PHYSICAL REVIEW B 83, 115125 (2011)

Tensor network states and algorithms in the presence of a global U(1) symmetry

Sukhwinder Singh, Robert N. C. Pfeifer, and Guifre Vidal
Department of Physics, The University of Queensland, Brisbane QLD 4072, Australia
(Received 12 October 2010; published 15 March 2011)

Tensor network decompositions offer an efficient description of certain many-body states of a lattice system
and are the basis of a wealth of numerical simulation algorithms. In a recent paper [Phys. Rev. A 82, 050301
(2010)] we discussed how to incorporate a global internal symmetry, given by a compact, completely reducible
group G, into tensor network decompositions and algorithms. Here we specialize to the case of Abelian groups
and, for concreteness, to a U(1) symmetry, associated, e.g., with particle number conservation. We consider tensor
networks made of tensors that are invariant (or covariant) under the symmetry, and explain how to decompose and
manipulate such tensors in order to exploit their symmetry. In numerical calculations, the use of U(1)-symmetric
tensors allows selection of a specific number of particles, ensures the exact preservation of particle number,
and significantly reduces computational costs. We illustrate all these points in the context of the multiscale

entanglement renormalization Ansatz.
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I. INTRODUCTION

Tensor networks are becoming increasingly popular as
a tool to represent wave functions of quantum many-body
systems. Their success is based on the ability to efficiently
describe the ground state of a broad class of local Hamiltonians
on the lattice. Tensor network states are used both as a
variational Ansatz to numerically approximate ground states
and as a theoretical framework to characterize and classify
quantum phases of matter.

Examples of tensor network states for one-dimensional
systems include the matrix product state' (MPS), which
results naturally from both Wilson’s numerical renormal-
ization group* and White’s density-matrix renormalization
group>® (DMRG) and is also used as a basis for simulation
of time evolution, e.g., with the time evolving block deci-
mation (TEBD)*!'! algorithm and variations thereof, often
collectively referred to as time-dependent DMRG;’'* the
tree tensor network!> (TTN), which follows from coarse-
graining schemes where the spins are blocked hierarchically;
and the multiscale entanglement renormalization Ansatz'®>!
(MERA), which results from a renormalization-group proce-
dure known as entanglement renormalization.'®?! For two-
dimensional (2D) lattices there are generalizations of these
three tensor network states, namely projected entangled
pair states?>=! (PEPS), 2D TTN,*>33 and 2D MERA 3+#0
respectively. As variational Ansdtze, PEPS and 2D MERA
are particularly interesting since they can be used to address
large two-dimensional lattices, including systems of frustrated
spins*!*? and interacting fermions,*'° where Monte Carlo
techniques fail due to the sign problem.

A many-body Hamiltonian A may be invariant under
certain transformations that form a group of symmetries.>' The
symmetry group divides the Hilbert space of the theory into
symmetry sectors labeled by quantum numbers or conserved
charges. On a lattice one can distinguish between space
symmetries, which correspond to some permutation of the
sites of the lattice, and internal symmetries, which act on the
vector space of each site. An example of space symmetry is
invariance under translations by some unit cell, which leads to
conservation of momentum. An example of internal symmetry
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is SU(2) invariance, e.g., spin isotropy in a quantum spin
model. An internal symmetry can in turn be global, if it
transforms the space of each of the lattice sites according to
the same transformation (e.g., a spin independent rotation); or
local, if each lattice site is transformed according to a different
transformation (e.g., a spin dependent rotation), as it is in the
case of gauge symmetric models. A global internal SU(2)
symmetry gives rise to conservation of total spin. By targeting
a specific symmetry sector during a calculation, computational
costs can often be significantly reduced while explicitly
preserving the symmetry. It is therefore not surprising that
symmetries play an important role in numerical approaches.

In Ref. 52 we described a formalism for incorporating
global internal symmetries into a generic tensor network
algorithm. Both Abelian and non-Abelian symmetries were
considered. The purpose of this paper is to address, at a
pedagogical level, the implementation of Abelian symmetries
into tensor networks. We will also discuss several practical
aspects of the exploitation of Abelian symmetries not covered
in Ref. 52. For concreteness we will concentrate on the U(1)
symmetry, but extending our results to any Abelian group is
straightforward. A similar analysis of non-Abelian groups will
be considered in Ref. 53.

In tensor network approaches, the exploitation of global
internal symmetries has a long history, especially in the context
of MPSs. Both Abelian and non-Abelian symmetries have
been thoroughly incorporated into DMRG code and have been
exploited to obtain computational gains.>>!4362 Symmetries
have also been used in more recent proposals to simulate time
evolution with MPSs,10-14.63-68

When considering symmetries, it is important to notice that
an MPS is a trivalent tensor network. That is, in an MPS
each tensor has at most three indices. The Clebsch-Gordan
coefficients®' (or coupling coefficients) of a symmetry group
are also trivalent, and this makes incorporating the symmetry
into an MPS by considering symmetric tensors particularly
simple. In contrast, tensor network states with a more elaborate
network of tensors, such as MERA or PEPS, consist of tensors
having a larger number of indices. In this case a more general
formalism is required in order to exploit the symmetry. As
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explained in Ref. 52, a generic symmetric tensor can be
decomposed into a degeneracy part, which contains all degrees
of freedom not determined by symmetry, and a structural
part, which is completely determined by symmetry and can be
further decomposed as a trivalent network of Clebsch-Gordan
coefficients.

The use of symmetric tensors in more complex tensor
networks has also been discussed in Refs. 69,70. In particular,
Ref. 69 has shown that under convenient conditions (injectiv-
ity), a PEPS that represents a symmetric state can be repre-
sented with symmetric tensors, generalizing similar results for
MPSs obtained in Ref. 61. Notice that these studies are not
concerned with how to decompose symmetric tensors so as to
computationally protect or exploit the symmetry. On the other
hand, exploitation of U(1) symmetry for computational gain
in the context of PEPS was reported in Ref. 70, although no
implementation details were provided. Finally, several aspects
of local internal symmetries in tensor network algorithms have
been addressed in Refs. 71-74.

The paper is organized in sections as follows. Section II
contains a review of the tensor network formalism and intro-
duces the nomenclature and diagrammatical representation of
tensors used in the rest of the paper. It also describes a set P
of primitives for manipulating tensor networks, consisting of
manipulations thatinvolve a single tensor (permutation, fusion,
and splitting of the indices of a tensor) and matrix operations
(multiplication and factorization).

Section III reviews basic notions of representation theory
of the Abelian group U(1). The action of the group is analyzed
first on a single vector space, where U(1)-symmetric states
and U(1)-invariant operators are decomposed in a compact,
canonical manner. This canonical form allows us to identify the
degrees of freedom which are not constrained by the symmetry.
The action of the group is then also analyzed on the tensor
product of two vector spaces and, finally, on the tensor product
of a finite number of vector spaces.

Section IV explains how to incorporate the U(1) symmetry
into a generic tensor network algorithm, by considering U(1)-
invariant tensors in a canonical form, and by adapting the
set P of primitives for manipulating tensor networks. These
include the multiplication of two U(1)-invariant matrices in
their canonical form, which is at the core of the computational
savings obtained by exploiting the symmetry in tensor network
algorithms.

Section V illustrates the practical exploitation of the U(1)
symmetry in a tensor network algorithm by presenting MERA
calculations of the ground state and low-energy states of
two quantum spin chain models. Section VI contains some
conclusions.

The canonical form offers a more compact description of
U(1)-invariant tensors, and leads to faster matrix multiplica-
tions and factorizations. However, there is also an additional
cost associated with maintaining an invariant tensor in its
canonical form while reshaping (fusing and/or splitting) its
indices. In some situations, this cost may offset the benefits of
using the canonical form. In the Appendix we discuss a scheme
to lower this additional cost in tensor network algorithms that
are based on iterating a repeated sequence of transformations.
This is achieved by identifying, in the manipulation of a
tensor, operations which only depend on the symmetry. Such
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operations can be precomputed once at the beginning of a
simulation. Their result, stored in memory, can be reused at
each iteration of the simulation. The Appendix describes two
such specific precomputation schemes.

