cytokines - 

EB media EPO 2U/ml, SCF 50ng/ml, Insulin 10μl/ml, Transferrin 30μg/ml, IL-3 10ng/ml 

Media conditions day 8-20 

MK media TPO 100ng/ml, IL-1β 10ng/ml 

EB media EPO 2U/ml, SCF 50ng/ml, Insulin 10μl/ml, Transferrin 30μg/ml, IL-3 10ng/ml 

IL-1β (Miltenyi), other cytokine suppliers described in Main Materials and Methods section. 

Cells were dissociated at day 8 and 20 using 0.5ml Collagenase IV and Dispase II (both 1mg/ml, Life 

Technologies). Flow cytometry was performed on the 9 colour CyAn flow cytometer (Beckman-

Coulter) and analysed using the Summit 4.3 software.  

Colony Forming Unit Progenitor Assays 

The main protocol for performing CFU assays is described in the Main Materials and Methods 

section. All experiments described in this chapter were performed in MethoCult methylcellulose 

with recombinant cytokines for human cells (#4434, StemCell Technologies), for assessing both MK 
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and CFU-E potential. Colony counts presented in Fig 1.6 onwards are the result of blinded counts 

obtained by 2 or more people. 

TaqMan qPCR for Haemoglobin Expression 

cDNA was produced following methods described in the main Materials and Methods chapter. For 

the initial media test experiment (described above), haemoglobin expression was detected using 

TaqMan probes. TaqMan probes for β-actin, GAPDH, Haemoglobin alpha, beta, gamma epsilon and 

zeta were used, and sequences are listed in Table 3 (Main Materials and Methods). TaqMan Gene 

expression Master Mix (Thermo Fischer Scientific) was used, following manufacturers protocol to 

prepare qPCR mix. Real time thermos-cycling was performed on the Stratagene Mx3000P (Agilent 

Technologies), data was acquired and analysed using MxPro qPCR software (Agilent). Fluorescence 

data was collected for ROX (reference dye, filter position 2) and FAM (filter position 4), with the 

following thermal profile setup; Segment 1: 1 cycle, 2 min at 50oC, Segment 2: 1 cycle, 10 min at 

95oC, Segment 3: 40 cycles, 15 sec at 95oC followed by 1 min at 60oC.  

EPO and TPO Experiments 

The remaining experiments described in this chapter follow the forward programming protocol 

described in the main Materials and Methods chapter.  

iPSC lines used 

The iPSC lines Bob and BobC were used for the majority of experiments described in this chapter. 

These 2 lines have an almost identical genomic sequence, with the BobC line having been derived 

from Bob, with a patient mutation corrected (described in Main Materials and Methods). These lines 

perform similarly in FoP and were both used due to the experiments being performed some time 

apart, after which time culture of Bob was no longer routine in the lab. Bob was used for the 

experiment describing different initial cytokines tested from day 2-8 (Fig 1.2- 1.5). BobC was used for 

the experiment to described the non-transduced outcome of FoP (Fig 1.1), and the subsequent 

experiments performed in EPO and TPO experiments, from day 2-20 of FoP (Fig 1.6-1.9). FFDK was 

used as a second line to test whether the results shown in BobC would be replicated, as this line is 

not similar to Bob or BobC.  

DRAQ5 enucleation assay 

50μl cell suspension was stained with DRAQ5 1:400 (Biostatus cat # DR50050, 5mM), CD235-Pe 

1:200 and made up to 100μl before incubating at 4oC for 5 min. DAPI 1:1000 is added before 

incubating at  4oC for 10 min. 400μl PBS is added directly to cell mixture and analysed immediately 
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by flow cytometry. DAPI negative cells are gated on CD235 and DRAQ5. DRAQ5 stains DNA of live 

cells, therefore cells which are DRAQ5 negative and CD235 positive are enucleated red cells.  

Western blot 

Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer containing proteinase inhibitors 

(complete, Roche) and sonicated for 5 mins (cycles of 30 secs on/30 secs off) at 4oC, before alpha, 

beta, gamma and zeta-globin and β-actin characterisation, using antibodies described in Table 2 

(Main Materials and Methods). 
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Chapter 1: Vector Maps 

 

Map 1.1 pWPT-FLI1 
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Map 1.2 pWPT-GATA1 
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Map 1.3 pTRIP-TAL1 
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Results 

In the results section, the following cell type definitions are used; CD41+/CD235+ cells are bi-potent 

progenitors, CD41-/CD235+ cells are erythroblasts and CD41+/CD235- cells are MKs. CD41a 

antibodies detect the Integrin-αIIb surface membrane protein, found on megakaryocytes and 

platelets. CD41 forms part of the glycoprotein IIb-IIIa complex, representing the most abundant 

surface protein found on platelets (Phillips DR, 1988). CD235a antibodies detect Glycophorin A, a 

major erythrocyte membrane sialoglycoprotein (Dahr W, 1987). The co-expression of CD41a and 

CD235a has been demonstrated on bi-potent progenitor cells differentiated from human ESCs 

previously (Klimchenko O, 2009). CD71, Band3 and Rhesus D (RhD) antibodies have been used to 

further characterise the erythroblasts produced. CD71 antibodies detect the transferrin receptor, 

expressed at high levels on the surface of erythroblasts during all stages of development, apart from 

in mature erythrocytes where it is absent (Pan BT, 1983). Band3 antibodies detect the membrane 

transport protein, Band 3, which is synthesised in increasing quantities throughout all stages of 

erythroblast differentiation, including terminal differentiation (Hanspal M, 1993). Rhesus D 

antibodies detect Rhesus D, found on the surface of erythroblasts and erythrocytes and is a protein 

used for determining blood group classifications (Mollison PL, 1993). 

We have previously shown that  mature MKS are produced in TPO containing media, after lentiviral 

transduction in iPSCs with the three TFs GATA1, TAL1 and FLI1 (Moreau et al, 2016). For the context 

of the work presented in this thesis, it is important to demonstrate that non-transduced (NT) iPS 

cells do not acquire any markers associated with FoP, when cultured in the same media conditions. 

Fig 1.1 shows NT cells grown in either MK medium (TPO) or erythroblast medium (EPO), described in 

the Materials and Methods, at day 9 and 20. In TPO and EPO, NT cells do not express CD41a or 

CD235a, two markers expected to be expressed by day 9 of efficient FoP (Fig 1.1A and B). In EPO, 

59% of cells express the transferrin receptor CD71 but do not express the erythroid differentiation 

marker, CD36. Neither do these cells express the myeloid markers CD14 or CD66c (Fig 1.1B). Apart 

from some cells expressing CD71, which is most likely the result of being cultured in the presence of 

the cytokine transferrin, NT cells show no evidence of having differentiated into haematopoietic 

cells. Furthermore, by day 20 of FoP, the viability of cells in both TPO and EPO is reduced to lower 

than 8% (Fig 1.1C), showing that NT cells do not survive in these media conditions for the duration of 

FoP experiments. It is due to these results, which have been replicated in other FoP experiments 

containing NT controls (data not shown), that we concluded NT cells do not forward program, and 

thus are not included as a standard control for experiments shown throughout this thesis. 
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Fig 1.1 The outcome of MK and Ery-FoP on non-transduced BobC cells. The iPSC line BobC was 

forward programmed, without the addition of lentivirus at day 0. All other steps of the FoP protocol 

were performed as normal. After 2 days in mesoderm medium cells were grown in either MK 

medium (TPO), or erythroblast medium (EPO), for the remaining 18 days of culture. Cells were 

dissociated at day 9 and routine flow cytometry analysis performed. A) Flow cytometry dot plot of 

day 9 cells cultured in TPO, stained for the markers CD41a and CD235a. B) Flow cytometry dot plot 

of day 9 cells cultured in EPO, stained for the markers; CD41a and CD235a (left), CD71 and CD36 

(middle), CD14 and CD66c (right). C) Flow cytometry plots to show viability of cells at day 20 of FoP, 

grown in TPO (left) and EPO (right). N=1.  
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Fig 1.2 Comparing the day 8 outcome of FoP in different cytokine conditions. Bob iPSCs were 

transduced at day 0 with the three TFs: GATA1, TAL1 and FLI1 (MOI 20 each).FoP was performed 

with a 2 day mesoderm induction, before cells were cultured in different cytokine conditions until 

day 8. A) Schematic of experiment performed, detailing different media conditions tested. B) Day 8 

average cell number from each different cytokine condition tested. C) Average day 8 cell 
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percentages of forward programmed cells. Graphs show bi-potent progenitors (CD235+/CD41+), 

Erythroblasts (CD235+/CD41-) and MKs (CD235-/CD41+), N=2 (technical replicates), error bars= data 

range.  

In order to test whether liquid cultures of FoP produce bi-potent progenitors that could generate 

erythroblast cells, and to try and find the optimal condition for these cells, an experiment was 

performed which tested 7 different cytokine settings between day 2 and 8 of culture. Fig 1.2A shows 

a schematic of the experiment performed, and the day 8 cell numbers and percentage of FoP cells 

produced by each condition tested. At day 8, the condition which produced the highest number of 

bi-potent progenitors and erythroblasts was the EB media condition, which contained a combination 

of cytokines and growth factors clearly important for haematopoiesis. The remaining conditions 

produced similar cell numbers, with SCF only producing the fewest cells overall, even less than the 

no cytokine condition (Fig 1.2B). The highest purity of erythroblasts also came from the EB media 

condition, with overall FoP percentages being fairly low for all conditions at the stage, below 25% 

(Fig 1.2C).  

CFU assays are used to evaluate the progenitor potential of haematopoietic cells. In order to assess 

if particular cytokine conditions lead to an enrichment of certain types of progenitors, CFU assays 

were performed in enriched methylcellulose on day 8 cells (Fig 1.3). The total number of colonies 

counted varied widely, with SCF only producing the fewest, 91.5 colonies on average, and TPO only 

producing the highest, 1029 on average. The number of CFU-E colonies was highest, while mixed and 

MK colony numbers were fairly similar for all conditions (Fig 1.3A). Flow cytometry performed on 

CFU colonies show a difference in distribution of CD235 and CD41 (Fig 1.3B). Both TPO containing 

conditions (TPO only and TPO+SCF) and the SCF only condition showed a greater percentage of 

CD41+/CD235- cells (71%, 53% and 48% respectively), than any other population. EPO+SCF and EB 

media showed the most even distribution of cells between the 3 populations with approximately 

30% of each, while EPO only and the no cytokines condition showed the highest percentage of 

erythroblasts (38% and 39% respectively). 
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Fig 1.3 Comparing the CFU outcome of FoP in different cytokine conditions. Day 8 forward 

programmed Bob cells were seeded into clonogenic assays after culturing in different cytokine 

conditions (day 2-8, described in Fig 1.2A). Colonies were counted 14 days after cells were seeded. 

A) The number of mixed, CFU-E and MK colonies counted from CFU assays. B) Representative dot 

plots from CFU assays for each cytokine condition tested, showing the distribution of CD41 and 

CD235 cells. N=2 (technical replicates performed for CFU assays), error bars= data range. 

At day 8, cells were split and maintained in either EB media, or MK media for the remainder of the 

experiment, before being analysed again at day 20. Fig 1.4 shows the day 20 results for all 

conditions. Total cell number was highest in the condition that had been maintained in EB media 
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since day 2 to day 20 of FoP, and this condition produced the highest number of erythroblasts. Cell 

number was low in the remaining conditions, with the no cytokines condition producing the fewest 

cells (Fig 1.4A). The day 20 percentages show that despite erythroblast percentage being low 

previously at day 8 (approximately just 5% of each condition’s cell population) EB media increased 

the erythroblast proportion to approximately 50% of the cell population for all conditions (Fig 1.4B). 

For cells maintained in MK media after day 8, the condition which was previously in EB media also 

generated the highest total cell number and highest MK cell number (Fig 1.4C). For all conditions, 

the percentage of MKs had increased from less than 2% at day 8, to above 40% by day 20 (Fig 1.4D). 

Representative dot plots of CD41 and CD235 expression show the difference in cell populations 

generated at day 20, for cells which were initially maintained in EB media until day 8. There is a shift 

in cells towards the erythroblast population when maintained in EB media for 20 days, while a shift 

towards an MK population is observed when cells are switched to MK media after day 8, with an 

almost complete loss of erythroblast cells (Fig 1.4E). qPCR to detect expression of endogenous and 

TG FoP TFs was performed on these cells (shown in Fig 1.3E), as this condition at day 20 produced 

the highest number of erythroblasts in EB media, and the highest number of MKs in MK media. In 

the EB media condition, FLI1 expression was the lowest for all FoP genes, with an expression value of 

0.08 for endogenous and 0.8 for the transgene, relative to the housekeeping gene MDH1. GATA1 

endogenous and transgene expression were highest for the three TFs in EB media. Overall 

expression of all three TFs was higher in the cells cultured in MK media after day 8. The highest 

expression was of FLI1 transgene, with an expression value of 7.14, relative to the housekeeping 

gene MDH1 (Fig 1.4F).  
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Fig 1.4 Comparing the day 20 outcome of FoP in different cytokine conditions. Bob cells cultured in 

different initial cytokine conditions (days 2-8) were switched to EB (EPO, IL-3, transferrin, insulin + 

SCF in CellGro) or MK (TPO + SCF in CellGro) media at day 8, until day 20. A) Day 20 cell number, 

after switching to EB media at day 8. B) Day 20 cell percentage after switching to EB media at day 8. 

C) Day 20 cell number, after switching to MK media at day 8. D) Day 20 cell percentage, after 

switching to MK media at day 8. E) Representative dot plots from the conditions cultured in EB 

media initially (day 2-8), then in either EB or MK media until day 20. F) qPCR data to show relative 

quantification (RQ) values of FLI1, GATA1 and TAL1  endogenous and transgene expression, relative 
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to MDH1, from the same conditions shown in E. Graphs show bi-potent progenitors 

(CD235+/CD41+), Erythroblasts (CD235+/CD41-)  and MKs (CD235-/CD41+), N=2 (technical 

replicates), error bars= data range. 

Fig 1.5 shows the results from further characterisation of the erythroblasts produced from the 

EB+EB condition at day 20. Almost no gamma or beta haemoglobin expression was detected, while 

alpha, epsilon and zeta haemoglobins were expressed (Fig 1.5A). Rhesus D expression was detected 

only in the CD41-/CD235+ erythroblast population of cells produced by FoP (Fig 1.5B). A cytospin of 

these cells shows a large number of small cells, with the characteristic morphology of 

proerythroblasts and polychromatophilic erythroblasts, as well a small number of cells with eccentric 

condensed nuclei, characteristic of a late normoblast (arrowed), a later stage of reticulocyte 

differentiation. Additionally, the cells generated in EB media produce a red pellet when centrifuged 

(Fig 1.5C). This experiment established that the EB media was best for supporting and promoting 

erythroblast generation, and will be referred to as the EPO condition, and the MK media shall be 

referred to as the TPO condition, for all further experiments.   
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Fig 1.5 Day 20 Characterisation of CD235+ cells. Day 20 CD235+ Bob cells cultured in EB (EPO, IL-3, 

transferrin, insulin + SCF in CellGro) medium (day 2-20) are shown. A) qPCR data to show 

haemoglobin expression at day 20, relative to the housekeeping gene GAPDH. B) Representative dot 

plot CD41 and CD235 expression in day 20 forward programmed cells. Right upper panel: Rhesus D 

(RhD) expression in CD41+ MK and CD41+/CD235+ bi-potent progenitor cells. Right lower panel: RhD 

expression in CD41-/CD235+ erythroblast cells. C) (Left) Cytospin showing day 20 cells cultured in EB 

media only (day 2-20). Small cells with a large nucleus are indicative of a more mature erythrocyte 

(arrowed). Scale bar= 50μm. (Right) Red cell pellet produced when these cells are centrifuged. N=1. 

Based on the observations that FoP can generate erythroblasts as well as MKs, we wanted to show 

that this strategy could be reproduced in different cell lines. Fig 1.6 shows the day 9 results of 5 

experiments, performed in either EPO or TPO media, with the starting iPSC line BobC. Fig 1.6A shows 

a schematic of how the experiment was performed. At day 9, the bi-potent progenitor cell is 

produced in the highest quantity in both conditions. Interestingly, a bias towards the erythroblast 

lineage is seen, with a higher erythroblast cell number generated in EPO compared to TPO (Fig 1.6B). 

The total cell number produced is similar, as is the total percentage of FoP cells produced in both 

conditions, with comparable variance (Fig 1.5C). Representative dot plots show how the populations 
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of FoP cells differ between the two conditions, with a shift towards CD41+low/CD235+ and CD41-

/CD235+ cells in EPO, and a shift towards CD41+/CD235+low and CD41+/CD235- cells in TPO (Fig 

1.5D). 

 

Fig 1.6 Day 9 outcome of FoP in EPO and TPO. BobC iPSCs were transduced at day 0 with GATA1, 

TAL1 and FLI1 lentivirus (MOI 20/ TF). Cells were maintained for 2 days in mesoderm media before 

being cultured in TPO medium (containing TPO and SCF to promote MK differentiation), or EPO 
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medium (containing EPO, IL-3, Insulin, Transferrin and SCF to promote erythroid differentiation) for 

the remainder of  the experiment. A) Schematic of experiment performed, showing medium 

conditions tested and details of analysis performed. B) EPO and TPO day 9 cell numbers showing FoP 

populations only. C) EPO and TPO day 9 cell percentages of FoP populations. D) Representative dot 

plots to show the day 9 distributions of CD41 and CD235 expression in cells cultured in EPO and TPO. 

Graphs show bi-potent progenitors (CD235+/CD41+), Erythroblasts (CD235+/CD41-)  and MKs 

(CD235-/CD41+), N=5 (biological replicates), error bars= standard deviation. 

In order to characterise the cells generated by our strategy further, day 9 cells were seeded into 

enriched methylcellulose to perform CFU assays. Fig 1.7 shows how the resulting CFU colonies were 

classified, and the colony outcome for this experiment. Four types of colonies were counted; mixed, 

CFU-E, MK and MK progenitor colonies. Mixed colonies are the largest in size and comprise of a 

mixture of both MK and erythroblast cells. CFU-E colonies are the smallest in size and are comprised 

of erythroblasts. MK colonies, comprising of MK cells, were divided into MK and MK progenitor 

colonies, based on their size. MK progenitor colonies are visibly larger and have a higher cell density, 

while MK colonies are smaller, with slightly more spread out and larger cells, representative of more 

mature MKs. Representative light microscope images are shown for each colony type (Fig 1.7A). 

Representative dot plots for CD41 and CD235 are shown for all colony types. The average 

percentages of the different FoP cell types from four individual colonies is shown (flow cytometry 

performed by Dr Moreau and Dr Jose Ballester-Beltran).  This shows that mixed colonies are truly a 

mixture of CD41 single positive and CD235 single positive cells, thus, contains both MKs and 

erythroblasts. CFU-E colonies are mostly made up of CD235+ single erythroblast cells, with very few 

CD41+ MK cells. MK and MK progenitor colonies are made up of predominantly CD41 single positive 

MK cells, with fewer cells co-expressing CD235 and very few CD235 single positive cells. No other 

colony types were found.  

The CFU colony number outcome of cells seeded at day 9 shows that a higher proportion of CFU-E 

colonies were generated from cells which had been cultured in EPO, while a higher number of MK 

and MK progenitor colonies were generated from cells in TPO (Fig 1.7B). The total colony number 

counted overall was similar for both conditions. 
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Fig 1.7 Progenitor potential of FoP in EPO and TPO. CFU clonogenic assays were performed on day 9 

BobC FoP cells that were cultured (day 2-9) in EPO or TPO conditions. Colonies were counted 14 days 

after cells were seeded. All counts were conducted blind, with at least 2 people performing counts. 

A) Morphology of mixed, CFU-E, MK and MK progenitor colonies and representative flow plots to 

show CD41 and CD235 expression in all colony types. Flow cytometry was performed on individual 

colonies and average percentages shown from at least 5 individual colonies, ± standard deviation. B) 

CFU colony counts and distribution for EPO and TPO conditions. Scale bars= 200μm. N=4 (Day 9 cells 

seeded in CFU assays were produced by 4 biological replicate experiments. Each CFU assay was 

performed in duplicate (technical replicates). Technical replicate results were averaged, before 

overall average and  ± standard deviation worked out from the average of 4 biological replicates).  
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The day 20 erythroblast and MK cell outcome is shown in Fig 1.8. By day 20 the EPO condition 

sustained a higher number of erythroblasts, while TPO sustained a higher number of MKs (Fig 1.8A 

and Fig 1.8B). The percentage of bi-potent progenitors remained similar at day 20 for both media 

conditions, with the largest difference between the erythroblast and MK percentages, which 

followed the same pattern as cell number (Fig 1.8C). Day 20 flow cytometry analyses show the bias 

in cell populations depending on culture conditions, towards erythroblasts in EPO and MKs in TPO. 

Cytospins provide evidence that EPO produces small cells, some of which have eccentric condensed 

nuclei, characteristic of a late normoblast, as well as proerythroblast and polychromatophilic 

erythroblasts, and evidence of an enucleated erythrocyte. TPO produces larger cells, morphologically 

similar to megakaryoblasts, with a number of polynucleated cells (arrowed), characteristic of more 

mature MKs. Cells pellets show that EPO produces red cells, while TPO produces predominantly 

white cells (Fig 1.8D).  
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Fig 1.8 Day 20 outcome of FoP in EPO and TPO. The experiment described for FoP of BobC cells (Fig 

1.5) was continued until day 20, when further analysis was performed. A) Day 9 and 20 erythroblast 

(CD41-/CD235+) cell number. B) Day 9 and 20 MK (CD41+/CD235-) cell number. C) Day 20 

percentage of bi-potent progenitors (CD41+/CD235+), erythroblasts and MKs (as previously 

described). D) Left panel: Representative dot plots for CD41 and CD235 staining. Middle panel: Cell 
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pellets were red in EPO and white in TPO. Right panel: Cytospins show normoblasts (arrowed) and 

enucleated erythrocyte (starred) in EPO (top), and polynucleated MK (arrowed) in TPO (bottom). 

Scale bar = 50μm. N=4 (biological replicates), error bars= standard deviation. 

Characterisation of CD235+ erythroblast cells from the EPO condition shows the majority of these 

cell stain positively for other erythroid markers, BAND3 and CD71 (Fig 1.9A). Western blot for 

haemoglobins show that these cells produce epsilon, alpha and gamma embryonic globins, but that 

the adult beta globin is not expressed. Cord blood derived erythroblasts, which have an adult 

phenotype, as shown for comparison (Fig 1.9B, Western blot data produced by Dr Ballester-Beltran). 

Fig 1.9 Day 20 characterisation of CD235+ cells grown in EPO. Data from day 20 CD235+ BobC cells 

forward programmed in EPO media (EPO, SCF, IL-3, insulin and transferrin in CellGro) from day 2-20, 

is shown. A) Band3 and CD71 expression in EPO grown cells, compared to unstained controls (N<3 

biological replicates, ± standard deviation). B) Western blot of epsilon, alpha, beta and gamma 

haemoglobins, with the positive control β-actin. EB= EPO media, US= unstained, C+= day 16 cord 

blood derived erythroblasts.  
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A second cell line, FFDK, was used to perform the same experiments to see if these results would be 

reproduced in a different iPSC line. Fig 1.10 shows the day 9 results for FFDK. A higher proportion of 

MK cells were seen at this stage, compared to BobC, but the same pattern was observed, that EPO 

produces a higher number of erythroblasts than TPO (Fig 1.10A). Day 9 cell percentages show a 

higher proportion of erythroblasts in EPO and MKs in TPO at this stage, which was not seen in BobC 

(Fig 1.10B). Day 20 cell numbers show that only EPO supports erythroblast proliferation (Fig 1.10C). 

While EPO supported MK proliferation in FFDK, it is not as great by day 20 as in TPO (Fig 1.10D). Cell 

number overall is lower than was seen for BobC. Representative dot plots at day 9 show that cells 

are more committed to either the erythroblast or MK lineages, compared to BobC at the same stage. 

Day 20 dot plots show distinct populations for the two media conditions, with very few bi-potent 

progenitors at this stage, unlike in BobC (Fig 1.10E). Further characterisation of the CD235+ 

erythroblast population from EPO shows that the majority of these cells stain positive for both 

BAND3 and CD71 (Fig 1.10F). 
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Fig 1.10 Results of FoP in TPO and EPO in a second iPSC line. FFDK, was transduced with GATA1, TAL1 

and FLI1 (MOI 20/ TF) and forward programmed in EPO or TPO conditions from day 2-20. Data 

shown is from cells collected at days 9 and 20 of FoP. A) Day 9 cell number in EPO and TPO. B) Day 9 

cell percentage. C) Erythroblast cell number in EPO and TPO at days 9 and 20. D) MK cell number in 

EPO and TPO at days 9 and 20. E) Representative dot plots from EPO and TPO cells, showing the 

distribution of CD41 and CD235 cells, at day 9 (top) and 20 (bottom). F) BAND3 and CD71 expression 
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in CD235+ cells, from the EPO condition only, compared to unstained control cells. Graphs show bi-

potent progenitors (CD235+/CD41+), Erythroblasts (CD235+/CD41-)  and MKs (CD235-/CD41+), US= 

unstained, N=3 (biological replicates), error bars= standard deviation.  
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Discussion 

This chapter describes, for the first time, the in vitro generation and bifurcation of bi-potent 

progenitor cells produced by forward programming of human iPSCs. These progenitors are capable 

of generating cells of both the erythroid and MK lineages, showing a bias for lineage commitment in 

different cytokine conditions as early as day 8 of programming. Erythroblasts produced by FoP are 

CD235 positive, express other common markers of erythroid differentiation, and produce embryonic 

and fetal globins. 

Forward Programming Allows Bifurcation into Megakaryocytes and Erythroblasts 

The first experiment described where multiple cytokine conditions were tested between day 2 and 8 

of FoP in Bob cells, resulted in relatively similar day 8 cell number outcomes (Fig 1.1B). Day 20 bi-

potent progenitor, erythroblast and MK cell numbers were highest when cells were maintained 

initially (days 2-8) in EB medium, containing EPO, SCF, IL-3, transferrin and insulin (Fig1.3A and 

Fig1.3C). Surprisingly, the TPO+SCF condition, which is currently used as routine MK-FoP media, did 

not produce many MK cells by day 20. This suggests that the initial addition of IL-3, transferrin and 

insulin throughout days 2-8 , are responsible for driving a higher rate of cell proliferation, and/or 

provide the most protection from apoptosis in liquid culture, compared to the conditions with fewer 

cytokines. Transferrin is often used in growth media as it regulates the transport and uptake of iron 

into cells, an essential element for cell growth and metabolism (Zhang D, 2012). Insulin has been 

shown to be particularly important in confluent cell cultures, as it encourages the up-take and 

efficient use of nutrients, increasing cell size and metabolic activity (Griffiths, 1970). IL-3 has been 

shown to reduce the length of the G1 cell-cycle phase, resulting in rapid cell proliferation and has 

long been associated with supporting the proliferation and development of haematopoietic 

precursors in culture (Vander Heiden MG, 2001; Donahue RE, 1988).  

The difference between endogenous and TG expression of the three FoP TFs on the whole 

population of cells present at day 20 in EB+EB and EB+MK is striking (Fig 1.3F). After 20 days, a large 

number of erythroblasts and very few MK cells were present in the EB+EB condition (Fig 1.3A), 

coinciding with the very low expression levels detected for total FLI1 (endogenous and TG). FLI1 

expression has previously been shown to be downregulated during EPO-induced erythroblast 

differentiation (Tamir A, 1999). Conversely, high expression levels were detected for total FLI1 in 

cells from the EB+MK condition, for which a high number of MKs and low number of erythroblasts 

were present at day 20 (Fig 1.3C). FLI1 has also been shown to be highly expressed in MK 

progenitors, and further induced during MK differentiation (Okada Y, 2011). Total GATA1 and TAL1 
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expression was lower in EB+EB cells, but expressed at comparative ratios as in cells from the EB+MK 

condition. This data suggests that FLI1 TG is likely to be the key TF used in FoP, responsible for 

determining an early cell fate decision that is responsible for directing cells towards either MK or 

erythroblast lineage commitment. This data highlights the importance of the overexpression of 

exogenous TFs in FoP for switching on their endogenous gene counterparts and demonstrates how 

their expression, along with the expression of downstream genes which they control, can direct cell 

fate. 

The colony number outcome of a clonogenic assay performed on day 8 cells showed a difference in 

the progenitor potential for the different cytokine conditions tested (Fig 1.2A). The number of 

colonies produced was lowest in the condition with the lowest percentage of bi-potent progenitors 

present at day 8, in the SCF only condition (Fig 1.1C). The highest colony number was in the TPO only 

condition, which had the highest progenitor percentage at day 8, suggesting the day 8 progenitor 

outcome is a good indicator for colony potential. This result also indicates that the CD41+/CD235+ 

population contains the bi-potent progenitors produced during FoP, as colony number did not 

correlate to the percentage of either erythroblasts or MKs at day 8. The conditions TPO+SCF and TPO 

only, produced the highest numbers of all three colony types recorded (mixed, CFU-E and MK), 

suggesting that TPO alone may play a major role in maintaining or supporting the bi-potent 

progenitor population during the initial stages of FoP. TPO has been long been known to act early in 

haematopoiesis, regulating haematopoietic stem cell expansion, as well as the development and 

differentiation of MKs (Solar GP, 1998).   

When the bulk CFU colonies were analysed for CD41 and CD235 expression, an obvious bias towards 

the MK population was observed for colonies arising from both TPO containing conditions, while the 

EPO containing conditions showed a shift towards the erythroblast population (Fig 1.2B). This data 

corroborates previous work demonstrating murine MEPs respond to TPO by inducing MK 

differentiation and to EPO by producing erythrocytes (Ng AP, 2012). This result suggests that FoP 

progenitor cells cultured in TPO-containing medium until day 8 are already primed for MK 

differentiation while culture in the presence of EPO primes them for erythroblast differentiation. 

Interestingly, the condition with the greatest shift towards the CD235 single positive population was 

the no cytokines condition, suggesting that in the absence of differentiation stimulus, bi-potent 

progenitors preferentially differentiate along the erythrocyte lineage. This suggests that 

erythropoiesis may represent a ‘default’ cell fate decision for FoP cells. 

The day 20 outcome was unexpectedly poor for MKs in the initial TPO+SCF condition (Fig 1.3C), our 

standard MK culture condition. This may be due to poor transduction efficiency, which may explain 
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low cell number overall at day 8. A master mix containing the three FoP lentiviral vectors was added 

to all conditions, and the higher cell number resulting from the initial EB condition may be due to the 

additional cytokines contained in this condition, such as increased cell survival mentioned 

previously. It could be possible that the batch of TPO used for this experiment was sub-optimal. 

However, since MK production was observed in the EB+MK condition at day 20, this seems less 

likely. 

Overall, this experiment provided evidence that FoP does generate bi-potent progenitors, as only 

CFU-E, MK or mixed colonies are observed in CFU assays of FoP cells cultured in a number of 

cytokine conditions. It also suggests that initial media conditions can affect the lineage cells will 

preferentially differentiate along, with TPO supporting MK-FoP and EPO supporting Ery-FoP. It 

demonstrates that the cytokines included in EB media best support the proliferation and 

differentiation of erythroblasts, and this is now our standard medium for differentiating FoP-

erythroblasts. Despite a potential problem with transduction efficiency, the data generated from this 

experiment shows that FoP is a very selective protocol. The conditions tested indicate that cytokines 

are important for providing a permissive environment for the survival of cells which have received 

the optimal mix of TGs. TG expression, particularly of FLI1, enforces cell identity in these cells.  

Bifurcation Replicated in Different iPSC Lines 

The next series of experiments performed confirmed in additional iPSC lines, BobC and FFDK, that 

EPO media (EPO, SCF, IL-3, transferrin and insulin) best supports the generation of erythroblasts, and 

TPO media (TPO and SCF) best supports the generation of MKs produced by FoP. In the cell line 

BobC, the day 9 cell number and percentages was very similar in EPO and TPO conditions (Fig 1.5B 

and Fig 1.5C). Overall, cell percentages and numbers were higher in this experiment, compared to 

the first (Fig 1.1), showing improved FoP efficiency. This is likely due to performing all experiments 

shown in Fig 1.5 with commercially produced rLVs, which were produced at higher titres than the 

ones produced in the lab and used for the previous experiment. 

