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Space-time qubits
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We construct a qubit algebra from field creation and annihilation operators acting on a global vacuum state.
Particles to be used as qubits are created from the vacuum by a near-deterministic single-particle source. Our
formulation makes the space-time dependence of the qubits explicit, preparing the way for quantum computation
within a field framework. The method can be generalized to deal with interacting qubits whose wave packets are
not perfectly matched to each other. We give an example of how to calculate the Heisenberg evolution of a simple
two-qubit circuit, taking expectation values in the field vacuum state.
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I. INTRODUCTION

Much of quantum information theory is couched in the
formalism and language of the Schrödinger Picture of quantum
mechanics, in which the qubit states explicitly evolve as they
pass through circuits or down communication channels [1].
Key properties such as entanglement depend specifically
on the Hilbert space structure of the qubit state after
processing. In contrast, a completely equivalent approach is to
work in the quantum mechanical Heisenberg Picture, in which
it is the Pauli operators describing observables that evolve,
while the state of the system is always the global ground
state of the qubits [2]. In this formalism the properties of the
system depend on the Pauli operator algebra and, specifically,
on its commutator structure. Heisenberg evolution is used
extensively in the stabilizer formalism for error correction and
graph states [3].

A limitation of current quantum information theory is that it
treats qubits as stationary point particles possessing no space-
time extent or dynamics. A specific exception is in optics,
where the finite extent and propagation of photon modes have
been included in linear optical quantum computation circuits
[4].

In this paper we present a recipe for performing quantum
information calculations in the Heisenberg Picture in which the
Pauli operators are explicitly constructed from field operators
with a space-time structure and the initial state is always the
global field ground or vacuum state. This is in contrast to the
usual approach, where the ground state is an n-qubit state,
rather than the vacuum state. Our approach requires us to
express the usual creation and annihilation operators, which
act on the n-qubit ground state, as a function of the field
operators, which act on the field vacuum state. To derive such
an expression, we use an explicit model of a single-photon
source [5] to treat the deterministic creation of a qubit from
the vacuum.

The paper is arranged in the following way: in Sec. II we
show how a qubit algebra can be constructed from the vacuum
using the creation and annihilation operators of a bosonic field
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with explicit space-time parametrization. In keeping with the
Heisenberg Picture throughout, we find it necessary in Sec. III
to introduce an operator corresponding to the deterministic
creation of a single-particle mode. This allows us to represent
arbitrary quantum gates acting on a collection of qubits as
operators on the vacuum state. In Sec. IV we show that the
algebra is sufficiently general to cope with operations on qubits
whose wave packets are not perfectly matched to one another.
Finally, in Sec. V we illustrate these methods by applying
them to the simple problem of a controlled-NOT (C-NOT) gate
in flat space time. We conclude by discussing the potential
applications of this work to problems in relativistic quantum
information theory.

II. FIELD QUBITS

We consider a field of scalar bosons, which may be
expanded in terms of its positive- and negative-frequency parts
as

φ̂(x,t) =
∫

dk [G(k,x)âk + G∗(k,x)â†
k]

≡ ÂG + Â
†
G , (1)

where G(k,x) is a normalized solution of the Klein-Gordon
equation and x,k are four-vectors, with kx = gμνk

μxν . We
find it useful to consider wave packets, which are localized
superpositions of plane-wave solutions:

G(k,x) = g(k)eikx, (2)

where g(k) is centered on some positive wave number k0 and
is required to be 0 for k < 0. Normalization requires∫

dk |g(k)|2 = 1.

We then interpret the operator ÂG as the annihilation operator
for a particle in mode G and Â

†
G as the corresponding

creation operator. From the bosonic commutation relation
[â(k),â†(k′)] = δ(k − k′), we obtain the same-time wave-
packet commutator:

[ÂG(k,x1,t),Â
†
H (k′,x2,t)] =

∫
dk G(k,x1,t)H

∗(k,x2,t)

=
∫

dk h∗(k)g(k)ex1−x2 . (3)
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In the rest of this section, we restrict ourselves to a set of
modes Gi that are either perfectly matched in their spectral
and spatial degrees of freedom or perfectly orthogonal to each
other, i.e., [

ÂGi
,Â

†
Gj

] = ∫ dk gi(k)g∗
j (k) = δij .

Hence the particular spatial dependence of the modes plays
no role for the time being, so we drop the subscript G

and merely consider the index i; hence, ÂGi
→ Âi . The

spatial dependence is reintroduced in Sec. IV, where we
show that a qubit algebra can still be constructed in a
straightforward manner using information about the particles’
spatial profiles; for the moment, we describe the construction
of a simplified qubit algebra from ideal modes with trivial
space-time dependence. To consider qubits, it is convenient to
work in the Fock basis and write a single-particle state as the
action of Â

†
i on the vacuum state:

|1i〉 ≡ Â
†
i |0〉 .