II. REVIEW: TENSOR NETWORK FORMALISM

In this section we review background material concerning
the formalism of tensor networks, without reference to sym-
metry. We introduce basic definitions and concepts, as well
as the nomenclature and graphical representation for tensors,
tensor networks, and their manipulations, that will be used
throughout the paper.

A. Tensors

A tensor T is a multidimensional array of complex numbers
T;ir.i, € C. The rank of tensor 7 is the number k of indices.
For instance, a rank-0 tensor (k = 0) is a complex number.
Similarly, rank-1 (k = 1) and rank-2 (k = 2) tensors represent
vectors and matrices, respectively. The size of an index i,
denoted |i|, is the number of values that the index takes, i €
{1,2,...,]i|}. The size of atensor 7', denoted | 7|, is the number
of complex numbers it contains, namely IT| = |i| X lia] %
-+« X |ig|. In this paper we will use the hat,”, to indicate that
an object is a tensor. We include vectors in this convention,
writing their components as, e.g., ¥;, although for simplicity
we will omit the hat when a vector is written in bra or ket form,
e.g., |W).

It is convenient to use a graphical representation of tensors,
as introduced in Fig. 1, where a tensor 7" is depicted as a circle
(more generally some shape, e.g., a square) and each of its
indices is represented by a line emerging from it. In order to
specify which index corresponds to which emerging line, we
follow the prescription that the lines corresponding to indices
{i1,ia, ... ,ix} emerge in counterclockwise order. Unless stated
otherwise, the first index will correspond to the line emerging
at nine o’clock (or the first line encountered while proceeding
counterclockwise from nine o’clock).

Two elementary ways in which a tensor 7' can be
transformed are by permuting and reshaping its indices. A
permutation of indices corresponds to creating a new tensor
7' from T by simply changing the order in which the indices
appear, e.g.,

(Tach = Tupe- (1

(@ ilﬁik
AN

2

"0 e ;e

FIG. 1. (Color online) (a) Graphical representation of a tensor T
of rank k and components f,-ll-zm,-,(. The tensor is represented by a
shape (circle) with k emerging lines corresponding to the k indices
i1,i2, .. .,ix. Notice that the indices emerge in counterclockwise order.
(b) Graphical representation of tensors with rank k = 0,1, and 2,
corresponding to a complex number ¢ € C, a vector [v) € Cll, and a
matrix M e Cl1lxl2l respectively.
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FIG. 2. (Color online) Transformations of a tensor: (a) Permuta-
tion of indices b and c. (b) Fusion of indices b and c intod = b X c;
splitting of index d = b x c into b and c.

On the other hand, a tensor 7' can be reshaped into a new
tensor 7’ by “fusing” and/or “splitting” some of its indices.
For instance, in

(T)ad = Tupe» d =b xc, 2

tensor 7" is obtained from tensor 7' by fusing indices b €
{1,...,b|} and c € {1, ...,|c|} together into a single index d
of size |d| = |b| - |c| that runs over all pairs of values of b and
c,ie.,d € {(1,1),(1,2),....,(bl,Ic| — 1),(|bl,|c])}, whereas in

Tuve = (Taas d=bxc, 3)
tensor 7' is recovered from 7’ by splitting index d of 7’
back into indices b and c. The permutation and reshaping
of the indices of a tensor have a straightforward graphical
representation; see Fig. 2.

B. Multiplication of two tensors

Given two matrices R and S with components R,, and
Sbc, we can multiply them together to obtain a new matrix 7",
T = R - §, with components

7A-‘azc = Z i\;ubsbc’ (4)
b

by summing over or contracting index b. The multiplication
of matrices R and § is represented graphically by connecting
together the emerging lines of R and S corresponding to the
contracted index, as shown in Fig. 3(a).

Matrix multiplication can be generalized to tensors. For
instance, given tensors R and § with components Iéabcd and

T

FIG. 3. (Color online) (a) Graphlcal representation of the matrix
multiplication of two matrices R and § into a new matrix T [Eq. (4)].
(b) Graphlcal representatlon of an example of the contraction of two
tensors R and § into a new tensor 7' [Eq. (9)].
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S‘Cfbh, we can define a tensor 7 with components Tha fd given
by

Thafa = Z RapeaScron- ()
be
Again the multiplication of two tensors can be graphically
represented by connecting together the lines corresponding to
indices that are being contracted [indices b and ¢ in Eq. (5)];
see Fig. 3(b).
The multiplication of two tensors can be broken down into
a sequence of elementary steps by transforming the tensors
into matrices, multiplying the matrices together, and then
transforming the resulting matrix back into a tensor. Next we
describe these steps for the contraction given in Eq. (5). They
are illustrated in Fig. 4.

(1) Permute the indices of tensor R in such a way that the
indices to be contracted, b and ¢, appear in the last positions
and in a given order, e.g., bc; similarly, permute the indices of
§ so that the indices to be contracted, again b and ¢, appear in
the first positions and in the same order bc:

(R/)adbc = Rabcd 5

o . (6)
(8Vbern = Scron-

(2) Reshape tensor R’ into a matrix R” by fusing into
a single index u all the indices that are not going to be
contracted, u = a x d, and into a single index y all indices
to be contracted, y = b x c¢. Similarly, reshape tensor $ into
a matrix §” with indices y = b x cand w = f x h,

(R")uy = (R adbe,
(S//)yw = (S/)bcfh .

(3) Multiply matrices R” and 8" to obtain a matrix 7, with
components

)

(T//)uw = Z(R//)uy(s//)yw- (8)

R' ? s b
0 e e 2gu LGN
;JO? y 5 :C;OQJ; 75—

2 R" a c
Oy_udbd by

A

FIG. 4. (Color online) Graphical representations of the five ele-
mentary steps (1)—(5) into which one can decompose the contraction
of the tensors of Eq. (5).
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(4) Reshape matrix T" into a tensor 7’ by splitting indices
u=axdandw = f x h,

(T aarn = T V- )

(5) Permute the indices of 7" into the order in which they
appear in T,

Thaga = (T aasn- (10)

We note that breaking down a multiplication of two tensors
into elementary steps is not necessary—one can simply
implement the contraction of Eq. (5) as a single process.
However, it is often more convenient to compose the above
elementary steps since, for instance, in this way one can
use existing linear algebra libraries for matrix multiplication.
In addition, it can be seen that the leading computational
cost in multiplying two large tensors is not changed when
decomposing the contraction in the above steps. In Sec. IV I
this subject will be discussed in more detail for U(1)-invariant
tensors.

C. Factorization of a tensor

A matrix T can be factorized into the product of two (or
more) matrices in one of several canonical forms. For instance,
the singular value decomposition

fah = Z Uacgcd de = Z 0acsc Vcb (11)
c,d c

factorizes 7" into the product of two unitary matrices U and V,
and a diagonal matrix § with non-negative diagonal elements
Se = ﬁce known as the singular values of T: see Fig. 5(a).

On the other hand, the eigenvalue or spectral decomposition
of a square matrix 7" is of the form

fab = Z Machd(M_l)db = Z Mac)hc(M_l)cbv (12)
c,d c

where M is an invertible matrix whose columns encode the
eigenvectors |A.) of T,

T1he) = helre), (13)

M~ is the inverse of M ,and Disa diagonal matrix, with the
eigenvalues A, = ﬁcc on its diagonal. Other useful factoriza-
tions include the LU decomposition, the QR decomposition,
etc. We refer to any such decomposition generically as a matrix
factorization.

A tensor T with more than two indices can be converted
into a matrix in several ways, by specifying how to join its
indices into two subsets. After specifying how tensor 7" is
to be regarded as a matrix, we can factorize T according
to any of the above matrix factorizations, as illustrated in
Fig. 5(b) for a singular value decomposition. This requires first
permuting and reshaping the indices of 7' to form a matrix, then
decomposing the latter, and finally restoring the open indices
of the resulting matrices into their original form by undoing
the reshapes and permutations.
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FIG. 5. (Color online) (a) Factorization of a matrix 7 according
to a singular value decomposition (11). (b) Factorization of a
rank-4 tensor 7' according to one of several possible singular value
decompositions.