In clonogenic assays, the day 9 cells produced gave rise to a higher number of CFU-E colonies when 

cultured in EPO and a higher number of MK and MK progenitor colonies when cultured in TPO (Fig 

1.6B). What cannot be determined, based on the data presented here, is whether the increase in 

CFU-E colonies from EPO cells is due to there being a higher number of erythroblast cells present at 

day 8 in EPO, or whether this is due to a bias at the progenitor population for erythroblast 

differentiation. We believe that the progenitor cells reside within the CD41+/CD235+ population, as 

this population is most abundant at early time-points and reduces over time, as does clonogenic 
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potential (data not shown). Additionally, the vast majority of cells at day 9 were CD41+/CD235+, 

with few lineage restricted cells overall (Fig 1.5), suggesting this population contains the bi-potent 

progenitor cells. However, to formally prove this, the CD41+/CD235+ population of cells should be 

sorted, from EPO and TPO, to repeat CFU assays. If the results are the same as those presented in Fig 

1.6B, this would show that some progenitors are already biased to one lineage over the other by day 

9 of FoP. This seems most likely, since the day 9 CD41+/CD235+ population looks different in EPO 

and TPO by flow cytometry (Fig 1.5D), with the EPO cells shifted towards a CD41 low population, 

while in TPO the population remains CD41 high. In this case, it is likely that the progenitor 

population contains a mixture of both bi-potent and more committed progenitor cells, which would 

explain the results seen in Fig 1.6B. This proposed work is currently on-going, in order to formally 

show where the bi-potent progenitor population resides. 

Characterisation of Erythroblasts 

The day 20 cell number of erythroblasts was highest in EPO, with very few MKs, while the reverse 

trend was observed for TPO (Fig 1.7A and Fig 1.7B). At day 20, the appearance of normoblasts and a 

red cell pellet in EPO showed erythrocyte differentiation, while the appearance of poly-nucleated 

megakaryocytes and a white pellet show MK differentiation in TPO (Fig 1.7D). The MKs generated by 

the MK-FoP have been well characterised and the functionality of the platelets derived from them 

demonstrated (Moreau T, 2016). We therefore concentrated on the characterisation of the 

erythroblasts produced by Ery-FoP in EPO. Analysis of expression of other erythroblast markers, such 

as BAND3 and CD71, as well as haemoglobin protein expression (Fig 1.8) confirmed the nature of the 

cells obtained with our protocol.  

CD71 expression is detected in erythroblasts during all stages of differentiation before it finally 

disappears in terminally differentiated erythrocytes (Pan BT, 1983). Since a high proportion of the 

CD235+ cells produced at day 20 were also positive for CD71 this confirmed that Ery-FoP produces 

erythroblasts and indicated that very few, or no, mature erythrocytes were produced. The 

erythroblasts produced by FoP are not adult in phenotype, as they lack the adult beta-globin. No 

enucleated reticulocytes were observed by cytospin and flow cytometry using the DRAQ5 nuclear 

stain confirmed this, with single figure percentages found to be enucleated (data not shown). The 

phenotype of Ery-FoP cells, lacking adult globin, is a similar feature to other PSC derived 

erythroblasts (Lapillonne H, 2010 and Olivier EN, 2016). Importantly, these findings were 

corroborated in an additional iPSC line, FFDK (Fig 1.9). Few existing protocols (mentioned in the 

Introduction of this chapter) are able to produce enucleated cells, and most retain a embryonic or 

foetal phenotype, so the cells produced by Ery-FoP are quite comparable to other erythroblasts 
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produced in vitro. However, like MK-FoP, Ery-FoP uses minimal cytokines in comparison to other 

protocols, is GMP-compatible and produces a relatively high number of cells in a short period of 

time, which are all beneficial features of this protocol. 

These results show that FoP generates a bi-potent progenitor cell population which is capable of 

producing an enriched population of erythroblasts in EPO, or MKs in TPO, in just 20 days. This 

represents an exciting future avenue of research, using FoP to further explore the basic biology of 

the bi-potent progenitor and to elucidate the mechanisms controlling cell-fate decision in these cells 

in vitro. The number of erythroblasts produced per starting PSC is not as high as others have 

reported (Olivier EN, 2016), but is good despite Ery-FoP using minimal cytokines, compared to 

existing protocols. Due to poor enucleation and lack of adult-phenotype switching, the Ery-FoP 

protocol presented here requires further optimisation, in order to represent a viable alternative 

source of erythrocytes for use in transfusion medicine. For example, steps to improve cell yield could 

be achieved by trying different media conditions to those tested here. Maturation could be 

encouraged by transducing cells with additional TFs, such as Krüppel-like factor 1 (KLF1), which is 

known for its role in terminal erythroid differentiaiton and importantly, for activating expression of 

the β-globin gene (Tallack MR, 2012). Adult swithcing of globins is not an absolute requirement for 

transfusable erythroid cells and in certain cases may be undesierable. The reactivation of foetal-

globin in patients with sickle cell anaemia and β thalassaemia, where there is an inherited deficiency 

in β-globin production, is being explored as a disease management approach, as patients with 

unusually high levels of foetal-globin present with milder illness (Breda L, 2016). However, overall 

maturation would need to be encouraged to produce enucleated erythrocytes that would be more 

suitable for use in clinical transfusion.  
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Introduction 

We have previously shown that lentiviral Forward Programming (FoP) efficiently produces a highly 

pure population of mature MKs and generates a large numbers of MKs per starting iPSC cell 

(Moreau, 2016). The protocol is performed in a chemically defined serum-free, minimal-cytokine 

setting and the expanding long-term cultures can be cryopreserved to generate cell bank of FoP-

MKs. Thanks to the ease and efficiency of FoP over existing MK differentiation methods, our protocol 

is now being used by a growing number of researchers in Cambridge, as well as internationally, to 

study the biology of megakaryocytes and platelets. As the ultimate aim of our work is to produce 

platelets in vitro for transfusion medicine, it is important that the protocol can practically transition 

from the bench-top, to the large-scale clinical manufacture of iPSC-derived platelets.  

The first consideration of scaling-up FoP is cost: if large-scale production cannot be done 

inexpensively then the resulting platelets could be too expensive for an organisation such as the NHS 

to administer, and would not be a competitive option over the current supply of donor platelets (at a 

cost of £193 per transfusion unit in 2017). Since the FoP protocol currently relies on just a handful of 

cytokines kept at low concentrations over the duration of culture, the requirement of expensive 

growth factors has already been minimised. One of the most expensive steps in the current FoP 

arises from the need to lentivirally transduce iPSCs with three different transcription factors (TFs). 

Technically recombinant lentiviral vector (rLV) production is a costly and lengthy procedure, further 

complicated by batch variations that introduce experimental discrepancies. Of the three genes 

overexpressed to drive FoP, FLI1 rLV have been consistently difficult to produce with high titres, 

despite efforts to improve production internally and by specialised platforms (Vectalys). One 

proposed hypothesis to explain this is that FLI1 RNA conformation may impair rLV packaging or the 

downstream processes of transduction (reverse transcription, nucleus import, integration), resulting 

in low titres. 

The second consideration of scaling-up is reproducibility: the protocol needs to be able to robustly 

and routinely produce high volumes of mature MKs. Currently FoP variability occurs most due to 

inter-line variability between iPSC lines, but even in core lines routinely used to FoP, intra-line 

variability is an issue. The lentiviral transduction step is the most likely cause of most intra-line 

variability, due to different transduction efficiencies between experiments, the requirement of all 

three TGs to enter the same cell and random vector integration leading to unique polyclonal 

patterns, but also due to batch variability as mentioned previously. 

A third consideration is ensuring all FoP reagents are good manufacturing practice (GMP) grade for 

use in a clinical setting. We would need to source GMP grade cytokines, as well as rLVs. While GMP 



 

99 
 

grade rLVs can be produced, (Ausubel, 2012), their use as theraputic agents in the clinic is still 

viewed with caution, notably after a series of serious side effects in gene therapy trials using related 

retroviral vectors (Thrasher AJ, 2006). Indeed, due to random insertions biased to intragenic 

genomic regions of host cells, these vectors are assocaited with a risk of insertional mutagenesis 

including activation of proto-oncogenes or inactivation of tumour suppressors (Amado, 1999). While 

this is theoretically not relevant in the context of in vitro production of short-lived anucleate 

platelets, the exposure to rLVs during the FoP process would still require the implementation of 

specific safety controls, especially since the end product is destined to general transfusion purpose. 

Reducing Lentiviral Requirement: Generating a Polycistronic Forward Programming Vector 

As outlined, one of the major drawbacks of the current FoP technology, which is likely to cause the 

most issues when the time comes for large-scale production, is the reliance of rLVs. It is therefore of 

utmost importance to minimise or eliminate the rLV component of the FoP protocol. This chapter 

describes the generation of a polycistronic vector, containing a single EF1α promoter and the coding 

sequences of eGFP, GATA1, TAL1 and FLI1 in tandem, from which a single rLV was produced to test 

in FoP. The polycistronic vector minimises rLV requirement of FoP, thus also reducing cost, and 

provides a more homogenous cell population at the start of FoP by ensuring cells receive all three of 

the necessary TFs.  

To achieve transcription of a single mRNA transcript and translation of separate proteins from each 

gene, two options were considered; either internal ribosome entry sites (IRES) or 2A peptides could 

be used to separate ORFs. IRES sequences are ~450 nucleotides in length, which is much longer than 

2A sequences, typically between 54-66 nucleotides. Genes downstream of an IRES sequence have 

been associated with low levels of gene expression, usually between 20-50% than that of the gene 

upstream of the IRES sequence (Mizuguchi, 2000). Due to rLV vector capacity being limited, and the 

association of non-stoichiometric gene expression of sequential genes using IRES, the 2A peptide 

option was chosen.  

For the 2A system to work, stop codons of each ORF, apart from the final one, are removed. Self-

cleaving 2A oligopeptides contain a highly conserved c-terminal motif: D(V/I)EXNPGP. When protein 

synthesis occurs along an ORF that contains a 2A sequence, translation is paused by the ribosome at 

the glycine (G) and proline (P) codons of the 2A motif. This results in the nascent protein chain, up to 

and including the glycine residue, being released. This process is known as ‘ribosome skipping’ and 

results in two separate proteins being produced (Doronina, 2008). Consideration of the gene order 

when using 2A sequences is important, as the resulting proteins will have either a 2A peptide 
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attached to the C-terminus (for genes upstream of a 2A sequence), or a proline attached to the N-

terminus (for genes downstream of a 2A sequence) (Hu, 2014), and cleavage efficency may be 

affected by the N-terminal protein following the 2A sequence (Szymczak, 2004).  

The use of different 2A variants within a polycistronic cassette can reduce the risk of intramolecular 

homologous recombination (HR). Three of the 2A sequences most commonly used are; 

 E2A: equine rhinitis A virus 

 P2A: porcine teschovirus-1 

 T2A: Thoseaasigna virus 

In 2004, the resulting 2A-peptide linked proteins, encoded by a 2A polycistronic vector containing 

four genes, were shown to be stable in a number of in vitro cell lines, including an early embryonic 

stem cell line, and in mouse experiments in vivo. Expression of the four genes was shown to be 

stoichiometric (Szymczak, 2004). In 2009, the Jaenisch lab demonstrated that a polycistronic vector 

using the 2A sequences P2A, T2A, and E2A to separate the ORFs of Oct4, Sox2, Klf4, and c-Myc 

respectively, could be used to successfully reprogram mouse embryonic and somatic cells, as well as 

human somatic cells, into iPSCs. This work also demonstrated that three 2A peptides can be used to 

separate up to four genes, in a single lentiviral vector. Interestingly, it was shown that a single vector 

was sufficient for reprogramming to occur in mouse embryonic fibroblasts (MEFs). The vector used 

was tetracycline-inducible, with the four reprogramming genes under the control of the tetracycline 

operator minimal promoter. A constitutive FUW lentiral vector was co-transduced, to provide the 

reverse tetracycline responsive trans-activator (rTTA). 

The work by Jaenisch and colleagues resulted in sub-optimal reprogramming of iPSCs compared to 

using separate vectors. Since transduction using separate vectors permits integration of different 

numbers of rLV for each factor, reprogramming may require a specific number of integrations, 

perhaps favouring higher expression of one factor over another. While this indeed might also be the 

case for MK-FoP, we were encouraged by qPCR data from the lab that suggested TG expression (and 

presumably, therefore, transduction of the three FoP TFs) of forward programmed cells was 

relatively equal. The Jaenisch lab later showed improved efficiency of reprogramming with a 

polycistronic vector, by testing multiple 2A sequences they found very subtle differences in vector 

design could have an impact on protein expression, as they described non-stoichiometric expression 

of their reprogramming factors (Carey BW, 2011). This highlights the importance of vector design, 

and a potential issue with non-stoichiometric expression, when trying to overexpress multiple 

proteins with a polycistronic system.  
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Chapter Overview 

This chapter will describe the generation of a polycistronic vector (pWPT-GATA1-FLI1-TAL1) and how 

initial cell experimental results led to the hypothesis  that gene order of this vector was impeding 

MK development, but beneficial for erythroblast development. After generating new polycistronic 

vectors with altered gene order, further experimental results added to the evidence that the original 

vector was not favourable for MK-FoP. The new vectors allowed the bifurcation of progenitors, 

generating both mature MKs and erythroblasts. This body of work shows that the expression of the 

three FoP TFs from a polycistronic cassette allows efficient MK and erythroblast production in 

permissive conditions, and is important evidence that an inducible cell line would be capable of 

forward programming.  
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Materials and Methods 

Generating the Polycistronic expression Cassettes 

The Polycistronic Cassettes (PCs) were assembled and cloned into the recombinant lentiviral 

backbone pWPT in place of the original eGFP sequence (Map 2.1) using standard molecular biology 

methods as described in the general method section. All PCRs for DNA cloning fragment synthesis 

were performed using the Phusion Taq high-fidelity DNA polymerase according to manufacturer 

instructions (NEB, cat # M0530S). All restrictions enzymes come from NEB and have been used in 

optimal digestion buffers. Plasmids were dephosphorylated with Antarctic phosphatase according to 

manufacturer instructions (NEB, cat # M0289S). Gibson Assembly (NEB, cat # E5510S) was 

performed according to manufacturer instructions. DNA fragment and plasmid purifications were 

achieved using Qiagen plasmid Mini or Midi kits (cat # 12123 and 12143 respectively) following 

standard protocols. Plasmid constructs were cloned and amplified by heat transformation of the 

bacteria strains DH5α, Stbl3 (ThermoFisher Scientific, cat # 18265017 and C737303 respectively), XL-

10 Gold (Agilent Technologies, cat # 200314) and Mix & Go (Zymo Research, cat # T3007). All final 

plasmid constructs have been verified by Sanger Sequencing (Source Bioscience), of modified 

functional regions using primers listed in Table 2.1. 

PC-Entry vector: pWPT-Entry2A 

We first generated a bespoke pWPT-Entry2A vector including the P2A and T2A sequences separated 

by unique cloning sites (MluI, SpeI, SalI) in order to allow a versatile and simple directed cloning of 

up to three individual coding sequences in a polycistronic cassette under the control of the 

ubiquitous EF1a promoter. The pWPT-eGFP plasmid (Map 2.1) was first co-digested with MluI and 

SalI to remove the eGFP coding sequence. The Entry2A fragment was generated by a joining PCR of 

the two oligonucleotides EntryP2A_Fo and EntryT2A_Re using the two primers MluIP2A_Fo and 

SalIT2A_Re. Oligonucleotides (2μM) and primers (0.2μM) were combined with in a 50μl PCR reaction 

and thermocycled following recommended conditions, with an annealing temperature of 60oC, with 

35 cycles. The resulting Entry2A fragment was double digested (MluI/SalI) and ligated to the opened 

pWPT vector to obtain the pWPT-Entry2A plasmid. 

PC vector: pWPT-GATA1-FLI1-TAL1co 

The GATA1 coding sequence (NM_002049.3) was first cloned into the pWPT-Entry2A. The GATA1 

sequence was obtained by PCR using the available pWPT-GATA1 plasmid as a template and the 

primers 2AEntry-GATA1 Fo and 2AEntry-GATA1 Re including MluI restriction sites. A Kozak sequence 
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was also included in the primer 2AEntry-GATA1 Fo before the GATA1 initiation codon for efficient 

translation and the stop codon omitted in the primer 2AEntry-GATA1 Re to avoid translation 

termination before the 2A peptide. The pWPT-Entry2A vector was linearized by MluI digestion, 

dephosphorylated to avoid recircularization and ligated to the MluI digested GATA1 PCR fragment.  

The FLI1 sequence (NM_002017.4) was PCR amplified from the available pWPT-FLI1 plasmid using 

the primers 2AEntry-FLI11 Fo and 2AEntry-FLI11 Re including SpeI restriction sites. The FLI1 coding 

sequence was subsequently cloned into the resulting pWPT-GATA1-2A plasmid using a similar 

strategy and the SpeI restriction enzyme. 

The unbalanced GC-rich TAL1 coding sequence was difficult to PCR amplify, it was therefore 

synthesised (GeneArt) to include the addition of SalI restriction sites at both ends, a 3’ stop codon, 

and codon optimised to correct GC-content distribution. The codon optimised TAL1 (TAL1co) was 

then cloned into the pWPT-GATA1-2A-FLI1-2A vector after SalI digestion. The resulting polycistronic 

vector pWPT-GATA1-FLI1-TAL1co (Map 2.2) was sequenced verified. 

PC1 vector: pWPT-eGFP-GATA1-FLI1-TAL1co 

We decided it would be beneficial to insert the fluorescent marker gene eGFP into the vector, in 

order to easily identify cells transduced with the polycistronic cassette in FoP. The GFP coding 

sequence was PCR amplified from the pWPT-GFP vector (Map 2.1) using the primers MluI_eGFP_Fo 

and MluI_eGFP(mut.stop)_Re including MluI restriction sites. A Kozak sequence was also included in 

the primer MluI_eGFP_Fo before the eGFP initiation codon. The primer MluI_eGFP(mut.stop)_Re 

omitted a stop codon and added a unique NotI restriction site. The resulting eGFP sequence was 

subsequently cloned into the pWPT-GATA1-FLI1-TAL1co plasmid using a similar strategy and the 

MluI restriction enzyme, resulting in eGFP replacing the GATA1 fragment.  

An E2A sequence was generated by annealing the two oligonucleotides E2A_GATA1_Fo and 

E2A_GATA1_Re including NotI restriction sites. 100μM of each oligonucleotide was added to 5μl NEB 

buffer 2.1, plus 35μl dH2O, to a final volume of 50μl. A touchdown PCR was performed using the 

thermocycling conditions: 95°C 10min, 95°C 3min (-1°C/cycle) x70 cycles, 4°C hold. A joining PCR 

(previously described) using the primers E2A_GATA1_Fo3 and E2A_GATA1_Re2 joined the E2A 

oligonucleotide and GATA1 coding sequence. The E2A-GATA1 fragment was cloned into the pWPT-

GFP-FLI1-TAL1co vector using the NotI restriction enzyme, resulting in the pWPT-GFP-GATA1-FLI1-

TAL1co vector (Map 2.3), which was sequence verified and will be subsequently referred to as PC1. 

 



 

105 
 

PC2: pWPT-eGFP-GATA1-TAL1co-FLI1 

Initial results for MK-FoP were poor with PC1, and a erythroblast bias was observed, which we 

hypothesised may be due to the positioning of FLI1 in the vector. Therefore, we decided to generate 

two more polycistronic vectors; PC2-with FLI1 moved to the final gene position, and PC3- with a 

codon optimised FLI1 sequence. FLI1 codon optimisation was done to increase the amount of FLI1 

protein produced, by replacing rare codons with ones that have tRNA more abundantly available in 

human transduced cells, to try and improve FoP.  

PC1 was double digested with SpeI and SalI to remove the FLI1,T2A and TAL1co fragments, resulting 

in a pWPT-GFP-GATA1 vector. A new TAL1co fragment was PCR amplified from the synthetoc 

TAL1CO plasmid (GeneArt- used to generate PC vector) using the primers SpeI_AsiSI_Tal1CO_Fo and 

SalI_AsiSI_Tal1CO_Re, removing the stop codon at the 3’ end of TAL1co and including AsiSI (5’ and 

3’), SpeI (5’) and SalI (3’) sites. The resulting mutated stop TAL1co PCR product was digested 

(SalI/SpeI) and ligated to the open pWPT-GFP-GATA1 vector, generating a pWPT-GFP-GATA1-TAL1co 

vector.  

A new T2A fragment was generated by annealing the two oligonucleotides T2A_FLI1oligo_Fo and 

T2A_FLI1oligo_Re, as previously described. A FLI1 fragment was amplified from the pWPT-FLI1 

vector using the primers T2A_FLI1_Fo and SalI_FLI1STOP_Re, including a stop codon and SalI site 

(3’). The T2A and FLI1 PCR products were joined in a joining PCR using the primers SalI_T2A_Fo and 

SalI_FLI1STOP_Re, as previously described. The resulting T2A-FLI1 PCR product was used as a 

template for a final PCR to generate a fragment for Gibson assembly, using the primers 

G_TCO_FLI1_Fo and G_TCO_FLI1_Re, before a Gibson assembly was performed with the SalI 

linearized pWPT-GFP-GATA1-TAL1co vector. The resulting vector, pWPT-GFP-GATA1-TAL1co-FLI1 

(Map 2.4), will be subsequently referred to as PC2. 

PC3: pWPT-eGFP-GATA1-TAL1co-FLI1co 

A FLI1co fragment was generated using the synthetic pWPT-FLI1co vector (GeneArt) and the primers 

BsiWI-FCO-Fo and G_TCO_Fli1CO_Re. The gel purified PCR product was amplified using Gibson 

primers Gibson_FCO_Fo2 and G_TCO_Fli1CO_Re, before a Gibson assembly was performed with the 

SalI linearized pWPT-GFP-GATA1-TAL1co vector. The resulting vector, pWPT-GFP-GATA1-TAL1co-

FLI1co(Map 2.5), will be subsequently referred to as PC3. 
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pWPT-FLI1co 

In order to compare MK production using three individual rLV vectors with PC3 vector, TAL1co and 

FLI1co single vectors were also generated. pWPT-TAL1co was already available (generated by Dr 

Amanda Evans). pWPT-FLI1 was double digested (MluI/SalI) to remove the FLI1 ORF. The T2A-FLI1co 

Gibson PCR product used for PC3 cloning, was amplified with the primers MluI_K_FLI1CO_Fo and 

FLI1COadd_Re inserting a Kozak sequence and MluI site (5’). The PCR product was MluI/SalI digested 

and liagated with the linearized pWPT vector, resulting in the pWPT-FLI1co vector (Map 2.6).  

Flow Cytometry 

Since the PC vectors contain GFP TG, they were stained without a FITC-conjugated antibody. Cells 

were therefore stained with CD41a-APC-H7 (1:100), CD42b-APC (1:20) and CD235a-PE (1:200). 

Erythroblast characterisation on was performed with the following antibody combination; CD36-PE 

(1:10), CD71-APC-H7 (1:100), CD235a-APC (1:200).  

PSC lines used 

This Chapter shows experimental results of forward programming primarily with the iPSC BobC line. 

The majority of results were then verified in a second iPSC line, FFDK, which behaves differently in 

FoP to BobC, to check whether results were iPSC line dependent. Testing of the initial PC vector 

(Map 2.2) was performed on the iPSC line S4 as a second line, which, like FFDK, behaves differently 

in FoP to BobC. All three lines are routinely used in the lab for FoP but due to experiments taking 

place over a long time period, to do with re-cloning of the PC vector, S4 was not available for all 

experiments shown here. 

Forward Programming 

All experiments presented in this Chapter follow the standard forward programming protocol for MK 

or erythroblast culture, as described in the Main Materials and Methods Chapter. All transductions 

were performed at an MOI of 20, unless otherwise stated in the text. 
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Materials and Methods Tables 

Table 2.1. Primers and oligonucleotides used for generating and sequencing PC/1/2/3 Vectors 

Oligonucleotide/Primer 
name 

Sequence 5’-3’ 

EntryP2A_Fo 
GCCACGCGTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCA 
GGCTGGAGACGTGGAGGAGAACCCTGGACCTACTAGTGGA 

EntryT2A_Re 
GGCGTCGACAGGTCCAGGATTCTCCTCGACGTCACCGCATGTTAG 
CAGACTTCCTCTGCCCTCTCCGCTTCCACTAGTAGGTC 

Mlu1P2A_Fo GCCACGCGTGGAAGCGGA 

SalIT2A_Re GGCGTCGACAGGTCCAGG 

2AEntry-GATA1 Fo GCCACGCGTGCCACCATGGAG 

2AEntry-GATA1 Re GCCACGCGTTGAGCTGAGCGGAGCCAC 

2AEntry-FLI1 Fo GCCACTAGTATGGACGGGACTATTAAG 

2AEntry-FLI1 Re GCCACTAGTGTAGTAGCTGCCTAAGTG 

WPT_Seqi_Fo TCTTTTTCGCAACGGGTTT 

WPT_Seqi_Re CCACATAGCGTAAAAGGAGCA 

GATA1_TG_Fo GGTGGCTCCGCTCAGCTCAT 

FLI1_TG_Fo CCCGCCATCCTAACACCCACG 

FLI1_Seqi_Fo1 TCAGTCAGAAGAGGAGCTTGG 

FLI1_Seqi_Re1 GGGCCGTTGCTCTGTATTCT 

GATA1_Seqi_Fo2 TGGTGGCTTTATGGTGGTG 

TAL1_TG_Fo CCTCCATCCTGCCATGCT 

MluI_eGFP_Fo GCCACGCGTTGATCAGCCACCATGGTGAGCAAGGGC 

MluI_eGFP(mut.stop)_Re GCCACGCGTGCGGCCGCCCCGGGGTAGCTACTAGCTAGT 

E2A_GATA1_Fo TGCGGCCGCTGGAAGCGGACAGTGTACTAATTATGCTCTCT 
TGAAATTGGCTGGAGATGTTGAGAGCAACCCTGGACCTTTC 
GAAATGGAGTTCCCT 

E2A_GATA1_Re 
 

AGGGAACTCCATTTCGAAAGGTCCAGGGTTGCTCTCAACATC 
TCCAGCCAATTTCAAGAGAGCATAATTAGTACACTGTCCGCTT 
CCAGCGGCCGCA 

E2A_GATA1_Fo3 TATTCCGTTGCGGCCGCTGGAAGCG 

E2A_GATA1_Re2 ATTGAGCCGCGGCCGCCTGAGCTGAGCG 

Gibson Primers for PC2/PC3  

TCO_Fli1_Fo GGACCTAGAGCGATCGCGTTAAAGTCGACTTGCG 

TCO_Fli1_Re GATTATCGGAATTCCCTCGAGGATTGTCGACTCAGTAG 

BsiWI-FCO-Fo  

Gibson_FCO_Fo2 GACCTAGAGCGATCGCGTTGTCGACTTGCGATCGCGGAA 

G_TCO_Fli1CO_Re GATTATCGGAATTCCCTCGAGGAGTCGACTCAGTAGTA 

Additional primers used for 
sequencing 

 

TAL1CO_Seqi_Re AGCCGCAGGATCTCGTTCTT 

GATA1_seq_1Re GTGGGAGAAAAGAAGGTACTGG 

GATA1_seq_2Re ATTCCCGCTACCGCTG 

FLI1_seq_1Re ATTTGCTAACGCTGCAGTCC 

FLI1_seq_1Fo GGAGTATGACCACATGAATGG 



 

108 
 

FLI1_seq_2Re GCCGCATCACAATACTGG 

FLI1_seq_2Fo GGTGAACTTTGTCCCTCC 

TAL1CO_seq_1Re AGGCAGTTCAGCTGTCACA 

TAL1CO_seq_1Fo CCAGACACAGAGTGCCTACC 

TAL1CO_seq_2Fo GCAAGAACGAGATCCTGC 

eGFP_Seqi_Re TAGCTACTAGCTAGTCGAGA 

E2A_GATA1_Fo GCCTGCGGCCGCTGGAAGCG 

E2A_GATA1_Re GCCGCGGCCGCCTGAGCTGAGCG 

E2A_GATA1_Fo2 CCTGGACCTTTCGAAATGGAGTTCCCTGGC 
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Chapter 2: Vector Maps 

 

Map 2.1 pWPT-GFP starting vector for Polycistronic cloning strategy. 

Restriction enzyme sites used for cloning are shown. 
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Map 2.2 PC vector: pWPT-GATA1-FLI1-TAL1Cco. Restriction enzyme sites used 

for cloning steps are shown. 
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Map 2.3 PC1 Vector: pWPT-GFP-GATA1-FLI1-TAL1co. Restriction enzyme sites 

used for cloning steps are shown. 
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Map 2.4 PC2 vector: pWPT-GFP-GATA1-TAL1co-FLI1. Gibson primers used to 

produce final T2A-FLI1 fragment are shown. 
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Map 2.5 PC3 vector: pWPT-GFP-GATA1-TAL1co-FLI1co. Gibson primers used to 

produce final T2A-FLI1co fragment are shown. 
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Map 2.6 pWPT-FLI1co. Restriction enzyme sites used for cloning steps are 

shown. 
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Results 

In the results section the following cell type definitions are used; CD41+/CD235+ cells are bi-potent 

progenitors, CD41-/CD235+ cells are erythroblasts, CD41+/CD235- cells at day 9-10 are MKs, and 

CD41+/CD42+ cells from day 20 onwards are mature MKs. CD42 antibodies detect glycoprotein Ib 

(GPIb), expressed on the surface of mature MKs and corresponds to a late step of MK differentiation 

and is also a component of the GPIb-V-IX complex on platelets (Chang Y, 2007). 

Testing the pWPT-GATA1-FLI1-TAL1 Vector in TPO: Low MK and High Erythroblast Potential 

The pWPT-GATA1-FLI1-TAL1co (PC) recombinant lentivirus (rLV) was first used to transduce two iPSC 

lines, BobC and S4, with increasing multiplicity of infection (MOI: 20, 50 and 100), in an initial 

experiment to test whether stoichiometric expression of the three TFs would enable MK-FoP to 

occur in TPO. Fig 2.1 shows the results for BobC. The number and percentage of cells at day 10 

increased with MOI, with the MOI 100 condition resulting in the highest number and percentage of 

bi-potent progenitors and erythroblasts, from 1.0E+05 iPSCs seeded (Fig 2.1A/B). The MOI 20 and 50 

conditions showed little difference in progenitor and MK number, while erythroblast cell number 

was higher in MOI 20. Unexpectedly, the highest proportion of cells produced was erythroblasts. 

By day 20 the same pattern was followed, with the MOI 100 condition giving rise to the highest 

number of progenitor, erythroblast and MK cells (Fig 2.1C). A drop in cell number, compared to day 

10, was observed for all cell types in all conditions tested. In particular, the expected MK growth and 

maturation was not observed. Day 20 shows an increase in both progenitor and erythroblast 

percentages for all conditions tested while MK percentage failed to increase, remaining below 3% 

(Fig 2.1D). Interestingly, the erythroblast purity was positively correlated with MOI while the bi-

potent progenitor purity decreased with MOI.  
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Fig 2.1 Testing the PC vector with increasing MOI in BobC MK-FoP. The PC vector (pWPT-GATA1-FLI1-

TAL1, Map 2.2) was transduced with an increasing MOI (20, 50 and 100) in BobC cells. After 2 days of 

mesoderm induction, MK medium (TPO and SCF in CellGro) was used throughout the next 18 days of 

culture. A) Day 10 cell number for CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ 

erythroblasts and CD41+/CD235- MKs. B) Day 10 cell percentages of populations present in A. C) Day 

20 cell number for bi-potent progenitors and erythroblasts (as before) and CD41+/CD42+ mature 

MKs. D) Day 20 cell percentages of populations present in C. N=1. 
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Fig 2.2 shows results for the second cell line tested, S4. This line reproduced the same pattern of 

results observed for BobC, with the highest cell numbers and percentages observed in the MOI 100 

condition at day 10 (Fig 2.2A/B).This line also failed to produce mature MKs by day 20 and showed 

the same trend of erythroblast purity positively correlating with MOI, while bi-potent progenitor 

purity showed the reverse trend (Fig 2.2C/D).  

 

Fig 2.2 Testing the PC vector with increasing MOI in S4 MK-FoP. The PC vector (pWPT-GATA1-FLI1-

TAL1, Map 2.2) was transduced with an increasing MOI (20, 50 and 100) in S4 cells. After 2 days of 

mesoderm induction, MK medium (TPO and SCF in CellGro) was used throughout the next 18 days of 

culture. A) Day 10 cell number for CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ 

erythroblasts and CD41+/CD235- MKs. B) Day 10 cell percentages of populations present in A. C) Day 

20 cell number for bi-potent progenitors and erythroblasts (as before) and CD41+/CD42+ mature 

MKs. D) Day 20 cell percentages of populations present in C. N=1. Day 20 data is missing for MOI 50 

due to contamination of culture. 
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Overall, these results show that the PC vector is capable of forward programming, seen by the 

emergence of progenitors, erythroblasts and MKs at day 10. Low MK cell number and percentage at 

day 20 show that this vector failed to generate MKs, which was replicated in two iPSC lines known to 

FoP successfully using separate rLVs. However, the PC vector did unexpectedly produce a high 

number and percentage of erythroblasts, despite the MK-promoting TPO culture conditions used. 