To build up a qubit algebra, we need to start from a “qubit
ground state,” which is an n-particle state in the field represen-
tation. In the remainder of this section, we construct an algebra
assuming that we have such an n-particle state. Section III
then illustrates how particle creation can be incorporated in
the algebra. Suppose that we have n particles, each confined
to a pair of orthogonal modes, Â

†
i ,B̂

†
i , where i = 1,2, . . . ,n

labels the ith particle. Provided each particle remains confined
to its two modes, we may interpret the particles as qubits in a
dual-rail encoding and the state as an n-qubit system. For the
ith qubit in the two-mode number basis |nAnB〉i , we define the
computational basis states |0〉,|1〉:

|0〉i ≡ Â
†
i |00〉 ≡ |10〉i ; |1〉i ≡ B̂

†
i |00〉 ≡ |01〉i .

An arbitrary superposition state is

|ψi〉 ≡ α|0〉i + β|1〉i = α|10〉i + β|01〉i ;
(|α|2 + |β|2 = 1) .

We consider the following operations on the ith qubit:

Îi = Âi
†
Âi + B̂i

†
B̂i , Ẑi = Âi

†
Âi − B̂i

†
B̂i ,

(4)
X̂i = Âi

†
B̂i + B̂i

†
Âi, Ŷi = iB̂i

†
Âi − iÂi

†
B̂i .

These are the quantum Stokes operators [6]. They preserve the
qubit structure of the state space, and within it they form a
representation of the familiar Pauli algebra when expectation
values are taken. For example, even though the operator X̂X̂ =
Â†B̂Â†B̂ + B̂†ÂÂ†B̂ + Â†B̂B̂†Â + B̂†ÂB̂†Â acting on the
ith qubit looks very different from I = Â†Â + B̂†B̂, a quick
calculation shows that these operators are equivalent under
expectation values taken in state |ψi〉. It is therefore convenient
to replace the operators in (4) with their equivalence classes,
which are formally representible by the Pauli matrices:

Îi =
[

1 0
0 1

]
i

, X̂i =
[

0 1
1 0

]
i

,

Ŷi =
[

0 −i
i 0

]
i

, Ẑi =
[

1 0
0 −1

]
i

.

This allows us to perform calculations using just the Pauli
operators, without having to refer to the fields themselves. At
the end of the calculation, we need a recipe to convert the
final matrix back into field operators in order to calculate the
expectation value. Motivated by the correspondence between
the field expressions (4) and their matrix counterparts, we
propose that a general single qubit matrix acting on the ith
qubit can be decomposed into fields as[

γ δ

ρ σ

]
i

≡ γ Âi
†
Âi + δÂi

†
B̂i + ρB̂i

†
Âi + σB̂i

†
B̂i . (5)

Using the matrix tensor product, we may generalize this
decomposition to 2n × 2n matrices acting on the entire n-qubit
system:⎡
⎢⎢⎣

γ δ . . .

ρ σ . . .

...
... κ

⎤
⎥⎥⎦

i

≡ γ Â1
†
Â1Â2

†
Â2 . . . Ân

†
Ân

+ δÂ1
†
Â1Â2

†
Â2 . . . Ân

†
B̂n

+ · · · + κB̂1
†
B̂1B̂2

†
B̂2 . . . B̂n

†
B̂n . (6)

The n-qubit identity in n-qubit space is therefore defined by

1̂ ≡ Î1 ⊗ Î2 ⊗ · · · ⊗ În . (7)

In order to model general n-qubit gates we require a universal
gate set. We can construct arbitrary single-qubit operations
from the Pauli operators by (for example) combining rota-
tions around the Z axis, Ẑ(θ ) = cos θ Î + i sin θẐ, with the
Hadamard gate, Ĥ = 1/

√
2(Ẑ + X̂). We also need to add a

two-qubit controlled-SIGN (C-SIGN) gate to complete the set [1].
In two-qubit space, the C-SIGN has the matrix representation
(in the computational basis)

Ūcsign = 1

2
(Î1Î2 + Î1Ẑ2 + Ẑ1Î2 − Ẑ1Ẑ2)

=

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎦ . (8)

In terms of fields, using (6) and (7), this matrix corresponds to
the operator

=1̂ − 2B̂1
†
B̂1B̂2

†
B̂2 . (9)

Taking this as our C-SIGN gate completes the universal gate set.
Arbitrary n-qubit gates can be represented as tensor products of
the Pauli gates (4) and C-SIGN gate (9) acting on one- and two-
qubit subspaces. We can also translate between the familiar
matrix representations and the field operator representations
using (6).

A. Heisenberg Picture

We now briefly review how quantum circuit calculations
can be performed in the Heisenberg Picture [2,3]. Instead of
starting with some initial state |ψ〉 that is evolved to some final
state Û |ψ〉 as in the Schrödinger Picture, we start from some
set of observables representing the measurements made on the
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system, Ĵ , and evolve them back to their initial values Û †Ĵ Û ,
where expectation values can be taken against the initial state
〈ψ |Û †Ĵ Û |ψ〉. The measurement operators are constructed
from the Pauli operators, i.e., Ĵ = f (Î ,X̂,Ŷ ,Ẑ), and given
that the evolution operators are also constructed from Pauli’s,
i.e., Û = g(Î ,X̂,Ŷ ,Ẑ), calculation of Û †Ĵ Û is straightforward
from the Pauli commutation relations.