D. Tensor networks and their manipulation

A tensor network N is a set of tensors whose indices
are connected according to a network pattern, e.g., Fig. 6.
Given a tensor network A/, a single tensor T can be obtained
by contracting all the indices that connect the tensors in N
[Fig. 6(b)]. Here, the indices of tensor T correspond to the
open indices of the tensor network A/. We then say that the
network A is a tensor network decomposition of 7'. One way
to obtain 7 from A is through a sequence of contractions
involving two tensors at a time [Fig. 6(c)].

From a tensor network decomposition N for a tensor T,
another tensor network decomposition for the same tensor 7'
can be obtained in many ways. One possibility is to replace
two tensors in A/ with the tensor resulting from contracting
them together, as is done in each step of Fig. 6(c). Another way
is to replace a tensor in N with a decomposition of that tensor
(e.g., with a singular value decomposition). In this paper, we
will be concerned with manipulations of a tensor network that,
as in the case of multiplying two tensors or decomposing a
tensor, can be broken down into a sequence of operations from
the following list:

(1) Permutation of the indices of a tensor, Eq. (1).
(2) Reshape of the indices of a tensor, Egs. (2) and (3).
(3) Multiplication of two matrices, Eq. (4).

(a) (b) d ¢
4
a
(©) c i c
b A
ille> — T

FIG. 6. (Color online) (a) Example of a tensor network A/
(b) Tensor T of which the tensor network A could be a representation.
(c) Tensor T can be obtained from A through a sequence of
contractions of pairs of tensors. Shading indicates the two tensors
to be multiplied together at each step.
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(4) Decomposition of a matrix [e.g., singular value decom-
position (11) or spectral decomposition (12)].

These operations constitute a set P of primitive operations
for tensor network manipulations (or, at least, for the type
of manipulations we will be concerned with). In Sec. IV we
will discuss how this set P of primitive operations can be
generalized to tensors that are symmetric under the action of
the group U(1).

E. Tensor network states for quantum many-body systems

As mentioned in the Introduction of the paper, tensor
networks are used as a means to represent the wave function
of certain quantum many-body systems on a lattice. Let us
consider a lattice £ made of L sites, each described by a
complex vector space V of dimension d. A generic pure state
|W) € V®L of £ can always be expanded as

W) = Z Wi iy lin)]i2) -+ liL), (14)

i1,02,0000L

where iy = 1, ...,d labels a basis |i;) of V for site s € L.
Tensor ¥, with components W; ;,..,;,, contains d* complex
coefficients. This is a number that grows exponentially with
the size L of the lattice. Thus the representation of a generic
pure state | W) € VO is inefficient. However, it turns out that
an efficient representation of certain pure states can be obtained
by expressing tensor W in terms of a tensor network.

Figure 7 shows several popular tensor network decompo-
sitions used to approximately describe the ground states of
local Hamiltonians H of lattice models in one or two spatial
dimensions. The open indices of each of these tensor networks
correspond to the indices iy,i,, . . .,i; of tensor . Notice that

all the tensor networks of Fig. 7 contain O(L) tensors. If p
is the rank of the tensors in one of these tensor networks,
and y is the size of their indices, then the tensor network
depends on O(Lx?”) complex coefficients. For a fixed value
of x this number grows linearly in L, and not exponentially.

FIG. 7. (Color online) Examples of tensor network states for 1D
systems: (a) matrix product state (MPS), (b) tree tensor network
(TTN), (c) multiscale entanglement renormalization Ansatz (MERA).
Examples of tensor network states for 2D systems: (d) projected
entangled-pair state PEPS, (e) 2D TTN (2D MERA not depicted).
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It therefore does indeed offer an efficient description of the
pure state |¥) € V®L that it represents. Of course only a
subset of pure states can be decomposed in this way. Such
states, often referred to as tensor network states, are used as
variational Ansdtze, with the O (L x?) complex coefficients as
the variational parameters.

Given a tensor network state, a variety of algorithms (see,
e.g., Refs. 4-50) are used for tasks such as (i) computation
of the expectation value (W|6|W) of a local observable
0, (i) optimization of the variational parameters so as to
minimize the expectation value of the energy (W|H|W¥), or
(iii) simulation of time evolution, e.g., eiflt |W). These tasks
are accomplished by manipulating tensor networks.

On most occasions, all required manipulations can be
reduced to a sequence of primitive operations in the set P
introduced in Sec. IID. Thus in order to adapt the tensor
network algorithms of, e.g., Refs. 4-50 to the presence of
a symmetry, we only need to modify the set P of primitive
tensor network operations. This will be done in Sec. IV.

F. Tensors as linear maps

A tensor can be used to define a linear map between vector
spaces in the following way. First, notice that an index i can
be used to label a basis {|i)} of a complex vector space VIl =
Cl! of dimension |i|. On the other hand, given a tensor 7
of rank k, we can attach a direction “in” or “out” to each
index iy,is, ... ,ix. This direction divides the indices of T into
the subset I of incoming indices and the subset O of outgoing
indices. We can then build input and output vector spaces given
by the tensor product of the spaces of incoming and outgoing
indices,

ylinl — ® ylid - yloud ® ylid, (15)

el i1€0

and use tensor 7' to define a linear map between V" and
Voul For instance, if a rank-3 tensor Tabc has one incoming
index ¢ € I and two outgoing indices a,b € O, then it defines
a linear map 7' : VIl — V4l @ V12! given by

T=" Tuncla)|b)(cl. (16)

a,b,c

Graphically, we denote the direction of an index by means of
an arrow; see Fig. 8(a).

d
@ ¢ O DN
Té j aﬁ
a b kb a b
Y N

FIG. 8. (Color online) (a) Tensor 7' with one incoming index and
two outgoing indices, denoted by incoming and outgoing arrows,
respectively [Eq. (16)]. (b) A tensor network N with directed links
can be interpreted as a linear map between incoming and outgoing
spaces (of the incoming and outgoing indices) obtained by composing
the linear maps associated with each of the tensors in V.
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By decorating the lines of a tensor network A/ with arrows
[Fig. 8(b)], this can be regarded as a composition of linear
maps—namely, one linear map for each tensor in . While
arrows might be of limited relevance in the absence of a
symmetry, they will play an important role when we consider
symmetric tensors since they specify how the group acts on
each index of a given tensor.

III. REVIEW: REPRESENTATION THEORY
OF THE GROUP U(1)

In this section we review basic background material
concerning the representation theory of the group U(1). We
first consider the action of U(1) on a vector space V, which
decomposes into the direct sum of (possibly degenerate)
irreducible representations. We then consider vectors of V
that are symmetric (invariant or covariant) under the action of
U(1), as well as linear operators that are U(1) invariant. Then
we consider the action of U(1) on the tensor product of two
vector spaces, and its generalization to the tensor product of
an arbitrary number of vector spaces.

A. Decomposition into direct sum of irreducible representations

LetVbea ﬁnite—dimensionalAspace andlet¢ € [0,27) label
a set of linear transformations W,

W,:V =V, (17)
that are a unitary representation of the group U(1). That is,
Viw, =W,Wi=1 V¢el02r), (18)

~ A A~

Wo,We, = Wsﬂzwtﬂl = Atﬂ1+¢2|znv Y ¢1,¢2 € [0,27).
(19)

Then V decomposes as the direct sum of (possibly degenerate)
one-dimensional irreducible representations (or irreps) of
u),

V=V, (20)

where V, is a subspace of dimension d,, made of d, copies
of an irrep of U(1) with charge n € Z. We say that irrep n
is d,-fold degenerate and that V, is the degeneracy space.
For concreteness, in this paper we identify the integer charge
n as labeling the number of particles (another frequent
identification is with the z component of the spin, in which case
semi-integer numbers may be considered). The representation
of group U(1) is generated by the particle number operator 7,

dy
A= Znﬁn, P, = Z Int,) (nt,], (21)

=1

where P, is a projector onto the subspace V,, of particle number
n, and the vectors |nt,),

ﬁ|ntn> =n|ntn>’ th=1,....d,, (22)

are an orthonormal basis of V,,. In terms of 7, the transforma-
tions W, read

A

W, = e, (23)
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It then follows from Eq. (22) that

W,lnt,) = e |nt,), V¢ €[0,27). (24)

The dual basis {{(nt, |} is tzansformed by the dual representation
of U(1), with elements W/, as