We hypothesised that TF gene order in the PC vector may be responsible for the observed results. 

This incited us to revise the design of the PC cassette, notably by modifying the location and 

composition of the FLI1 coding sequence known to be a key driver of MK-FOP.  

At this stage, we also added GFP as a marker gene to the PC vector sequence, generating pWPT-

eGFP-GATA1-FLI1-TAL1co (PC1). To revise this vector, FLI1 was moved to the last gene position, 

generating pWPT-eGFP-GATA1 -TAL1co- FLI1 (PC2). For the final vector, FLI1 was codon optimised 

pWPT-eGFP-GATA1 -TAL1co- FLI1co (PC3). We hypothesised that PC1 might be best for erythroblast 

production, and PC3 best for MK production. Since all the PC vectors contained a codon optimised 

TAL1 (TAL1co) sequence, and the PC3 vector only contained a FLI1co sequence, we also generated 

rLVs for the single codon optimised genes, pWPT-TAL1co and pWPT-FLI1co. This was done to test 

the proper controls for each of the PC vectors, as described in Table 2.2.  

3 rLV mix: Abbreviation used: 
(Fig 2.3 and Fig 2.4) 

Represents: 

pWPT-GATA1, pWPT-FLI1, pGEM-TAL1 3TF Classical 3TF FoP condition 

pWPT-GATA1, pWPT-FLI1, pWPT-TAL1co TCO PC1 and PC2 control 

pWPT-GATA1, pWPT-FLI1co, pWPT-TAL1co TCO/FCO PC3 control 

Table 2.2 Control conditions for Polycistronic Cassettes. 

No Clear Effect of Codon Optimisation on MK Outcome 

Another reason for testing the codon optimised single gene rLVs is due to the fact that codon 

optimisation introduces many point mutations, which could theoretically introduce novel and 

unwanted properties and may result in toxicity or decreased efficiency (Schambach A, 2013). 

Therefore, the classical 3TF control, alongside the 3 rLV controls for PC1/2 and PC3 were tested in 

two iPSC lines in TPO, to see if codon optimisation of TAL1 and FLI1 had any effect on MK-FoP. Fig 

2.3 shows the results in BobC. Day 9 cell number shows a similar outcome for the 3TF and TCO 

conditions, while TCO/FCO failed to produce many cells (Fig 2.3A). A high percentage of bi-potent 

progenitors was produced in the 3TF and TCO conditions (Fig 2.3B). By day 20, the highest number 

of cell produced for the 3TF and TCO conditions was erythroblasts, while the TCO/FCO condition 

produced the highest number of mature MKs (Fig 2.3C). The percentage of bi-potent progenitors 
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and mature MKs increased the most in the TCO/FCO condition, while the erythroblast percentage 

increased most in the 3TF and TCO conditions (Fig 2.3D). 

 

 

Fig 2.3 Testing transduction of single vector controls for forward programming in BobC MK-FoP. The 

iPSC line BobC was transduced with the following vector combinations; 1) Three TFs (3TF) = single 

lentiviral vectors used for GATA1, FLI1 and TAL1. 2) Codon optimised TAL1 (TCO) = single lentiviral 

vectors used for GATA1, FLI1 and TAL1co. 3) Codon optimised TAL1 and FLI1 (TCO/FCO) = single 

lentiviral vectors used for GATA1, TAL1co and FLI1co. All conditions were maintained in MK medium 

(TPO and SCF in CellGro) after 2 days in mesoderm medium. A) Day 9 cell number for CD41+/CD235+ 

bi-potent progenitors, CD41-/CD235+ erythroblasts and CD41+/CD235- MKs. B) Day 9 cell 

percentages of populations present in A. C) Day 20 cell number for bi-potent progenitors and 

erythroblasts (as before) and CD41+/CD42+ mature MKs. D) Day 20 cell percentages of populations 

present in C. N=1. 
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FFDK data is shown in Fig 2.4. The day 9 cell numbers were lower compared to BobC, with the 3TF 

and TCO/FCO conditions resulting in similar cell numbers and the TCO condition producing very few 

cells (Fig 2.4A). Cell percentages were similar for all conditions, with a higher percentage of MK cells 

at this stage than BobC (Fig 2.4B). Day 20 outcome was also different to that observed in BobC, with 

the TCO/FCO condition producing the lowest number of mature MKs (Fig 2.4C), despite similar cell 

percentages for all conditions (Fig 2.4D).  

 

Fig 2.4 Testing transduction of single vector controls for forward programming in FFDK MK-FoP. The 

iPSC line FFDK was transduced with the following vector combinations; 1) Three TFs (3TF) = single 

lentiviral vectors used for GATA1, FLI1 and TAL1. 2) Codon optimised TAL1 (TCO) = single lentiviral 

vectors used for GATA1, FLI1 and TAL1co. 3) Codon optimised TAL1 and FLI1 (TCO/FCO) = single 

lentiviral vectors used for GATA1, TAL1co and FLI1co. All conditions were maintained in MK medium 

(TPO and SCF in CellGro) after 2 days in mesoderm medium. A) Day 9 cell number for CD41+/CD235+ 

bi-potent progenitors, CD41-/CD235+ erythroblasts and CD41+/CD235- MKs. B) Day 9 cell 
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percentages of populations present in A. C) Day 20 cell number for bi-potent progenitors and 

erythroblasts (as before) and CD41+/CD42+ mature MKs. D) Day 20 cell percentages of populations 

present in C. N=1. 

Overall, it was difficult to know from this experiment whether codon optimisation was beneficial for 

MK-FoP. In both lines the TAL1co sequence resulted in a small increase in mature MK cell number at 

day 20. In BobC, FLI1co increased the mature MK outcome, however, the opposite was observed for 

FFDK. In light of this, we still wanted to test the new PC vectors, but did not include the TCO and 

TCO/FCO controls in further experiments. All experiments shown after this include the 3TF control as 

a measure that FoP worked.  

Testing PC1/2/3 in TPO: PC1 has Lowest MK Potential but all PC Vectors Generate Long-term MK 

Cultures 

FoP experiments were performed in BobC and FFDK with the 3TF control, PC1, PC2 and PC3 vectors 

in TPO and EPO. This was to test our hypothesis that gene order within the PC vector might lead to 

more efficient MK production by PC2 and PC3, and more efficient erythroblast production by PC1. 

Fig 2.5 shows the average results for three experiments for BobC in TPO. Day 9 cell number was 

slightly higher in PC2 and PC3 for all cell types, despite cell percentages being similar for all 

conditions (Fig 2.5A/B). Day 20-22 mature MK cell number is shown separately for three 

experiments, as the outcome of each varied greatly. Overall, the highest number of mature MKs was 

generated by the PC2 and PC3 conditions, while the PC1 and 3TF conditions generated very few 

mature MKs (Fig 2.5C). Percentages at day 22 was generally higher for PC2 and PC3, but remained 

below 23% for two experiments, which is a bit lower than expected at this time point (Fig 2.5D). For 

experiment 1, MKs were maintained until day 68, showing all PC vectors were capable of producing 

long-term MK cultures (Fig 2.5E). 
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Fig 2.5 Testing the PC1, PC2 and PC3 vectors in BobC MK-FoP. 3TF (GATA1, FLI1 and TAL1 single 

lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce BobC cells. After 2 days 

of mesoderm induction, MK medium (TPO + SCF in CellGro) was used to culture cells for the 

remainder of the experiment. Cells were harvested at day 9, 20 or 22, 28, 36, 48 and 68 of culture. 

A) Day 9 cell number for CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ erythroblasts and 

CD41+/CD235- MKs. B) Day 9 cell percentages of populations present in A. C) Day 20-22 cell number 

for CD41+/CD42+ mature MKs. D) Day 20-22 cell percentages of mature MKs. E) Experiment 1 
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mature MK number for the three PC vectors, maintained for 68 days of culture. N=3, biological 

replicates (data collected from experiments on day 20 for n=1 and day 22 for n=2), N=1 for time 

points after day 20, error bars=standard deviation. 

Fig 2.6 shows the average results for FFDK in TPO. Day 9 cell numbers were highest in the 3TF 

condition, being lower for all three PC vectors. Overall cell number was lower than those observed 

for BobC, despite similar cell percentages, which were highest for the PC1 vector (Fig 2.7A/B). The 

3TF condition at this stage produced significantly more MKs versus PC1 and PC3 (P= 0.006 and 0.004 

respectively). By day 20-22 the number of mature MKs had not proliferated as much as in BobC, with 

the outcome of each experiment being different. The 3TF condition produced the highest mature 

MK cell number in experiment 1, while the 3TF, PC2 and PC3 conditions were all similar for 

experiment 2, and PC3 performed best in experiment 3. PC1 performed worst overall (Fig 2.6C). At 

this stage there was no statistical significance in the number of MKs produced by the different 

conditions. The day 22 percentage of mature MKs was consistently lowest for PC1, with the 

remaining conditions performing similarly and generating a higher percentage than observed in 

BobC at the same time-point (Fig 2.6D). 
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Fig 2.6 Testing the PC1, PC2 and PC3 vectors in FFDK MK-FoP. 3TF (GATA1, FLI1 and TAL1 single 

lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce FFDK cells. After 2 days 

of mesoderm induction, MK medium (TPO + SCF in CellGro) was used to culture cells for the 

remainder of the experiment. Cells were harvested at day 9 and 20 or 22. A) Day 9 cell number for 

CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ erythroblasts and CD41+/CD235- MKs. B) Day 

9 cell percentages of populations present in A. (P<0.01 by two tail t-test versus PC1 and PC3). C) Day 

20-22 cell number for CD41+/CD42+ mature MKs. D) Day 20-22 cell percentages of mature MKs. 

N=3, biological replicates  (data collected from experiments on day 20 for n=1 and day 22 for n=2), 

error bars=standard deviation. 
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PC1/2/3 in EPO: All Vectors Generate Erythroblasts 

Fig 2.7 shows the average results for BobC in EPO of two experiments. The day 9 number of cells was 

highest in PC2 and PC3, with PC1 and the 3TF control giving similarly lower cell numbers (Fig 2.7A). 

Compared to BobC in TPO, the number of erythroblasts was increased, with almost three times as 

many in PC2 and twice as many in PC3. PC2 produced significantly more erythroblasts compared to 

the 3TF condition (P=0.04). The percentage of bi-potent progenitors was reduced in EPO, compared 

to TPO, while the inverse was seen for erythroblast percentage (Fig 2.7B). The day 22 erythroblast 

cell number is shown separately for the two experiments due to large variation. The outcome of 

experiment 1 was a high erythroblast number in all conditions, highest in PC3. Experiment 2 resulted 

in low overall erythroblast outcome, which was highest in the 3TF control (Fig 2.7C). No statistical 

significance was observed for the number of erythroblasts produced between the different 

conditions tested at this stage. The purity of erythroblasts was similar between experiments, and 

was high for all PC vectors, around 70-80%, and lowest in the 3TF condition, around 40% (Fig 2.7D). 

Globin expression was checked by qPCR, on cells from experiment 1, as described in Fig 2.7. 

Compared to the 3TF, all PC vectors expressed higher quantities of mRNA for all globins tested, apart 

from beta-globin which was not expressed in any condition. With epsilon and zeta expression, the 

erythroblasts produced had an embryonic phenotype (Fig 2.7E). 
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Fig 2.7 Testing the PC1, PC2 and PC3 vectors in BobC Ery-FoP. 3TF (GATA1, FLI1 and TAL1 single 

lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce BobC cells. After 2 days 

of mesoderm induction, erythroblast medium (EPO, IL-3, transferrin, insulin + SCF in CellGro) was 

used to culture cells for the remainder of the experiment. Cells were harvested at days 9 and 22. A) 

Day 9 cell number for CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ erythroblasts and 

CD41+/CD235- MKs. B) Day 9 cell percentages of populations present in A. (P=0.04 by two tail t-test 
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versus 3TF). C) Day 22 cell number for erythroblasts. D) Day 22 cell percentages for erythroblasts. E) 

Gene expression measured by qPCR for globin genes at day 20, values shown are the relative 

quantification, relative to GAPDH. N=2 (biological replicates), error bars=range, N=1 for qPCR data 

and was performed on cells from experiment 1 (qPCR data generated by Dr Jose Ballester Beltran). 

Fig 2.8 shows the average results for FFDK in EPO. As in TPO, FFDK produced fewer cells compared to 

BobC, generating noticeably less erythroblasts. The 3TF gave the highest number of cells overall, 

with an even distribution of cells between the three cell populations. Only PC1 produced a higher 

number of erythroblasts than the 3TF control (Fig 2.8A). Cell percentages were fairly similar for all 

conditions at this time point (Fig 2.8B). By day 22, PC2 produced the highest number of erythroblast 

cells in experiment 1, showing lower proliferation than in BobC. Experiment 2 generated the highest 

number of erythroblasts in PC1, showing much better proliferation than in BobC (Fig 2.8C). 

Erythroblast purity was high for the PC vectors, between 70-83%, similar to the outcome in BobC (Fig 

2.8D). The expression levels of endogenous GATA1, TAL1, FLI1 and polycistronic transgene (PC TG) 

were measured by qPCR for PC1 cells, at three time points (days 10, 20 and 32). Expression values 

are shown alongside those from erythrocytes cultured from peripheral blood derived CD34+ cells (PB 

cells), at day 16. GATA1 and TAL1 expression are similar throughout culture for PC1 cells, and are 

similar to PB cells.  FLI1 expression decreases from day 10 in PC1 cells, resulting in similarly low 

expression levels at day 32 as PB cells. PC TG expression is low throughout for PC1, with a slight 

increase at day 32 (Fig 2.8E). 
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Fig 2.8 Testing the PC1, PC2 and PC3 vectors in FFDK Ery-FoP. 3TF (GATA1, FLI1 and TAL1 single 

lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce FFDK cells. After 2 days 

of mesoderm induction, erythroblast medium (EPO, IL-3, transferrin, insulin + SCF in CellGro) was 

used to culture cells for the remainder of the experiment. Cells were harvested at days 9 and 22. A) 

Day 9 cell number for CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ erythroblasts and 

CD41+/CD235- MKs. B) Day 9 cell percentages of populations present in A. C) Day 22 cell number for 

erythroblasts. D) Day 22 cell percentages of erythroblasts. E) Gene expression of endogenous 

GATA1, TAL1, FLI1 and polycistronic transgene (PC TG) was measured at 3 different time points for 
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cells transduced with PC1. Relative quantification values are shown compared to erythrocytes 

cultured from peripheral blood CD34+ cells. N=2 (biological replicates), error bars=range. qPCR data 

n=1 is from a separate experiment to those shown in the rest of the figure, expression values 

relative to HMBS. 

Overall, comparing TPO and EPO, these experiments show that media conditions direct cell fate to 

preferentially produce MKs in TPO and erythroblasts in EPO when using the PC vectors. All PC 

vectors produced mature MKs in TPO, with PC2 and PC3 showing a higher efficiency for MK 

production compared to PC1, in both iPSC lines tested. All PC vectors produced erythroblasts in EPO, 

with the highest erythroblast cell numbers in BobC generated by PC3, and in FFDK by PC1 and PC2. 

Erythroblasts produced show higher globin expression than the 3TF control, although the phenotype 

remains embryonic. Compared to PB derived erythrocytes, PC1 shows similar endogenous TF 

expression levels. 

PC1/2/3 in Colony Assays: Higher MK potential in TPO 

Day 9 cells from one experiment (performed in both lines in TPO and EPO at the same time), were 

used to perform CFU assays, to assess progenitor potential for each vector. Fig 2.9 shows the 

number of colonies counted for the following colony types; mixed, CFU-E, MK and MK progenitor. In 

BobC, PC3 had the highest mixed, MK and MK progenitor potential of the PC vectors, with PC1 giving 

rise to the fewest. For the EPO conditions, the mixed, MK and MK progenitor potential was reduced 

for all vectors. The CFU-E counts are not shown for BobC due to counting inaccuracies resulting in 

unreliable data for this colony type (Fig 2.9A).  

For FFDK, the total number of colonies counted was lower than for BobC, reflecting the trend in cell 

number seen in the liquid culture of this line. The MK potential was highest in the TPO PC2 condition 

and lowest for PC1. The number of CFU-E colonies was low in all FFDK TPO conditions. In EPO, the 

mixed, MK and MK progenitor potential was lower than for TPO in all conditions, apart from in PC3 

which showed an increase in all colony types. CFU-E potential was increased in EPO, with PC3 giving 

rise to the highest number of CFU-E colonies (Fig 2.9B). 
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Fig 2.9 Progenitor potential of PC1, PC2 and PC3 transduced cells in MK and Ery-FoP. 3TF (GATA1, 

FLI1 and TAL1 single lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce 

BobC and FFDK cells. After 2 days mesoderm induction cells were cultured in MK (TPO) and 

erythroblast (EPO) media. At day 9 of FoP cells were seeded into clonogenic assays to assess 

progenitor potential and left for 14 days, before counting colonies. Colonies counted were scored as 

mixed, CFU-E, MK or MK progenitor colonies. A) BobC CFU colony count. B) FFDK CFU colony count. 

CFU-E missing from BobC data due to unreliable data collection. N=1. 

Overall, the results of the CFU assays show in both lines that mixed, MK and MK progenitor potential 

is higher when cells are cultured in TPO for the first 9 days of FoP, with the exception of PC3 for 
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FFDK. PC1 showed the lowest MK potential overall in both lines. In FFDK the EPO culture conditions 

increased CFU-E potential.  

Transgene Expression is Lower in PC-Transduced Cells Cultured in EPO 

The level of transgene expression of cells cultured in different conditions was measured using the 

GFP marker of the PC vectors and gene expression by qPCR, shown in Fig 2.10. In day 9 cells, the 3TF 

showed a low level of background GFP signal. For all PC vectors, the percentage of GFP expressing 

cells was higher in TPO compared to EPO, seen for both lines tested (Fig 2.10A). In BobC PC3-

transduced cells, the distribution of GFP positive cells is similar for TPO and EPO conditions, with the 

majority of GFP cells contributed by the MK population, and the least GFP positive cells found in the 

erythroblast population (Fig 2.10B). Looking at gene expression by qPCR, endogenous GATA1 and 

TAL1 are similar for TPO and EPO conditions. The largest difference observed for endogenous genes 

is in FLI1 expression levels, which are lower in EPO cells. PC TG expression is also lower in EPO cells. 

This trend was observed in both cell lines tested (Fig 2.10C). 
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Fig 2.10 EPO media selects for cells with lower TG expression by day 9 of culture. 3TF (GATA1, FLI1 

and TAL1 single lentiviral vector control), PC1, PC2 and PC3 vectors were used to transduce BobC 

and FFDK cells. After 2 days mesoderm induction cells were cultured in MK (TPO) and erythroblast 

(EPO) media. Cells were analysed at day 9 of culture.  A) Percentage of GFP positive cells cultured in 

TPO and EPO, in BobC and FFDK. B) GFP positive cell distribution in BobC PC3 transduced cells for 

CD41+/CD235+ bi-potent progenitors, CD41-/CD235+ erythroblasts, CD41+/CD235- MKs and CD41-

/CD235- double negative cells (-/-). C) Day 9 endogenous GATA1, TAL1, FLI1 and polycistronic 

transgene (PC TG) expression in TPO and EPO cells from BobC and FFDK, transduced with PC vector 
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at day 0. Relative quantification values are shown, relative to the housekeeping gene HMBS. TPO: 

n=3 (biological replicates), error bars= standard deviation, EPO: n=2 (biological replicates), error 

bars= range. n=1 for B and C. 
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Discussion 

The aim of the work presented in this chapter was to generate a single polycistronic rLV vector for 

use in FoP to minimise the reliance of three separate rLVs in order to; reduce procedural costs, 

reduce stochasticity at the start of FoP, reduce variability and generate a more homogenous 

population of cells. Testing the first version of the PC vector (pWPT-GATA1-FLI1-TAL1co) highlighted 

a bias towards the erythroblast lineage. We hypothesised that this was due to a potentially altered 

function of the FLI1-2A protein produced. In order to overcome this, gene order within the vector 

was rearranged with the generation of PC2 (pWPT-eGFP-GATA1-TAL1co-FLI1), and the FLI1 sequence 

codon optimised to try and improve MK-FoP potential, generating PC3 (pWPT-eGFP-GATA1-TAL1co-

FLI1co). The three PC vectors were compared to test whether any showed better potential for MK-

FoP or Ery-FoP, in TPO and EPO conditions respectively. The results from two iPSC lines suggest a 

better MK-FoP potential with PC2 and PC3, and lowest MK-FoP potential with PC1, while all vectors 

show the potential for Ery-FoP. Importantly, this chapter shows the expression of the 3TFs from a 

polycistronic vector efficiently forward programmes iPSCs towards both the MK and erythroblast 

lineages, seen by >50% cells expressing the markers CD235 and CD41 a day 9, providing good 

evidence that an inducible iPSC line could work. 

Polycistronic Vector Forward Programmes iPSCs but Evidence of a Erythroblast Bias 

Initial FoP experiments performed with the PC rLV resulted in unusually high erythroblast and 

limited MK production, with similar results in two iPSC lines tested, BobC and S4 (Fig 2.1 and Fig 2.2). 

These results led us to consider whether gene order in the poylcistronic vector could be affecting 

gene function. Of the three FoP TFs, we know from previous work that FLI1 is the most essential for 

generating MKs. When the FLI1 TG is not well transduced in standard FoP with 3 rLVs, the 

erythroblast developmental pathway is favoured, as FLI1 normally inhibits this pathway (Athanasiou 

M, 2000). Considering the placement of the FLI1 sequence in the PC vector, we questioned whether 

the 2A fragment fused to the C-terminus, resulting in a FLI1-2A protein, might be affecting FLI1 

functionality, which could explain why the PC vector showed an erythroblast bias. 

The C-terminus of FLI1 has been shown to be important for DNA-binding properties. For example, 

the fusion oncogene, EWS/FLI1, generated by chromosomal translocation, results in the N-terminus 

of the Ewing sarcoma (EWS) gene fused to the C-terminal DNA-binding domain of FLI1 (Ano, 2004). 

The resulting EWS/FLI1 fusion gene is an aberrant TF with potent transforming properties, 

responsible for over 95% of cases of Ewing sarcoma, a paediatric tumour of neuroectodermal origin 

(Ohno T, 1993). Looking at the PC vector in more detail, the T2A sequence downstram of FLI1 leads 



 

135 
 

to an additional 22 amino acids being joined to the C-terminal end of the FLI1 protein sequence. We 

reasoned that the additional amino acids could be interfering with the normal DNA binding 

properties of the FLI1 C-terminal end and thus affect its functionality as a TF.  

Previously, I had generated a FLI1-ERT2 vector, where the C-terminal end of FLI1 was fused to the 

eostrogen receptor that binds tamoxifen (ERT2), to establish whether controlling expression of FLI1 

during FoP could lead to improved erythroblast producion. However, after testing this vector several 

times, it failed to generate cells by FoP, suggesting that this fusion protein was not functional (data 

not shown). This observation added evidence to the idea that fusing another sequence to the C-

terminal end of FLI1 could impair function. While a large protein, such as ERT2, appeared to have 

rendered FLI1 completely inactive due to the complete abolition of FoP, the much shorter 2A 

sequence must have had a more subtle effect, as FoP was still occuring and this would not be 

possible if FLI1 was totally non-functional. Finally, we concluded that the most likely explanation for 

the efficiency of MK-FoP being reduced and Ery-FoP being increased with the PC vector, was due to 

the 2A sequenced fused to the C terminus of FLI1 reducing or limiting its TF ability. In order to try 

and overcome this, we redesigned the PC vector, altering gene order to put FLI1 at the final gene 

position. At the same time, we generated a third PC vector, with a codon optimised FLI1 (GeneArt) in 

the final gene position, to try and improve MK-FoP efficicency as much as possible.  

Codon Optimisation does not Impede MK Production 

Testing the single gene vectors pWPT-TAL1co and pWPT-FLI1co in combinations to mimick the 

correct controls for the PC vectors showed that codon optimisation of these genes does not impair 

MK production. In BobC the combination of TAL1co and FLI1co showed the greatest increase in MK 

production compared to the 3TF classical FoP combination of vectors. While in FFDK the TAL1co 

sequence alone improved MK production. These conditions do not take into account the functional 

effect of 2A fusion proteins produced by the polycistronic cassette, however, this data was 

encouraging that the new PC3 vector may help to improve MK-FoP, in line with our hypothesis.  

PC Vectors Generate MKs in Long-term BobC Cultures 

Once generated the three PC vectors were tested alongside the normal 3TF FoP control in TPO and 

EPO. We hypothesised that in TPO, due to gene order, PC1 would have the lowest MK potential, PC2 

an intermediate potential and PC3 the highest MK potential.The results of this experiment show a 

MK potential in all vectors in both iPSC lines tested, with lower overall MK production in FFDK (Fig 

2.5C and Fig 2.6C). In line with our predicition, PC1 showed the lowest MK potential, consistently 

generating very few mature MKs. Both PC2 and PC3 resulted in high MK numbers, consistently 
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higher than the 3TF control in BobC. This shows that moving FLI1 to the final gene position of the PC 

vector, removing the 2A sequence at the C-terminal end, was beneficial for MK-FoP. Importantly, the 

PC vectors established long-term MK cultures in BobC (Fig 2.5E). This suggests that FoP with the PC 

vectors is occuring in a similar manner to normal 3TF FoP, generating a repopulating pool of 

progenitor cells. In EPO, we hyptohesised that PC1 would be the best PC vector to produce 

erythroblasts, due to the potentially reduced function of the FLI1-2A protein produced. However, 

this was not the case. In BobC, PC3 performed best by producing the highest number of 

erythroblasts of any of the PC vectors, while in FFDK PC1 and PC2 produced the highest number in 

two experiments (Fig 2.7C and Fig 2.8C). 

These experiments highlight an issue of working with iPSCs, that the results of different lines can 

vary considerably. Normally FoP in FFDK is quicker, with the appearance of mature MKs earlier than 

in BobC. Indeed this experiment showed a higher percentage of mature MKs at day 20 in FFDK (Fig 

2.5D and Fig2.6D) but these cells failed to proliferate. Another issue raised is the variability of day 

20-22 outcome from the same iPSC line. Vector batch can explain some of the observed variance, as 

experiment 1 was performed with lab-produced rLVs, while experiment 2 and 3 were performed 

with vectors produced commercially. However, this does not explain all the variation seen, as 

experiments 2 and 3 showed a large variation too. These differences could be due to different 

transduction efficicencies of the 2 experiments, which would also help to explain why the standard 

deviation of cell numbers at day 9 of culture was large, particularly for BobC. This may be due to 

differences in the cells at the time of transduction, for example if cells were in different cell cycle 

stages, this may effect how well they are able to be transduced. Unfortunately GFP data was not 

collected from earlier timepoints, which may have helped to identify experiments where 

transduction was good. As seen in Fig 2.10A the GFP percentage of cells was already low at day 9 of 

FoP, suggesting silencing of the TGs before this timepoint. 

Poor transduction efficiency with the PC vectors may be due to their large size, >13kb, which is much 

larger than the size of the three single gene vectors used in 3TF FoP and may also explain why it was 

difficult to produce high titre virus. We did not spend time optimising the lentiviral production for 

the PC vectors, and a previous report describes that virus production is heavily decreased for large 

(13.2kb) packaged inserts (Al Yacoub N, 2007). The large vectors result in large mRNA transcripts, 

which themselves might be unstable and prone to degradation. The codon optimisation step 

performed on TAL1 in all vectors, and FLI1 in PC3, should result in increased mRNA stability, export 

and translation of these genes by removing cryptic splice sites, unwanted secondary structures, 
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instability motifs and improving codon usage for Homo sapien eukaryotic cells (Schambach A, 2013). 

This may to some degree explain why PC3 was most efficient in the majority of experiments. 

Interestingly, in BobC, the experiment that produced few MKs in TPO but produced a high number of 

erythroblasts in EPO, is the result of cells transduced at the same time with the exact same rLV 

master mix. Conversely, the experiment which gave the opposite result, a high MK number in TPO 

and low erythroblast number in EPO, was also the result of cells transduced at the same time with 

the same rLV master mix. This suggests that MK outcome in TPO and erythroblast outcome in EPO 

might be closely linked and could relate to the transduction efficiency of each experiment.  It is likely 

that a high MK and low erythroblast outcome is the result of low transduction efficiency, and the 

opposite result is due to a high trandscution efficiency.  

CD41 Expressing Cells are Highly GFP Positive 

With the addition of the marker eGFP in the PC vectors, we can assess the expression of the 

transgenes (TGs) in cells at day 9. In both lines tested, the GFP signal was lower for all vectors in cells 

cultured in EPO, compared to those in TPO, which was corroborated by TG expression data (Fig 

2.10A and Fig 2.10C). It was also possible to establish the distribution of GFP in the different cell 

populations produced by FoP. CD41- cell populations (CD41-/CD235- cells and erythroblasts) have a 

low GFP signal, while CD41+ cells (bi-potent progenitors and MKs) have a high GFP signal (Fig 2.10B). 

This shows TG expression is highest specifically in CD41+ cells. EPO cells express less TG and lower 

levels of endogenous FLI1 and preferetially differentiate along the erythroblast lineage (Fig 2.10C). 

FoP appears to be a highly selective protocol, only allowing cells which receive the optimal 

combination of all three TGs at the time of transduction to survive in culture. This data suggests 

highly transduced cells will preferentially differentiate along the MK lineage, or are specifically 

selected for in TPO at an early time-point. In EPO, the situation is reversed, with EPO selecting for 

poorly transduced cells or cells which have silenced the FoP TGs.  

The percentage of GFP positive cells, in TPO and EPO for BobC, showed a decrease in percentage 

between day 9 and 22 for all PC conditions (data not shown). This suggests that overtime TGs are 

being silenced. Integration of rLV vectors favours gene expression hotspots, which leads often to 

insertions being surpressed in human ES cells at the time of transduction, before TG expression can 

occur (Xia X, 2007). Where integrations into transcriptionally active sites are not surpressed, they 

can be subjected to silencing by histone mdifications. Of relevance, the EF1α promoter has been 

shown to be subjected to DNA methylation at CpG islands, silencing TG expression in vitro (Zhang F, 
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2010). This is not likely to be a problem in FoP, since we know the endogenous genes are switched 

on early in FoP by their TG counterparts (Fig 2.10C). 

PC Vectors Enable Bifurcation of Progenitors 

By testing the PC vectors in TPO and EPO, the results seen for the 3TF condition (Results Chapter 1) 

were replicated in 2 lines. It was unknown whether the expression of the three factors from a 

polycsitronic vector would alter the progression of FoP, by not allowing cells to select the optimal 

combination of the three factors, which is what we expect happens when using the three separate 

TF vectors. However, the expression of all three factors from the same vector does allow the 

generation of a true bi-potent progenitor, which can differentiate into either MKs or erythroblasts.  

The PC1 vector shows the lowest MK potential in TPO and supports our hypothesis that FLI1-2A is 

less functional than normal FLI1. 

As described in the introduction, vector design can play an important role in the level of gene 

expression in a polycistronic vector and is not neccesarily always stochiometric (Carey BW, 2011). 

We did not check that the expression of the three FoP TGs from the polycistronic vector was 

stochiometric by western blot. While we could potentially test multiple 2A sequences to find ones 

which deliver the optimal level of each gene, which is unknown at this stage, this work was primarily 

to investigate whether expression from a single vector would allow FoP to occur, in order to provide 

evidence for whether an inducible iPSC line would work. This work showed that reducing the rLV 

requirement can allow FoP to occur efficiently, as most experiments gave rise to higher cell numbers 

with PC vectors compared to the 3TF control; however, it is likely that we could optimise this system 

further. 
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Introduction 

Having demonstrated that the expression of exogenous GATA1, TAL1 and FLI1 by the polycistronic 

vectors efficiently generates MKs and RBCs, the next goal of my work was to further improve FoP 

technology by eliminating the use of rLVs completely. As discussed previously, the rLV aspect of the 

current FoP protocol introduces experimental variability due to rLV batch variation, as well as 

incurring large costs. Generating a stable, inducible iPSC line to FoP would remove these limitations. 

The practical aspect of having a line which can be maintained as any other iPSC line, allowing it to be 

cryopreserved, thawed and expanded with relative ease, but which can also be induced to FoP when 

required, will be of great benefit to researchers. An inducible line would also enable greater 

reproducibility between FoP experiments and allow greater control over TG expression timing. 

A number of issues arise when targeting human pluripotent stem cells (PSCs), including silencing of 

transgenes in randomly inserted sites, thought to be mediated through methylation-dependent and 

independent mechanisms of integrated donor DNA (Smith JR, 2008). Silencing in PSCs, although 

common and a potentially significant problem for generating a stable PSC line to FoP, can be avoided 

by testing multiple promoters, as Andrews and colleagues demonstrated (Liew CG, 2007). They 

transfected four different promoters (UbiquitinC, Rosa26, CMV and CAGG) to drive eGFP expression, 

which demonstrated an unpredictable variation in transgene expression among different hESC lines 

tested. Only the CAGG promoter, linked to a polyoma virus mutant enhancer (PyF101) and IRES, 

achieved stable transgene expression in the absence of selection for more than 120 passages. They 

found that the CMV promoter was unable to generate stably transfected clones. This work 

demonstrates the difficulty faced in trying to generate a stably transfected stem cell line. 