Clearly the two pictures are equivalent with respect to ex-
pectation values as 〈ψ |(Û †Ĵ Û )|ψ〉 = (〈ψ |Û †)Ĵ (Û |ψ〉). Here
we are interested in “pure” Heisenberg evolution, for which
all evolution, including state preparation, is performed in the
Heisenberg Picture and so expectation values are always taken
with respect to the qubit ground state, i.e., 〈Ĵ 〉 = 〈0|Û †Ĵ Û |0〉.

III. SINGLE-PARTICLE PRODUCTION

The qubit ground state in the preceding section is an n-
particle state (where n is the number of qubits) and so is not
the field ground state. In order to have “pure” Heisenberg
evolution of the field state we need to identify the Heisenberg
transformation representing single-particle creation. Strictly
this means finding a unitary transformation that takes us from
the vacuum to the n-qubit state. Ideally, we would like to have
a unitary ÛP that takes a vacuum mode Â as input and gives
a single particle in the mode ÂP as output. This is shown
schematically in Fig. 1.

Since the input and the output are both pure states, such
a unitary must exist in principle. We could then obtain the
output mode ÂP as a function of the input vacuum modes by
calculating its Heisenberg evolution:

Û †ÂÛ ≡ ÂP . (10)

However, finding an explicit form for the unitary is a
nontrivial matter because it is a highly nonlinear function
of the field operators. Rather than attempt such a task, we
consider a physical model that produces the exact same
evolution using detection and feed-forward. The model will
give us an explicit recipe for writing down the output mode
ÂP in terms of vacuum input modes. Specifically, we refer
to a suggestion by Migdall, Branning, and Castelletto [5]
for a deterministic single-photon source that makes use of
N spontaneous parametric down-converters (SPDCs) and

...
...

FIG. 1. Schematic of a unitary single-particle source. We find it
useful to make use of a large number of ancilla states, which begin
and end in the vacuum state.

...
...

FIG. 2. A nonunitary, near-deterministic single-particle source.

postselection (see Fig. 2) to produce the desired evolution in
the limit of arbitrarily large N . The basic model is not specific
to optics and we present a slightly more abstract version that
is well suited to our purposes.

A. The Migdall-Branning-Castelletto source

Consider the parametric amplification unitary:

ÛP ≡ exp
∫∫

dkdk′[χP (k,k′)û†(k)v̂†(k′) − H.c.].

This unitary acts on the vacuum to create a two-particle state
with probability χ2: one particle in the mode û and one in
the mode v̂ (the û particle may be detected to herald the
presence of the v̂ particle). χ is assumed to be 
1 and so
terms of higher order than χ2 are neglected. The particles
have a joint spectral amplitude denoted P (k,k′), which in
general includes entanglement between the particle pairs;
however, for simplicity we assume that the state is separable
(achieved in the laboratory by phase-matching) and has the
form P (k,k′) = G(k)G(k′) [7]. Under this assumption there
are no multimode effects, so we can use the shorthand∫

dkG(k)ei(kx−ωt)û(k) → û ,

and similarly for mode v̂. The Heisenberg evolution of the
operators is then

û′ = Û
†
P ûÛP = sinh(χ )û† + cosh(χ )v̂,

(11)
v̂′ = Û

†
P v̂ÛP = sinh(χ )v̂† + cosh(χ )û.

Generalizing to an array of N such unitaries, labeled 1 to N ,
we take the ith unitary to act on modes ûi ,v̂i with an output
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amplitude G∗
i (k)G∗

i (k′). The modes are assumed to be mutually
orthogonal and satisfy the commutation relations:

[ûi ,û
†
j ] = δij , [v̂i ,v̂

†
j ] = δij .

The output of the array is:

|ψP 〉 ≡ ÛP1 ⊗ ÛP2 ⊗ · · · ÛPN
|0〉 . (12)

Although the probability of any individual SPDC firing
remains of order χ2, where χ2 is small, the probability of
at least one of the SPDCs in the array firing scales with
N , so that for N sufficiently large, we are almost certain
to have at least one particle available at any given moment.
Furthermore, g(2) does not scale with N because it represents
the relative probability of obtaining more than one photon
for a given mode, independently of modes other than the
one being considered. Hence the probability of obtaining
two or more particles in the same mode remains negligible.
Finally, we perform detection on the ûi modes in (12) and
feed forward the topmost heralded particle in the array into
mode ÂP . All other particles that may have been produced
are dumped and replaced with empty modes. The information
about the detection result for the mode ûi is contained in the
particle-number operator,

n̂u′
j
≡ û

′†
j û′

j ,

and has eigenvalue 0, 1, or 2. Values higher than 2 correspond
to higher orders of χ and can be neglected provided that we
choose χ to be small, as we do in this paper. In terms of the
feed-forward and the vacuum modes, we find that the output
mode ÂP has the form

ÂP ≡
N∑

j=1

d̂u′
j
v̂′

j

j−1∏
i=0

(
1 − d̂u′

i

)+ ĉÂ , (13)

where Â is the vacuum input mode referred to at the beginning
of the section. The expression depends explicitly on the feed
forward n̂u′

j
through a bucket detector operator d̂u′

j
:

d̂u′
j
≡ 1

2

(
3 − n̂u′

j

)
n̂u′

j
. (14)

Given the non-negligible eigenvalues of n̂u′
j
, operator (14)

represents a detector that registers a single click when one or
more particles are present and does nothing otherwise. This
detector is unable to resolve particle numbers >1; this is in
keeping with the bucket detector model.