(ntn|W) = " (nt,|, V¢ €[0,2m). (25)

Example 1. Consider a two-dimensional space V that
decomposes as V = V, @ V|, where the irrepsn = O and n =
1 are nondegenerate (i.e., dy = d; = 1). Then the orthogonal
vectors {|n = 0, = 1),|n = 1,t; = 1)} form a basis of V. In
column vector notation,

e =0,00=1 0 _ =1n=1 26
<0>=|I’l— o = )s <1>=|I’l— I = )s ( )

the particle number operator /i and transformation W, read

S_(00y L (10 on
"=o 1) T \o ew)

Example 2. Consider a four-dimensional space V that
decomposes as V =V, ® V; & V,, where dy =d, =1 and
d; = 2, so that now irrep n = 1 is twofold degenerate. Let
{ln =1,t; = 1),|n = 1,4 = 2)} form a basis of V;. In column
vector notation,

1 0
0 1
0 =|n=0,00=1), 0 =n=1n=1), (28)
0 0
0 0
0 =|n=1, =2), 0 =n=2n=1), (29
1 0
0 1

the particle number operator /i and transformation W, read

000 0 1 0 0 0
Jotr ool . Joew o 0
"=1oo01 0l "Flo o ev o

000 2 0 0 0 e

(30)

B. Symmetric states and operators

In this work we are interested in states and operators that
have a simple transformation rule under the action of U(1). A
pure state |W) € V is symmetric if it transforms as

W,|W) = e ™ |W), Vg el0,27). (31)

The case n = 0 corresponds to an invariant state, W¢|\lf) =
|W), which transforms trivially under U(1), whereas forn # 0
the state is covariant, with | ) being multiplied by a nontrivial
phase e~¢. Notice that a symmetric state | ) is an eigenstate
of 7i: that is, it has a well-defined particle number n. |¥) can
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thus be expanded in terms of a basis of the relevant subspace
V}’H

dy
AN =nlw), 1) = (), Int), (32)

ty=1

where we have introduced a charge label , on the state
coefficients of |W) so that we can explicitly associate each
coefficient (W, );, with its corresponding basis vector |nt,).

A linear operator T : V — V is invariant if it commutes
with the generator 7,

[T.41 =0, (33)
or equivalently if it commutes with the action of the group,

W, IW =T, V¢el0.2m). (34)

It follows that 7 decomposes as (Schur’s lemma)
T = @ T, 35)

where T, is a d, x d, matrix that acts on the subspace V, in
Eq. (20).

Notice that the operator 7' in Eq. (35) transforms vectors
with a well-defined particle number n into vectors with
the same particle number. That is, U(1)-invariant operators
conserve particle number.

Example 1 revisited. In example 1 above, symmetric vectors
must be proportional to either |n =0p=1orn=14H=
1). An invariant operator T = To ® T1 is of the form

A (o)) 0
T = , Qp,0] € C. (36)
0 o

Example 2 revisited. In example 2
vector |W) must be of the form

above, a symmetric

(o)) 0 0

0 (3] 0
V) = . W) = , or W) = ;

0 Bi 0

0 0 (0%

37

where ag,a1, 81,02 € C. Aninvariant operator T = f() (&) fl &)
T> is of the form

ao 0 0 O

A 0 [04] ,3] 0

T = , 38
0 Y1 8] 0 ( )
0 0 0 m

where 7| corresponds to the 2 x 2 central block and
Ol(),Ol],,B],)/],(S],Olz e C.

The above examples illustrate that the symmetry imposes
constraints on vectors and operators. By using an eigenbasis
{|nt,)} of the particle number operator 7, these constraints
imply the presence of the zeros in Egs. (36)—(38). Thus
a reduced number of complex coefficients is required in
order to describe U(1)-symmetric vectors and operators. As
we will discuss in Sec. IV, performing manipulations on
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symmetric tensors can also result in a significant reduction
in computational costs.

C. Tensor product of two representations

Let V4 and V® be two spaces that carry representations
of U(1), as generated by particle number operators 24 and
AP and let

@

be their decomposmons as a direct sum of (possibly degen-
erate) irreps. Let us also consider the action of U(1) on the
tensor product VA8 = V) & V(B) a5 generated by the total
particle number operator

VB ~ @Vrff) (39)
np

AAB) = {(AM) QI+I®n A(B) (40)
that is, implemented by unitary transformations
WAB) = =it 1)

The space VA8 also decomposes as the direct sum of
(possibly degenerate) irreps,

VA = vies. (42)

nAB

Here the subspace VP with total particle number n4z,
corresponds to the direct sum of all products of subspaces
Vi and V5 such that ny 4+ np = nas,

veh = vPevd. (43)

NANBly+ng=nyp

For each subspace V{45 in Eq. (42) we introduce a coupled
basis {[naBtu,,)}

ﬁ(AB)|nABtnAB) = ”AB|nABt"AB>’ “@4)

where each vector |n4pt,,,) corresponds to the tensor product
|naty,snpt,,) = |nat,,) ® |ngt,,) of a unique pair of vectors
|nat,,)and |npt,,), withns +ng = nyp. Lettable Yiuse with
components

fuse

by Bty —NABlu,y — <"A3t"AB ’"AI"A ; nBt"B>’ (45)

encode this one-to-one correspondence. Notice that each
component of Y€ s either a 0 or a 1. Then

_ fuse
|nABt"AB> - Z T”AlnAanRtnE_)”ARtuAB

NAly \NBlng
X Aty npty)- (46)

For later reference (see the Appendix), we notice that Yus
can be decomposed into two pieces. The first piece expresses a
basis {|nat,,; npty, )} of VAB in terms of the basis {|n4t,, )} of
V@ and the basis {|nt,,)} of V(&) This assignment occurs as
in the absence of the symmetry, where one creates a composed
index d = b x c by running, for example, fast over index ¢ and
slowly over index b as in Eq. (2). Note that this procedure does
not always lead to the set {|nt,,;npt,,)} being ordered such
that states corresponding to the same total particle number
nap = n4 + np are adjacent to each other within the set. This
ordering is achieved by the second piece: a permutation of
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basis elements that reorganizes them according to their total
particle number 7 4 5, so that they are identified in a one-to-one
correspondence with the coupled states {|napt,,,)}-

Finally, the product basis can be expressed in terms of the
coupled basis

. _ z : split
|nAtnA7nBtnB) - TnAglnAB—)nAf”A,nBlnB

NABInyp
X |naBtn,y,), 47)
with
TSPHI — fuse (48)

NABIn g —>NAln, NBIng NAlyy MBIy g —>NABIn,p °

Example 3. Consider the case where both V4 and V®
correspond to the space of example 1, that is, VA = V¥ @
V* and V® =V @ VI®, where VIV, VP, VP, and
Vl(B) all have dimension 1. Then V“4#) corresponds to the
space in example 2, namely

YAB) = y(A) g y(B)

= (" 0 V") 8 (7" 0 V(")

= VP o VAP @ VAP, (49)
where
Vit® = v @ VP, (50)
V(AB) (V(A) ® V(B)) (VI(A) ® VéB)), (5])
Vi =viP e v (52)

The coupled basis {|n4pt,,,)} reads

[na =0, =1)® [np =0, = 1),
na =0, =1)® |ng = 1,51 = 1),
na=1,6, =1)® |ng =0,1p = 1),
na=1,0n=1)Qnp =1, =1),
(53)

[nap =0,1p =1) =
nap =161 =1)
nap =16 =2) =

) =

nap =2, =1

where we emphasize that the degeneracy index ¢,,, takes two
possible values forn 5 = 1,i.e.,#; € {1,2}, since there are two
states |nat,,) ® |npt,,) with ny + np = 1. The components

X i snts, OF the tensor Y™ that encodes this change

of basis are all zero except for

fuse _ fuse _ fuse
T01,01—>01 - T()1,11—>11 - T11,01—>12 - T11 11-21 — =1

D. Lattice models with U(1) symmetry
The action of U(1) on the threefold tensor product,

YABO) ~ y(4) g (B g y(© (54)
as generated by the total particle number operator,

AABO — f D @RI+ T RAP QI +T®1 ®AC,
(55)
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induces a decomposition

V(ABC) ~ @ V(ABC) (56)

napc
nABC

in terms of irreps V{*B©) which we can now relate to V%,
VB and V{©. For example, we can consider first the product
VAB) =~ V(A) ® V5 and then the product V{450 = V1B @

NAB
Vrgf), using a dlfferent table Y™ at each step to relate the
coupled basis to the product basis as discussed in the previous
section. Similarly we could consider the action of U(1) on four
tensor products, and so on.