Another issue described is variegated transgene expression in targeted iPSCs. Pederson and 

colleagues described both silencing and variegation issues, when only 50% of eGFP targeted hESCs in 

their study showed expression, which was lost once cells were removed from selection upon 

differentiation (Smith JR, 2008). However, by targeting eGFP to the Adeno-Associated Virus 

Integration Site 1 (AAVS1) locus, using the adeno-associated virus type 2 (AAV2), the group showed 

reduced variegation of expression, reduced silencing tendencies for extended periods of time after 

selection withdrawal, and higher eGFP mRNA levels, compared to randomly integrated control cells. 

The AAVS1 locus, the preferred site for AAV integration, located on chromosome 19 is associated 

with an open-chromatin state due to the presence of a DNase I-hypersensitive site and contains 

native insulating sequences, protecting the site from silencing (Ogata T, 2003). Thus, the AAVS1 is 

now regarded as a genomic safe harbour for the integration of exogenous DNA (Sadelain M, 2011). 
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For this reason, we chose the AAVS1 locus as the target site for integrating our vector for producing 

an inducible iPSC line. 

The second consideration for this work was selecting the targeting method to perform gene editing 

in iPSCs. In the past, achieving efficient stable transfection of human ESCs has been difficult. 

Electroporation techniques originally developed for mouse ES cells, which have high levels of 

homologous recombination (HR), had to be adapted in order to work in human ESCs. Also, screening 

rare targeting events was difficult, due to the cloning from single human ES cells being much less 

efficient than their murine counterparts (Zwaka TP, 2003). As discussed in the Introduction Chapter, 

several strategies now exist that have overcome these issues and have been demonstrated 

successfully in iPSCs; ZFNs, TALENs and CRISP/Cas9. However, several issues are still associated with 

targeting iPSCs including high cell mortality, due to high DNA damage sensitivity, and low 

transfection rates, due to low nuclease activity (Liu JC, 2014 and Hendriks W, 2016). Nuclease 

activity is usually determined in an easy to transfect cell line, such as HEK293T, prior to iPSC 

transfection to investigate efficiency of creating double strand breaks (DSBs) at a particular loci of 

interest (Hendriks W, 2016). However, a nuclease with high cleavage efficiency in HEK293T cells may 

not always introduce DSBs in iPSCs, which may be due to target locus accessibility and DNA-damage 

repair mechanisms differing between an immortalized cell line and iPSC line, or due to the target 

sequence itself (Chari R, 2015 and Liu JC, 2014).  

Targeting Strategy 

The strategy chosen to generate a stable, inducible iPSC to use in FoP, was to target the polycistronic 

vector to the AAVS1 genomic safe harbour of iPSCs, and induce TG expression using the inducible 

TET-ON third generation (3G) system. For the targeting of iPSCs we decided to use TALENs initially, 

as these had been shown to work at a similar efficiency to ZFNs, and had been well documented in 

their transfection of iPSCs (Hockemeyer, 2011). The AAVS1 genomic safe harbour was chosen, due to 

the targeting efficiency previously described and the success that had been shown using this locus to 

overexpress TGs in iPSCs. Similarly, the TET-ON system had also been demonstrated to work well in 

vectors targeted to the AAVS1 locus, so we used the most recent version available, the 3G system 

(Clontech). To avoid rTTA rLV transduction, we decided to incorporate the rTTA component into the 

same targeting vector. To perform the initial proof-of-principle experiments, the fluorescent marker 

H2BVenus was inserted. Initially we used TALENs to target the AAVS1 locus but for reasons 

described in the following results sections, we also tested ZFNs (optimized inducible overexpression 

Strategy- OPTi-OX) in this locus and separated the rTTA and TRE components. 
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Chapter Overview 

This chapter will describe the work of generating the targeting vectors and overcoming several 

issues to do with targeting the AAVS1 locus, in collaboration with Dr Rosen, Dr Pance and Dr 

Carobbio (all Wellcome Trust Sanger institute, Cambridge). Finally, the targeting strategy originally 

devised was changed in favour of the OPTi-OX system (Bertero A, 2016 and Pawlowski M, 2017) 

developed in Dr Kotter’s lab, in collaboration with Dr Pawlowski, Dr Bertero, Dr Ortmann, Professor 

Vallier and Dr Kotter (all Laboratory for Regenerative Medicine, Cambridge). The OPTi-OX system 

provided evidence that inducible FoP is achievable and efficient in producing MKs and erythroblasts. 
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Materials and Methods 

Generation of Targeting Vectors 

The vectors to engineer the inducible cell line were built in collaboration with Dr Barry Rosen, Dr 

Alena Pance, Dr Stefania Carobbio and Yalem Bekele (all Wellcome Trust Sanger Institute, 

Cambridge). We used the starting L1L2 vector (Map 3.1) and standard molecular biology methods as 

described in the general method section to generate all constructs. All restrictions enzymes come 

from NEB and have been used in optimal digestion buffers. DNA fragment and plasmid purifications 

through the cloning steps were achieved using Qiagen plasmid Mini, Midi or Plasmid Plus 96 

Miniprep Kits (cat # 12123, 12143 and 16181 respectively), following standard protocols. Gibson 

assembly cloning kits (NEB, cat # E5510S) were performed as per manufacturer instructions. 

Gateway cloning was performed using Gateway LR Clonase Enzyme mix (ThermoFisher Scientific, cat 

# 11791019) as per manufacturer instructions. Plasmid constructs were cloned and amplified by heat 

transformation of the Stbl2 bacteria strains DH10B or DH5α (ThermoFisher Scientific, cat # 12331013 

and 12297016 respectively). All final plasmid constructs have been verified by Sanger Sequencing of 

modified functional regions using primers listed in Table 3.1. In silico vector maps were generated 

using SnapGene software. 

Vector 1 (all in one): AAVS1-rTTA-TRE-H2BVenus 

This ‘all-in-one’ vector was produced to target the AAVS1 locus of human iPSCs, to insert the rTTA 

component of the TET-ON system under the control of the endogenous AAVS1 promoter and enable 

the TRE promoter to drive a fluorescent Venus marker gene in the presence of doxycycline.  

The starting L1L2 vector (Map 3.1) for this project contained L1 and L2 Gateway sequences, to allow 

insertion of AAVS1 homology arms. It also contained a PGK promoter to drive puromycin (Puro) 

resistance, to allow selection of correctly targeted clones. This vector was double digested 

(RsrII/PacI) to replace the H2BVenus ORF, with a synthetic rTTA3G fragment. The rTTA fragment 

(minus an ATG start codon) was synthesised (GeneArt), flanked by RsrII and PacI sites, digested gel 

extracted and ligated with the open L1L2 vector, to produce the L1L2-rTTA vector. 

The polyadenylation (polyA) signal, SV40pA (Map 3.1), was replaced with a stronger transcription 

termination signal, the synthetic 3xpolyA sequence (GeneArt).  

A synthetic TRE-Sv40pA fragment (GeneArt), flanked by AscI sites was digested and ligated with the 

AscI digested L1L2-rTTA open vector, resulting in the L1L2-rTTA-TRE vector. 

https://www.thermofisher.com/order/catalog/product/11791019
https://www.thermofisher.com/order/catalog/product/12297016
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A unique restriction site (AccI), was used to insert the H2BVenus ORF, under the control of the TRE 

promoter. H2BVenus (Map 3.1) was amplified using primers with complementary ends to the AccI 

digested vector and inserted into the linearized L1L2-rTTA-TRE vector by Gibson assembly, resulting 

in the L1L2-rTTA-TRE-H2BVenus vector (Map 3.2).  

A two-step Gateway reaction was performed on the L1L2-rTTA-TRE-H2BVenus vector and an 

intermediate R1R2 vector, containing AAVS1 homology arms. During the Gateway reaction, L1+L2 

sites exchange material with R1+R2 sites, to produce the final vector for targeting iPSCs. The 

Gateway reaction was performed using 60ng of the L1L2-rTTA-TRE-H2BVenus vector and 100ng of 

an AAVS1- R1R2 intermediate vector (Diagram 3.1). The resulting AAVS1-rTTA-TRE-H2BVenus vector 

(Map 3.3) will be subsequently referred to as Vector 1. 

Mouse (all-in-one) Vector: Rosa26-KrTTA-TRE-H2BVenus 

A mouse vector, containing the same targeting components as vector 1 was also generated, to 

target mouse ES cells in the Rosa26 locus. For this mouse all-in-one vector: 

1. A Kozak sequence was added before the rTTA ORF of L1L2-rTTA-TRE-H2BVenus (Map 3.2), 

generating a L1L2-KrTTA-TRE-H2BVenus vector. 

2. Homology arms of the mouse Rosa26 locus added by Gateway reaction, using the 

intermediate R1R2_mROSA26 vector.  

A three-step Gateway reaction was performed to generate the targeting mouse vector from the 

L1L2-KrTTA-TRE-H2BVenus. The first stage incorporates the mouse Rosa26 homology arms with a 

R1R2 intermediate vector. The second stage incorporates a spectinomycin ORF and diphtheria toxin 

under a PGK promoter, with a L3L4 vector (Diagram 3.2). TALEN targeting in human stem cells 

requires circular vectors, whereas linear DNA is used for electroporating mouse ES cells. Therefore, if 

the construct does not integrate into the correct locus, the diphtheria toxin is expressed and will kill 

cells in which integration has not occurred. 60ng of both the L1L2-KrTTA-TRE-H2BVenus and L3L4 

plasmids, along with 200ng of the mRosa26-R1R2 intermediate vector were used to for perform the 

Gateway reaction, generating the final targeting vector Rosa26-KrTTA-TRE-H2BVenus (Map 3.4). 

Vector 2 (all-in-one): AAVS1-EF1α-rTTA-TRE-H2BVenus 

Cloning of the AAVS1-EF1α-rTTA-TRE-H2bVenus vector (Map 3.5) was performed by Steffani 

Carobbio, following similar cloning techniques to those previously described and will be 

subsequently referred to as Vector 2.  
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Vectors 3, 4 and 5: Separated rTTA and TRE Components and an All-in-one Vector 

Alongside the all-in-one vector, containing both the TET components (rTTA and TRE), two more 

vectors were generated to separate these major components. This would enable the rTTA and TRE 

separate vectors to be targeted together, one to each allele of the AAVS1 locus or to different alleles 

if needed, should the all-in-one strategy not work. I constructed the vectors by performing Gateway 

reactions to insert the AAVS1 homology arms, as previously described. The resulting vectors were: 

 AAVS1-Ef1α-rTTA (Map 3.6) will be subsequently referred to as Vector 3. 

 AAVS1-KBlsc-TRE-H2BVenus (Map 3.7): containing the replaced Kozak-ATG-Blasticidin ORF, 

will be subsequently referred to as Vector 4. 

 AAVS1-Ef1α-rTTA-KBlsc-TRE-H2BVenus (Map 3.8): all-in-one vector, all components of 

Vector 3 and 4 combined, will be subsequently referred to as Vector 5. 

Optimised Inducible Expression System Cloning Strategy 

The second part of the inducible cell line work was performed in collaboration with Dr Matthias 

Pawlowski, Dr Alessandro Bertero, Dr Daniel Ortmann, Dr Ludovic Vallier and Dr Mark Kotter (all 

Laboratory of Regenerative Medicine, Cambridge). They kindly provided the reagents for ROSA26 

targeting (CRISPR/Cas9n + guideRNA vectors, plus the donor vector Rosa26-CAG-rTTA, containing a 

CAG promoter to drive rTTA expression, Map 3.9-Vector 6) and AAVS1 targeting (ZFN vectors, and 

donor vector AAVS1-TRE-GFP, Map 3.10-Vector 7 ) (Bertero A, 2016). 

Generating Forward Programming Targeting Vector: AAVS1-TRE-PC3 

iPSCs previously targeted with the Rosa26-CAG-rTTA vector (Map 3.9-Vector 6) were targeting with 

the AAVS1-TRE-GFP vector (Map 3.10-Vector 7). Targeted clones resulted in sustained expression of 

GFP, so Vector 7 was used to produce the final inducible vector to target the three FoP TFs to the 

AAVS1 locus. The GFP ORF from Vector 7 was excised with NcoI/EcoRI (Map 3.10). The same digest 

of the PC3 vector (Map 2.5) excised the eGFP_GATA1_TAL1CO_FLI1CO fragment, which was inserted 

into the open Vector 7. The resulting AAVS1-TRE-PC3 vector (Map 3.11) was used for targeting 

Rosa26-rTTA homozygous iPSC lines and will be subsequently referred to as Vector 8. 

Performing Cell Experiments 

Testing the Mouse Vector 

Mouse embryonic stem cells of the JM8.N4 cell line, derived from the mouse strain C57BL/6N 

(Pettitt, 2009), were electroporated with the linearized (AsiSI) mRosa26_all-in-one vector. 1 million 
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cells in suspension were electroporated with 1-2μg donor DNA using the Amaxa 4D (Lonza). 

Following electroporation, positive cells were selected with 0.8ug/ml puromycin for two weeks. 

Venus expression was induced by addition of 500ng/ml doxycycline. This work was performed by Dr 

Alena Pance. 

Electroporating Human iPSCs 

iPSC cells were washed twice with PBS and treated with TrypLE for 5 min, at 370C, 5% CO2. Excess 

TrypLE was aspirated carefully by keeping the plate flat, so as not to disturb colonies. Basal media 

was added and cells re-suspended three times to give a single-cell suspension. Cells were stained 

with Trypan Blue and counted on a haemocytometer. 0.5E+06-1E+06 cells were added to a 15ml 

falcon tube, topped up to 10ml with wash media before centrifuging at 300g, for 5 min. Cells were 

re-suspended in DNA mix (18μl Solution 1, 82μl Solution 2 (both Human Stem Cell Nucleofector Kit 1, 

Lonza), 2μg vector DNA, 4μg/TALEN, ZFN or CRISPR/Cas9n + gRNA vector DNA). The DNA + cell mix 

was transferred to a cuvette (Nucleofector Kit 1) and electroporated using the B-016 cycle on the 

Amaxa Nucleofector II (Lonza). Following electroporation, 500μl iPSC media (AE6+FGF+Activin), 

supplemented with ROCK Inhibitor (1000x) for the first 24 hours, was added to cells. A Pasteur 

pipette (Nucleofector Kit 1) was used to split cells equally into a 6 well plate, pre-treated with 

vitronectin. For lines targeted with both Vector 6 (Rosa26-CAG-rTTA) and Vector 8 (AAVS1-TRE-PC3) 

vectors, Vector 6 was targeted initially, selected and genotyped, before homozygous clones were 

targeted with Vector 9. 

An experiment was also performed with the Amaxa 4D-Nucleofector X Unit using the P3 Primary Cell 

4D-Nucleofector X Kit L (Lonza), following the same protocol, using machine setting CA 137. 

iPSC Lines Used 

The lines BobC, S4 and Qolg, lines which FoP well, were used to test initial vectors (Vectors 1-5) 

before changing targeting strategy. At the time of changing strategy, the lines H9_Rosa26_rTTA, 

BBNX_Rosa26_rTTA and Bob_Rosa26_rTTA were shared with us by Dr Pawlowski, which had already 

been targeted in the Rosa26 locus with Vector 6 (Rosa26-CAG-rTTA, Map 3.9) and genotyped. After 

this, the lines FFDK and BobC were used to test new vectors, as these lines are known to FoP well 

and S4 was no longer being routinely cultured in the lab at the time. 

Transduction with rTTA Lentivirus in Vector 1-targeted iPSCs 

Polyclonal wells of selected iPSCs were transduced with M2rTTA rLV virus (MOI 20) in stem cell 

media supplemented with 10μg/ml protamine sulphate, following normal transduction procedure 
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(previously described). Cells were washed after 24 hours with PBS and doxycycline added (1μg/ml) 

to induce Venus expression.  

293T Cell Transfection with Vectors 3, 4 and 5 

0.5E+06 293T cells were seeded/well of a 6 well plate and incubated for 24 hours at 370C, 5% CO2. 

3μl Turbofect and 2μg DNA were added to 100μl 293T media, briefly vortexed then incubated for 

30mins at RT, before being added to cells. After 24 hours, cells received fresh media, supplemented 

with 1μg/ml doxycycline. After 48 hours fluorescence was checked under a fluorescent microscope.  

Selection of Correctly Targeted iPSCs 

Kill curves for each selection agent were performed on each iPSC line prior to targeting. After 

splitting iPSCs into a 6 well plate, antibiotic selection across a range of concentrations was 

performed. Initial concentrations to test were chosen based on literature reviews of the same 

selective agent in a similar cell type, where possible. Cells were maintained in different 

concentrations for 7 days and the lowest concentration to result in complete cell death by day 7 was 

chosen as the concentration to use on targeted cells. 

After electroporation, cells were grown in iPSC media until a confluency of ~75%. Selection was 

maintained until clones were large enough to split. Different antibiotics were used during different 

stages of the cloning strategy, which are summarised in Table 3.2.  

Splitting Selected Clones 

Several methods of splitting individual colonies were tried, the following method was found to be 

the most effective with the highest rate of clone survival. 1mg/ml Collagenase Type IV and Dispase II 

(both Life Technologies) were added to cells and incubated at 370C, 5% CO2 checking at regular 

10min intervals, until the edges of a colony appeared to be loose under the microscope. Then, in the 

incubator, the colony was gently lifted with a P200 and aspirated into a 1.5ml Eppendorf. Wash 

media was added to fill the Eppendorf and left for 10min, to allow the colony to settle. The colony 

was washed twice and re-suspended in 1ml stem cell media. Each colony was split into 2 wells of a 

12 or 24 well plate (pre-coated with vitronectin). Clones were expanded, before collecting one well 

for gDNA and subsequent PCR genotyping. The second well was maintained in culture or 

cryopreserved, until genotyping results were obtained. 
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PCR Genotyping 

gDNA was collected in 120μl lysis buffer (Wizard SV Genomic DNA Purification System, Promega) and 

purified following the manufacturer’s protocol. Where possible, genotyping PCRs were performed in 

the following order, to minimise the number of PCRs required: 

1) Genomic locus PCR: Clones which were negative for the WT allele were selected for 

genotyping fully, while any clones with the WT allele still present (not targeted, or 

heterozygous for the insert) were discarded. 

2) Off-targets PCR: At this stage, any clones positive for an off-target integration were also 

discarded. This was tested for by using a primer within the donor vector sequence, and one 

outside of the sequence to be targeted. Any positive bands for this PCR suggest the targeting 

has not occurred correctly by integrating part of the sequence which should not be present 

in the genome. This is a quick way of detecting off-targets but will not detect all off-targets, 

which can only be accurately discovered by sequencing the genome of targeted cells. 

Sequencing was not performed on any of the targeted clones presented in this Chpater. 

3) 5’ and 3’ integration PCRs: Any clones that did not produce the correct band for 5’ and 3’ 

integration were also discarded. 

The chosen clones therefore had correct insertion at the 5’ and 3’ site of integration, were 

homozygous for the insert, and had no off-targets detected. These were then expanded in culture to 

cryopreserve larger stocks, before inducible FoP was performed. For clones targeted with Vector 5 

the 5’ and 3’ genotyping PCRs were optimised, the primers used are summarised in Table 3.3. 

Genotyping for Rosa26 and AAVS1 inserts were optimised for clones targeted with iOX Vector 6 

(Rosa26-CAG-rTTA) and Vector 9 (AAVS1-TRE-PC3), the primers used are described in Table 3.4. All 

PCRs were performed with LongAmp Taq polymerase (New England BioLabs). The conditions are 

described in Table 3.5, and thermocycling conditions in Table 3.6. 

Inducing Expression of Transgenes 

Venus and GFP expression was induced for a minimum of 48 hours using 1μg/ml doxycycline 

(Doxycycline hyclate, Sigma-Aldrich) before fluorescence was detected.  

Inducible Forward Programming 

Inducible forward programming was achieved by the addition of doxycycline (1ug/ml, unless 

otherwise stated), every 2 days. The normal forward programming protocol was followed, without 

the use of lentiviral vectors and the associated wash steps. iPSCs were split into small clumps of 
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approximately 1xE5 cells per well, or single cells using TrypLE (previously described), and allowed to 

recover for 24 hours. To initiate forward programming, doxycycline and mesoderm media were 

added and left for 2 days, before being replaced with MK/RBC media, plus doxycycline. A high TPO 

concentration was used (100ng/ml), until day 8-10 of the protocol, when cells were split using 

TrypLE. After splitting a low TPO concentration was maintained (20ng/ml). Fresh media and 

doxycycline was added every 2-3 days. Flow cytometry was performed periodically, as previously 

described.  

Flow Cytometry 

Since the inducible lines contain GFP TG, they were stained without a FITC-conjugated antibody. As 

for PC-transduced cells, inducible cells were stained with CD41a-APC-H7 (1:100), CD42b-APC (1:20) 

and CD235a-PE (1:200). Erythroblast characterisation on inducible cells was performed with the 

following antibody combination; CD36-PE (1:10), CD71-APC-H7 (1:100), CD235a-APC (1:200). (All 

antibodies supplied by BD-Pharmingen). 

Platelet-like-particle Assay 

MKs and platelet-like-particles (PLPs) were collected directly from the culture dish, after gentle 

swirling of the culture and homogonisation with a P1000. 100µl of cells was added to 1/9th volume of 

Anticoagulant citrate-dextrose (ACD, Sigma) and 100µl of ACD-cell mixture used per flow tube. 

Calcein-AM (1:20,000), CD41-APC-H7 (1:200) and CD42a-APC (1:100) were used to stain cells, mixed 

by gently flicking the tube. Samples were incubated at 370C for 20 mins in an Eppendorf 

ThermoMixer Temperature Control Device (Eppendorf cat#:5382000023). Finally, 1ml RT PBE and 

10,000 count beads were added per tube. Flow analysis was performed as previously described. 
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Materials and Methods Tables 

Table 3.1. Primers used for generating and sequencing Vectors 1-5 

Oligo/Primer name Sequence 5’-3’ 
Used for producing Gibson PCR 
product (Vector 1)   

TET_H2bV_Fo TACCACTTCCTACCCTCGTAAAGTCTGACTAGGAGGCCACCATG 

TET_H2bV_R TGCAGCTTGAACTGAACTCCTGCAGCTCTTCTTACTTGTACAGCTC 

Used for sequence verifying Vectors 
1,2,3,4,5 and mouse Rosa26 vector  

R1R CGTGGTATCGTTATGCGCCT 

R2R TCTATAGTCGCAGTAGGCGG 

R3 GCGGATAACAATTTCACACAGGA 

R4 TGTAAAACGACGGCCAGT 

PGKR CCATTGCTCAGCGGTGCTGTCC 

H2bR CCTTAGTCACCGCCTTCTTG 

Fchk2F GTATCTGCAACCTCAAGCTAGC 

PGKPuropA F TGTGGTTTCCAAATGTGTCAG 

Fchk2R GCTAGCTTGAGGTTGCAGATAC 

PuroF2 CCATGACCGAGTACAAGCCCACG 

L1L2 FchkF CGGATTTGAACGTTGTGAAG 

PGKPuro 3248R ATAGCAGCTTTGCTCCTTCGCTTTC 

 

Table 3.2 Antibiotic concentration used on different iPSC lines. 

Cell line tested Puromycin (μg/ml) Neomycin (μg/ml) Blasticidin (μg/ml) 

Bob 1 - 5 

BobC 1 250 5 

FFDK 0.5 200 2 

S4 1 - 5 

Qolg - - 2 

BBNX_rTTA 0.5 - 3 

Bob_rTTA - - 3 

H9_rTTA - - 2.5 

 ‘-‘ Indicates selective agent not tested in that line.  

Puromycin (Puromycin dihydrochloride from Streptomyces alboniger, Sigma-Aldrich), Neomycin 

(G418 disulphate salt solution, Sigma-Aldrich), Blasticidin (Blasticidin S hydrochloride, Fisher 

Scientific).  
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Table 3.3 Vector 5 targeted iPSCs, genotyping primers for 5’ and 3’ integration in AAVS1. 

AAVS1 Wild-type Correct Insert Annealing temp 

5'-end integration       

R1R TCCGCGTATTGCTATGGTGC 
none 2883 bp 

58 

p'2 GCCACGAAAACAGATCCAGG 2' 30" ext 

3'-end integration       

R2R TCTATAGTCGCAGTAGGCGG 
none 1137 bp 

57 

d'3 CCTACTCTCTTCCGCATTGG 1' ext 

 

Table 3.4 Vector 6 and Vector 9 targeted iPSCs, genotyping primers for integration in AAVS1 and 

Rosa26. 

AAVS1 Genomic Locus Wild-type 
Correct 
Insert 

Annealing 
temp 

F_ genome CTGTTTCCCCTTCCCAGGCAGGTCC 
1692 bp 

None- 
too large 

65 

R_genome TGCAGGGGAACGGGGCTCAGTCTGA 1'30" ext 

5'-end integration       

F_(genome) CTGTTTCCCCTTCCCAGGCAGGTCC 
none 991 bp 

65 

R_(puro) TCGTCGCGGGTGGCGAGGCGCACCG 1' ext 

3'-end integration       

Fli1CO_seqi_2Fo GCAGCAGACTGGCCAACCCT 
none 1700 bp 

64 

R_(genome) TGCAGGGGAACGGGGCTCAGTCTGA 1' 30'' ext 

 
Off-target integration   Off targets   

OptTal1_TG_Fo ACCGCCAGATCTCTGCATC 
none 2748 bp 

57 

AVS1 off-target_R ATGCTTCCGGCTCGTATGTT 2' 45'' ext 

ROSA26 Genomic Locus Wild-type 
Correct 
Insert 

Annealing 
temp 

F_ROSA GAGAAGAGGCTGTGCTTCGG 
2186 bp 

None- 
too GC rich 

63 

R_ROSA ACAGTACAAGCCAGTAATGGAG 3' ext 

3'-end integration       

F_ROSA_rTTA GAAACTCGCTCAAAAGCTGGG 
none 1895 bp 

54 

R_ROSA ACAGTACAAGCCAGTAATGGAG 1'50" ext 

5'-end integration       

F_ROSA GAGAAGAGGCTGTGCTTCGG 
none 1274 bp 

60 

R_(ROSA vector) AAGACCGCGAAGAGTTTGTCC 1'20" ext 

  Off-target integration   Off targets   

F_ROSA_rTTA GAAACTCGCTCAAAAGCTGGG 
none 1794 bp 

55 

ROSA off-target_R TGACCATGATTACGCCAAGC 1'45" ext 
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Table 3.5 Genotyping PCR conditions used on targeted iPSCs. 

Component 
All genotyping 
PCRs 
25 μl reaction 

Rosa26 Genomic 
locus only 
reaction  

Final Concentration 

5X LongAmp Taq Reaction 
Buffer 

5 µl 2μl 1X 

10 mM dNTPs 0.75 µl - 300 µM 

10μM dNTPs - 0.3μl 300 µM 

10 µM Forward Primer 1 µl - 0.4 µM (0.05–1 µM) 

5 µM Forward Primer - 1μl 0.4 µM (0.05–1 µM) 

10 µM Reverse Primer 1 µl - 0.4 µM (0.05–1 µM) 

5 µM Reverse Primer - 1μl 0.4 µM (0.05–1 µM) 

Template DNA variable variable 100-1000 ng 

LongAmp Taq DNA 
Polymerase 

1 µl 0.4μl 5 units/50 µl PCR 

DMSO - 0.2μl   

Nuclease-free water to 25 µl up to 10μl   

 

Table 3.6 Cycling conditions used for genotyping PCRs on a thermocycler (Thermo Fischer Scientific). 

Vector 5 targeted cells   
  Step Temp (oC) Time Notes 

Initial denaturation 94 4'   

  94 30"   

5 cycles variable 30" -1oC/cycle 

  65 50"/kb   

  94 30"   

30 cycles variable 30"   

  65 50"/kb   

Final extension 65 10'   

Hold 4     

 

Rosa26 Genomic locus PCR     All other PCRs   

Step Temp (oC) Time   Temp (oC) Time   

Initial denaturation 94 5'   94 30"   

  94 15"   94 30"   

Cycles 63 30" 25x variable 60" 30x 

  65 3'   65 50s/kb   

Final extension 65 5'   65 10'   

Hold 4     4     
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Chapter 3: Vector Maps 

 

Map 3.1 L1L2 starting vector for cloning project. Restriction enzyme sites used 

for cloning steps are shown. 
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Map 3.2 L1L2-rTTA-TRE-H2bVenus vector (final vector before Gateway 

reaction).     
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Diagram 3.1 2-way Gateway to generate final Vector 1 using L1L2-rTTA-TRE-

H2BVenus and AAVS1-R1R2 intermediate vectors.  
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Map 3.3 Vector 1: AAVS1-rTTA-TRE-H2BVenus final targeting vector. 
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Diagram 3.2 The second stage of the 3-way Gateway Reaction to generate 

Rosa26 mouse targeting vector. The first stage of the gateway reaction is the 

same as that shown in Diagram 3.2 (not depicted) but with the L1L2-KrTTA-

TRE-H2BVenus vector generated for mouse cell work. 
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Map 3.4 Final mouse targeting vector Rosa26-KrTTA-TRE-H2BVenus. AsiSI 

restriction site used to linearize vector prior to mouse ES cell testing. 
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Map 3.5 Vector 2: AAVS1-Ef1α-rTTA-TRE-H2bVenus vector. 
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Map 3.6 Vector 3: AAVS1-Ef1α-rTTA. 
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Map 3.7 Vector 4: AAVS1-KBlsc-TRE-H2BVenus.  
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Map 3.8 Vector 5: AAVS1-Ef1α-rTTA-KBlsc-TRE-H2BVenus.  
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Map 3.9 Vector 6 Rosa26-CAG-rTTA OptiX vector targeted to Rosa26. 
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Map 3.10 Vector 7 AAVS1-TRE-GFP OptiX responder vector targeted to AAVS1 

locus of rTTA-Rosa26 lines. Restriction enzyme sites used to remove eGFP 

fragment, to replace with PC3 fragment, are shown. 
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Map 3.11 Vector 8 AAVS-TRE-PC3 final targeting vector used to generate 

inducible iPSC lines. Restriction enzyme sites used to insert PC3 fragment are 

shown. 
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Results 

Table 3.7 summarises the vectors generated and tested that will be discussed in this results section, 

highlighting the main components and differences in targeting strategy for each.  

Vector Name Promoter 
controlling 

rTTA 
expression 

Promoter + 
Selection 

gene 

TRE + 
H2BVenus 

Targeted 
locus 

Targeting 
method 

Vector 
Map 

Mouse Vector 
All-in-one 

Mouse 
Rosa26 

PGK, 
Puromycin 

Yes Mouse 
Rosa26 

Homologous 
Recombination 

3.4 

Vector 1 
All-in-one 

AAVS1 PGK, 
Puromycin 

Yes AAVS1 TALENs 3.3 

Vector 2 
All-in-one 

EF1α AAVS1, 
Blasticidin 

Yes AAVS1 TALENs 3.5 

Vector 3 
rTTA only 

EF1α None No AAVS1 TALENs 3.6 
 

Vector 4 
TRE-H2BVenus 

only 

No rTTA AAVS1, 
Blasticidin 

Yes AAVS1 TALENs 3.7 
 

Vector 5 
All-in-one 

EF1α AAVS1, 
Blasticidin 

Yes AAVS1 TALENs 3.8 

 
OPTi-OX (optimized inducible overexpression) Strategy 

Vector 6 
rTTA only 

CAG Rosa26, 
Neomycin 

No Rosa26 ZFNs 3.9 

Vector 7  
TRE-GFP only 

No rTTA AAVS1, 
Puromycin 

Yes AAVS1 ZFNs 3.10 

Vector 8 
PC3 only 

No rTTA AAVS1, 
Puromycin 

No AAVS1 ZFNs 3.11 

Table 3.7 Summary of inducible vectors tested and targeting strategy used.  

In the results section the following cell type definitions are used; CD41+/CD235+ cells are bi-potent 

progenitors, CD41-/CD235+ cells are erythroblasts, CD41+/CD235- cells at day 8-9 are MKs, and 

CD41+/CD42+ cells at day 19 onwards are mature MKs. 

Targeting the Mouse Vector to Mouse ES Cells: Venus Fluorescence Detected 

Mouse ES cells were electroporated with the linearised mouse Rosa26 targeting vector, performed 

by Dr Alena Pance (Wellcome Trust Sanger Institute, Cambridge). Low level fluorescence was 

observed in some cells. Although the fluorescence was patchy this provided important experimental 

evidence that the construct and TET components were functional in mouse ES cells (data not 

shown). 
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Targeting Vector 1 to Human iPSCs: No Venus Fluorescence Detected 

Following the promising results from the mouse cells, human Vector 1, was tested in two iPSC lines. 