Any single-particle mode must have a particle-number
expectation value of 1 and a negligible probability of con-
taining more than one photon, and it should satisfy the usual
commutation relation. Formally, these properties are given by
the relations

〈0|Â†
P ÂP |0〉 = 1, 〈0|Â†

P Â
†
P ÂP ÂP |0〉 = 0,

(15)
[ÂP ,Â

†
P ] = δ(k − k′).

For ÂP to satisfy the commutation relation in (15), the operator
ĉ is taken to be

ĉ ≡
⎛
⎝1̂ −

N∑
j=1

n̂2
uj

j−1∏
i=0

(
1 − n̂ui

)2⎞⎠
1
2

.

We need to verify that ÂP also satisfies the other properties
in (15). From a direct calculation, the details of which are
reported in the Appendix, we find

〈
n̂AP

〉 = 〈0|Â†
P ÂP |0〉

= (4 − 4|χ |2 + 9|χ |4)((1 − |χ |2)N − 1)
5|χ |4 − 4

, (16)

g(2) = 〈0|Â†
P Â

†
P ÂP ÂP |0〉〈

n̂AP

〉2
= 2|χ |2(4 − 5|χ |4)2

(4 − 4|χ |2 + 9|χ |4)2((1 − |χ |2)N − 1)
. (17)

In the limit of N large and χ small, one finds that these
quantities approach 1 and 0, respectively (see Fig. 3); hence
the properties (15) are indeed satisfied. In idealized situations,
the full expression (13) is not needed; the identities (15) suffice
for performing calculations. In more practical situations where
particle production might be nonideal, or when we may wish
to consider relativistic observers (see Sec. VI), it will be
necessary to have the explicit expression (13) for ÂP in terms
of the initial vacuum modes.

Explicitly, if we wish to enact a circuit ÛC on n qubits
produced by the above method, where the circuit acts on
modes ÂG1 ,ÂG2 , . . . ,ÂGn

,B̂G1 ,B̂G2 , . . . ,B̂Gn
, then instead of

calculating the usual general expectation value,

〈ψin|F
(
ÂG1 ,ÂG2 , . . . ,B̂G1 , . . .

)|ψin〉, (18)

FIG. 3. (Color online) Graph of nAP
(solid curves) and g(2)

(dashed curves) as a function of N . The upper (red) curve shows
χ1 = 0.01 and the lower (green) curve shows χ2 = 0.001. The
horizontal scaling has been adjusted relative to χ1 = 0.01 to bring the
solid-line graphs into coincidence for ease of viewing. The vertical
scaling is the same in all graphs, to allow for comparison. While the
graphs of nAP

always saturate at nAP
� 1 for some N , the graphs

of g(2) saturate at values that become closer to 0 (−∞ on the log10

scale) as we make χ smaller. Thus we can choose χ so as to make
g(2) as small as we like, while still obtaining nAP

� 1 for sufficiently
large N .
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FIG. 4. A general unmatched two-qubit circuit. Here G1,2 denotes G(k,x1,2) and H denotes H (k,xc).

where |ψin〉 is the initial n-particle prepared state,

|ψin〉 ≡ Â
†
G1

Â
†
G2

. . . Â
†
Gn

|0〉,
we now calculate the expectation value,

〈0|F (ÂP,G1 ,ÂP,G2 , . . . ,B̂P,G1 , . . .
)|0〉

= 〈0|f (ûG1 ,ûG2 , . . . ,v̂G1 , . . .
)|0〉, (19)

where ÂP,Gi
,B̂P,Gi

are defined in terms of the vacuum modes
ûGi

,v̂Gi
according to (13).

IV. PARTICLE MISMATCH

We would now like to relax the assumption that particles in
non-orthogonal modes have exactly the same mode distribu-
tion G(k,x). In the context of wavepackets, this will introduce
nontrivial commutators of the form (3). This more general
situation might include interactions between particles whose
spectral amplitudes are not the same, as in quantum optics, or
situations in which the particles arrive at the gate at slightly
different times or their wave packets only partially overlap in
space. In the discussion that follows, we focus on the latter case
of mismatch caused by mistiming or spatial discrepancies, but
our analysis applies equally well to other types of mismatch.

One might worry that the algebra in Sec. II no longer applies
in this scenario, since the extra degrees of freedom might allow
qubits to become “invisible” with respect to each other, making
it unclear how to define an n-qubit space. We make use of a
proposal, made in the context of optical quantum computation,
by Rohde, Mauerer, and Silberhorn (RMS) [8], which allows
us to separate the amplitudes G(k,x) into parts which are
separately matched or orthogonal to the interaction of interest.
We show that this allows us to retain the Pauli algebra in
general situations, at the cost of expanding the state space to
include the orthogonal degrees of freedom.