In particular we will be interested in a lattice £ made of
L sites with vector space V®&, where for simplicity we will
assume that each site s € £ is described by the same finite-
dimensional vector space V (see Sec. IIE). Given a particle
number operator 71 defined on each site, we can consider the
action of U(1) generated by the total particle number operator

L
Z (57)

which corresponds to unitary transformations

WL = ¢7iVe — (¢ieyL — (1fr,)®L, (58)
The tensor product space V¥ decomposes as

vl ~ @ Vy (59)
N

and we denote by {|Nty)} the particle number basis in V.
We say that a lattice model is U(1) symmetric if its
Hamiltonian H : V — V commutes with the action of the

group. That is,

[H,N]=0, (60)
or equivalently
(W)PPHWH®: = H, V¢ €[0,27). 61)

One example of a U(1)-symmetric model is the hard-core
Bose-Hubbard model, with Hamiltonian

L L
Hucen = Y _(alag +asal, + yisig) — )iy,
s=1 s=1
(62)
where we consider periodic boundary conditions (by identify-

ing sites L 4+ 1 and 1), and &j and a, are hard-core bosonic
creation and annihilation operators, respectively. In terms of
the basis introduced in example 1 these operators are defined

as
(01 . (00
a= , n=a'a= .
0 0 0 1

To see that ﬁHCBH commutes with the action of the group, we
first observe that for two sites

[l + alay.iy +n) = 0, (63)

from which it readily follows that [FIHCBH,N 1=0.
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Notice that the chemical potential term —p ) Ay = — ulN
also commutes with the rest of the Hamiltonian. The ground
state |\I/1(\3,S) of I:IHCBH in a particular subspace Vy or particle
number sector can be turned into the absolute ground state by
tuning the chemical potential p. This fact can be used to find
the ground state |\IJSS) of any particle number sector through
an algorithm which can only minimize the expectation value
of Hycpn. However, we will later see that the use of symmetric
tensors in the context of tensor network states will allow us to
directly minimize the expectation value of ﬁHCBH in a given
particle number sector by restricting the search to states

(Wy) =Y (By)y, [Nty) (64)

ty=1

with the desired particle number N.

Finally, by making the identifications
I-6, , 6.+i6y
2 YT
where 6,,6,,6, are the Pauli matrices

R 0 1\ 0 —i\ . 1 0
GXE ) o‘VE . ’ o'ZE )
1 0 ; i 0 0 -1

(65)

n=

one can map Hycgy to the spin-% X X Z quantum spin chain

L

I:IXXZEZ( () 5 (Y+1)+ (Y) (Y+1)_|_AO-(V) (V+1))’ (66)
s=1

where we have ignored terms proportional to N and set A =
y /4. In particular, for A = 0 we obtain the quantum X X spin
chain

L
EZ A(s) A (S+1)+6.(S) (S-H)) (67)

and for y = 1, the quantum Heisenberg spin chain

L

Hyxx EZ( ®5 (V+1)+6_(v) (v+1)+ 5096 (y-i,—])) (68)
s=1

In Sec. V, the quantum spin models (67) and (68) will be used
to benchmark the performance increase resulting from the use
of symmetries in tensor networks algorithms.

IV. TENSOR NETWORKS WITH U(1) SYMMETRY

In this section we consider U(1)-symmetric tensors and ten-
sor networks. We explain how to decompose U(1)-symmetric
tensors in a compact, canonical form that exploits their
symmetry. We then discuss how to adapt the set P of primitives
for tensor network manipulations in order to work in this form.
We also analyze how working in the canonical form affects
computational costs.

A. U(1)-symmetric tensors

Let 7 be a rank-k tensor with components 7j;,..;,. As in
Sec. IIF, we regard tensor T as a linear map between the
vector spaces VUM and VI [Eq. (15)]. This implies that
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each index is either an incoming or outgoing index. On each
space VU associated with index i;, we introduce a particle
number operator i) that generates a unitary representation
of U(1) given by matrices W = e 1% ¢ € 0,27). In the
following, we use W{* to denote the complex conjugate of
W

-

Let us consider the action of U(1) on the space

V[ill ® V[iz] R ® V[ik] (69)
given by
XP@XP®- - @XY, (70)
where
. Wh= i g el
o _ 1% e
Xy { Wéf) if i€ 0.} (71

That is, X (D acts differently depending on whether index i; of
tensor 7' is an incoming or outgoing index. We then say that
tensor 7', with components 7 ;,..,, is U(1) invariant if it is
invariant under the transformation of Eq. (70),

Z (Xt(pl))i;il (X((/)Z))iéiz ()A(((ﬁk))i;ikfilizmik = j}{ié"'ii’ (72)

1,025,050

for all ¢ € [0,27). This is depicted in Fig. 9.

Example 4. A U(1)-invariant vector |W)—that is, a vector
with 7|¥) =0 and components (\fl,,zo),0 in the subspace
V,—o which corresponds to vanishing particle number n = 0
[cf. Eq. (32)]—fulfills

Wy = D Woliy(¥ncody, V@ €10,27),  (73)

fo

in accordance with Eq. (31), as shown irl Fig. 9(a).
Example 5. A U(1)-invariant matrix 7 (35) fulfills

fa’b/ = Z(th)a’a(W;)b’bfab (74)
a,b
=Y WoaaTas(Wpy. ¥ €l0.2m),  (75)

a,b

in accordance with Eq. (34) [see Fig. 9(b)].

wi ¢
(\Pn 0) (‘}l !
? W‘P b
(b)

FIG. 9. (Color online) (a) Constraint fulfilled by a U(1)-invariant
vector. The only allowed particle number on the single index isn = 0.
(b) Constraint fulfilled by a U(1)-invariant matrix. It follows from
Schur’s lemma that the matrix is block diagonal in particle number.
(c) Constraint fulfilled by a rank-3 tensor with one incoming index
and two outgoing indices.
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Example 6. Tensor T in Eq. (16), with components Tabc,
where a and b are outgoing indices and c is an incoming index,
is U(1) invariant if

7Awa’b’c’ = Z (Wé’l))a’a(W;’Z))b’b(W;S)*)c’cfwabc (76)

a,b,c
= Z (Wél))a’a(W;Z))b’bfabc(wé3)T)cc’ (77)
a,b,c

for all ¢ € [0,2r) [see Fig. 9(c)].

Further, we say that a tensor O with components Q,llZ i
is U(1) covariant if under the transformation of Eq. (70) it
acquires a non trivial phase e ~1"¢,

Z (Xt(ﬂl))i{il (X;Z))izi;' )

01,02, .00,0k

( (k))l lk Ql]lz lk

71nqo Ql 1i5ip
(78)

for all ¢ € [0,27).

Example 7. A U(l)-covariant vector |\W)—that is, one
which satisfies 7|V) = n|¥) for some n # 0, and has
nonzero components (\i/n),” only in the relevant subspace V,
[cf. Eq. (32)]—fulfills

D W)y, (W), = e (8, Vo e[0.2m), (79)
Iy

in accordance with Eq. (31). (See also Fig. 10.)