The results of two experiments are summarised in Table 3.8. 

Condition Total number of clones after 
selection 

Fluorescence after induction 

S4 control (-TALENs) None - 

BobC control (-TALENs) None - 

S4 9 None 

BobC 7 None 

Table 3.8 Summary of testing Vector 1. 

None of the selected clones in either iPSC line were fluorescent after doxycycline induction. Reagent 

issues were ruled out, as fresh stocks of both puromycin and doxycycline were used. Results from 

the mouse vector targeted to mouse ES cells suggested that the TET components were functional, 

meaning that the reason for lack of fluorescence in this case might be human iPSC-specific, rather 

than a problem with the vector. 

rTTA Not Expressed Under AAVS1 Endogenous Promoter 

In order to understand the lack of fluorescence in the transfected cells, we first verified that the 

AAVS1 promoter was active and that there was expression of the rTTA gene. Clonal wells of 

puromycin resistant colonies were collected, and expression levels of rTTA were assessed by qPCR. 

This analysis revealed extremely low levels of rTTA with the highest expression value being 0.006 

relative to HMBS (Fig. 3.1A). The average Ct value for rTTA was 9 cycles higher than for HMBS (34.6 

compared to 25.5). This finding led to the conclusion that the targeted AAVS1 promoter was not 

strong enough to drive expression of sufficient levels of rTTA. These findings are consistent with 

those of Matthias Pawlowski (a PhD student at the time in Dr Mark Kotter’s lab at the Laboratory for 

Regenerative Medicine), who had also been working on targeting the AAVS1 locus with an inducible 

TET3G vector. 
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Fig. 3.1 Vector 1 targeted iPSCs do not express rTTA. Data presented here is from BobC iPSC clones, 

after targeting with Vector 1 and puromycin selection. A) qPCR data to show relative quantification 

values of rTTA expression relative to HMBS of 7 targeted clones. B) Light and fluorescent images 

overlayed of targeted iPSCs show Venus expression in only a few cells after rTTA rLV transduction 

and induction with doxycycline. N=1. 

To further demonstrate that the lack of rTTA expression was the reason for not observing Venus 

fluorescence, and to verify that the remaining components of the vector were functional, targeted 

cells were transduced with rTTA lentivirus. The lentivirus used was a 2nd generation rTTA, not 

identical in sequence to the rTTA used in Vector 1, but believed to be compatible with the 3rd 

generation TRE. After doxycycline induction, the level of fluorescence observed was not as high as 

expected and not observed in all cells (Fig. 3.1B). There may be a number of reasons for this; poor 

transduction efficiency, the polyclonal nature of the wells, or rTTA2G-TET3G compatibility. 

Importantly, however, this experiment demonstrated that the remaining components of the 

construct (the TRE promoter and H2BVenus reporter gene) were functional in iPSCs. Additionally, it 
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was observed that upon removal of doxycycline Venus fluorescence was lost, showing the system 

was doxycycline responsive. 

Ef1α Promoter: Resolving rTTA Expression 

After rTTA was found not to be expressed under the AAVS1 endogenous promoter, the decision was 

made to put rTTA under the expression of the EF1α promoter, shown previously to be a strong 

exogenous promoter in many cell types (Qin, 2010). At this stage a second major change was also 

made to Vector 1. PGK has previously been reported to be a bi-directional promoter (Johnson, 

1990), thus to avoid unwanted transcriptional interference, the PGK_Puro component was replaced 

with a Blasticidin resistance ORF. Blasticidin resistance expression would be put under the control of 

the endogenous AAVS1 promoter, replacing the rTTA component. The blasticidin ORF vector was 

kindly shared by Professor Rudolph Jaenisch (The Whitehead Institute and Department of Biology at 

M.I.T, Cambridge MA). The replacement vector, Vector 2, therefore contained an EF1α promoter to 

drive rTTA expression, a blasticidin selection gene driven by AAVS1 endogenous promoter, as well as 

the marker H2B-Venus.   

An immediate issue with selection was observed when targeting iPSCs with Vector 2. After two 

experiments, in two iPSC lines (BobC and S4), virtually nothing survived in the test conditions 

(+TALENs). The maximum number of selected colonies obtained was 4, which were not checked for 

fluorescence. TALEN targeting should have an efficiency of approximately 50%, therefore the lack of 

cell survival lead to doubts about the correct expression of the blasticidin resistance gene. Steps 

taken to clone the blasticidin resistance ORF were thoroughly re-checked and concluded that a 

Kozak sequence, removed during cloning steps of Vector 2, may be necessary for its expression.  

The Kozak sequence was restored, and two new vectors to separate the TET components were 

generated, giving the possibility to target them to separate alleles, or even different loci, if necessary 

should the all-in-one system fail. Thus an rTTA only component (Vector 3), a TRE only component 

(Vector 4) and a new all-in-one containing both rTTA and TRE components (Vector 5), were 

generated. After restoring the Kozak sequence, Vectors 3, 4 and 5 were initially tested in 293T cells 

to quickly assess if cloning of the EF1α promoter had been successful in restoring rTTA transcription. 

The results of 2 experiments, one to test the separate components (Vectors 3+4) and one to test the 

all-in-one vector (Vector 5) have been combined in Fig.3.2. No Venus expression was observed from 

non-transduced cells (condition A-data not shown), as expected. Venus fluorescence was seen in 

many cells transduced with the separate and all-in-one vectors (conditions B and D) at low DNA 

concentration (2ng/ml). Higher fluorescence levels were observed in more cells receiving the higher 
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DNA concentration (conditions C and E). This experiment indicated that rTTA was now being 

transcribed under the EF1α promoter and that the TRE_H2bVenus responder element was 

functional, as inducible expression of Venus had been observed.  

       

Fig. 3.2 rTTA expression is restored under the EF1α promoter. 293T cells were transduced with the 

Vectors 3+4 in combination, or Vector 5 only, before induction with doxycycline. The conditions 

tested are shown, with relative fluorescent microscope images. Venus fluorescence was detected in 

B and C, transfected with Vectors 3+4 (separate TET components), and D and E, transfected with 

Vector 5 (all-in-one vector). N=1. 
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Vectors 3, 4 and 5 in iPSCs: Venus Fluorescence Observed despite Low Targeting Efficiency  

Having determined that rTTA was now being expressed under the EF1α promoter, iPSCs were 

electroporated to test that expression of the blasticidin resistance gene had been restored by 

replacing the Kozak sequence. The results of 4 separate experiments are summarised in Table 3.9. 

Condition Number of experiments 
performed 

Number of clones after 
selection 

Fluorescence after 
induction 

Vectors 3+4 control 
(-TALENs) 

1 None - 

Vectors 3+4 1 BobC=2, S4=3 None 

Vector 5 control 
(-TALENs) 

3 BobC=6, S4=0, Qolg=5 1 clone for BobC 
and Qolg 

Vector 5 3 BobC=8, S4=0, Qolg=8 2 BobC clones 

Table 3.9 Summary of testing Vectors 4-6. 

From the separate vectors (Vectors 3+4), a total of 5 clones survived selection but no fluorescence 

was observed after induction. Genotyping PCRs were performed on Vector 5 targeted and selected 

clones, to check correct integration. A large number of primers and conditions were tested and 

although most clones were unsuccessful, one BobC clone had correct PCR products for both 3’ and 5’ 

integration in the AAVS1 locus. Subsequent sequencing of the PCR products for this clone sequenced 

10 bases of the AAVS1 locus outside of the 3’ homology arm of the vector and 14 bases outside of 

the 5’ homology arm, suggesting that this clone was correctly targeted. Fluorescence of this clone, 

and another which genotyping failed in, was heterogeneous, with approximately 50% of cells visibly 

green. After 8 days of induction, doxycycline was removed to passage cells. When it was re-added, 

the cells were no longer fluorescent, suggesting the inserted vector had been silenced in targeted 

clones. An alternative explanation could be that non-GFP cells carrying genetic abnormalities had a 

growth advantage and were selected for over this time. An additional observation in this experiment 

was the number of colonies surviving selection was still sub-optimal, compared to what was 

expected if both the TALEN targeting and the blasticidin selection were functioning efficiently. For 

control cells to be surviving and fluorescent, at a similar efficiency to targeted cells, suggested that 

the TALEN targeting was inefficient- as control wells would represent the efficiency of HR in iPSCs. 

The Optimized Inducible Overexpression System 

In view of the problems with potential silencing and low colony numbers experienced with our own 

vectors, we opted to try the system developed by Matthias Pawlowski, termed the OPTi-OX system 

(Pawlowski M, 2017 and Bertero A, 2016, patent 1619876.4). This system uses TET-ON 3G and 
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successfully achieved induction of different genes at different time-points in a number of iPSC lines. 

The major differences between the OPTi-OX system and the one I had developed, was that the rTTA 

and TRE components are targeted separately, to two different genomic safe harbours, using 

CRISPR/Cas9 nickase (Cas9n) or zinc finger nucleases (ZFNs), respectively. A vector containing a CAG 

promoter to drive the expression of rTTA is targeted to the human Rosa26 locus and a TRE-driven 

responder vector is targeted to the AAVS1 locus. The CAG promoter drives a more robust and higher 

rTTA expression compared to the endogenous Rosa26 promoter or exogenous EF1α promoter 

(Pawlowski M, 2017). A number of stem cell lines were available, that had been genotyped and 

confirmed positive for the homozygous insert of the rTTA vector. These lines were shared with us, in 

order to target my responder vector containing TRE_H2bVenus (Vector 4) to the AAVS1 locus. Work 

from this point was undertaken with the advice and guidance of Matthias Pawlowski, as well as 

Alessandro Bertero (a PhD student at the time in Ludovic Vallier’s lab) and Daniel Ortmann (a 

postdoc in the Vallier lab), who had helped establish the OPTi-OX system. 

Three iPSC lines shared by Dr Pawlowski, which had been targeted and genotyped for a homozygous 

rTTA integration in the Rosa26 locus (H9, BBNX and Bob rTTA_Rosa26 lines), were electroporated 

with Vector 4. The results of this experiment are described in Table 3.10.  

rTTA_Rosa26 line tested: Number of clones after selection Fluorescence after induction 

H9 0 - 

Bob 0 - 

BBNX 3 1 fluorescent colony 

Table 3.10 Testing Vector 4 in rTTA_Rosa26 iPSC lines. 

Both the H9 and Bob lines resulted in no colonies after blasticidin selection, while BBNX gave rise to 

3 colonies. After doxycycline induction, only one colony was fluorescent, with approximately 90% of 

cells displaying fluorescence. After a further 10 days in doxycycline, this clone had almost no 

fluorescent cells visible. This experiment led further support to the hypothesis that silencing was 

occurring to a component in our inducible system. Or alternatively highlighted that outgrowth of a 

genetically abnormal clone was occurring. The OPTi-OX system had been robustly characterised by 

Dr Pawlowski and silencing of the rTTA component of these lines seemed unlikely. This suggested 

that the TRE responder element was potentially being subjected to silencing in the AAVS1 locus. The 

low colony survival numbers again highlighted a targeting or selection issue.   

A second experiment was performed using the Amaxa 4D rather than the Amaxa II machine. Due to 

concerns regarding degradation of large vectors, >10kb, by the former, this machine had not be 

tested previously for the larger Vectors 1 and 2. Alongside targeting Vector 5 (all-in-one), a GFP 
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responder (Vector 7) and the associated AAVS1 ZFN’s were tested. Two rTTA_Rosa26 lines were 

tested, Bob and BBNX. The results of this experiment are summarised in Table 3.11. 

rTTA_Rosa26 line tested: Number of clones after 
selection 

Fluorescence after induction 

Bob + Vector 5 + TALENs 0 - 

BBNX + Vector 5 + TALENs 4 2 fluorescent colonies 

Bob + Vector 7 + ZFNs 8 All fluorescent 

BBNX + Vector 7 + ZFNs 10 All fluorescent 

Table 3.11 Summary of testing Vectors 5 and 7 in rTTA_Rosa26 iPSC lines. 

After selection, only 4 colonies survived after targeting with Vector 5 in the BBNX line, while none 

survived in the Bob line. The number of colonies surviving after targeting with Vector 7 was higher, 

with 8 in Bob and 10 in BBNX. After induction with doxycycline these clones showed a striking 

difference between the TALEN and ZFNs conditions. Firstly, only 2 of the TALEN clones were 

fluorescent, whereas all 18 ZFN clones were. Secondly, the 2 TALEN colonies lost fluorescence within 

4 days of doxycycline induction, whereas the ZFN clones remained very homogenously fluorescent 

for 25 days+ of induction. 

A Vector 7 targeted BBNX clone was split into 2 wells, after 8 days of induction. One well continued 

to have fresh doxycycline added daily (+Dox, green), and the second had doxycycline removed at the 

time the cells were split (-Dox, blue). Fig 3.3 shows the percentage of GFP positive cells, gated on 

DAPI negative viable single cells, at different time points. A negative control, iPSCs from the same 

clone which never received doxycycline, is also shown (No Dox, red). After 3 days without 

doxycycline, the expression of GFP remained as high for the –Dox condition, as the +Dox condition 

(Fig 3.3A). After 7 days, GFP expression in the –Dox condition had fallen to the same level as the 

negative control. Fluorescence remained high for the +Dox condition (Fig 3.3B). After 14 days, the 

expression of GFP follows the same pattern as was observed after 7 days for the No Dox, +Dox and –

Dox conditions. After the re-addition of doxycycline to the –Dox condition for 3 days (purple), GFP 

expression increased to the same level as the +Dox condition (Fig 3.3C). The number of cells in the 

+Dox condition dramatically dropped compared to the NT and – Dox condition. Viability was just 

2.2% for the +Dox condition after 7 days, compared to 66% and 50% for the –Dox and NT conditions 

respectively. This might be due to toxicity of sustained high levels of GFP in cells (Liu et al. 1999), or 

to Dox toxicity over time.  

Fig. 3.3D shows representative fluorescent microscope images of loss and gain of GFP expression, 

confirming inducibility of GFP using the OPTi-OX system in iPSCs. There was no evidence of silencing 

of GFP, as the expression remained strong and homogenous in the clones (40x, +Dox condition). 
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Based on this experiment, with a higher targeting efficiency seen for the ZFNs and GFP responder 

vector, compared to the TALENs and Venus responder, we decided to switch to the OPTi-OX system 

to engineer a forward programming iPS cell line.  

          

Fig. 3.3 GFP expression of Vector 7 targeted BBNX iPSCs, after doxycycline induction. The percentage 

of viable cells expressing GFP is shown for different time points. A) After 3 days +/- Dox. B) After 7 

days –Dox. C) After 14 days of initial +/- Dox. Targeted iPSCs which never received doxycycline= No 
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Dox (red), Doxycycline removed= -Dox (blue), Doxycycline maintained= +Dox (green), Doxycycline re-

added to –Dox condition 11 days after doxycycline was removed= Dox re-added (purple). D) GFP 

fluorescence images observed in +Dox condition, -Dox after 6 days, and Dox re-added for 4 days. All 

images 10x optical zoom, 40x zoom for in-lay. N=1. 

Testing rTTA iPSC Lines in Lentiviral MK Forward Programming: BBNX Produces MKs 

To test if the GFP targeted rTTA lines available (Bob and BBNX) could produce MKs, a lentiviral FoP 

experiment was performed. Additionally, to test if the system was immune to silencing, GFP 

expression was measured by flow cytometry in the presence of doxycycline at multiple time points. 

Fig. 3.4 shows the results of FoP in these two rTTA lines. The MFI of GFP remained high throughout 

the experiment for both lines in the +doxycycline condition (Fig. 3.4A). No GFP was expressed in the 

–doxycycline conditions. In the BBNX_GFP line the number of CD41+ MK cells expanded in both the 

+ and –doxycycline conditions, while the Bob_GFP line failed to produce a high number of MKs (Fig. 

3.4B). In the induced BBNX_GFP line the percentage of GFP+/CD41+ cells increased form 0% at day 

2, to 81.5% at day 6 (Fig. 3.4C). Together, these results show that the Bob_GFP line does not FoP to 

produce MKs, seen by the absence of CD41+ cells, while the BBNX_GFP line does. GFP expression in 

induced cells is immune to silencing during FoP, seen by high GFP MFI and GFP+ cell percentage 

maintained throughout the experiment. Another important observation is that doxycycline addition 

to FoP media did not appear to impede MK production, seen by similar MK cell numbers produced in 

+ and –Dox conditions. Based on this experiment, the BBNX_rTTA_Rosa26 line was targeted with the 

PC3 construct into the AAVS1 locus, resulting in the line BBNX_rTTA_Rosa26_PC3_AAVS1 

(BBNX_PC3).  
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Fig 3.4 BBNX_GFP produces MKs, while Bob_GFP does not. After GFP targeting to the AAVS1 locus in 

two Rosa26_rTTA iPSC lines (BBNX and Bob), forward programming was performed on the lines in 

MK medium (TPO + SCF in CellGRo), to asses if the two lines could still programme after two rounds 

of genome targeting. The lines were forward programmed in the presence of absence of doxycycline 

(Dox) throughout to test for Dox toxicity. A) GFP mean fluorescent intensity (MFI) at multiple time-

points for both lines, forward programmed with and without 1μg/ml Dox. B) MK (CD41+/CD235-) 

cell number at the same time-points of FoP. C) Percentage of GFP+/41+ cells in BBNX_GFP. *Day 9 

data missing for Bob_GFP due to mechanical fault when acquiring data. N=1. The key for all graphs is 

the same. 
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BBNX-PC3 line: Induced Forward Programming Fails to Produce MKs After Early Silencing Event 

Identified 

The BBNX_PC3 iPSC line was maintained for several months, undergoing regular passaging. To test 

whether the OPTi-OX system was robust, with no leakiness (no TG expression in the absence of 

doxycycline), two pluripotency markers (TRA160 and SSEA4) were used to stain BBNX_PC3 iPSCs. 

The line stained 99.7% double positive for these markers, showing it maintained pluripotency in 

normal iPSC maintenance media (Fig. 3.5A). This line was induced to express the inserted TGs using 

doxycycline in order to achieve forward programming, termed inducible FoP (iFoP). Six 

concentrations of doxcycyline were tested (0, 0.1, 0.5, 1, 5 and 10μg/ml) to test if doxycycline dose 

would affect iFoP efficiency and to try and establish the optimal concentration for use. Starting from 

2.5E+04 cells at day 0, the highest cell expansion was observed at day 5, for all conditions, except 

the 10µg/ml (Fig. 3.5B). By day 10, all conditions had decreased in cell number. The total percentage 

of CD41+ cells was highest at day 5 for most +Dox conditions, before decreasing in all conditions by 

day 9 (Fig. 3.5C). The percentage of single positive GFP cells ranged from 51-44% at day 2 for all + 

doxycycline conditions, while the background GFP percentage was just 0.67% in the 0μg/ml 

condition. At day 9, the percentage of GFP cells was reduced for all conditions (Fig. 3.5D). 

These results suggest failure to induce FoP in BBNX_PC3. In all but one of the doxycycline conditions 

cell number was lower than in the negative control (0μg/ml), showing a lack of cell proliferation. The 

percentage of CD41+ cells was extremely low in all induced conditions and reduced over time. GFP 

percentage reduced dramatically between days 2-5 for all induced conditions. Together, this 

suggested an early silencing event of the FoP TGs, resulting in a failure to switch on the endogenous 

TFs, which prevented FoP.  

To test the hypothesis of an early silencing event, qPCR was performed on cells at day 2, 4 and 7, for 

doxycycline concentrations of 0, 0.5 and 1μg/ml. rTTA and PC3 TG expression were measured to 

check for levels of mRNA transcripts relative to the house keeping gene HMBS. rTTA mRNA, which 

should be ubiquitously expressed from the Rosa26 locus, was present in all conditions at all time 

points tested, as expected (Fig. 3.5E). PC3 TG expression was absent in the 0μg/ml condition, at all 

time points, as expected. In the 0.5 and 1μg/ml conditions, PC3 TG expression was detected at day 2, 

with expression values of 11.8 and 9 relative to HMBS, respectively. The expression was reduced by 

day 4, and further still at day 7 resulting in final expression values of 0.03 relative to HMBS (Fig. 

3.5F). This result supported the hypothesis that the BBNX_PC3 inducible line had experienced an 

early silencing event after doxycycline induction, preventing inducible FoP from occurring 

successfully.  
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Fig 3.5 BBNX_PC3 iPSC line is stable but does not forward programme after doxycycline induction. 

The BBNX_PC3 inducible iPSC line was forward programmed by induction with different 

concentrations of doxycycline (Dox), in MK media (TPO + SCF in CellGro). 2.5E+04 cells were seeded 

24 hours prior to Dox induction. At different early time-points cells were collected for flow 

cytometry analysis and RNA taken for qPCR. A) BBNX_PC3 iPSCs, maintained in iPSC media for 

several weeks, stain double positive for two pluripotency markers, SSEA4 and TRA-160. B) Total cell 

number shown for a range of doxycycline concentrations on days 2, 4, 5 and 9 of iFoP. C) Total 

percentage of CD41+ cells at days 2, 5 and 9. D) Total percentage of GFP+ cells at days 2, 5 and 9. E) 

qPCR data shows rTTA mRNA expression at days 2, 4 and 7 from cells induced with 0, 0.5 and 1μg/ml 
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Dox. F) qPCR data shows PC3 transgene mRNA expression at days 2, 4 and 7 from cells induced with 

0, 0.5 and 1μg/ml Dox. qPCR data shows relative quantification (RQ) values, relative to housekeeping 

gene HMBS. N=1. 

The maximum GFP expression at day 2 had been lower than expected, at 50% (Fig. 3.5D), which lead 

to concerns that the line tested was not clonal. To test this, the line was sub-cloned and an iFoP 

experiment performed on 11 sub-clones, along with the original clone as a control. Fig. 3.6 shows 

the results for this experiment. The total cell number at day 13 for the original clone +Doxycycline 

was 9.8E+0.3, and the average total for the 11 sub-clones was similar, at 8.6E+0.3 (Fig. 3.6A). The 

percentage of CD41+ and GFP+ cells was similar for the induced original clone, and for the sub-

clones (Fig. 3.6B). Due to similar cell numbers and percentages between the original and sub-cloned 

lines, the evidence did not suggest that the original line was polyclonal. Repeat iFoP experiments in 

BBNX_PC3 (n=7, data not shown) all resulted in failure to induce FoP.  
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Fig 3.6 Inducible forward programming on 11 sub-clones of BBNX-PC3 did not reveal the original 

clone to be polyclonal. The BBNX_PC3 line was sub-cloned, with 11 sub-cones grown up from single 

cells. Inducible FoP was performed in the original line, plus the sub-clones, with 1μg/ml doxycycline 

(Dox), in MK media (TPO + SCF in CellGro). Flow cytometry was performed at day 13 of iFoP. A) Day 

13 total cell number of the control clone (original clone from which the 11 sub-clones were 

established) in the absence or presence of doxycycline (-Dox, +Dox respectively), alongside the 

average cell number of 11 sub-clones in the presence of doxycycline (+Dox subclones). B) Day 13 

CD41+ and GFP+ cell percentages of +Dox conditions only. There were <400 viable cells in –Dox 

condition, therefore flow cytometry analysis on so few cells is not accurate and percentages are 

misleading. Error bars represent standard error of the 11 sub-clones.  
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Next, two in-house lines, used routinely to FoP (BobC and FFDK), were generated harbouring 

homozygous inserts for rTTA in Rosa26 and PC3 in AAVS1. They were also forward programmed by 

inducing TG expression, to try and understand whether the silencing event observed in BBNX_PC3 

was an iPSC line-specific issue or a TG-specific issue, since GFP had not been silenced in BBNX_GFP 

when forward programmed with lentivirus (Fig 3.4). 

Testing Induced Forward Programming in Different iPSC Lines: BobC-PC3 Produces Mature MKs 

Fig. 3.7 shows the iFoP average of 2 individual clones from the BobC_rTTA_Rosa26_PC3_AAVS1 line 

(BobC_PC3) across a doxycycline concentration curve (0.2-1μg/ml). Representative dot plots of flow 

cytometry analysis performed at day 9, show that in the absence of Dox this line does not acquire 

expression of CD41a or CD235a, two markers of FoP. Due to the number of cells which did acquire 

expression of either of these markers (0.01% of the totoal population) no further data is shown for 

the –Dox condition, as flow cytometry analysis is not accurate on so few cells and to show 

percentages based on this would be misleading. At day 9 the average bi-potent progenitor and MK 

cell number increased with increasing doxycycline concentration. The number of bi-potent 

progenitors produced was significantly higher in 1μg/ml compared to 0.2μg/ml (P=0.03). 

Erythroblasts showed an inverse trend, decreasing in number as doxycycline concentration 

increased (Fig. 3.7B). Cell percentages follow the same pattern, with higher bi-potent and MK cell 

percentages in high doxycycline, and high erythroblast percentage in low doxycycline (Fig. 3.7C). 

At day 9 the 1μg/ml condition was split into two wells, with one maintained in doxycycline and one 

removed from treatment. At day 20 the mature MK cell number remained low for all conditions, 

with a maximum of 7E+05 MKs in 1μg/ml, but by day 29 mature MK cell number had increased. The 

lowest average number, 7.7E+06, was seen for the lowest doxycycline concentration. The highest 

cell number, 2.6E+07, was seen for the 0.8μg/ml condition, but the standard deviation for this is 

large. The condition removed from doxycycline had the second lowest cell number, with 7.8E+06 

MKs (Fig. 3.7D). Day 20 percentages of mature MKs were above 40%, and had increased to over 80% 

in all conditions by day 29, showing good maturation and an increase in mature MK cell number (Fig. 

3.7E). 
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Fig 3.7 BobC_PC3 efficiently produces mature MKs by inducible forward programming. 2 clones of 

the iPSC line BobC_PC3 were forward programmed in MK medium (TPO + SCF in CellGro), with the 

addition of doxycycline (Dox) every 2 days at varying concentrations. A) Day 9 representative dot 

plots show the expression of CD41a and CD235a of the line forward programmed with no Dox (-

Doxycycline) and with 1μg/ml Dox (+Doxycycline). B) Day 9 cell number of bi-potent progenitors 

(CD235+/CD41+) , Erythroblasts (CD235+/CD41-) and MKs (CD235-/CD41+), in increasing doxycycline 

concentrations. (P=0.03 by two tail t-test versus 0.2μg/ml). C) Day 9 cell percentages. D) Number of 
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mature MKs (CD41+/CD42+) at days 20 and 29 of iFoP. E) Percentages of mature MKs. ‘1/-’ 

represents the condition in which doxycycline was removed at day 9. Error bars represent range of 

data, n=2 (biological replicates).  

Fig. 3.8 shows qPCR analysis of cells from day 9 and 29, for endogenous FLI1, GATA1 and TAL1 and 

PC3 TG, with their expression shown relative to the house keeping gene MDH1. At day 9 the lowest 

doxycycline condition expressed no FLI1 and had the highest GATA1 and TAL1 expression levels. The 

remaining conditions all had similar levels of endogenous expression (Fig. 3.8A). By day 29, when the 

percentage of mature MKs was similar for all conditions, the expression level of all three 

endogenous genes was also similar, with FLI1 showing the largest increase since day 9 (Fig. 3.8B). 

PC3 TG expression was low at both time-points, with expression values ranging from 0.06-0.25 

relative to MDH1, and showed a higher level of variance at day 9. At day 29, expression followed a 

dose response to doxycycline concentration. No TG expression was detected in the –doxycycline 

condition at day 29, showing that expression of the TGs is robustly ceased after doxycycline is 

removed from the system (Fig. 3.8C). 
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Fig 3.8 BobC_PC3 gene expression during inducible forward programming. qPCR was performed on 

cells collected from one clone of BobC-PC3 of the inducible MK-FoP experiment, described in Fig 3.7. 

A) qPCR data from day 9 to show endogenous FLI1, GATA1 and TAL1 expression in increasing 

doxycycline concentrations. B) qPCR data from day 29 to show endogenous gene expression. C) 

qPCR data of PC3 TG expression at days 9 and 29. ‘1/-’ represents the condition in which doxycycline 

was removed at day 9. All values shown are the relative quantification, expressed relative to the 

housekeeping gene MDH1. 0.2μg/ml data not shown at day 29 due to technical error. No dox control 
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condition was not included for qPCR analysis, due to these cells not having forward programmed and 

their culture discontinued at day 9. 

Induced Forward Programming Efficiently Produces MKs in TPO and Erythroblasts in EPO 

To test whether iFoP produced a true bi-potent progenitor and could give rise to erythroblasts, 

another iFoP experiment was performed across a doxycycline concentration curve in both TPO and 

EPO. Different iPSC seeding methods were also tested to see whether seeding as clumps or single 

cells would improve iFoP efficiency. Graphs show the results from just the single cell seeding 

method, results from the clump seeding method were very similar, showing the same trends, but 

resulted in fewer cells overall. Fig. 3.9 shows the day 8 results for TPO and EPO. Similar results to the 

previous experiment were observed in TPO, with the lowest concentration (0.2μg/ml) of doxycycline 

resulting in the highest number of erythroblasts, and higher concentrations resulting in a higher 

number of bi-potent progenitor and MK cells (Fig 3.9A). Day 8 cell percentages show a similar 

pattern, with higher concentrations showing improved iFoP efficiency in TPO (Fig. 3.9B). 

 In EPO, the 0.2μg/ml condition again resulted in the highest erythroblast cell number, with the 

number of erythroblasts almost double in EPO compared to TPO. In all doxycycline concentrations 

erythroblasts contributed highest to the overall cell number (Fig. 3.9C). The highest percentage of 

erythroblasts was in the 0.2μg/ml condition with more than 70% of cells (Fig. 3.9D). All conditions 

were split at day 8, into + and –doxycycline, as the previous experiment showed doxycycline was no 

longer essential after cells had been forward programmed, we wanted to test whether this was the 

case for cells in EPO as well as TPO. 
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Fig 3.9 Inducible forward programming produces different cell outcomes when BobC_PC3 is 

programmed in TPO or EPO. BobC_PC3 was forward programmed in MK medium (TPO + SCF in 

CellGro) or erythroblast medium (EPO, IL-3, insulin, transferrin + SCF in CellGro) from day 2 onwards 

of FoP, after 2 days of mesoderm induction. Both medium conditions were performed in an 

increasing concentration of doxycycline (Dox), added every 2 days to medium. Flow cytometry was 

performed at day 8. A) Day 8 cell numbers show bi-potent progenitors (CD235+/CD41+), 

Erythroblasts (CD235+/CD41-) and MKs (CD235-/CD41+) in TPO. B) Day 8 cell percentages in TPO. C) 

Day 8 cell numbers in EPO. D) Day 8 cell percentages in EPO. N=1. 
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Fig. 3.10 shows the results for mature MKs in TPO and erythroblasts in EPO at day 19. At day 19, the 

number of mature MKs was highest in the highest doxycycline concentration, in both the + and –Dox 

conditions (Fig. 3.10A). The percentage of mature MKs was similar for all conditions (Fig. 3.10B). In 

EPO, the number of erythroblasts was highest in 0.4µg/ml, with cell number higher in the –Dox 

condition (Fig. 3.10C). Erythroblast percentage was very high in all conditions tested (Fig. 3.10D). 

 

Fig 3.10 Removing doxycycline at day 8 does not impede megakaryocyte maturation in TPO or 

erythroblast production in EPO. The experiment described in Fig 3.9 was continued until day 19, 

when flow cytometry analysis was repeated. At day 8 all conditions were split into 2 new wells, one 

which continued to received Dox addition every 2 days (+Dox), and one which no longer received 

Dox (-Dox). A) Number of mature MKs in TPO (CD41+/CD42+) with doxycycline maintained or 

removed at day 8 (+Dox and –Dox respectively). B) Percentage of mature MKs in TPO. Erythroblast 

cell number in EPO (CD235+/CD41-) with doxycycline maintained or removed at day 8 (+Dox and –
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Dox respectively) C) Erythroblast cell number in EPO (CD235+/CD41-) with doxycycline maintained or 

removed at day 8 (+Dox and –Dox respectively) D) Percentage of erythroblasts in EPO. N=1. (no data 

for 0.4 –Dox TPO or 0.2-Dox EPO, due to contamination). 