Following RMS, the mismatch between particle modes is
treated as a rotation into the orthogonal degrees of freedom
with respect to some “reference” mode, with the amount of
rotation being equivalent to the overlap between the amplitudes
of the modes of interest and the reference mode. In this way
we can write down an effective circuit that can be treated
with all the usual methods, yet with sufficient machinery
to deal with potential qubit mismatch. We demonstrate this
technique for a general two-qubit gate. The circuit in Fig. 4 is a
two-qubit system, constructed from two particles with spectral
amplitudes G(k,x1) and G(k,x2) and distributed among the
pairs of modes âi,
k,b̂i,
k , with i = 1,2 labeling the qubits.

Hence, Â1,G1 ≡ ∫ d
k G(k,x1)â1,
k , etc. The qubits interact via
a general two-qubit unitary UC whose Hamiltonian is assumed
to depend on just a single amplitude H (k,xc), representing, for
example, an external classical pump driving the interaction.

Larger circuits containing interactions with different pump
amplitudes can be constructed by connecting basic circuits of
the type considered here, although each part would have to be
treated separately.

Our task is to calculate the Heisenberg evolution through
the circuit given that G(k,x1), G(k,x2), and H (k,xc) are
all different in general. We proceed by choosing the pump
amplitude H (k,xc) as a reference and describing all other
modes by their overlap with H (k,xc). To this end, we make
use of a “mismatch factor” ξ , which we interpret as being
the amount of overlap between the interacting wave packets.
Specifically, ξ is determined by the commutator, (3), between
the appropriate wavepacket creation and annihilation operators
at the time of interaction:

ξ ≡
∣∣∣∣
∫

dk G(k,x1,t)H
∗(k,xc,t)

∣∣∣∣
2

. (20)

It turns out that general situations in which neither qubit is
matched to the reference amplitude can always be reinterpeted
such that all of the mismatch is carried by only one of
the qubits. For example, if the overlap terms are ξ1 =
|∫ dk G(k,x1)H ∗(k,xc)|2 and ξ2 = |∫ dk G(k,x2)H ∗(k,xc)|2,
we can multiply them to form a third quantity, ξ3 ≡ ξ1ξ2, and
then interpret ξ3 as the mismatch of just one qubit whose
partner is perfectly matched to the reference amplitude. Hence
we lose no generality by assuming that one of the qubits
is perfectly matched and the other is not. We therefore let
G(k,x2) = H (k,xc) and let the entire mismatch be carried by
the overlap of G(k,x1) with H (k,xc). We first write the modes
as superpositions of matched and orthogonal components:

Â1,G1 ≡
√

ξÂ1,H +
√

1 − ξ ĉ,
(21)

B̂1,G1 ≡
√

ξB̂1,H +
√

1 − ξ d̂,

where we have introduced the auxiliary vacuum modes ĉ,d̂ .
From a circuit perspective, we may view the G1 modes as the
result of a rotation that causes mixing between the matched
and the orthogonal parts. Formally, this is achieved by the
evolutions

â1 →
√

ξ â1 +
√

1 − ξ ĉ, ĉ →
√

ξ ĉ −
√

1 − ξ â1,
(22)

b̂1 →
√

ξ b̂1 +
√

1 − ξ d̂, d̂ →
√

ξ d̂ −
√

1 − ξ b̂1,

where it is understood that modes âi ,b̂i are matched to
H (k,x), i.e., we identify âi ≡ Âi,H (k,x). The choice of phase
convention in the above evolution does not matter because the
modes representing the unmatched part are initially empty. We
note that even if the spectral profiles of the interacting modes
are identical, h(k) = g(k), spatiotemporal differences between
the modes such as that produced by a delay on one qubit may
still give rise to a nontrivial overlap, since G(k,x1) �= G(k,x2)

022315-5



J. L. PIENAAR, C. R. MYERS, AND T. C. RALPH PHYSICAL REVIEW A 84, 022315 (2011)

FIG. 5. The circuit as seen by orthogonal qubits.

in general. We recover the algebra of Sec. II as a special
case: when ξ = 1, then qubit 1 is perfectly matched and the
orthogonal subspace is trivial; conversely, if ξ = 0, then qubit
1 is completely orthogonal and the qubit subspaces decouple.

The gate UC only acts on the matched modes â1,b̂1,â2,b̂2.
The orthogonal modes ĉ,d̂ encounter a different circuit, U ′

C ,
that can be obtained from UC by physical considerations, as
we now show. To this end, we make use of the fact that
any two-qubit unitary can be decomposed into single qubit
gates and C-SIGNs. Specifically, the general two-qubit unitary
UC can be decomposed into eight single-qubit operations
and three C-SIGNs [9], as shown in Fig. 4. The single-qubit
gates may be constructed from (4) as normal, using field
modes matched to G(k,x1) and H (k,xc) for qubits 1 and 2,
respectively. As the single-qubit operations are independent
of one another, it makes no difference whether or not the
qubits are matched; commutators between unmatched modes
simply do not arise. The two-qubit C-SIGN gates are more
complicated; we must make reference to a particular physical
model. A natural choice, applicable to optical, microwave, and
ionic qubits [10,11], is the strong nonlinear cross-Kerr effect
between two modes. To the external pump mediating this effect
we prescribe the amplitude H (k). The unitary operator for the
C-SIGN acting on modes b̂1,b̂2 is