Notice that we can describe the rank-k covariant ten-
sor O above by a rank-(k 4+ 1) invariant tensor T with
components

A

T:

lliz---iki

= Qijiyigs li| = 1. (80)
This is built from Q by adding an extra incoming index i, where
the index i has a fixed particle number n and no degeneracy
(i.e., i is associated to a trivial space VIl = C). We refer to
both invariant and covariant tensors as symmetric tensors. By
using the above construction, in this work we will represent all
U(1)-symmetric tensors by means of U(1)-invariant tensors.
In particular, we represent the nontrivial components (¥, );, of
the covariant vector |W,) in Egs. (31) and (32) as an invariant
matrix T of size |f,| x 1 with components T, L= (¥, )i, -
Consequently, from now on we will mostly consider only
invariant tensors.

e"”eC .
. n

i _W? ? v) = (¥)

FIG. 10. (Color online) (a) U(1)-covariant vector | V), with some
nonvanishing particle number n # 0. Under the action of U(1) on its
index, the covariant vector |W¥) acquires a phase e~ [Eq. (79)].
(b) The U(1)-covariant vector |W), with components (W,), , can
be represented by a U(l)-invariant matrix 7 with components
f}]i = (V,);,, where i is a trivial index (|i| = 1) with charge n and is
decorated by the opposite arrow to i;.
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B. Canonical form for U(1)-invariant tensors

Let us now write a tensor 7' in a particle number basis on
each factor space in Eq. (69). That is, each index iy, iy, . . ., i 1S
decomposed into a particle number index »n and a degeneracy
index t,, iy = (n1,t,), 2 = (N2,ty,), .. ., ik = (Mg, 1y, ), and

Tiiyiy, = (T,“,,z...nk)lnllm___t”k. 81
Here, for each set of particle numbers n; M2, T, WE regard
Tnl,l2 ., as a tensor with components (Tnln2 m),”],nz.“,”k. Let

Njin and N, denote the sum of particle numbers corresponding
to incoming and outgoing indices,

No=) m, New= ) m. (82)

nel neo0

The condition for a nonvanishing tensor of the form f",,lnzmnk
to be invariant under U(1), Eq. (70), is simply that the sum of
incoming particle numbers equals the sum of outgoing particle
numbers. Therefore a U(1)-invariant tensor 7' satisfies

T= B TumndngNo- (83)

NN,y g

[We use the direct sum symbol €p to denote that the different
tensors Tnlnz...nk are supported on orthonormal subspaces of the
tensor product space of Eq. (69).] In components, the above
expression reads

A

f‘l’]iz---l’k = (Zl]nz---nk) aNin,lel' (84)

Here, &y, n,, implements particle number conservation: if
Nin # Nout, then all components of f‘nlnz...nk must vanish. This
generalizes the block structure of U(1)-invariant matrices in
Eq. (35) (where T, is denoted 7,) to tensors of arbitrary rank
k. The canonical decomposition in Eq. (83) is important, in
that it allows us to identify the degrees of freedom of tensor 7
that are not determined by the symmetry. Expressing tensor 7
in terms of the tensors fnl,,z...nk with Nj, = Ny ensures that
we store 7' in the most compact way possible.

Notice that the canonical form of Eq. (83) is a particular
case of the canonical form presented in Eq. (15) of Ref. 52 for
more general (possibly non-Abelian) symmetry groups. There,
a symmetric tensor was decomposed into degeneracy tensors
[analogous to tensors f"n,,,z...nk in Eq. (83)] and structural
tensors [generalizing the term 8, v, in Eq. (83)] which canin
general be expanded as a trivalent network of Clebsch-Gordan
(or coupling) coefficients of the symmetry group. In the case of
non-Abelian groups, where some irreps have dimension larger
than 1, the structural tensors are highly nontrivial. However, for
the group U(1) discussed in this paper (as for any other Abelian
group) all irreps are one dimensional and the structural tensors
are always reduced to a simple expression such as oy, n,,
in Eq. (83). (Nevertheless, in the Appendix we will resort
to a more elaborate decomposition of the structural tensors
in order to better exploit the presence of symmetry in those
tensor network algorithms based on iterating a fixed sequence
of manipulations.)

by by

C. U(1)-symmetric tensor networks

In Sec. I F we saw that a tensor network A/ where each line
has a direction (represented with an arrow) can be interpreted
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FIG. 11. (Color online) A tensor network N made of U(1)-
invariant tensors represents a U(1)-invariant tensor 7. This is seen
by means of two equalities. The first equality is obtained by inserting
resolutions of the identity I = Wq, W(Z on each index connecting two
tensors in . The second equality follows from the fact that each
tensor in A/ is U(1) invariant.

as a collection of linear maps composed into a single linear
map T of which A is a tensor network decomposition.
By introducing a particle number operator on the vector
space associated to each line of N, we can define a unitary
representation of U(1) on each index of each tensor in N.
Then we say that NV is a U(1)-invariant tensor network if all
its tensors are U(1) invariant. Notice that, by construction, if
N is a U(1)-invariant tensor network, then the resulting linear
map T is also U(1) invariant. This is illustrated in Fig. 11.

More generally, we can consider a U(1)-symmetric tensor
network, made of tensors that are U(l) symmetric (that
is, either invariant or covariant). Recall, however, that any
covariant tensor can be represented as an invariant tensor by
adding an extra index (80). Therefore without loss of generality
we can restrict our attention to invariant tensor networks.

D. Tensor network states and algorithms with U(1) symmetry

As discussed in Sec. ITE, a tensor network N can be used
to describe certain pure states |¥) € V® of a lattice £. If N
is a U(1)-symmetric tensor network then it will describe a pure
state |\W) that has a well-defined total particle number N. That
is, a U(1)-symmetric pure state

NW) = N|W), e Vo|@) = ¢ Vo |g). (85)

In this way we can obtain a more refined version of popular
tensor network states such as MPS, TTN, MERA, PEPS,
etc. As a variational Ansatz, a symmetric tensor network
state is more constrained than a regular tensor network state,
and consequently it can represent fewer states |W) € V&,
However, it also depends on fewer parameters. This implies
a more economical description, as well as the possibility of
reducing computational costs during its manipulation.

The rest of this section is devoted to explaining how one
can achieve a reduction in computational costs. This is based
on storing and manipulating U(1)-invariant tensors expressed
in the canonical form of Egs. (83) and (84). We next explain
how to adapt the set P of four primitive operations for the
tensor network manipulations discussed in Sec. II D, namely,
permutation and reshaping of indices, matrix multiplication,
and factorization.
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E. Permutation of indices

Given a U(1)-invariant tensor 7 expressed in the canonical
form of Egs. (83) and (84), permuting two of its indices is
straightforward. It is achieved by swapping the position of
the two particle numbers of fn,nz...nk involved, and also the
corresponding degeneracy indices. For instance, if the rank-3
tensor 7' of Eq. (16) is U(1) invariant and has components

fabc - (annb'ﬂC) 8}1A+n3.nc (86)

tgtugtng:
when expressed in the particles number basis a = (n4,1,,),
b = (ng,ty,), c = (nc,ty.), then tensor 7’ of Eq. (1), obtained
from 7' by permuting the last two indices, has components

ald all
(T )ucb = (T”A”C"B)lnAfnclnE 8nA+annC’ (87)
where
A, i
(T”A”C”B)tnAtn(;an - (T"A"B”C)tnAt,,BtnC : (88)

Notice that since we only need to permute the components
of those ananc such that n4 + np = n¢, implementing the
permutation of indices requires less computation time than
a regular index permutation. This is shown in Fig. 12,
corresponding to a permutation of indices using MATLAB.

F. Reshaping of indices

The indices of a U(l)-invariant tensor can be reshaped
(fused or split) in a similar manner to those of a regular
tensor. However, maintaining the convenient canonical form
of Egs. (83) and (84) requires additional steps. Two adjacent
indices can be fused together using the table Y™ of Eq. (45),
which is a sparse tensor made of 1’s and 0’s. Similarly an index
can be split into two adjacent indices by using its inverse, the
sparse tensor Y*Plit of Eq. (48).