Induced MKs Maintain High Purity and Cell Number Long Term 

The 1μg/ml Dox condition was split at day 8, to + or – Dox and these conditions were maintained 

long term for approximately 100 days in culture, with flow cytometry performed periodically 

throughout this time-period. Fig. 3.11 shows the results of this long-term experiment. The + and - 

doxycycline conditions behaved extremely similarly in terms of cell expansion. Following an increase 

until day 30, a small drop in cell number was observed, followed by a second period of cell expansion 

(Fig. 3.11A). At around day 65 the -doxycycline condition had expanded more than the +doxycycline 

condition. A maximum expansion of 7508 and 1586 times respectively was seen at day 80. After day 

80 both conditions started to decrease in cell number and the cultures crashed not long after day 

100. The percentage purity of CD41+/CD42+ cells was above 90% for all time-points after day 19 for 

both conditions, until day 90 when it dropped just below 90% (Fig. 3.11B).  
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Fig 3.11 Inducible forward programming of BobC_PC3 produces long-term expanding megakaryocyte 

cultures of high purity in TPO. The 1μg/ml TPO condition (described in Fig 3.9) was split at day 8 to 

continue Dox treatment (+Doc) or stop Dox treatment (-Dox). These two conditions were then 

maintained in MK medium (+ or – Dox) until day 90 of FoP.  A) Mature MK (CD41+/CD42+) cell fold 

increase relative to day 0 iPSC cell input shown over 90 days of culture of the 1μg/ml doxycycline 

condition, with sustained or removed doxycycline after day 8 (iFoP +Dox and iFoP -Dox respectively). 

Highest cell fold indicated by values at day 80. B) MK purity (CD41+/CD42+ percentage) over long-

term iFoP culture. 

Platelet-like particle assays were performed on the long-term cultures of iFoP MKs, at day 80 by Dr 

Annett Müller. Fig. 3.12B shows the results compared to donor platelets and MKs produced by 

lentivral FoP. While donor platelets produce 99% CD42+/Calcein AM+ particles, the levels are lower 

for the iFoP (+ and – Dox)and lentiviral FoP MKs but they are comparable to each other, with the 

iFoP derived MKs producing a less abundant double negative population. This shows that iFoP MKs 

are capable of producing platelet-like particles, in a similar manner as lentiviral FoP MKs. 
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Fig 3.12 Long term inducible forward programmed megakaryocytes capable of producing platelet-

like particles in a similar manner to lentiviral forward programmed megakaryocytes. A) 

Representative dot plots show cell gating strategy used, with platelet size determined by cells 

present in a donor platelet bag (left) alongside long-term (day 80) iFoP+Dox cells (right). B) 
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Representative flow cytometry CD42/Calcein-AM dot plots show double positive platelet-like 

particle cell populations for donor platelets, lentiviral FoP-MKs and iFoP-MKs (+ and – doxycycline 

after day 8). Gated on single, DAPI-ve, platelet sized cells. Data generated by Dr Annett Muller. 

Characterising Maturity of Induced Erythroblasts: Cells Mature and Capable of Enucleating  

To further characterise the maturity of erythroblasts produced by iFoP at day 30 and 37, two 

maturation markers, CD71 and CD36, were used to stain cells, in addition to CD235. Only data from 

the 0.4μg/ml conditions is shown, as this condition had been deemed the best for producing 

erythroblasts due to high cell numbers. Staining double positive for CD71 and CD36 indicates a less 

mature phenotype, while the loss of both markers indicates the phenotype of an erythrocyte (Mao 

B, 2016). At day 30, the percentage of double positive CD71/CD36 cells was low for + and -Dox (Fig. 

3.13A). 22% of cells in +Dox stained single positive for CD71, which most likely reflects the pro-

erythroblast or polychromatophilic erythroblast, which stain CD71high/CD36low in normal blood cells. 

A higher percentage of cells, 48%, had this phenotype in the –Dox condition. The highest percentage 

of mature cells, phenotypically the same as a mature erythrocyte (CD71-/CD36-), is 76% in 

+doxycycline compared to 46% in the –doxycycline condition. Cytospin images (Fig 3.13 B/C) show 

enucleated erythrocytes at day 29 and 35 of culture, confirming the maturation status observed by 

flow cytometry. 
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Fig 3.13 Erythroblasts produced by inducible forward programming are capable of maturing and 

enucleating in EPO medium. The 0.4μg/ml doxycycline was split at day 8 and cultured in EPO with 

Dox (0.4) or without Dox (0.4/-) after this time point. A) Day 30 erythroblast maturation status of 

CD235+ cells, determined by staining with CD71 and CD36, shows least mature phenotype (left) to 

most mature phenotype (right). B + C) Cytospin images to show enucleated erythrocytes (arrowed) 

in EPO at day 29 and 35. Scale bar= 20 μm. N=1.  

 

Testing Induced Forward Programming in Different iPSC Lines: FFDK-PC3 Fails to Produce a High 

Volume of MKs  

The second in-house line generated, FFDK_rTTA_Rosa26_PC3_AAVS1 (FFDK_PC3), was tested across 

a concentration curve of doxycycline. Fig. 3.14 shows the results of two experiments. At day 9 the 

condition with the highest cell number was the negative control, 0μg/ml doxycycline. As the 

concentration of doxycycline increased, the number of cells decreased, in an inverse manner (Fig. 
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3.14A). The percentage of CD41+ cells was low in 0μg/ml and 0.1μg/ml doxycycline, less than 2% for 

all cell types. At 0.2μg/ml and above CD41+ cells were present and the percentage increased with 

increasing doxycycline concentrations. A maximum percentage of bi-potent progenitors was 

observed in 0.4μg/ml, at 67.8%. In 0.6μg/ml the highest percentage of erythroblasts and MKs were 

observed, 6.7% and 21.6% respectively (Fig. 3.14B). Representative dot plots show 0.1% of cells 

stained CD235+/CD41+ in 0μg/ml doxycycline, compared to 16.7% in 0.2μg/ml (Fig. 3.14C/D). 

The FFDK_PC3 line appeared to have FoP potential in high concentrations of doxycycline, shown by 

the appearance of CD41+ cells, but the cell number remained extremely low at day 9, without 

recovering over an extended culture period, showing an inability to proliferate. To test whether 

doxycycline toxicity was the reason for lower cell number in higher concentrations, a kill curve was 

performed on the original untargeted FFDK iPSC line. The kill curve showed no toxic effect on FFDK, 

even at the highest doxycycline concentration, 1μg/ml. Next, minor adjustments were made to the 

iFoP protocol, to reduce the frequency of doxycycline addition, in order to see if this would improve 

cell outcome. However, the altered iFoP protocol was found to be less efficient than the previous 

experiment (data not shown). Finally, to test whether the line had acquired any off-target effect, 

undetected by genotyping, that had rendered the FFDK_PC3 line incapable of forward programming, 

we tested two clones in a lentiviral FoP experiment, to ensure TG overexpression. From these 

experiments very few viable cells remained at day 9 and cell percentages were low (n=3, performed 

by Dr Annett Müller, data not shown). Due to this, we reasoned that the targeted FFDK_PC3 line 

tested is not suitable for iFoP and no longer suitable for lentiviral FoP, most likely due to undesired 

off-target integration of the rTTa or PC3 vector, or due to the survival of a mutated clone offering a 

selection/growth advantage due to low efficiency of electroporation. 
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Fig 3.14 FFDK_PC3 line shows inducible forward programming potential in increasing doxycycline 

concentrations but generates very few cells. A) Day 9 total cell number of a FFDK_PC3 clone in 

increasing doxycycline concentrations. B) Day 9 cell percentages show iFoP populations of bi-potent 

progenitors (CD235+/CD41+), Erythroblasts (CD235+/CD41-) and MKs (CD235-/CD41+) in increasing 

doxycycline concentrations. C) Representative flow cytometry dot-plot from 0μg/ml condition 

showing CD235/CD41 co-staining. D) Representative flow cytometry dot-plot from 0.2μg/ml 

condition. Error bars represent range of data for n=2. When too few (<1000) viable cells were 

available to analyse, error bars are absent (n=1) or the condition is not shown. 
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Discussion 

This Results Chapter has described the work of designing and testing various vectors for targeting 

the TET-ON components to the AAVS1 and Rosa26 genomic safe harbours of human iPSCs. Several 

vectors initially tested were found to be either non-functional or ultimately were found to be 

silenced. To overcome the issue of silencing, the two TET components (rTTA and TRE) were 

separately targeted to each of the previously mentioned genomic safe harbours, using the OPTi-OX 

system. Once inserted into three iPSC lines, induced FoP (iFoP) was performed. Only one of these 

lines, BobC_PC3, was able to iFoP efficiently, highlighting iPSC inter-line variability. BobC_PC3, when 

induced to FoP in TPO maintained a highly pure population of mature MKs in long-term culture (Fig 

3.11). In EPO, a highly pure population of erythroblasts was produced, with evidence of maturation 

and enucleation (Fig 3.13). Initial doxycycline concentration and iPSC seeding method altered cell 

number outcome, and has been optimised for TPO and EPO culture conditions. It was found that 

doxycycline was not required after 8 days of iFoP, as cells by this time have switched on endogenous 

gene transcription and are already forward programmed (Fig. 3.8). 

rTTA Not Expressed Under AAVS1 Promoter 

After initial experiments with Vector 1 resulted in low level, patchy Venus expression as a result of 

very low or no rTTA expression (Fig 3.1), we hypothesised that the AAVS1 endogenous promoter 

targeted was not strong enough to drive sufficient rTTA expression. However, results from Vector 2 

suggested an inefficient splice acceptor was being used in the vector, which was identical to the 

splice acceptor that had been used in Vector 1 to splice the endogenous promoter and rTTA gene 

fragment. Thus, the low rTTA expression observed was most likely due to the ineffective splice 

acceptor in Vector 1. Interestingly, Matthias Pawlowski independently identified insufficient rTTA 

expression under the same promoter, suggesting that this endogenous promoter is not strong 

enough to drive sufficient rTTA expression, in line with our original hypothesis. 

Venus Expression Silenced in iPSCs, using All-in-One Targeting Vector Strategy 

Despite issues with targeting and/or blasticidin selection, which resulted in sub-optimal numbers of 

clones, the cells that did show expression of Venus with Vector 5 resulted in silencing of expression. 

Cells which survived selection were likely to be targeted correctly, so when Venus expression was 

checked and many cells were found to be non-fluorescent, it is likely that these cells had already 

silenced the inserted DNA. The patchiness of Venus fluorescence can be explained, in part, due to 

the fact that the H2B targets this protein to the histone of cells, thus cells in different stages of the 

cell cycle will show differences in fluorescence (Kanda T, 1998). Due to the fact that the inserts are at 
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the same locus, the difference in fluorescence could also be partly explained by observing a mixture 

of heterozygous and homozygous inserted clones. Nevertheless, the reduction in the number of 

fluorescent cells within a single clone overtime represent a silencing event which cannot be 

explained by fluorescent variability, since each clone was grown from a single iPSC. Due to the 

observed silencing of Venus occurring randomly in cells from a single clone, it is likely that the 

silencing events occurred in a cell-independent manner during cell replication.  

Interestingly, Matthias Pawlowski independently found an all-in-one vector of the OPTi-OX system, 

targeted to the AAVS1 locus, was inefficient for driving TG expression in iPSCs, as this too showed 

evidence of being silenced. This suggests that there is an issue in iPSCs when trying to express rTTA 

and its target, TRE, from the AAVS1 locus. One thought was that this may be due to the size of the 

targeted insert. However, our collaborator Stefania Carobbio used the same AAVS1 TALENs to insert 

a larger insert of 15kb into iPSCs successfully, without observing silencing. These observations 

resulted in the conclusion that the TET components targeted together were leading to a silencing 

event occurring in iPSCs at the AAVS1 locus. 

Optimised Inducible Overexpression System Allows Robust TG Expression During Forward 

Programming 

Due to strict gene regulation in iPSCs, one of the biggest concerns with generating an inducible iPSC 

line was that TG expression could be switched off or silenced in either the iPSC state, as seen with 

the previous all-in-one strategy, or during forward programming. To test this in the OPTi-OX system, 

the BBNX_GFP and Bob_GFP lines were forward programmed with rLVs, with the addition of 

doxycycline. Importantly, GFP expression was observed throughout and was not silenced, showing 

the OPTi-OX system does allow TG expression over the course of forward programming (Fig 3.4), 

crucial for the inducible line with FoP TFs to work. There was a slight reduction in GFP MFI overtime, 

more so for Bob_GFP, but this line failed to forward programme efficiently. The BBNX_GFP line, 

which did produce mature MKs, showed varying MFIs throughout the experiment but this remained 

high throughout. From this we were confident that TGs inserted into the AAVS1 locus would be 

protected from silencing in both the iPSC state and during FoP. 

Next, it was important to establish that the system was in no way ‘leaky’, i.e that there was no 

expression of the inserted TGs at any time when doxycycline was absent. To check this, the 

BBNX_PC3 line was cultured for several months as per routine iPSC maintenance. A pluripotency 

check showed that the line had maintained pluripotency (Fig 3.5) and cell morphology was normal 

and comparable to the original, untargeted BBNX line. Crucially, unwanted spontaneous 
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differentiation (determined by cell morphology change) was not observed in any targeted iPSC lines 

generated with the OPTi-OX system. This is important for showing that this targeting strategy 

generates a stable iPSC line that can be cultured indefinitely and retains the main features of 

pluripotency. This is not only important for providing an easy to use tool for researchers, as the line 

can be frozen, thawed and maintained, while retaining the ability to FoP when required, but this is 

also a crucial requirement for the scaling up of FoP technology.  

Inducible Forward Programming is iPSC-line Dependent 

The first iPSC line described that was targeted with the OPTi-OX system, to induce expression of PC3, 

was BBNX_PC3. This line was unable to iFoP, as a result of a loss of insert or PC3-specific silencing 

event occurring before day 4 (Fig 3.5). This suggests that TG overexpression is required past this 

stage (day 4), in order to allow time for endogenous genes to be switched on, to drive FoP. The loss 

of insert or silencing event must have been due to the nature of the PC3 insert specifically, as the 

BBNX_GFP line had not silenced GFP during FoP (Fig 3.4). This may have been triggered due to the 

larger insert size of the PC3 vector (10.5kb), compared to the GFP only vector (6.6kb). One possible 

explanation is that the larger PC3 insert brought about epigenetic changes at the AAVS1 locus during 

differentiation that GFP alone did not, such as methylation or chromatin remodelling. This in turn 

may prevent the transcriptional machinery from being able to access the promoter at this locus and 

result in a failure to initiate transcription. 

Another targeted line tested, FFDK_PC3, was also unable to iFoP. Interestingly, this line showed 

evidence of increased forward programming potential, compared to BBNX_PC3, as seen by the 

appearance of FoP cells by day 9 (Fig 3.14). This led us to conclude that the PC3 insert had not been 

silenced in this line. However, this line showed poor viability, in three clones, in high doxycycline 

concentrations. Initially, the poor viability was considered to be a doxycycline toxicity issue, 

however, the untargeted FFDK line revealed no evidence of toxicity. This led us to question whether 

something may have occurred in the line during the targeting steps, which had rendered the line 

incapable of producing MKs. This indeed appeared to be the case, as two clones from the FFDK_PC3 

line failed to produce enough MKs to be analysed by flow cytometry when the 3TFs were 

overexpressed using the rLV FoP method. An unwanted off-target event may have occurred resulting 

in poor FoP efficiency, which highlights inter-line variability of iPSCs and should be an important 

consideration for researchers wishing to implement such an inducible system. 

It is essential that we are able to verify the findings shown in this thesis, in other inducible lines in 

the future. It is also important for us to show whether the three TFs within the polycistronic 
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cassette, used to generate the inducible line, have stoichiometric expression and that the proteins 

produced are cleaved as expected. If this is not the case, steps could be taken to modify the 

polycistronic construct, which may be beneficial when testing new inducible PSC lines. 

Inducible Forward Programming Efficiently Produces MKs and Erythroblasts in BobC 

The only targeted line, of the three tested, to successfully produced MKs and erythroblasts by iFoP, 

was BobC_PC3. Multiple clones from this line were induced, showing iFoP is highly reproducible and 

efficient (Fig 3.7 and Fig 3.9). At early time points of iFoP, the overall percentage of cells which have 

acquired CD41, CD235, or both, was higher than at the same time point by rLV FoP. In the highest 

doxycycline condition tested, the average percentage at day 9 was 86.5% (Fig. 3.7B, n=2), compared 

to rLV experiments where the average percentage was 63.1% (Chapter 2, Fig. 2.6B, n=3). The 

increased efficiency in iFoP is most likely explained by the reduced stochasticity at the start of 

experiments, as all cells contain the three TFs, compared to those transduced with rLVs. While the 

efficiency of iFoP is higher, it is not 100%, which could be due to varying levels of rTTA or TG 

expression in individual cells, or that a concentration of doxycycline higher than 1μg/ml might be 

required to achieve 100% efficiency, as a dose response to doxycycline concentration was observed 

(Fig3.7 and Fig 3.9). Higher doxycycline concentrations were only tested in the BBNX_PC3 line, which 

eventually did not iFoP, so the concentration could potentially be further optimised for the 

BobC_PC3 line.  

Another advantage of iFoP over the rLV FoP technique is that cell death is greatly reduced at the 

start of experiments. We know that in rLV FoP any cell not receiving all three TFs will not FoP, and so 

this accounts for some of the cell death seen. Another reason for large cell death is due to cells being 

transduced with too many rLV particles, or due to rLV insertions into regions of the genome which 

are not conducive for cell division.  

The fold increase in mature MKs produced is approximately doubled at day 25 for iFoP experiments, 

with around 1.0E+02 MKs per starting iPSC (Fig 3.11A), compared to the same time point of rLV 

experiments, with just 1.0E+01 MKs per starting iPSC (Moreau T, 2016). Over the long-term iFoP 

culture, the total number of MKs produced was not as high as we have seen previously from rLV 

experiments. However, the long-term experiment has not been repeated yet, and variance in cell 

number could be mostly due to difference in how the cells were handled between different people 

over such a long time period. An alternative explanation is that iFoP cells may not continue to 

proliferate as well over time, and this may be due to the fact that a fixed ratio of 1:1:1 for the TFs is 

already set in these cells. It could be that the rLV setting allows for an altered ratio of TFs in certain 
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cells, which may favour a more proliferative state. So far we do not have enough data from the iFoP 

line to know whether this is the case, although seeing as the effect is seen much later than day 9, 

when we know FoP has already occurred and the inducible line has shown that TGs are no longer 

required after this point, it seems less likely. 

Interesting, the efficiency of iFoP at day 9 did not have any effect on the percentage of cells present 

at day 19/20. It did not matter what the initial doxycycline concentration was, because by day 19/20 

and 29 the percentages of mature MKs in TPO and erythroblasts in EPO were extremely similar, with 

the only exception being the 0.2μg/ml condition in TPO (Fig 3.7D, 3.10A and 3.10C). Even more 

interesting was the finding that doxycycline removal at day 8/9 of culture equally did not have any 

effect on the percentage of cell maturation. This shows that by day 8/9, after endogenous FLI1, 

GATA1 and TAL1 have been switched on, FoP has already occurred and the resulting gene networks 

switched on by the endogenous genes are more important for driving maturation and proliferation. 

What is striking from the inducible experiments performed on BobC_PC3, is the high level of purity 

seen in cultures that were maintained long-term (Fig. 3.11). For mature MKs, the purity was 

maintained above 90% for almost 60 days in culture, while in a rLV setting the purity has been 

shown to peak at around 90% at day 30, but reduced to 65% by day 90, as CD42 expression is lost 

over time (Moreau T, 2016). In the EPO setting, the purity of erythroblasts at day 19 was 

approximately 98%. This is greatly increased compared to the rLV setting, where at a similar time 

point a high percentage of bi-potent progenitors is maintained and erythroblast purity is 

approximately 35% (Chapter 1, Fig 1.7C). Higher purity was also observed in the conditions which 

had doxycycline removed after day 9, so suggests that it is more the result of endogenous gene 

expression after TG induction has ceased. A good way to check if the differences observed in purity 

is due to differences in endogenous gene expression, would be to perform qPCR on both iFoP and 

rLV FoP cells to check expression levels at multiple time points. At the total population level, 

removing TG expression in all cells at the same time could help in the maturation steps by making 

the population more homogenous in iFoP, whereas the process is most likely staggered in the 

population of transduced cells, due to the heterogeneity of TG expression. 

In the lowest concentration of doxycycline tested there was a detrimental effect on cell number 

outcome by day 19, with the fewest mature MKs in TPO (Fig 3.10A), and the fewest erythroblasts in 

EPO (Fig 3.10C). 0.2µg/ml produced the lowest percentage of bi-potent progenitors at day 8, 

showing that efficient FoP requires a high percentage of bi-potent progenitors in order to generate 

high cell numbers. In TPO, removing doxycycline at day 9 had little effect on the cell number 

outcome of conditions which had received high doxycycline initially (0.8 and 1 μg/ml), compared to 
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in low doxycycline conditions (0.4 and 0.6μg/ml), where removal of doxycycline had a detrimental 

effect on cell number, despite a similar number of a FoP cells at day 8 between all conditions. The 

same effect was not observed for erythroblast numbers in EPO. This suggests that doxycycline 

concentration may affect the rate of proliferation of MK cells but not erythroblasts, with high 

doxycycline required initially to maintain higher levels of proliferation. At the TG level, this means a 

higher level of TG expression initially may be beneficial for MK cell number overall.  

It is reassuring that the inducible line followed the same cell number dynamics that we would expect 

from an rLV experiment, with an expansion phase followed by a crash at day 90. This is good 

evidence that the same mode of differentiation is being taken by iFoP cells as transduced cells, and 

verifies that we have not generated an immortalised differentiated cell line, which was not the aim 

of this work. Also of importance, is that the iFoP MKs produced are capable of producing live 

platelet-like particles, to a similar extent as rLV FoP MKs (Fig 3.13). iFoP MKs produce a higher 

percentage of CD42+ particles than rLV FoP MKs, especially true of the –Dox long term iFoP 

condition. Further characterisation of the MKs and platelet-like particles produced by iFoP is 

required, but the results so far are encouraging, as iFoP MKs appear to look and behave the same as 

rLV MKs, which we know are capable of producing functional platelets (Moreau T, 2016). 

Most surprisingly, since the presence of FLI1 TG is certain in all cells, is how well erythroblasts were 

produced using iFoP, and the presence of fully mature, enucleated erythrocytes. Starting with 

0.4μg/ml doxycycline and removing it at day 9, was found to produce the highest expansion of 

erythroblasts by day 19 (Fig3.10C). This preliminary work is extremely promising, and is the starting 

point for being able to optimise conditions, for example using different cytokine combinations or 

concentrations to help further mature the erythrocytes produced. It also could allow for the TFs to 

be switched off at an even earlier time-point, removing FLI1 TG earlier, which may also help to 

promote maturation.  

It is encouraging that results so far support iFoP as an attractive alternative to rLV FoP, as it is a 

highly reproducible method for generating an increased purity of mature cells, for both MKs and 

erythroblasts. The production of a stable iPSC line, which has been genetically manipulated to FoP, 

should facilitate taking this technique from bench to bedside more easily, to achieve the in vitro 

production of mature blood cells for use in transfusion medicine. However, the work presented here 

highlights how difficult it is to predict what will happen when working with and modifying iPSCs, as 

each line showed huge variation. Further validation, by karyotyping and genomic sequencing are 

required, to show that the targeting strategies used did not result in any unwanted off-target effects 

in the inducible line BobC that did iFoP well. 
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Introduction 

Single cell RNA-sequencing (scRNA-seq) is a powerful tool, allowing high-throughput and high-

resolution transcriptomic analysis of individual cells within a population. This technology has 

increased our knowledge of cellular diversity within populations which outwardly appear to be 

homogenous. Importantly, this technique also allows information to be gathered on very rare cell 

types. The major advantage of scRNA-seq is that it enables gene expression dynamics to be studied 

of low level transcripts, which would otherwise be masked in population-averaged bulk analysis 

(Wills QF, 2013). It is has increased in popularity over recent years due to protocols becoming more 

robust and sequencing more economical to perform. 

An example of how scRNA-seq has been used to dissect direct cellular reprogramming pathways and 

developmental programs was demonstrated in mouse embryonic fibroblasts (MEFs) reprogrammed 

towards induced neuronal (iN) cells (Treutlein B, 2016). In this study, high-resolution scRNA-seq data 

enabled the reconstruction of the programming path taken by MEFs towards iN cells at multiple 

time-points of reprogramming, after induction of the three transcription factors (TFs); Ascl1, Brn2 

and Myt1l (Vierbuchen T, 2010). The authors wanted to identify whether a heterogeneous cellular 

response occurred in MEFs during reprogramming, while also trying to identify mechanisms that 

might prevent this process from being successful. An important issue regarding the reprogramming 

of any cell type is whether pre-determined mechanisms, such as epigenetic regulation, prevents a 

proportion of cells from undergoing reprogramming, or, whether a proportion of cells do not 

reprogram simply due to inefficient reprogramming procedures.  

The findings of that study suggest that all MEFs were capable of reprogramming successfully, as the 

majority of cells had silenced MEF-associated genes after 48 hours post initiation of the 

reprogramming protocol. Although this does not rule out epigenetic variation between MEFs, the 

authors suggest that MEF heterogeneity is unlikely to contribute significantly to reprogramming 

efficiency.  However, they found that silencing of one of the TFs used, Ascl1, and divergence from 

the neuronal differentiation pathway towards an alternative myogenic fate, were both significant 

factors contributing to the failure of reprogramming. This suggests that intermediate steps in the 

pathway from MEF to iN cell are unstable, some of which may be governed by epigenetic factors. 

This study also identified that reprogrammed cells transition through a neuronal precursor cell (NPC) 

stage, expressing a number of associated NPC genes, between MEF and iN cell stages. This finding 

was in contrast to what was believed to happen during direct somatic lineage reprogramming, 

where intermediate progenitor cells states were not expected to arise, unlike during pluripotent 

stem cell (PSC) directed differentiation (Li XJ, 2005). 
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A recent single cell study on haematopoietic stem cells (HSCs) revealed a powerful approach to 

identify the molecular regulators of HSC function by combining scRNA-seq and single cell functional 

assays, linked by flow cytometric index sorting (Wilson NK, 2015). Studying gene regulation in HSCs 

has previously been complicated due to there often being contaminating non-HSC cell types present 

in isolated populations and additionally, due to the identification of functionally different sub-types 

of HSCs (Challen GA, 2010). One of the caveats of functional assays, often performed on HSCs to 

assess progenitor potential, is that the transcriptome of the cell cannot be studied once it has 

differentiated, and as such the status of HSC can only be given retrospectively. However, through 

the bioinformatic integration of datasets generated by both transcriptome and functional analysis, 

key molecules associated with durable long-term self-renewal were identified in HSCs, giving insights 

into the molecular mechanisms controlling these properties and enabling the purity of HSC sorting to 

be increased.  

The forward programming (FoP) approach, pertaining to this chapter, relies on the overexpression of 

three TFs in PSCs, directing them towards mature megakaryocytes (MKs). FoP initially generates a 

heterogeneous population of cells when transducing PSCs with recombinant lentivirus (rLV), of 

which only the cells receiving a mix of TFs are selected for during the protocol, eventually resulting in 

a highly pure population of MKs. The FoP protocol has been shown to produce a bi-potent 

progenitor cell population (Chapter 1). We know from clonogenic assays that approximately 1% of 

cells at day 9/10 of FoP give rise to progenitors and this progenitor potential decreases overtime, by 

10 fold between day 21 and day 100 (Moreau T, 2016). MK-FoP cells can be kept in culture for 

approximately 100 days, after which the culture number declines dramatically, without recovering. 

This, we believe, signifies the end of the life-span of the bi-potent, or MK-progenitor cell population 

in the culture, responsible for maintaining such long cultures in the first place. Long-term cultures 

(above 30 days) contain a mixture of immature and mature MKs, as well as progenitor cells, yet 

these cell populations remain undistinguishable currently by our methods for cell analysis using flow 

cytometry. Previous attempts to find other surface markers which could be used to distinguish 

progenitor cells in the heterogeneous population generated by forward programming have failed. Dr 

Moreau has sorted MK-FoP cells based on KIT and CD34 expression, two markers associated with 

HSCs (Matsuoka S, 2001), and found that neither marker is expressed by the majority of cells which 

give rise to MK or MK progenitor colonies. 

We believe that scRNA-seq could help us to answers some of the fundamental questions 

surrounding FoP. This technique could help us to elucidate the correct ratio, or optimal mix, of TFs 

required for successful MK-FoP, and improve efficiency of generating MKs from PSCs. It could help us 
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to identify whether a very small sub-set of cells with an optimal TF mix are responsible for 

generating long-term cultures, and whether these are heterogeneous. It could also give clues as to 

the biological mechanisms controlling the pathway from PSC to MK. We have published data to 

show that cells transitioning from PSC to MK by FoP may at least in part recapitulate the key steps of 

haematopoiesis in the embryo (Moreau T, 2016). Mesoderm commitment is highly beneficial to MK-

FoP outcome, consistent with normal blood cell development. Also, the expression of haemogenic 

endothelium markers, such as FLK1, CD34 and VE-Cadherin are detected early, from day 2 of FoP. 

Early expression of CD41 suggests early MK-commitment in MK-FoP, which may be a unique feature 

of this protocol. Additionally, scRNA-seq could help us to determine the molecular profile of the 

progenitor cells within MK-FoP cultures, helping us to purify and study these cells. To be able to 

determine the differences between progenitor and differentiated cell states would enable us to 

study the development of both cell types in more detail and potentially help us to increase MK yield 

from cultures which would benefit the clinical aim of this work.  

The precise molecular mechanisms governing MK-FoP remain unknown as we have not been able to 

study these questions at the resolution required to obtain informative data, especially since rLV FoP 

is uncontrollable and untraceable using current cellular markers. The first step to being able to 

perform scRNA-seq on MK-FoP cells was to address the issue of transgene traceability in rLV-

transduced cells. In order to achieve traceability, we needed to generate rLV vectors with marker 

genes, for which a different fluorescent protein was cloned into each of the single TF viral 

backbones. The fluorescent proteins eGFP, dTomato and LSSmOrange were chosen and are followed 

by a 2A sequence in the vectors containing GATA1, TAL1 and FLI1 respectively, to achieve a single 

mRNA transcript (as described in Chapter 2). The resulting vectors are collectively known as the 

‘Rainbow’ vectors. 

Once the Rainbow vectors were produced, we performed a number of MK-FoP experiments to 

determine whether MKs produced in long-term cultures were a mixture of cells (containing several 

combinations of rainbow colours) or a homogenous population of cells which had received primarily 

all three TFs (and therefore contain all three rainbow colours). Diagram 4.1 shows the changes in 

Rainbow cell dynamics, of the 8 possible combinations, found in MK-FoP cells of a long-term 

experiment performed by Dr Moreau. At the start of FoP cells were predominantly positive for all 

three rainbow colours, indicating cells which received all three FoP TGs. However, long-term cultures 

did not contain a single population of rainbow cells and instead, over time, the number of possible 

combinations of colours increased and the total 8 different populations were observed. We believed 

these different populations arise from cells which have undergone silencing of different rLVs, most 
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likely as a consequence of insertion into regions of the genome that are not permissive for cell 

division.  

 

Diagram 4.1 Long-term Megakaryocyte Rainbow Population Distributions. The percentage of cells 

for the 8 combinations of rainbow colours found in a long-term Rainbow transduced MK-FoP 

experiment in BobC cells. O= LSSmOrange_FLI1+, G= GFP-GATA1+, T= dTomato-TAL1+, Neg= no 

fluorescence detected. 

 

Chapter Overview 

The following chapter describes results where the focus was to gain a better understanding of the 

heterogeneity of cells in long-term MK-FoP cultures. It describes the establishment of single cell 

progenitor assays, designed to try and identify the progenitor cell population. It also describes the 

results of a scRNA-seq experiment performed on the 8 populations found in long-term rainbow MK-

FoP cells at day 40. Day 40 was chosen, based on the experimental data shown in Diagram 4.1, as 

this time-point showed a good range of different Rainbow populations and would allow us to 

address whether these different populations contained different cell types. 
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Materials and Methods 

Rainbow Vectors 

The Rainbow Vectors describe the three single rLVs used for normal forward programming, with the 

addition of a unique fluorescent reporter protein to each. The fluorescent markers eGFP, dTomato 

and LSSmOrange were chosen due to their excitation and emission wave lengths being far apart, to 

easily detect by flow cytometry, while still being able to stain cells with the common markers used 

during FoP (CD235, CD41 and CD42). Each vector was generated from the pWPT backbone (Addgene 

12255) with the coding sequence of the FoP TFs GATA1, TAL1 and FLI1 (Refseq NM_002049.3, 

NM_003189.5 and NM_002017.4 respectively) downstream of the fluorescent reporter and E2A 

sequence. The three rainbow vectors were generated by Annett Muller and Niloufar Hojatoleslami 

using standard molecular cloning strategies: 

 pWPT-GFP-GATA1 (Map 4.1)  

 pWPT-dTomato-TAL1 (Map 4.2)  

 pWPT-LSSmOrange-FLI1 (Map 4.3) 

A mixture of all three Rainbow rLVs was produced commercially by Vectalys to high titre and purity 

for experiments described in this chapter.  

iPSC Lines ued 

For setting up single cell assays, the iPSC lines Qolg and BobC were used, as these lines were being 

routinely used for FoP in the lab at the time and both FoP well. After the single cell protocol was 

established, only BobC was used for Rainbow and sorting experiments.  