ÛKerr = exp
[− iπn̂b1 n̂b2

] = 1̂ + [e−iπ − 1]n̂b1 n̂b2
(23)

= 1̂ − 2n̂b1 n̂b2 = 1̂ − 2B̂
†
H,1B̂H,1B̂

†
H,2B̂H,2,

where we have used the property

(
n̂b1 n̂b2

)p ≡ n̂b1 n̂b2 ,

which follows from that fact that modes b̂1,b̂2 can each only
contain 0 or 1 particle. Note that the unitary (23) is consistent
with an abstract C-SIGN (9) whose modes are matched to
H (k,xc). From (9) we see that the absence of one or both
particles implies Ûcsign → 1̂. This implies that the circuit U ′

C

seen by the orthogonal modes ĉ,d̂ is just the decomposition of
UC without the C-SIGNs (see Fig. 5). We can now interpret the
evolution (22) as the action of a gate Ur on the joint system
UC ⊗ U ′

C , which is useful, as we now show by example.

FIG. 6. A C-NOT between unmatched qubits, with an arbitrary
rotation on qubit 1. The C-NOT gate is decomposed as a C-SIGN and
two Hadamard gates.

FIG. 7. The circuit as seen by orthogonal qubits.

V. AN EXAMPLE: THE C-NOT

To illustrate the use of the techniques described above, we
calculate the output of a simple two-qubit circuit in which the
qubit pulses have identical spectral properties but do not fully
overlap at the gate. This could be achieved by placing a slight
delay on one of the pulses, leading to a spatial discrepancy be-
tween the propagated modes at the time of interaction. We con-
sider a circuit consisting of a single C-NOT gate (see Fig. 6). The
first qubit is prepared in an arbitrary superposition by applying
the operator Ûs ≡ √

1 − α2Î1 − αi Ŷ1. The output of this
circuit in the Schrödinger picture for the ideal matched case is
the Bell state:

√
1 − α2|00〉 + α|11〉. We now investigate how

the spatial mismatch affects the functioning of the gate.
For this example we assume that the qubits are spectrally

matched to each other and the gate; g(
k) = h(
k). The mismatch
is introduced by defining G(k,x1) = g(
k)e(i
k
x1−ωt) for qubit
1 and G(k,x2) = g(
k)e(i
k
x2−ωt) for qubit 2 and the gate
interaction, where the modes are now the same apart from
being centered at different points in space, x1 �= x2, at time t .
From (20), we find that the mismatch ξ is

ξ ≡
∣∣∣∣
∫

dk g(
k)g∗(
k)ei
k(x1−x2)

∣∣∣∣
2

. (24)

The degrees of freedom are denoted by the orthogonal modes:

{â1,b̂1,ĉ,d̂,â2,b̂2}. (25)

The complete circuit containing UC-NOT is shown in Fig. 6,
whereas the circuit seen by the orthogonal modes is shown in
Fig. 7. The C-NOT gate in the latter circuit, which we denote
U ′

C-NOT, is found to be the two-qubit identity using the methods
of the preceding section. Modes â1,â2 are single-particle
modes and have the form (13) because the initial state is |00〉,
which corresponds to the creation of a particle in each of modes
â1 and â2. The detectors are taken to be bucket detectors. Hence
a measurement of the expectation value of the Pauli operator X̂

on qubit 1 is represented by calculating the expectation value
of the operator X̂

(ab)
1 + X̂

(cd)
1 , where

X̂
(cd)
1 ≡ ĉ†d̂ + d̂†ĉ, etc.

All unitary operators acting on the qubit 1 subspace can be
similarly decomposed into a sum of matched and orthogonal
parts, corresponding to the â1,b̂1 and ĉ,d̂ subspaces, respec-
tively. Given the algebra, (4), together with knowledge of
the orthogonal circuit (Fig. 7), we can construct a matrix
representation of general two-qubit operations in the space
spanned by {â1,b̂1,ĉ,d̂} ⊗ {â2,b̂2} using 8 × 8 matrices in
block diagonal form in which the two blocks represent the
matched and orthogonal subspaces:

ŪC =
[
ÛC 0

0 Û ′
C

]
.
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To avoid confusion, we denote operators acting on the entire
space with a bar on top, J̄1, instead of a hat, Ĵ1, reserving the
latter for operators acting on either subspace (since qubit 2 is
perfectly matched, the unmatched subspace is trivial for that
qubit: K̄2 = K̂2). We now write the matrices for the gates in
the circuit (6):

ŪC-NOT =
[

ÛC-NOT 0

0 Î1Î2

]
, Ūs =

[
Ûs Î2 0

0 Ûs Î2

]
,

(
where Ûs ≡

[√
1 − α2 −α

α
√

1 − α2

])
,

Ūr =
[ √

ξ Î1Î2
√

1 − ξ Î1Î2

−√
1 − ξ Î1Î2

√
ξ Î1Î2

]
.