Example 8. Let us consider again the rank-3 tensor 7' of
Eq. (16) with components given by Eq. (86), where a and b
are outgoing indices and c is an incoming index. We can fuse
outgoing index b and incoming index c into an (e.g., incoming)
index d, obtaining a new tensor 7" with components

(Taa = (T,n),, 1, Sranos (89)

where np = —np + nc. (The sign in front of nz comes from
the fact that d is an incoming index and b is an outgoing index.)
The components of 7" are in one-to-one correspondence with
those of 7" and follow from the transformation

(fJAnD) = Z (ananc)

tug g, tngtugng

nBslng NCslnc

X TrflL:tiB My —>Nplyp (90)
where only the case ny = np needs to be considered. To
complete the example, let us assume that the index a is
described by the vector space VW =V, @V, @V, with
degeneracies dy = 1,d; = 2, and d, = 1; index b is described
by a vector space V& = V_; @ V, without degeneracies, i.e.,
d_) =dy=1; and index c is described by a vector space
VO =V, @V, also without degeneracies, d_; =dy = 1.
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FIG. 12. (Color online) Computation times (in seconds) required
to permute and fuse two indices of a rank-4 tensor f, as a function
of the size of the indices. All four indices of 7" have the same size,
5d, and therefore the tensor contains |7| = 5*d* coefficients. The
figures compare the time required to perform these operations using
a regular tensor and a U(1)-invariant tensor, where in the second
case each index contains five different values of the particle number
n (each with degeneracy d) and the canonical form of Eqgs. (83)
and (84) is used. The upper figure shows the time required to
permute two indices: For large d, exploiting the symmetry of a
U(1)-invariant tensor by using the canonical form results in shorter
computation times. The lower figure shows the time required to
fuse two adjacent indices. In this case, maintaining the canonical
form requires more computation time. Notice that in both figures
the asymptotic cost scales as O(d*), or the size of T, since this is the
number of coefficients which need to be rearranged. We note that the
fixed-cost overheads associated with symmetric manipulations could
potentially vary substantially with choice of programming language,
compiler, and machine architecture. The results given here show
the performance of the authors’ MATLAB implementation of U(1)
symmetry.

Then V) = VB @ V(© (and in this example, also V) =
V@) and Eq. (90) amounts to

(To0) 1, = (Towo) - (T1),, = (Tron) -
(fl) (f )211’( 11)21 :(fl( 1)0)111’
( ) = (fl(—1>0)211 ’ ( 22)11 = (T2(—1)‘)111 ’

where we notice that tensor 77 is a matrix as in Eq. (38).
Similarly, we can split incoming index d of tensor 7" back into
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outgoing index b and incoming index ¢ of tensor 7" according

to
(ananc) = 2 : (]An/ n ) b
tagtag tnc AD )ty 1y

np,tap

Tsplit (9 1)

Nplyy, —>NBlyg NChe?
which, again, is nontrivial only for —ng +n¢c =np andn, +
np =nc.

This example illustrates that fusing and splitting indices
while maintaining the canonical form of Egs. (83) and (84)
requires more work than reshaping regular indices. Indeed,
after taking indices b and c into d = b x c by listing all pairs
of values b x ¢, we still need to reorganize the resulting basis
elements according to their particle number n . Although this
can be done by following the simple table given by Y™ it may
add significantly to the overall computational cost associated
with reshaping a tensor. For instance, Fig. 12 shows that fusing
indices of invariant tensors can be more expensive than fusing
indices of regular tensors.

G. Multiplication of two matrices
By permuting and reshaping the indices of a U(1)-invariant
tensor, we can convert it into a U(1)-invariant matrix 7 =
D,y TonSn n, or simply

T=PT. (92)
where T, = T,,,. In components, matrix T reads
(Dab = (L)1 (93)

where a = (n,t,) and b = (n,t,). In particular, similar to the
discussion in Sec. II B for regular tensors, the multiplication of
two tensors invariant under the action of U(1) can be reduced
to the multiplication of two U(1)-invariant matrices.

Let R and § be two U(1)-invariant matrices, with canonical

forms
R=Pr. $=P3. (94)

Their product T=R-8, Eq. (4), is then another matrix T
which is also block diagonal,

P =P (95)

such that each block T, is obtained by multiplying the
corresponding blocks R, and S,,,

T,=R,-S,. (96)

Equations (92) and (96) make evident the potential re-
duction of computational costs that can be achieved by
manipulating U(1)-invariant matrices in their canonical form.
First, a reduction in memory space follows from only having
to store the diagonal blocks in Eq. (92). Second, a reduction
in computational time is implied by only having to multiply
these blocks in Eq. (96). This is illustrated in the following
example.

Example 9. Consider a U(1)-invariant matrix T which is a
linear map in a space V that decomposes into g irreps V,,, each
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of which has the same degeneracy d, = d. Thatis, T is a square
matrix of dimensions dg x dgq, with the block-diagonal form
of Eq. (92). Since there are ¢ blocks 7}, and each block has size
d x d, the U(1)-invariant matrix 7' contains gd? coefficients.
For comparison, a regular matrix of the same size contains
q*d? coefficients, a number greater by a factor of g.

Let us now consider multiplying two such matrices. We
use an algorithm that requires O(/*) computational time to
multiply two matrices of size [ x /. The cost of performing g
multiplications of d x d blocks in Eq. (96) scales as O(qd3).
In contrast, the cost of multiplying two regular matrices
of the same size scales as O(g>d?), requiring ¢> times
more computation time. Figure 13 shows a comparison of
computation times when multiplying two matrices for both
U(1)-symmetric and regular matrices.

H. Factorization of a matrix

The factorization of a U(1)-invariant matrix 7 [Eq. (92)]
can also benefit from the block-diagonal structure. Consider,
for instance, the singular value decomposition 7' = USV of
Eq. (11). In this case we can obtain the matrices

O0=u. $=3s. v=V. 97)

by performing the singular value decomposition of each block
T, independently,

T, =0,8,V,. (98)

The computational savings are analogous to those described
in example 9 above for the multiplication of matrices. Figure 13
also shows a comparison of computation times required to
perform a singular value decomposition on U(1)-invariant and
regular matrices using MATLAB.

1. Discussion

In this section we have seen that U(1)-invariant tensors
can be written in the canonical form of Eqs. (83) and (84),
and that this canonical form is of interest because it offers a
compact description in terms of only those coefficients which
are not constrained by the symmetry. We have also seen that
maintaining the canonical form during tensor manipulations
adds some computational overhead when reshaping (fusing
or splitting) indices, but reduces computation time when
permuting indices (for sufficiently large tensors) and when
multiplying or factorizing matrices (for sufficiently large
matrix sizes).

The cost of reshaping and permuting indices is proportional
to the size |T'| of the tensors, whereas the cost of multiplying
and factorizing matrices is a larger power of the matrix
size, for example, |T|*/2. The use of the canonical form
when manipulating large tensors therefore frequently results
in an overall reduction in computation time, making it a very
attractive option in the context of tensor network algorithms.
This is exemplified in the next section, where we apply the
MERA to study the ground state of quantum spin models with
a U(1) symmetry.

On the other hand, however, the cost of maintaining
invariant tensors in the canonical form becomes more relevant
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FIG. 13. (Color online) Computation times (in seconds) required
to multiply two matrices (upper panel) and to perform a singular value
decomposition (lower panel) as a function of the size of the indices.
Matrices of size 5d x 5d are considered. The figures compare the
time required to perform these operations using regular matrices and
U(1)-invariant matrices, where for the U(1)-invariant matrices each
index contains five different values of the particle number n, each with
degeneracy d, and the canonical form of Egs. (92) and (93) is used.
That is, each matrix decomposes into five blocks of size d x d. For
large d, exploiting the block-diagonal form of U(1)-invariant matrices
results in shorter computation time both for multiplication and for
singular value decomposition. The asymptotic cost scales with d as
O(d?), while the size of the matrices grows as O(d?). We note that the
fixed-cost overheads associated with symmetric manipulations could
potentially vary substantially with choice of programming language,
compiler, and machine architecture. The results given here show
the performance of the authors’ MATLAB implementation of U(1)
symmetry.

when dealing with smaller tensors. In the next section we
will also see that in some situations, this additional cost
may significantly reduce, or even offset, the benefits of
using the canonical form. In this event, and in the specific
context of algorithms where the same tensor manipulations
are iterated many times, it is possible to significantly de-
crease the additional cost by precomputing the parts of the
tensor manipulations that are repeated on each iteration.
Precomputation schemes are described in more detail in
the Appendix. Their performance is illustrated in the next
section.
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V. TENSOR NETWORK ALGORITHMS WITH U(1)
SYMMETRY: A PRACTICAL EXAMPLE

In previous sections we have described a strategy to
incorporate a U(1) symmetry into tensors, tensor networks,
and their manipulations. To further illustrate how the strategy
works in practice, in this section we demonstrate its use in
the context of the multiscale entanglement renormalization
Ansatz, or MERA, and present numerical results from our
reference implementation of the U(1) symmetry in MATLAB.