Single Cell Progenitor assays 

I optimised the flow cytometry sorting of single cells into 96 well plates in order to perform 

clonogenic assays. Prior to cell sorting, 96 round-bottom well plates (Corning) were prepared by 

aliquoting 100μl MK media (TPO 20ng/ml, SCF 25ng/ml) plus 1% Penicillin and Streptomycin 

(PenStrep, Life Technologies) into all wells. Serum free methylcellulose-based medium for human 

cells (Methocult H4236, Stemcell Technologies), plus TPO 20ng/ml, SCF 25ng/ml and 1% Penicillin 

and Streptomycin can also be used, by carefully pipetting 100μl per well. Cells were prepared by 

staining with CD41a APC-H7 (1:100), CD235a Pe-Cy7 (1:100) and CD42b APC (1:20) (all BD-

Pharmingen) for 20 min at RT in the dark. Cells were washed with 1ml PBS and spun at 300g, for 5 

min before re-suspending in 0.5ml PBE.  
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Cells were sorted on the BD AriaIII Cell Sorter, a 16 fluorescent channel cell sorter, at the Cambridge 

NIHR BRC Cell Phenotyping Hub. The megakaryocytic cell line CHRF was transduced with single 

reporter gene rLVs and used to set up gating and compensation for florescent reporters on the 

AriaIII. 

 The following configuration was used for detecting stained Rainbow transduced cells.  

Excitation laser (nm) Filter Detects 

633 660/20 APC 

633 780/60 APC-H7 

561 780/60 Pe-Cy7 

561 610/20 dTomato 

488 530/30 eGFP 

405 610/20 LSSmOrange 

 

After single cell sorting into 96 well plates, remaining cells were sorted into bulk populations, into 

5ml Polypropylene tubes (Sigma-Aldrich) in PBS + 10% FBS. Bulk sorted populations were used to 

perform CFU assays (as described in the main Materials and Methods section), to check for the 

clonogenic potential of the cell population. 

Single Cell RNA-seq 

Several sorts were performed on the AriaIII, to ensure single cells were being sorted into each well of 

a 96 well plate and each well checked under the microscope until satisfactory sorting had been 

achieved and the machine settings recorded for the single cell RNA-seq sort. Single cell RNA-seq 

(scRNA-seq) was performed with the help and guidance of Sonia Nestorowa and Winnie Lau (both 

Gӧttgens group, Department of Haematology). The protocol provided is adapted from the 

Smartseq2 protocol (Picelli S, 2014). All steps of the scRNA-seq protocol were performed in a UV-

sterilised hood with laminar flow and all surfaces kept free of RNase and DNA. The same hood was 

used for all steps except the cDNA amplification step. All centrifugation was performed at 4oC for 

pre-amplification steps.  

1. Single Cell Lysis 

Cell lysis buffer was prepared by adding 1μl SUPERase-In RNase Inhibitor (20U/L, Thermo Fisher 

Scientific) to 19μl 0.2% (vol/vol) Triton X-100 solution (Sigma Aldrich, cat # T9284). 2.3μl was 

aliquoted per well of a 96 V-bottom well plate, keeping on ice. Cells were sorted in the lowest 

possible volume, as described above, and index data collected for CD235, CD41, CD42, eGFP, 

dTomato and LSSmOrange. The plate was sealed with an adhesive lid, vortex briefly and spun down 
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at 300g for 1 min at 4oC. At this stage the plates were frozen at -80oC, and can be stored for up to six 

months. An additional 2 test plates were also prepared, with just 1 column of cells being sorted, with 

no index data collect, for use in downstream steps to check the number of PCR cycles required which 

differs depending on the amount of input RNA. Single cells were sorted into 7 of the 8 wells in each 

test plate and 30 cells were sorted into the final well. Test plates were taken up to the stage of cDNA 

library quality check. One was used to test 19 PCR cycles, and one to test 21 cycles in the PCR 

amplification step. For the cells sorted in this experiment, 18 cycles was found to be sufficient and it 

is best to use as few PCR cycles as possible, as not a lot of cDNA is required for library preparation. 

2. Reverse Transcription 

The annealing mixture was prepared as follows: 

 1 x test column 
(8 single cells) 

1 x 96 well plate 

ERCC 20x (*) 1 µl 10 µl 

Oligo-dT 100 µM 1 µl 10 µl 

dNTP 10 mM 10 µl 100 µl 

dH2O 8 µl 80 µl 

 20 µl 200 µl 

*ERCC dilution is cell type/batch specific. For this experiment a dilution of 1:300,000 was used.   

ERCC RNA Spike-In Mix (Invitrogen, cat# 4456740), OligodT30VN dissolved in TE buffer (Sigma, with 

HPLC purification), dNTP mix (10mM, Thermo Fisher, cat# 10319879). 

2μl annealing mix was aliquoted per well by lightly touching the edge of the well and was followed 

by centrifugation at 700g, 1 min. Plates were incubated at 72oC for 3 min in a GS4 multi-block 

thermocycler (G-Storm) before being placed immediately on ice and re-centrifuged at 700g, 1 min. 

This step ensures the oligo-dT primer is hybridised to the poly(A) tail of the mRNA molecule. 

The reverse transcription mix was prepared as follows: 

 Per well 1 x 96 well plate 

Superscript II RT (200 U/ µl) 0.5 µl 50 µl 

RNase inhibitor (20 U/ µl) 0.25 µl 25 µl 

5 x Superscript II first strand buffer 2 µl 200 µl 

100 mM DTT 0.5 µl 50 µl 

5 M Betaine 2 µl 200 µl 

1 M MgCl2 0.06 µl 6 µl 

Oligo TSO (100 µM) 0.1 µl 10 µl 

dH2O 0.29 µl 29 µl 

 5.7 µl 570 µl 

Superscript II Reverse Transcriptase (200U/ml, Thermo Fisher, cat # 18064-014), Superscript II first 

strand buffer (5x, Invitrogen, cat # 18064-014), Dithiothreitol (DTT, 1M, Invitrogen, cat # 15508013), 
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Betaine (BioUltra ≥99.0%, Sigma-Aldrich, cat # BO300), Magnesium chloride (1M, Thermo Fisher, cat 

# AM9530G, oligo TSO (dissolved in TE buffer, Exiqon). 

5.6μl reverse transcription mix was added per well, before centrifugation at 700g, 1 min. Plates were 

then thermocycled following the conditions described in Table 4.2. Centrifugation was then 

repeated.  

3. PCR Pre-Amplification 

The PCR mix was prepared as follows: 

 1 well 1 x 96 well plate 

KAPA HiFi Hotstart ReadyMix (2x) 12.5 µl 1250 µl 

IS PCR primer (10 µM) 0.25 µl 25 µl 

dH2O 2.25 µl 225 µl 

 15 µl 1500 µl 

KAPA HiFi Hotstart ReadyMix (2x, KAPA Biosystems, cat # KK2601), IS PCR primer (dissolved in TE 

buffer, Sigma Aldrich, HPLC purified). 

15μl PCR mix was added per well and the plate was centrifuged at 700g, 1 min. PCR conditions are 

described in Table 4.3. At this stage PCR products can be stored at -20oC or -80oC for over 6 months. 

4. PCR Purification 

The following steps were performed manually for test plates or using the Biomek FxP Laboratory 

automation workstation (Beckman Coulter) for sample plates. Agencourt AMPure XP beads 

(Beckman Coulter, cat # A63881) were equilibrated to room temperature 15 mins prior to starting 

and were vortexed briefly. 16.25μl Ampure XP beads were added to each well, resulting in a 1:06 

sample:bead ratio. Sample and beads were homogenised by pipetting up and down 10 times. 

Samples were transferred to a 96 well plate compatible for use with a magnet stand.  Samples were 

incubated for 8 mins at RT to allow DNA to bind to the beads. The plate was then placed onto the 

magnet stand and incubated for 5 min, to allow beads to collect at one corner of the well and leave 

the solution clear. The clear supernatant was removed carefully without disturbing the beads. Beads 

were then washed with 200μl freshly prepared 80% ethanol (vol.vol), incubated for 30 secs before 

the ethanol was removed. The wash step was repeated and samples allowed to dry completely for 5 

min at RT, until cracks appear on the surface of the beads. 22μl of EB solution (10mM Tris-Cl, pH 8.5, 

Qiagen, cat # 19086) was added to resuspend beads by pipetting 10 times. The plate was removed 

from the magnet and incubated for 2 min at RT. The plate was replaced on the magnet and 
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incubated for 2 min, until the solution was clear and beads had collected at one side. 20μl of the 

supernatant was collected, without disturbing the beads, and transferred to a fresh 96 well plate.  

5. Quality check of cDNA Library 

The size distribution was checked for 11 samples per plate using an Agilent High-Sensitivity DNA Chip 

(Agilent, cat # 5067-4626), run on the Agilent Bioanalyzer System.  

6. cDNA Library Quantification 

Library quantification was performed using the Scientific Quant-iTTM PicoGreen double stranded DNA 

assay kit (Thermo Fisher, cat # P7589), following manufacturers protocol.  

7. Library Preparation 

Tagmentation was carried out using the Nextera XT DNA sample preparation kit (Illumina, cat # FC-

131-1096), following the Fluidigm tagmentation protocol. The Nextera XTDNA library prep kit is 

optimised for 1ng total input DNA. The Fluidigm protocol recommends an optimal concentration of 

0.1-0.3ng/μl cDNA per single cell. The majority of samples were diluted between 0.1-0.15ng/μl in EB 

buffer. The NT buffer was thawed at RT and vortexed to resuspend precipitates. Tagment DNA 

buffer was also thawed at RT, inverted to mix and briefly spun in a microcentrifuge. Sample plates 

were kept on ice. The following reagents were added to a 1.5ml Eppendorf tube to make up the Pre-

Mix: 

Reagent 
Volume per 
sample (µl) 

X 96 well plate 
(10 % overage) 

4 x 96 well 
plates 

Tagmentation DNA buffer 2.5 264 1056 

Amplification Tagment 
Mix 

1.25 132 528 

Sample 1.25   

Total 5.0   

 

The Pre-Mix was vortexed briefly and equal volumes aliquoted into each tube of a 8-tube strip. 

3.75μl of Pre-Mix was added to each well of a new, non-skirted 96 well plate (‘Library prep’ plate), 

using an 8-channel pipette. 1.25μl of sample was added quickly at RT to the ‘Library prep’ plate, 

before being sealed and centrifuged at 2000rpm, for 30 secs to remove bubbles. The ‘Library prep’ 

plate was then added to the thermocycler for 10 mins at 55oC, then held at 10oC. NT buffer was 

aliquoted into each tube of an 8-tube strip, before 1.25μl was added quickly to each well in order to 

neutralise the tagmented samples. The plate was sealed and centrifuged at 2000rpm, 1 min. The 

Nextera PCR Master Mix (NPM) was aliquoted to each well of a 8-tube strip, before 3.75μl was 

added to each well. The Nextera XT 96-Index kit (384 samples, Illumina, cat # FC-131-1002) was used 
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to index each well. 1.25μl of Index Primer 1 (N701-N712) was added to the corresponding well of 

each row of the ‘Library prep’ plate using an 8-channel pipette. 1.25μl of Index Primer 2 (S517 and 

S502-S508) was added to the corresponding well of each column of the ‘Library prep’ plate using a 

12-channel pipette, as described in Table 4.4. Fresh Index Adapter Replacement Caps (Illumina, cat # 

15026762) were used for Index primers after each use. It is essential to double check Index order, if 

you wish to integrate metadata later. Plates were sealed with adhesive film and centrifuged at 

2000rpm, 1 min. Plates were placed into the thermocycler to perform the following PCR 

amplification as described in Table 4.5. At this stage amplified products can be stored at -20oC for 

long-term storage. 

8. Library Pooling and Clean-up 

Agilent AMPure XP beads were warmed to RT and vortexed briefly. Samples were pooled into a 

1.5ml Eppendorf/ 96 well plate, then divided equally into a total of 3 Eppendorfs. Three bead 

volumes were tested, 0.6, 0.7 and 0.8% of the total pooled volume, in order to choose the best 

sample based on the final Bioanalyser results, for quantification and sequencing. Beads and pooled 

samples were mixed well by pipetting up and down 5 times, before a 5 min incubation at RT. Tubes 

were place on a magnetic stand for 2 mins and supernatant removed carefully without disturbing 

the beads. Beads were washed with freshly prepared 70% ethanol and incubated for 30 secs before 

removing supernatant. Wash steps were repeated, before allowing beads to air dry completely for 

10-25 mins. Samples were removed from the magnet, eluted in 50μl EB solution, vortexed and 

incubated for 2 mins at RT. Samples were replaced on the magnet and allowed to stand for 2 mins, 

before the entire supernatant was removed to a fresh 1.5ml Eppendorf.  

9. Quality Check the Amplified Pooled Library 

The library size distribution was checked on the Agilent Bioanalyser. Pooled libraries were then 

quantified using the KAPA qPCR Quantification kit (KAPA Biosystems, cat # KK4824), following 

manufacturer protocol using a black, flat-bottomed, medium binding Fluotrac 384-well Microplate 

(Greiner Bio-One, cat # 781076).  

10. Sequencing 

Single end (50bp) sequencing was performed on one lane of the HiSeq-4000 (Illumina) per 96 cells at 

the CRUK Cambridge Institute Genomics Core facility. 

scRNA-seq Computational Analysis  

Computational analysis was performed by James Baye (Cambridge Stem Cell Institute), under the 

supervision of The Gӧttgens lab (Department of Haematology, University of Cambridge). All analysis 
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was performed in R 3.4.0. Raw sequencing reads (fastq files) were aligned with the R package GSNAP 

(Wu TD, 2010) to the human Ensembl reference genome GrCh38.81, with the addition of the 92 

ERCC spike-in genes and the three fluorescent reporters eGFP, LSSmOrange and dTomato expressed 

exogenously in FoP-MKs. Read counts for each gene were then determined with HTSEQ-Count31 

from the mapping files. The R package scater was used to perform rigorous pre-processing, quality 

control, normalization and visualization of scRNA-seq data (McCarthy DJ, 2017). Quality check 

consisted of discarding all cells with less than 500,000 read counts and outlier cells showing a high 

proportion of mitochondrial RNA reads or spike-in reads. All non-captured genes (read count equal 

to zero for all cells) were removed from further analyses. A total of 192 cells were sequenced (24 for 

each of the 8 Rainbow populations). 81 cells were removed from downstream analysis, 30 cells from 

the GFP+ plate and 51 cells from the GFP- plate. Read counts were then normalised to counts per 

million (CPM). Unsupervised clustering of cells based on their whole RNA expression was performed 

with the R package SC3 (Kiselev VY, 2017). Two to five cluster groups were attempted with three and 

four clusters showing the best consensus. Differential gene expression analysis based on the 

negative binomial distribution were conducted with the R package DESeq2, with a maximum false 

discovery rate (FDR) of 1% and gene expression fold change greater than 2 (Love MI, 2014). Gene 

ontology results were obtained from the Gene Ontology Consortium database (Blake JA, 2015), 

filtering by biological processes with p-values inferior to 0.01. 
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Materials and Methods Tables 

Table 4.1 Oligonucleotides used for Single cell RNA-seq library preparation 

Oligo/Primer name Sequence 5’-3’ 
TSO AAGCAGTGGTATCAACGCAGAGTACATrGrG+G 

Oligo-dT30VN AAGCAGTGGTATCAACGCAGAGTAC(T30)VN 

IS PCR oligo AAGCAGTGGTATCAACGCAGAGT 

 

Table 4.2 Thermocycling conditions for reverse transcription 

Cycle Temperature (oC) Time Purpose 

1 42 90 mins RT and template switching 

10 50 2 mins Unfolding of RNA secondary structures 

42 2 mins Completion/continuation of RT and template switching 

1 70 15 mins Enzyme inactivation 

- 4 Hold Safe storage 

 

Table 4.3 PCR Pre-amplification step PCR conditions. 

Cycles Temperature (oC) Time Purpose 

1 98 3 min Denature 

21 98 

 

20 secs Denature 

67 15 secs Anneal 

72 6 mins Extend 

1 72 5 mins Extend 

- 4 hold - 
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Table 4.4 Library Prep Plate Layout 

  N701 N702 N703 N704 N705 N706 N707 N708 N709 N710 N711 N712 

  1 2 3 4 5 6 7 8 9 10 11 12 

S517 A S517/

N701 

S517/

N702 

S517/

N703 

S517/

N704 

S517/

N705 

S517/

N706 

S517/

N707 

S517/

N708 

S517/

N709 

S517/

N710 

S517/

N711 

S517/

N712 

S502 B S502/

N701 

S502/

N702 

S502/

N703 

S502/

N704 

S502/

N705 

S502/

N706 

S502/

N707 

S502/

N708 

S502/

N709 

S502/

N710 

S502/

N711 

S502/

N712 

S503 C S503/

N701 

S503/

N702 

S503/

N703 

S503/

N704 

S503/

N705 

S503/

N706 

S503/

N707 

S503/

N708 

S503/

N709 

S503/

N710 

S503/

N711 

S503/

N712 

S504 D S504/

N701 

S504/

N702 

S504/

N703 

S504/

N704 

S504/

N705 

S504/

N706 

S504/

N707 

S504/

N708 

S504/

N709 

S504/

N710 

S504/

N711 

S504/

N712 

S505 E S505/

N701 

S505/

N702 

S505/

N703 

S505/

N704 

S505/

N705 

S505/

N706 

S505/

N707 

S505/

N708 

S505/

N709 

S505/

N710 

S505/

N711 

S505/

N712 

S506 F S506/

N701 

S506/

N702 

S506/

N703 

S506/

N704 

S506/

N705 

S506/

N706 

S506/

N707 

S506/

N708 

S506/

N709 

S506/

N710 

S506/

N711 

S506/

N712 

S507 G S507/

N701 

S507/

N702 

S507/

N703 

S507/

N704 

S507/

N705 

S507/

N706 

S507/

N707 

S507/

N708 

S507/

N709 

S507/

N710 

S507/

N711 

S507/

N712 

S508 H S508/

N701 

S508/

N702 

S508/

N703 

S508/

N704 

S508/

N705 

S508/

N706 

S508/

N707 

S508/

N708 

S508/

N709 

S508/

N710 

S508/

N711 

S508/

N712 

 

Table 4.5 PCR conditions for Library Prep plate                                           

Temperature (oC) Time Cycles 

72 3 mins 1 

95 30 secs 1 

95 10 secs 12 

55 30 secs 

72 60 secs 

72 5 mins 1 

10 hold - 
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Chapter 4: Vector Maps 

 

Map 4.1 pWPT-eGFP-GATA1. 
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Map 4.2 pWPT-dTomato-TAL1. 
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Map 4.3 pWPT-LSSmOrange-FLI1. 
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Results 

In the results section the following cell type definitions are used; CD41+/CD235+ cells are bi-potent 

progenitors, CD41+/CD235- cells at day 10-13 are MKs, and CD41+/CD42+ cells are mature MKs. This 

results section describes only cells produced by MK-FoP, using TPO containing medium.  

Establishing a Protocol for Single Cell Progenitor Assays 

Results from a preliminary single cell sort, performed on day 13 FoP Qolg cells, transduced with the 

3TFs recombinant lentivirus (rLVs, as previously described), are shown in Fig 4.1. Cells were sorted 

into two discreet populations, CD41+/CD235- and CD41+/CD235+ (Fig 4.1A). CFU progenitor assays 

were performed on the bulk sort of these two populations, as well as on unsorted cells to ensure the 

process of sorting did not adversely affect progenitor potential. Cells were seeded into non-enriched 

methylcellulose supplemented with 100ng/ml TPO and 25ng/ml SCF, in the absence or presence of 

Penicillin-Streptomycin (PenStrep, P/S) when cell numbers allowed, to test whether P/S adversely 

affects progenitor potential. MK progenitor colonies and MK colonies were counted, with the 

average colony number per cell seeded shown in Fig 4.1B. The CD41+/CD235+ population had higher 

potential for both colony types, compared to the CD41+/CD235- population. The progenitor 

potential was slightly increased in the unsorted population. The addition of P/S had no effect on the 

CD41+/CD235+ population and little effect on the unsorted population. Due to this and a number of 

contaminations after using the shared sorting facility, all further experiments were performed with 

the addition of P/S.  

Sixty individual cells from the CD41+/CD235+ and CD41+/CD235- population were sorted for single 

cell progenitor assays into liquid (liq) medium and non-enriched methylcellulose (MC) (both 

supplemented with TPO and SCF, as previously described). Both conditions were tested in the 

presence or absence of P/S. Fig 4.1C/D and E show the results from sorting the CD41+/CD235+ 

population only. The single cell seeding of CD41+/CD235- cells resulted in colonies after 14 days of 

culture. Colony outcome was better in liquid medium, compared to methylcellulose (Fig 4.1C). A 

slight decrease in colony number and colony size was observed when single cells were cultured in 

the presence of P/S, however, to reduce the risk of contamination this condition was chosen for all 

further experiments performed on single cells. MK progenitor colonies and MK colonies produced 

from single cells in liquid medium (Fig 4.1D) were similar in appearance to those observed in bulk 

methylcellulose cultures (Chapter 1, Fig 1.6A). No MK progenitor colonies were observed from single 

cells seeded into methylcellulose. The MFI of CD41 and CD235, recorded by index sorting, for all 

single cells seeded in all conditions is shown in Fig 4.1E. This experiment showed that sorted single 
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cells could give rise to progenitors and all data presented hereafter come from experiments 

performed in liquid culture medium, with the addition of P/S. 
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Fig 4.1 Determining the megakaryocyte progenitor cell signature. Day 13 forward programmed Qolg 

cells, transduced with 3TF lentivirus, were sorted by FACS based on cell surface expression of CD41 

and CD235. On the day of sorting, cells were either cultured in a colony forming assay (CFU) or in 
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liquid media (both containing TPO and SCF to promote MK growth) and left for 14 days for colonies 

to grow before counting. A) Sorting strategy shows discreet CD41+/CD235- and CD41+/CD235+ cell 

populations, which were sorted.B) The average number of MK progenitor colonies and MK colonies 

produced/cell seeded in CFU assays from bulk sorted populations, and unsorted cells, in the 

presence or absence of PenStrep (P/S). C) The average number of colonies produced/cell seeded in 

single cell progenitor assays, from the CD41+/CD235+ population only. Both liquid (liq) and 

methylcellulose (MC) media conditions, in the presence or absence of P/S, were tested. D) An MK 

progenitor colony and MK colony formed from single cells in liquid medium. E) Mean fluorescence 

intensity (MFI) of CD41 and CD235, recorded by index sorting single cells seeded in progenitor 

assays. Cells which produced no colony (grey), MK colonies (green) and MK progenitor colonies 

(blue) are shown. MFI threshold values: 4500 for CD41, 7000 for CD235. Error bars = range. Scale 

bars= 50μm. N=1. 

We hypothesised that the CD41+/CD235+ population contained the bi-potent and MK progenitor 

cells produced by forward programming (FoP). In order to test this, bulk sorting was performed on 

all 4 populations produced by FoP; CD41-/CD235-, CD41+/CD235-, CD41+/CD235+ and CD41-

/CD235+. BobC cells transduced with the Rainbow mix of rLVs were sorted at day 9. The progenitor 

assay results of both the bulk and single cell sorting of these populations is shown in Fig 4.2. This 

sort did not divide the populations into discreet groups, which increases the risk of contaminating 

cell types being sorted (Fig 4.2A). The average colony number per cell seeded from the bulk sort 

shows that the majority of colonies were produced by cells originating in the CD41+/CD235+ 

population (Fig 4.2B), which gave higher colony numbers than the unsorted population.  

Three hundred single cells were sorted from the CD41+/CD235- and CD41+/CD235+ populations. 

Five colonies were recorded in total after 14 days of culture. The colony types are shown, along with 

the index data (positive or negative for each recorded marker) for each originating single cell (Fig 

4.2C). All originating cells were positive for CD41, CD42, dTomato and GFP. Three cells were negative 

for CD235 only and one cell was negative for LSSmOrange only. Flow cytometry was performed on 

the resulting colonies. All colonies contained a high percentage of CD41 positive cells and CD41 was 

gated on to show the percentage of CD235, CD42, dTomato, LSSmOrange and GFP expressing cells 

(Fig 4.2D and Fig 4.2E). A high percentage of cells stained triple positive for CD41, CD42 and CD235 

in all colonies (>69%). A smaller percentage of cells stained for CD41 and CD42 only in all colonies, 

indicating mature MKs. All colonies contained cells expressing at least one of the three fluorescent 

proteins to varying levels, for example between 18-89% for GFP. This data shows that not all CD41 

expressing cells were positive for all three fluorescent proteins.   
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Fig 4.2 Sorting strategy of Rainbow transduced BobC cells. Forward programmed BobC cells were 

sorted on day 9 of FoP, after transduction with the Rainbow-FoP mix of lentivirus, based on the 

surface expression of CD41 and CD235. After sorting, cells were cultured for 14 days in colony 

forming assays (CFU) or in liquid culture to promote MK growth, before colonies were counted. A) 

Cells were sorted based on CD41 and CD235 expression into 4 populations; CD41-/CD235-, 

CD41+/CD235-, CD41+/CD235+ and CD41-/CD235+. B) Average MK progenitor colony and MK colony 

number/cell seeded from the bulk sort of the 4 populations, plus unsorted cells, in CFU assays. C) 

The number and type of colonies produced by progenitor assays on single cells. The recorded index 

data (+ or - =positive or negative) for CD42, CD235, CD41 and the three fluorescent markers of the 

single cell sorted which gave rise to each colony is shown. D) The 5 colonies derived from single cells 
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were analysed by flow cytometry. The percentage of CD41 positive cells co-expressing CD42 and/or 

CD235 are shown. E) The percentage of CD41 positive cells with co-expression of dTomato_TAL1, 

LSSmOrange_FLI1 and GFP_GATA1 are shown. Error bars= range. N=1. 

Interrogating the Progenitor Potential of a Long-Term Culture  

Next, a long-term Rainbow MK-FoP experiment, performed in the BobC cell line, was sorted at day 

40 for both single cell progenitor assays and single cell (sc) RNA-seq. The remaining results for this 

chapter relate to this particular sort. The results of the single cell progenitor assays are shown in Fig 

4.3 and Fig 4.4. The percentage of the 8 possible Rainbow populations, over the 41 day culture 

period, shows that at day 9 the population of cells was more varied than at day 22 or 41 (Fig 4.3A). 

This was in contrast to what we had observed previously (Diagram 4.1). At day 9 the most common 

population was the GFP_GATA1+/dTomato_TAL1+ combination, while from day 22 this population 

was reduced and the dTomato_TAL1+/LSSmOrange_FLI1+ combination and triple positive 

combination were predominant. At day 44 the triple positive combination had increased further, 

becoming the most commonly observed. The percentage of cell types present at day 41 are shown 

by representative dot plots (Fig 4.3B). The percentage of mature MKs was high (77%). CD235 

expression was higher than expected at this stage of programing, with a small percentage of cells 

(15%) staining triple positive for CD41/CD235/CD42. The majority of mature MKs however did not 

co-express CD235.  

For the single cell progenitor assay, cells were sorted based only on CD235 expression which we had 

determined to be a probable marker of colony forming progenitors. CD235+ and CD235- cells were 

sorted and index data acquired for each of the three fluorescent TGs, CD42 and CD235. The outcome 

for the single cell progenitor assay shows that both populations gave rise to both MK progenitor 

colonies and MK colonies and that there was a higher frequency recorded for both colony types in 

the CD235+ population (Fig 4.3C).  
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Fig 4.3 Sorting long-term Rainbow megakaryocytes. Rainbow transduced BobC cells were cultured 

for 41 days in MK media and sorted on day 40 for single cell progenitor assays and single cell RNA-

seq. Progenitor assays were performed in liquid media containing TPO and SCF and colonies counted 

after 14 days of growth.  A) The percentage of different Rainbow populations present in viable cells 

during a 41 day MK-FoP experiment. B) Representative dot plots show CD41/CD42 and 

CD41+/CD235/CD42 expression at day 41. C) Rainbow cells were sorted as single cells in a progenitor 

assay based on CD235 expression at day 40. An overlay of the CD235 signal from a plate sorted with 
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CD235+ cells and CD235- cells (left) and the number of resulting MK progenitor colonies and MK 

colonies per cell seeded (right). O= LSSmOrange-FLI1, T= dTomato-TAL1, G= GFP-GATA1, Neg= 

Negative for fluorescent markers. N=1. 

The MFI of CD42, CD235 and the fluorescent proteins for each cell, acquired by index sorting, is 

shown in Fig 4.4. Due to a technical error CD41 expression was not recorded properly at the time of 

the sort and subsequently is not shown. The average mean fluorescence intensity (MFI) of CD42 for 

cells that gave rise to MK and MK progenitor colonies was lower than for cells which did not give rise 

to any colonies (Fig 4.4A). The average MFI of CD235 was higher in cells which gave rise to MK and 

MK progenitor colonies, compared to cells which gave no colonies (Fig 4.4B).  

The average MFI of dTomato_TAL1 was slightly higher in cells that gave rise to MK colonies, 

compared to those that did not (Fig 4.4C). In contrast, for cells giving rise to MK progenitor colonies, 

the average MFI was lower than for cells which did not produce colonies. The average GFP_GATA1 

MFI was higher in cells giving rise to both types of colonies compared to those that did not (Fig 

4.4D). LSSmOrange_FLI1 average MFI was similar for all three categories (Fig 4.4E).  
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Fig 4.4 The indexed mean fluorescent intensity (MFI) of CD42, CD235 and fluorescent transgenes of 

single cells sorted for progenitor assays. BobC Rainbow MK-FoP day 40 cells were sorted (as 

previously shown). Box and whisker plots show the MFI recorded for A) CD42, B) CD235, C) 

dTomato-TAL1, D) GFP-GATA1 and E) LssmOrange-FLI1 of each single cell sorted, resulting in either 

no CFU colonies, MK colonies or MK progenitor colonies. N=1. 
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Single Cell RNA-seq Data 

The remaining results shown in this chapter relate to the scRNA-seq data, analysed primarily by 

James Baye, with help and guidance from members of the Gӧttgens group. Two 96 well plates were 

used to sort the 8 different possible combinations of TGs that could be found in a day 40 culture of 

MK-FoP cells (>99% CD41+ MK committed cells, 76% CD41+/CD42+ mature MKs) transduced with 

the Rainbow rLV mixture at day 0. Cells were stained as previously described for single cell 

progenitor assays, with additional DAPI staining (final concentration 0.625μg/ml). For this 

experiment 24 cells were sorted per Rainbow population based on the MFI for each marker gene 

being above an unstained control threshold level (Fig 4.5A), resulting in a total of 192 cells being 

sorted. After aligning cDNA reads to the human reference genome (with the addition of the TGs GFP, 

dTomato and LSSmOrange), the next step of analysis involved quality control (QC), in order to ensure 

the data interrogated further downstream was reliable, did not include technical artefacts and was 

of high quality. QC steps eliminated 81 cells in total, with 111 cells retained for downstream analysis 

(Fig 4.5B). 

Transgene and endogenous expression of GATA1, FLI1 and TAL1 in Rainbow Populations 

The fluorescent transgene expression profile is shown for the 8 populations sorted in Fig 4.5C. The 

positive predictive value (PPV) for GFP was high, 0.98, with the majority of cells sorted based on GFP 

protein expression by flow cytometry also expressing GFP at the transcript level. However, the 

negative predictive value (NPV) was low, 0.47, and a high number of cells expressed GFP at the 

transcript level that had been sorted as GFP negative cells. The PPV for dTomato was not as high as 

for GFP, 0.66, with some cells that had been sorted based on positive dTomato protein expression 

showing no expression of dTomato at the transcript level. The NPV for this marker was higher, 0.91, 

showing good positive selection. LSSmOrange PPV was reasonably high, 0.83, with good positive 

selection for most cells. However, LSSmOrange NPV was low, 0.57, showing negative selection for 

this marker was also not robust for all cells.  
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Fig 4.5 Quality control of the 8 different Rainbow populations sorted for scRNA-seq. A) Gating used 

to sort single cells by FACS for each fluorescent transgene marker. Cells with a mean fluorescent 

intensity (MFI) value higher than unstained negative control cells were selected as positive for each 

marker. 24 cells for each of the 8 different Rainbow populations were sorted for scRNA-seq. B) The 

resulting cell numbers for each population passing QC checks is shown. C) Fluorescent gene 

expression levels determined by scRNA-seq for each population sorted. O= LSSmOrange-FLI1, T= 

dTomato-TAL1, G= GFP-GATA1, neg= negative for all fluorescent markers. 
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The total expression of endogenous and transgenic GATA1, FLI1 and TAL1 in the different sorted 

populations is shown in Fig 4.6. All three TFs are expressed at similar levels, with no statistical 

difference found between the 8 populations. 