Intuitively, the matrix forms of ŪC-NOT and Ūs can be understood
in terms of their action on the matched and orthogonal
subspaces; the C-NOT acts differently on each subspace due
to the varying behavior of the nonlinear C-SIGN gate, but the
rotation is just a linear single-qubit gate and works regardless
of whether or not the qubit has been rotated into orthogonal
modes. The unitary Ûr is simply the rotation of the â1,b̂1 modes
into the ĉ,d̂ modes according to (22). We can now calculate
the expectation value of some arbitrary operator J̄ on qubit 1
and K̄ on qubit 2. This operator may be represented by the
matrix

J̄1K̄2 =
[

Ĵ1K̂2 0
0 Ĵ1K̂2

]
.

We wish to calculate the quantity

〈0|Ū †
sysJ̄1K̄2Ūsys|0〉, (26)

where Ūsys is the combined evolution of the circuit,

Ūsys ≡ ŪC-NOTŪbsŪr . (27)

We find

Ūsys =
[√

ξÛC-NOTÛ1bsÎ2
√

1 − ξÛC-NOTÛ1bsÎ2

−√
1 − ξÛ1bsÎ2

√
ξÛ1bsÎ2

]
.

For a given J̄ and K̄ , we can then obtain the matrix

Ū †
sysJ̄1K̄2Ūsys. (28)

Taking the expectation value of this operator in the vacuum
is trivial since the only modes containing particles are the â1

and â2 modes, so all matrix elements containing other terms
annihilate the vacuum and vanish. The only remaining term is
the coefficient of

〈0|â†
1â1â

†
2â2|0〉 = 1 [using the identities (15)],

which corresponds to the top left entry in matrix (28). In
summary, once we know Ūsys, we find the expectation value of
J̄1K̄2 by calculating (28) and then reading off the top left entry.
For the case where J̄1 = Ī1, K̄2 = Z̄2, we obtain the result

〈Ī1Z̄2〉 = 1 − 2α2ξ .

Depending on whether ξ is closer to 0 or 1, this term
approaches either

〈0102|Î1Ẑ2|0102〉 = 1

or

〈0102|Ẑ1Ẑ2|0102〉 = 1 − 2α2.

These two limits correspond to the C-NOT either not working
or working, depending on whether the qubits meet in the gate;
that is, on how well their individual amplitudes overlap during
the interaction. In this example, according to (24), ξ depends
on the shift in position x1 − x2 of the pulses.

The key novelty of our formalism is expression (28), which
incorporates the dynamics and spectral features of the qubits
into the operator algebra, and the fact that these expressions
may be written out explicitly in terms of field operators acting
on the global vacuum according to the procedure outlined in
Sec. III [i.e., the expression has the form (19)].

VI. CONCLUSIONS AND FUTURE WORK

We have developed tools for doing quantum circuit calcula-
tions using the particles of a bosonic quantum field for qubits.
The algebraic structure of the circuit is defined with respect
to a global vacuum state, and expectation values are taken
in this state in accordance with the Heisenberg Picture. The
usual techniques for calculating evolution on quantum circuits
(matrix representation or Pauli operator algebra) apply here but
now include the method of RMS [8] for dealing with particle
mismatch.

A strong motivation for our work comes from the new
area of relativistic quantum information (RQI) theory—
concerned with adapting the tools of quantum information
to relativistic settings (e.g., [12–20]). Typically, observers in
different (especially noninertial) reference frames can observe
inequivalent ground states for fields shared between them
[18,21,22]. Calculations for realistic scenarios can rapidly
become intractable in the Schrödinger Picture due to the highly
nontrivial transformations of the ground state seen by different
observers that may be required. In contrast, working in the
Heisenberg Picture means the ground state can be chosen in
a suitable inertial frame and all the transformations between
frames can be achieved via more straightforward Bogolyubov
transformations of the operators [23].

More generally, it is important that formulations of quantum
information problems are consistent with current methods for
doing quantum field theory on curved space times, particularly
the algebraic approach to quantum field theory [24,25]. This
approach is based on an algebra of observables constructed
from products of field operators, which can take on the
interpretation of particle creation and annihilation operators
acting on a vacuum state. Again, the formalism is expressed in
the Heisenberg Picture and expectation values are taken in the
appropriate vacuum state. The formalism we describe here can
be considered a first step toward developing a generalized qubit
algebra that is able to incorporate general transformations in
the relativistic setting.
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APPENDIX: CALCULATION OF 〈n̂AP 〉 AND g(2)

In this Appendix we give the details for calculating the
expressions for 〈n̂AP

〉 and g(2) in Eqs. (16) and (17) from
Sec. III A. We consider the general SPDC evolution given in
Eq. (11), using the shorthand notation

û′
j = pv̂j + qû

†
j , v̂′

j = pûj + qv̂
†
j (A1)

instead. When calculating 〈0|Â†
P ÂP |0〉 and 〈0|Â†

P Â
†
P ÂP

ÂP |0〉, we consider a more general detector model of the form

d̂u′
j
≡ (μ1̂l − νn̂u′

j

)
n̂u′

j
, (A2)

which is equivalent to Eq. (14) when μ = 3/2 and ν = 1/2.