 

Fig 4.6 Endogenous GATA1, FLI1 and TAL1 gene expression levels determined by scRNA-seq for each 

population sorted. O= LSSmOrange-FLI1, T= dTomato-TAL1, G= GFP-GATA1. 
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Different Cell Populations Revealed by Unsupervised Clustering 

Unsupervised clustering was performed on all cells based on their whole RNA expression patterns of 

20,296 genes captured by scRNA-seq. Clustering showed the highest stability when cells were 

grouped into 3 or 4 subgroups (Fig 4.7).  

 

Fig 4.7 Unsupervised clustering of the scRNA-seq data into 2, 3, 4 or 5 groups. Clustering shows the 

greatest stability when 3 or 4 sub-groups are produced. The larger the circle, the less those data 

points fit with the cluster they are in, represented by colour. 
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Gene ontology analysis was performed on the upregulated genes of each cluster, in the three cluster 

formation (Fig 4.8). The largest cluster observed (orange), with 430 upregulated genes, revealed that 

these cells upregulate genes related to platelet biology such as those involved in platelet activation, 

blood coagulation, haemostasis and response to wounding. This cluster likely represents more 

mature megakaryocytes. A smaller cluster identified (blue), with 1020 upregulated genes, revealed 

that this subgroup upregulates genes related to cell replication such as those involved in cell 

division, DNA and nuclear division and the mitotic cell cycle. This cluster therefore likely represents 

proliferative MK progenitors. A third, smaller group of cells was identified (green), with 410 

upregulated genes, revealed that this group upregulate genes related to cell death such as those 

related to cell cycle arrest, apoptotic signalling and G1 DNA damage response. This cluster, 

therefore, likely represents dying cells but not dead cells, which were excluded in QC steps.  

 

Fig 4.8 Unsupervised clustering based on single-cell whole RNA expression identifies three cell 

subtypes with different phenotypes identified through gene ontology. Unsupervised clustering 

segregates cells into three sub-groups, visualised by separate spatial location of cells on a PCA plot, 

illustrating high-level differences in RNA expression between single cells. Gene ontology on 

upregulated genes in each sub-group identities different cell phenotypes.  
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The largest sub-group identified by the three cluster formation (orange, Fig 4.8) was further divided 

into two sub-groups (red and yellow) when analysed by a four cluster formation (Fig 4.9A). The 

BluePrint consortium have previously published lists of upregulated genes in haematopoietic stem 

cells (HSC) and all downstream progenitors that give rise to, and including, MK and erythroblasts 

(Chen L, 2014). Gene expression levels of those upregulated in megakaryocyte-erythroid progenitors 

(MEPs), MKs and erythroblasts (EB) from the BluePrint report were compared with the four 

populations depicted in Fig 4.9A. The heat map shows that the MK progenitor (blue) group has 

strong expression of MK genes, and stronger expression of EB genes compared to the other sub-

groups (Fig 4.9B). The far left MK sub-group (red), shows strong upregulation of MK gene expression 

strong downregulations of EB and MEP gene expression, meaning this cluster most likely represents 

a more mature MK phenotype compared to the intermediate MK cluster (yellow). The cells group 

most likely to contain dead cells shows strong downregulation of all gene types.  
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Fig 4.9 Evidence of MK-FoP cell clusters in distinct stages of differentiation. A) Unsupervised 

clustering into 4 sub-groups further divides the MK cell group into two subgroups. B) Heat map 

shows gene expression patterns of the 4 sub-groups of cells identified in long-term MK-FoP, with 

genes known to be upregulated in MEP, EB or MK cells. The progenitor cluster identified in MK-FoP 

cells shows higher expression of EB genes than other groups, while intermediate and mature MK 

cells show upregulation of MK genes specifically. 
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MK Gene Expression Varies in Different Populations 

Gene expression of the three surface markers most frequently used to identify forward programmed 

cells, as well as genes related to MK maturation, are shown for the 4 cell populations in Fig 4.10. 

CD235 is not expressed in the majority of cells, but is most frequently expressed in progenitor cells, 

with a number of intermediate MKs showing low expression (Fig 4.10A). CD41 is expressed in all 

cells, with the lowest expression predominantly in the apoptotic cell cluster. CD41 expression is 

increased in progenitors and further increased in intermediate MKs and the highest expression is 

seen most frequently in mature MKs. CD42 expression follows a similar expression pattern, with 

some apoptotic cells expressing high levels of CD42. Two genes with known expression patterns in 

MKs and their progenitors were also assessed, shown in the riverplot (generated from Blueprint 

epigenome data available online) (Fig 4.10B). vWF expression was seen in only a small number of 

cells, belonging to all cell types observed. STMN1 expression was highest in the progenitor 

population, decreasing in the immature and mature MKs. 
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Fig 4.10 Expression of cell surface markers and maturation markers in the four populations identified 

by unsupervised clustering. A) CD235, CD41 and CD42 cell surface marker expression. B) vWF and 

STMN1 (Stathmin) expression, with a riverplot to show expression of these genes in haematopoietic 

cells (from Blueprint epigenome data).  
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Identifying Novel Candidate Genes to Interrogate MK Progenitors 

Novel candidate surface marker genes were identified as being upregulated (Gavin Wright, 

Wellcome Trust Sanger Institute), in only the progenitor sub-group identified by unsupervised 

clustering (Fig 4.9A). From this list a number of genes which are of interest to our group have been 

selected and are shown in Table 4.6. The genes could offer better discrimination of the different cell 

populations identified by scRNA-seq in long term MK-FoP cultures and could potentially be used as 

better markers than CD41, CD42 and CD235, to sort progenitors from intermediate and mature MKs. 

Better isolation methods would allow us to carry out future downstream analysis to characterise the 

different cell phenotypes, by performing pro-platelet formation assays and colony assays. From this 

list, MICB has already been validated as a good candidate surface marker by Dr Moyra Lawrence 

(Ghevaert lab), who has shown MICB can be detected by flow cytometry on a small population of 

MK-FoP cells and that sorting these cells based on MICB expression leads to higher colony numbers 

in CFU assays (data not shown, N=1). 

 

Gene Membrane protein classification 

CD24 GPI anchor 

KCNS3 Multi pass membrane protein (6TM) 

IL18R1 Single pass membrane protein 

ADAM15 Single pass type I membrane protein 

CD34 Single pass type I membrane protein 

CD4 Single pass type I membrane protein 

CD44 Single pass type I membrane protein 

CD83 Single pass type I membrane protein 

IFNGR2 Single pass type I membrane protein 

MICB Single pass type I membrane protein 

 

Table 4.6 List of interesting novel plasma membrane genes for identifying MK progenitors. The 

genes listed are genes which are upregulated in MK progenitors and that also localise to the surface 

membrane.  
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Discussion 

This chapter has described the development of single cell progenitor assays, performed on sorted 

cells in a 96 well plate format. The reason for developing such an assay was to enable us to perform 

index sorting, alongside obtaining a functional read-out of sorted cells, with the hope of identifying a 

surface marker signal that could identify progenitor cells in the heterogeneous MK-FoP culture. This 

is because classical progenitor assays do not allow retrospective analysis of cells. Single cell 

progenitor sorting assays were performed with the routine surface markers (CD41, CD42 and CD235) 

in order to establish the correct conditions for the assay and because we have previously 

hypothesised that the bi-potent progenitor cell belongs to the CD41+/CD235+ population (Chapter 

1) and have been unsuccessful in identifying better surface markers so far. In parallel we developed 

the Rainbow vectors, with the aim of later adding these markers to the index sorting panel in order 

to establish a better signature for progenitor cells based on their level of transgene (TG) expression. 

The Rainbow vectors exposed the heterogeneity of cells within long-term MK-FoP experiments in 

terms of transgene expression, which was the starting point for trying to better understand these 

cultures using single cell RNA-seq. Day 40 FoP-MKs were sorted based on their Rainbow expression 

and scRNA-seq data showed that different levels of transgene expression does not affect the total 

expression of GATA1, TAL1 and FLI1. Therefore, total expression of the three FoP TFs is homogenous 

in long-term MKs. Cells clustered into four different groups, identified as; mature MKs, MKs, 

progenitors and dying cells. Based on these cell clusters, novel surface markers were found to be 

overexpressed in progenitor cells, which could allow for more efficient isolation of these cells in 

future for further study.  

Early MK-Progenitors Appear to be CD41/CD235 Double Positive 

Early time-point (day 9-13) bulk sorts were performed alongside single cell sorts to ensure that 

sorting cells did not reduce their progenitor potential and that the cultures used were for sorting 

were capable of giving rise to colonies in progenitor assays. Bulk sorting different populations for 

CFU assays resulted in no progenitor potential seen from the CD41-/CD235- population of cells, as 

expected, as this population represents cells which have failed to forward program (Fig 4.2B). The 

highest colony numbers per cell seeded were consistently produced by the CD41+/CD235+ 

population (Fig 4.1B and Fig 4.2B). A small number of colonies were produced in the CD41+/CD235- 

and CD41-/CD235+ bulk sorted populations, however, due to gating strategy used to sort cells in this 

experiment (Fig 4.2A) it is possible contaminating cells were sorted in either of these populations 

from the double positive population.  
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Data from the single cell progenitor assays support the findings that progenitor cells are capable of 

producing MK progenitor colonies and MK colonies from single cells after FACS sorting. As for the 

bulk sorted populations, single cells from the CD41+/CD235+ population showed the highest 

progenitor potential (Fig 4.1C). Strikingly, no colonies were generated from CD41+/CD235- sorted 

single cells.  Combined with data from the bulk sorts, this suggested that the CD41+/CD235+ 

population contains MK progenitor cells produced by FoP, in line with our hypothesis. These 

experiments were performed in TPO only hence this data cannot confirm the presence of a bi-potent 

progenitor capable of giving rise also to CFU-E colonies.  

The day 9 Rainbow transduced cells used to perform progenitor assays in Fig 2, contained a high 

proportion of cells expressing CD235 only, which reflects a poor MK-FoP experiment. The cells 

expressed quite low levels of the fluorescent TGs, with LSSmOrange-FLI1 expression being the 

lowest, which might explain the high frequency of CD235+ cells. As mentioned in the Methods 

section for this chapter, the Rainbow rLV mix used (produced by a commercial company) has an 

unknown ratio of the three TGs. This experiment, as well as others performed with the Rainbow mix 

that show a higher percentage of CD235+ cells than expected, leads us to believe that the MOI of 

LSSmOrange-FLI1 is lowest of the three TGs in this mix. The single cell progenitor assay performed 

on these cells produced five colonies (Fig 4.2C). Three of the five colonies were produced from 

CD235 negative cells, which could reflect the existence of a MK progenitor population, which does 

not express CD235.  However, the MFI of CD235 for these cells was high (>1000) and the threshold 

MFI used to gate positive cells was not much higher (1895). Also the colonies produced by these 

single cells expressed a high percentage of CD235 (72-84%, Fig 4.2D), so the single cells sorted most 

likely were low CD235 expressing cells. This shows that the gating strategy could have been 

improved by making the gates more discreet for this experiment, as mentioned above for the bulk 

sorting. Interestingly, despite colony 1 being identified as an MK progenitor colony and the 

remaining colonies identified as MK colonies, the flow data collected shows these colonies to be very 

similar to each other in terms of their CD41, CD235 and CD42 expression. All colonies produced 

contained cells expressing at least one of the three fluorescent TGs (Fig 4.2E). Colony 4, originating 

from a cell with did not express LSSmOrange-FLI1 at the time of sorting, contained >60% 

CD41/LSSmOrange expressing cells. This suggests that either the cells in this colony were able to 

upregulate LSSmOrange-FLI1 expression, or the cell was very lowly expressing LSSmOrange at the 

time of sorting.  
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Rainbow Transduced Cells Produce a unique CD41/CD235/CD42 Triple Positive Population 

All colonies produced by the single cell progenitor assays in the experiment described in Fig 4.2 

expressed a high percentage of cells which were CD41/CD235/CD42 triple positive (>70%), which is a 

population that is not normally observed in 3TF FoP. The long term Rainbow MK-FoP culture used for 

scRNA-seq and large-scale single cell progenitor assays, also contained a percentage of triple positive 

cells at day 41 (Fig 4.3B), which was lower (15%) at this later time-point. This suggests that the 

Rainbow vectors, with their unknown mix of TGs, uniquely generates a population of cells which 

contains both mature MK markers and erythroblast markers early in FoP, which is lost over time in 

TPO culture conditions. It is important to note that at day 41 the Rainbow culture contained 

primarily mature MKs which were CD41/CD42 double positive (69%), as expected from MK-FoP 

experiments.  

Characterising Long-term MK-Progenitors 

A long-term Rainbow MK-FoP experiment, performed by Dr Moreau, tested different MOIs and 

monitored Rainbow populations over time. This experiment (Diagram 4.1) showed that the Rainbow 

rLV mix used at an MOI of 40 could maintain mature MKs long-term. It also established that an MOI 

of 40 produced a large range of Rainbow populations by day 40, starting from a predominantly triple 

positive (GFP+/dTomato+/LSSmOrange+) population at day 9. Based on this preliminary experiment, 

I performed another long-term MK-FoP experiment, using the Rainbow mix at an MOI of 40, in order 

to perform single cell progenitor assays and scRNA-seq on a long-term culture, at day 40. This 

experiment, used for cell sorting, did not follow the same dynamic of Rainbow populations as 

previously seen, with the majority of populations being quite rare at day 40 and the culture mainly 

consisting of triple positive cells at this stage (Fig 4.3A). CD41 index data is not shown for the 

experiment described in Fig 4.3 and Fig 4.4, due to technical issues. 

High CD235 and low CD42 Expression Found for MK-Progenitors 

The single cell sorting of CD235+ and CD235- cells for progenitor assays suggest that at day 40 the 

MK progenitor population is no longer defined by expression of CD235, as both populations gave rise 

to colonies (Fig 4.3C), however, the number of colonies was higher in the CD235 positive population. 

Since fewer than 10% of CD235+ cells did not express CD41 at day 41 (Fig 4.3B), it is likely that the 

majority of CD235+ cells which gave rise to colonies were also positive for CD41. Hence, the MK-

biased progenitor population identified in previous experiments at early time points (day 9-13), 

appears to still exist in long-term cultures. Surprisingly, the progenitor potential was 4% (0.04 

colonies/cells seeded, Fig 4.3C) for the CD235+ population, which is higher than expected at this 
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time-point. This could be reflected by the fact that CD235 expression was higher in this Rainbow 

experiment, even at day 41, which is not usually seen in 3TF experiments and suggests that this 

culture contains higher numbers of progenitors than a 3TF experiment would at the same time-

point.  

Index data collected at the time of single cell sorting for progenitor assays help to narrow down the 

MK-biased progenitor cell signature in the long-term culture. Cells which gave rise to MK and MK 

progenitor colonies had a lower average CD42 MFI and higher average CD235 MFI than cells which 

did not give rise to colonies (Fig 4.4A and Fig 4.4B). This gives a more complete signature for a MK 

colony forming progenitor than previously known, of CD42low/CD235high. Since the CD235 MFI was 

higher on average for both colony types, this might suggest that the cells from the CD235 negative 

population that gave rise to colonies were actually expressing CD235, and might highlight an issue 

with contaminating cells being sorted by the sorting strategy used, which did not separate the 

CD235+ and CD235- populations very discreetly, as seen by the overlay of the CD235 expression 

from a plate of cells sorted from each population (Fig 4.3C). 

Single Cell RNA-Seq Data Reveals All Rainbow Populations Express Similar Endogenous Levels of 

GATA1, FLI1 and TAL1 

The gating strategy used to sort single cells based on fluorescent protein expression, into the 8 

different Rainbow populations, shows that a high percentage of cells selected by FACS for each 

marker were positive, compared to a negative control (Fig 4.5A). However, scRNA-seq expression 

data for the three fluorescent TGs shows that the sorting strategy used did not successfully capture 

the desired population in a few circumstances (Fig 4.5C). This highlights the fact that fluorescence at 

the protein level does not necessarily correlate to the transcript level. This may be due to a 

fluorescent marker being expressed at the mRNA level, which is subsequently degraded and not 

translated, therefore is not present at the protein level, or a fluorescent marker protein being 

present at too low a level to be detected by FACS and incorrectly categorised in the negative 

population. Incorrect negatively selected cells show relatively low mRNA transcript levels (Fig 4.5C). 

Interestingly, the majority of single dTomato positive and triple negative cells were discarded (15 

and 18 cells respectively), from further analysis during the QC steps (Fig 4.5B). This raises the 

question whether these cells failed specifically due to the lack of GFP-GATA1 and LSSmOrange-FLI1, 

or all three TGs, which may represent predominantly dead cells, or whether this is unrelated to 

these populations performing poorly in the QC step. 
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The total expression levels of GATA1, FLI1 and TAL1 (endogenous and transgenic) shows no 

significant statistical difference between the different populations sorted (Fig 4.6). This shows that 

despite certain TGs not being expressed or expressed at low levels in certain populations, as seen for 

the fluorescent proteins, the endogenous gene expression level must be increased, in order for this 

equal expression to be observed. Unfortunately the scRNA-seq performed cannot distinguish 

between endogenous and transgenic expression of the three TFs. One cannot simply remove the 

expression value of the relevant fluorescent protein, as the sequencing performed has a 5’ bias, so 

will over-represent the fluorescent protein expression levels relative to the transgenic TF, due to the 

ordering of all vectors being fluorescent gene-2A-TF. However, this data indicates that despite 

observed heterogeneity in TG expression, the total expression of the three TFs was the same in the 

different populations, which determines MK identity. 

Gene Ontology Terms Define Three Distinct Cellular Phenotypes 

Unsupervised clustering revealed three or four groups of cells with the highest stability (Fig 4.7). In 

the three-group clustering, gene ontology was performed which identified one cell group with 

platelet-biased functions, one with mitotic functions and one with increased cell death related 

functions (Fig 4.). It is therefore most likely that these groups reflect mature MKs, MK-progenitors 

and dead cells respectively, based on the gene ontology results. In the four-group clustering the 

platelet-biased group was sub-divided but gene ontology failed to discriminate many differentially 

expressed genes in these two groups. This is expected, since gene ontology is a tool best suited to 

reporting high-level variance between cells. Nevertheless it is likely that these two groups represent 

more mature MKs, the furthest group away from the MK-progenitor group, and intermediate MK 

cells (Fig 4.9A).   

Evidence of Cell Clusters in Distinct Stages of Differentiation 

By comparing the gene expression levels of genes known to be upregulated in MEPs, MKs and 

erythroblasts (EB) (Chen L, 2014), in the 4 populations identified in the long-term MK-FoP culture, 

distinct cell phenotypes were observed (Fig 4.9). The progenitor group showed upregulation of both 

MK and EB genes, consistent with the idea that this cell type reflects a bi-potent progenitor group 

generated by FoP. Of the two MK cell groups identified, one showed stronger upregulation of MK 

genes and downregulation of EB and MEP genes, compared to the other, consistent with the idea 

that the one group represents more mature MKs, while the other represents less mature MKs.  

Based on the four groups identified (progenitor, immature MK, mature MK and apoptotic cells) the 

expression of cell surface markers and maturation markers corroborates these groups further (Fig 
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4.10). CD235, a red cell specific marker, was not expressed by the majority of cells and found most 

commonly in cells believed to represent bi-potent progenitors. CD41 and CD42 were most highly 

expressed in mature MKs. Stathmin (STMN1), an essential protein for the regulation of microtubule 

cytoskeletons, is downregulated during MK maturation but is known to be highly expressed in MEPs 

(Iancu-Rubin C, 2011). This gene followed the expected expression pattern in MK-FoP cells, with the 

highest expression seen for progenitor cells. vWF expression, which we have previously observed by 

flow cytometry to not be expressed in the majority of MK-FoP cells, showed sporadic expression in a 

number of cell types identified, and in very few cells overall. This reflects that MK-FoP cells do not 

express the same maturation markers as MKs from primary stem cells, which may have implications 

for their therapeutic use. 

Novel Cell Surface Markers Identified could Improve MK-Progenitor Discrimination and Isolation 

Finally, the identification of a number of novel cell surface markers could be important for enabling 

progenitor cell isolation (Table 4.6), improving sorting of these cells and helping us to further refine 

the progenitor cell surface identity for future progenitor assays and whole genome expression 

analysis. While CD41 and CD42 show some discrimination between the cell groups identified by 

unsupervised clustering of the scRNA-seq data, the expression for all cell types was high, revealing 

that these markers are not ideal for discriminating easily between progenitors and MKs. It should be 

noted that high RNA expression may not translate to high protein levels and that these markers 

would need to be experimentally validated and checked for external cell surface expression.  

Overall the data presented here shows strong evidence that long term MK-FoP cultures consist of 

progenitors and MK cells in different stages of differentiation. The apoptotic cell group identified, 

interestingly, clusters closely to the mature MKs, raising the question- do these cells represent very 

mature MKs which are poised to produce platelets? There has long been an association of apoptosis 

with platelet production, since primary cultured MKs gave rise to the observation that peak platelet 

production in vitro corresponds with the onset of apoptosis in MKs (Zauli G, 1997). Therefore, this 

small group could represent platelet producing cells, and may be represented by such low numbers 

in this experiment due to these cells undergoing cell death, making them most likely to fail QC steps 

and be excluded from analysis. It would be interesting to perform scRNA-seq at multiple time points 

during FoP, to see if the dynamics of the cell groups identified in this analysis remain stable overtime 

and particularly if progenitor cells are able to self-maintain and/or become mature MKs. It would 

also be interesting to see whether the apoptotic cell group increases in number if cells are pushed 

towards platelet formation in vitro before sorting.  
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The first aim of my PhD was to show whether FoP could generate bi-potent progenitors, capable of 

maturing into both MKs and erythroblasts. The work presented in Chapter 1 shows for the first time 

that the FoP technique provides a means of producing platelets and erythroblasts, both of which are 

clinically relevant cell types for use in transfusion medicine. Many of the issues surrounding platelet 

transfusions outlined in the Introduction of this thesis are also relevant for red blood cell 

transfusions, such as biosafety and donor dependency. For this reason, showing that the FoP 

protocol can reliably generate both cell types from hiPSCs, while also being GMP compatible and 

amenable to large-scale manufacture, is a huge advance for the field of transfusion medicine.  

As for existing directed differentiation protocols, the platelets and erythroblasts generated through 

FoP are embryonic in phenotype, which could lead to a number of clinically relevant issues. Such as, 

will embryonic platelets and erythroblasts function in the same way as adult cells? Importantly, will 

they offer therapeutic benefit, to an adult recipient? Functional data from our lab has shown FoP 

produces platelets that are capable of thrombus formation both in vitro and in vivo, in a mouse 

laser-induced vascular injury model (Moreau et al, 2016). This shows promise that despite not being 

adult in phenotype FoP produced platelets will still function in the same way as donor platelets, 

suggesting this will not be an obstacle for their use in human trials.  

Many published protocols to generate RBCs from PSCs, produce cells which lack the classical 

features of mature erythrocytes, including enucleation and adult beta globin expression, 

representing a lack of definitive haematopoiesis occurring in these cells. Critically, in vitro produced 

RBCs which lack an adult phenotype may not be able to function in the same way as RBCs produced 

in vivo. As reticulocytes mature in vivo they reduce in size, become biconcave in shape and acquire 

stability and deformability, allowing mature erythrocytes to pass through small arterioles easily 

(Waugh et al, 2001). One issue is that in vitro produced RBCs are much larger than their in vivo 

counterparts and thus may cause blockages in arterioles if they are unable to deform correctly. 

Secondly, without enucleation and adult haemoglobin, they will not match the oxygen carrying 

capacity of donor cells, so offer little advantage.  

One potential way to improve maturation of FoP erythroblasts could be to over-expressing 

additional TFs. For example, Krüppel-like factor 1 (KLF1) has recently been shown to enhance both 

differentiation and maturation of red blood cells from PSCs, resulting in improved enucleation, when 

over-expressed at the stage of haematopoietic progenitors, during differentiation (Yang CT, 2017). 

However, the phenotype of these cells remains embryonic, with little β-globin expression. The lack 

of maturation seen in in vitro RBCs, may be due to the nature of the starting cells used- pluripotent 

stem cells, which may contain epigenetic features that need to be removed for full maturation to 
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occur during differentiation. Ashley Toye and Jan Frayne’s groups in Bristol (both part of the 

NovoSang consortium) have made progress in generating mature erythrocytes, but from 

immortalised adult erythroblasts not PSCs. The cells produced show the hallmark features of 

erythrocytes and will be used in the near future for conducting the first in man trials (Trakarnsanga 

et al, 2017). The fact that these groups have stepped away from trying to generate RBCs from hPSCs, 

in favour of starting cells which are already committed to the haematopoietic lineage, also adds 

weight to the idea that PSCs may not be able to produce definitive haematopoietic cells in the 

minimal cytokine, 2D conditions such as we and others are currently using.  

While other cell types may prove to be more useful to generate mature RBCs in vitro, deriving 

platelets from PSCs still holds a lot of promise. PSC-derived platelets could offer a huge number of 

therapeutic advantages over using donor platelets. In order to generate changes in the platelets 

produced, PSCs can be ‘customised’ more easily using techniques such as CRISPR-Cas9, than other 

cell types such as CD34+ cells, which cannot be cultured for long periods of time. The advantage of 

stating with PSCs is that after any genetic changes made, the new PSC line can be cryopreserved and 

cultured indefinitely. One example of customising PSCs has already taken place in our lab. PSCs have 

been genetically altered to stop expression of the β2 microglobulin (B2M) gene. The B2M protein is 

responsible for cell surface expression of MHC class I molecules in most cell types. Annett Müller has 

deleted the B2M gene from iPSCs and shown that these cells FoP in exactly the same manner as 

their parental line (unpublished). Mouse experiments will soon be underway to assess whether 

these HLA-null cells can evade an immune response and thus be used as a source of universal 

platelets.  

A PSC source of universal platelets would alleviate the pressures of finding matched platelets for 

patients with rare blood types, or for those who have become alloimunised. A 2012 study calculated 

that 150 homozygous HLA-types volunteers could provide iPSC lines that would offer a match for 

93% of the UK’s population (Taylor et al, 2012). However, the establishment of such a large number 

of clinical grade iPSC lines would be a huge undertaking, with huge associated costs. To put this into 

perspective, the UK Stem Cell Bank currently has only 3 clinical grade stem cell lines available for 

use, one of which has 2 confirmed mutations in the gene TP53. Since only approximately 40% of all 

the PSC lines tested in our lab have been capable of producing mature MKs by FoP, even if the 

establishment of 150 lines was feasible, the reality is that many of these lines would not FoP. 

Another example of how in vitro derived platelets could offer benefits over donor platelets has to do 

with the fact that platelets are activated only at sites of vascular injury, where they in turn release 

their granule content. There is a potential to use platelets to deliver drugs to specific regions of the 



 

248 
 

body, at local sites of injury. Alternatively, by genetically editing the starting PSCs used for FoP, 

platelets could be derived which overexpress certain proteins in their alpha granules, such as pro-

thrombotic proteins or pro-angiogenic proteins, which could be administered to specific patients 

groups depending on their therapeutic requirements. This has been functionally demonstrated by 

David Wilcox and colleagues, who transduced HSCs in canines with a lentiviral vector that encoded 

for a modified version of the Factor VIII gene, downstream of the MK specific CD41 promoter and an 

α-granule targeting domain of VWF (Du et al, 2013). They found this strategy to alleviate 

haemophilia A symptoms in vivo and thus, we are adapting this strategy to target other proteins to 

the α-granules of FoP platelets. 

Unlike many cell types, currently of interest to produce from PSCs for clinical use, RBCs and platelets 

offer a unique advantage, in that both these cell types are anucleate. This means any cells to be 

transfused into patients can be irradiated, removing any potentially oncogenic progenitors that may 

remain in cultures. However, a disadvantage of platelets is that they require careful handling to 

collect and store, so as not to become activated and clot. This makes collecting platelets from FoP-

MK cultures difficult and may reduce the numbers of platelets collected. As with donor platelets the 

storage of such cells would mean they could not be kept for long time periods. Mature erythrocytes 

produced by the NovoSang consortium immortalised line, has highlighted issues with collection for 

these cells. The low purity of mature cells in their cultures means they need to be purified, which 

causes a large loss of cells and an overall reduction in the number of erythrocytes obtained 

(Trakarnsanga et al, 2017).  

Since its publication in 2016, the FoP technique has gained widespread popularity with many 

researchers around the world investigating the developmental biology of MKs and platelet 

formation in vitro. Compared to existing directed differentiation (DD) protocols, FoP offers 

advantages in both cell purity and cell number outcome (Moreau et al, 2016). As useful as this 

technique is for studying megakaryopoiesis in vitro, the main aim of the Ghevaert lab is to produce 

platelets for clinical use. When I started my PhD, there were 2 major bottle necks in the FoP 

protocol, which presented huge drawbacks to being able to scale up this technology and offer in 

vitro derived platelets.  

The first bottle neck was that we were unable to produce large enough numbers of MKs per starting 

iPSC, despite producing more MKs compared to DD methods, with a technique that was not very 

amenable to large scale manufacture. The second and third chapters of my thesis have shown the 

process of working towards a protocol which is a more a viable option for scaling up MK-FoP, using 

an inducible PSC line. Inducible MK-FoP offers a huge advantage over lentiviral FoP, by greatly 
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reducing the scale-up costs that will be involved, due to the elimination of lentiviral particles. Now, 

we also know that FoP-MKs can be cultured long term, with continued proliferation up to around 

100 days, allowing more MKs to be produced per PSC seeded. This also allows banks of MK 

progenitors to be cryopreserved, which once thawed, quickly (in less than 7 days) generate platelets. 

Our understanding of long-term FoP-MK cultures is improving, thanks to work at Loughborough 

University by PhD student Elizabeth Cheesman, and we have been able to maximise MK cell number 

by minimising cell handling and following stricter cell feeding regimes. However, despite there being 

a great number of labs around the world aiming to produce cell types for use in a clinical setting, 

there still remains a lack of progress in the large-scale manufacture of cells that would meet this aim.  

The second bottleneck is that the MKs produced in vitro, are poor producers of platelets, producing 

on average just 1 platelet per MK, compared to approximately 2000 platelets per MK in vivo. While 

other groups working towards the same goal have published studies that show higher platelet 

production per in vitro MK, there have been doubts cast over how accurately these ‘platelet’ events 

have been characterised, as many fail to discriminate between live and dead cells. Members of the 

Ghevaert lab have worked on developing protocols which accurately determine the number and 

quality of the platelet-like particles produced from FoP-MKs. This second bottleneck is most likely 

not going to improve through protocol adjustments, until we move FoP-MKs from a 2D static 

environment. That is why members of our group are working on developing a bioreactor, alongside a 

3D collagen scaffold to mimic the bone marrow niche in which in vivo MKs normally reside.  

Since in vivo MKs take both biochemical and physical cues from their niche environment, we believe 

that mimicking these cues in vitro will offer the best chance of improving platelet yield. We have 

already seen that simply seeding FoP-MKs onto a 3D scaffold increases the number of platelet-like 

particles produced, compared to static tissue culture conditions (unpublished). A number of 

transmembrane proteins have been identified, that can be mobilised onto the 3D scaffolds, which 

increase proplatelet formation of FoP-MKs (Maria Colzani and Holly Foster, unpublished). A 

bioreactor has also been developed in our lab, whereby the 3D scaffold sits between two chambers 

exposed to different flow rates, to mimic the shear stress MKs are exposed to in vivo from blood 

flow. Individually, all three of these components (3D scaffold, transmembrane proteins and 

bioreactor) increase platelet yield from FoP-MKs, but the idea is to combine all of these approaches, 

which will hopefully have a cumulative effect on increasing platelet production in vitro.  

In collaboration with a company (Platelet BioGenesis, borne from Joseph Italiano and Jonathan 

Thon’s labs at Harvard University in the USA), inducible and lentiviral FoP-MKs are also being tested 

in a second bioreactor developed independently of our lab. Platelet BioGenesis  no longer rely on 
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their own DD method of generating PSC-derived MKs, due to low cell numbers, and has bought 

exclusive rights to the license for MK-FoP in order to try and generate in vitro platelets using their 

bioreactor. The lab of Alessandra Balduini, (Pavia University, Italy and Boston University, USA) also 

collaborates with our group to use FoP-MKs in their own version of a bioreactor, using silk-based 

vascular tubes, to study the biology of platelet formation and release, with the hope that increasing 

our knowledge about these processes will help to improve the yield in vitro. Over the past few years 

many of our once competitors are now collaborators, and this joining of forces can only be beneficial 

overall to achieving the ultimate goal of PSC derived platelets being used in clinical transfusion. 
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