1. Calculation of 〈0| Â†
P ÂP |0〉

We write the full expression for 〈0|Â†
P ÂP |0〉 given ÂP in

Eq. (13):〈
N∑

j,k=1

k−1∏
l=0

(
1 − d̂u′

l

)
v̂

′†
k d̂u′

k
d̂u′

j
v̂′

j

j−1∏
i=0

(
1 − d̂u′

i

)〉
, (A3)

where it is understood that all expectation values are taken
with respect to the vacuum. The summation can be broken up
into three separate terms:

N∑
j,k=1

=
N∑

j<k=1

+
N∑

j=k=1

+
N∑

j>k=1

. (A4)

Since 〈v̂′†
k d̂u′

k
〉 = 0, only the

∑
j=k term in Eq. (A3) survives.

Given that〈
v̂

′†
j d̂u′

j
d̂u′

j
v̂′

j

〉 = f1(p,q,μ,ν),
〈(

1 − d̂u′
i

)2〉 = f2(p,q,μ,ν),

(A5)

where f1(p,q,μ,ν) and f2(p,q,μ,ν) are both polynomial
functions of p, q, μ, and ν, we find

〈Â†
P (k)ÂP (k)〉 = f1

N∑
j=1

j−1∏
l=0

f2 = f1

(
f N

2 − 1

f2 − 1

)
. (A6)

When we substitute μ = 3/2, ν = 1/2, p = 1, and q = |χ |,
where |χ | 
 1 for an SPDC, we obtain Eq. (16) to order |χ |4.

2. Calculation of 〈0| Â†
P Â†

P ÂP ÂP |0〉
We write the full expression for 〈Â†

P Â
†
P ÂP ÂP 〉 given ÂP

in Eq. (13) using the fact that [v̂′†
i ,d̂u′

j
] = [v̂′

i ,d̂u′
j
] = 0:

〈
N∑

a,c,

j,k
=1

v̂
′†
k d̂u′

k
v̂′†

a d̂u′
a
d̂u′

j
v̂′

j d̂u′
c
v̂′

c

k−1∏
l=0

(
1 − d̂u′

l

)

×
a−1∏
b=0

(
1 − d̂u′

b

) j−1∏
i=0

(
1 − d̂u′

i

) c−1∏
d=0

(
1 − d̂u′

d

)〉
, (A7)

where, again, it is understood that all expectation values are
taken with respect to the vacuum. The summation in this case
can be broken up into 75 separate terms, most of which do not
contribute:

(1) The 24 permutations of summations of the form∑
a>c>j>k do not contribute since 〈v̂′†

k d̂u′
k
〉 = 0.

(2) The 12 × 3 = 36 permutations of summations of the
form

∑
a=c>j>k ,

∑
a>c=j>k , and

∑
a>c>j=k do not contribute

since 〈v̂′†
k d̂u′

k
v̂

′†
k d̂u′

k
〉 = 0 and 〈v̂′†

k d̂u′
k
(1 − d̂u′

k
)2〉 = 0.

(3) The 4 × 2 = 8 permutations of summations of the
form

∑
a=c=j>k and

∑
a>c=j=k do not contribute since

〈v̂′†
k d̂u′

k
v̂

′†
k d̂u′

k
d̂u′

k
v̂′

k〉 = 0.
(4) Four of the six permutations of summations of the form∑
a=c>j=k are nonzero and given by

∑
a=c>j=k

〈
v̂′†

a d̂u′
a
v̂

′†
k d̂u′

k
d̂u′

a
v̂′

ad̂u′
k
v̂′

k

a−1∏
b=0

(
1 − d̂u′

b

)2 k−1∏
l=0

(
1 − d̂u′

l

)2〉

=
∑
a>k

f1f4

k−1∏
l=0

f3

a−1∏
b=k+1

f2, (A8)

where

〈(
1 − d̂u′

k

)4〉 = f3(p,q,μ,ν),
(A9)〈

v̂
′†
k d̂u′

k
d̂u′

k
v̂′

k

(
1 − d̂u′

k

)〉 = f4(p,q,μ,ν)

are also polynomial functions of p, q, μ, and ν.
(5) The summation

∑
a=c=j=k is nonzero and given by

∑
a=c=j=k

〈
v̂

′†
k d̂u′

k
v̂

′†
k d̂u′

k
d̂u′

k
v̂′

kd̂u′
k
v̂′

k

〉〈 k−1∏
l=0

(
1 − d̂u′

l

)4〉

=
∑

k

f5

k−1∏
l=0

f3, (A10)

where

〈
v̂

′†
k d̂u′

k
v̂

′†
k d̂u′

k
d̂u′

k
v̂′

kd̂u′
k
v̂′

k

〉 = f5(p,q,μ,ν) (A11)

is a polynomial function of p, q, μ, and ν.
The expression for 〈Â†

P Â
†
P ÂP ÂP 〉 therefore reduces to

4
∑
a>k

f1f4

k−1∏
l=0

f3

a−1∏
b=k+1

f2 +
N∑

k=1

f5

k−1∏
l=0

f3

= 4f1f4

[
f3 − f2 + f N

3 (f2 − 1) − f N
2 (f3 − 1)

(f2 − 1)(f3 − 1)(f3 − f2)

]

+ f5

(
f N

3 − 1

f3 − 1

)
. (A12)

When we substitute μ = 3/2, ν = 1/2, p = 1, and q = |χ |,
where |χ | 
 1 for an SPDC, we obtain Eq. (17) to order |χ |4.
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