A. Multiscale entanglement renormalization Ansatz

Figure 14 shows a MERA that represent states |W¥) € V&&
of a lattice £ made of L = 18 sites (see Sec. ITE). Recall that
the MERA is made of layers of isometric tensors, known as
disentanglers # and isometries , that implement a coarse-
graining transformation. In this particular scheme, isometries
map three sites into one and the coarse-graining transformation
reduces the L = 18 sites of £ into two sites using two layers of
tensors. A collection of states on these two sites is then encoded
in a top tensor 7, whose upper index a = 1,2, ..., Xtop 18 used
to label o states |W,) € V®L, This particular arrangement
of tensors corresponds to the 3:1 MERA described in Ref. 18.

In this section we will consider a MERA analogous to that
of Fig. 14 but with Q layers of disentanglers and isometries,
which we will use to describe states on a lattice £ made of
2 x 39 sites. We will use this variational Ansatz to obtain
an approximation to the ground state and first excited states
of two quantum spin chains that have a global internal U(1)
symmetry, namely the spin-1/2 quantum X X chain of Eq. (67)
and the spin-1/2 antiferromagnetic quantum Heisenberg chain
of Eq. (68). Each spin-1/2 degree of freedom of the chain is
described by a vector space spanned by two orthonormal states
{1 1),1 1)}. Here we will represent them by the states {|0),|1)}
corresponding to zero and one particles, as in example 1 of
Sec. I A. For computational convenience, we will consider a
lattice £ where each site contains two spins, or states, {| | {),
[ 41,1 1), +1)}. Therefore each site of £ is described by a
space V=V, dV, @ V,, where dy = d, = 1 and d| = 2, as
in example 2 of Sec. III A. Thus a lattice £ made of L sites
corresponds to a chain of 2L spins. In such a system, the total
particle number N ranges from 0 to 2L. (Equivalently, the
z component of the total spin S, ranges from —L to L, with
S, =N-L)

R W\
q=2
\
X q=1
q=0

o yly s g by By g dyg by Iy Ty by s g lyp g

FIG. 14. (Color online) MERA for a system of L =2 x 3> = 18
sites, made of two layers of disentanglers i and isometries W, and a
top tensor .
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B. MERA with U(1) symmetry

A U(1)-invariant version of the MERA, or U(1) MERA
for short, is obtained by simply considering U(1)-invariant
versions of all of the isometric tensors, namely the disen-
tanglers #, isometries W, and the top tensor 7. This requires
assigning a particle number operator to each index of the
MERA. Each open index of the first layer of disentanglers
corresponds to one site of £. The particle number operator
on any such index is therefore given by the quantum spin
model under consideration. We can characterize the particle
number operator by two vectors, 71 and d: a list of the different
values the particle number takes and the degeneracy associated
with each such particle number, respectively. In the case of the
vector space V for each site of £ described above, n = {0,1,2}
and d = {1,2,1}. For the open index of the tensor 7 at the
very top of the MERA, the assignment of charges is also
straightforward. For instance, to find an approximation to the
ground state and first seven excited states of the quantum
spin model with particle number N, we choose n = {N} and
d = {8}. (In particular, a vanishing S, correspondsto N = L.)

For each of the remaining indices of the MERA, the
assignment of the pair (ﬁ,c?) needs careful consideration and a
final choice may only be possible after numerically testing
several options and selecting the one which produces the
lowest expectation value of the energy. Table I shows the
assignment of particle numbers and degeneracies made to
represent the ground state and several excited states in a system
of L =2 x 33 = 54sites (that is, 108 spins) with total particle
number N = L =54 (or S, = 0). Notice that at level g of
the MERA (g = 1,2,3), each index effectively corresponds to
a block of n, = 37 sites of L. Therefore having exactly n,
particles in a block of n,, sites corresponds to a density of one
particle per site of £. The assigned particle numbers of Table I,
namely, [n, — 2,ny — 1,n4,04 + 1,04 + 2] for level g, then
correspond to allowing for fluctuations of up to two particles
with respect to the average density. The sum of correspond-
ing degeneracies d= {dnq_z,dnq_l ,d,,q ,dnq+1 ,d,,q+2} gives the
bond dimension yx, which in the example is x = 13.

In order to find an approximation to the ground state of
either Hyx or Hyxx in Eqgs. (67) and (68), we set xiop = 1
and optimize the tensors in the MERA so as to minimize the
expectation value

(W[H|W), (99)

where |W) € V®I is the pure state represented by the MERA
and H is the relevant Hamiltonian. In order to find an

TABLE 1. Example of particle number assignment in a U(1)
MERA for L = 54 sites (or 108 spins). The total bond dimension
is x =1+3+5+3+1=13. The value of x, is set as described
in the text.

Level g Particle numbers 1 Degeneracies d
top {N =54) {Xuop}

3 {25,26,27,28,29} {1,3,5,3,1}

2 {7,8,9,10,11} {1,3,5,3,1}

1 {1,2,3,4,5} {1,3,5,3,1}
0 {0,1,2} {1,2,1}
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FIG. 15. (Color online) Error in ground-state energy AE as a
function of x for the XX and Heisenberg models with 2L = 108
spins and periodic boundary conditions, in the particle number sector
N = L (or S; = 0). The error is calculated with respect to the exact
solutions, and is seen to decay exponentially with .

approximation to the x.p > 1 eigenstates of H with lowest
energies, we optimize the tensors in the MERA so as to
minimize the expectation value

Xtop

D (W H W), (Vo W) = S

a=1

(100)

The optimization is carried out using the MERA algorithm
described in Ref. 18, which requires contracting tensor
networks (by sequentially multiplying pairs of tensors) and
performing singular value decompositions. In the present
example, all of these operations will be performed exploiting
the U(1) symmetry.

Figure 15 shows the error in the ground-state energy as
a function of the bond dimension y, for assignments of
degeneracies similar to those in Table II. The error is seen to
decay exponentially with increasing x, indicating increasingly
accurate approximations to the ground state.

TABLE II. Number of coefficients required to specify the
tensors of a MERA for L =54 as a function of the bond di-
mension x, decomposed according to a degeneracy vector d. A
comparison is made between regular tensors and U(1)-invariant
tensors.

No. of No. of
Degeneracy coefficients coefficients
X d (regular) (symmetric) Ratio
4 [0,1,2,1,0] 1552 426 36:1
8 [0,2,4,2,0] 17216 4714 37:1
13 [1,3,5,3,1] 115501 21969 53:1
17 [1,4,7,4,1] 335717 68469 50:1
21 [1,5,9,5,1] 779965 166901 47:1
30 [2,7,12,7,2] 3243076 639794 5.1:1
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C. Exploiting the symmetry

We now discuss some of the advantages of using the U(1)
MERA.

1. Selection of particle number sector

An important advantage of the U(l) MERA is that it
exactly preserves the U(1) symmetry. In other words, the states
resulting from a numerical optimization are exact eigenvectors
of the total particle number operator N [Eq. (57)]. In addition,
the total particle number N can be preselected at the onset
of optimization by specifying it in the open index of the top
tensor 7.

Figure 16 shows the energy gap between the ground state
and two excited states of an X X chain with 2L spins (or L
sites), for N = L particles (S, = 0). One is the first excited
state which also has N = L particles. The other is the ground
state in the sector with N = L 4 1 particles. The two energy
gaps are seen to decay with the system size as L. The ability
to preselect a given particle number N means that only two
optimizations were required: one MERA optimization for N =
L with x,, =2 in order to obtain an approximation to the
ground state and first excited state of Hyy in that particle
number sector; and one MERA optimization for N = L + 1
with xp = 11in order to obtain an approximation to the ground
state of H xx in the particle number sector N = L + 1.

Similar results can be obtained with the regular MERA.
For instance, one can obtain an approximation to the ground
state of a given particle number sector by adding a chemical
potential term —u > A to the Hamiltonian and carefully
tuning the chemical potential term w until the expectation
value of the particle number N is the desired one. However,
the regular MERA cannot guarantee that the states obtained
in this way are exact eigenvectors of N. Instead the resulting
states are likely to have particle number fluctuations.

Figure 17 shows the low-energy spectrum of the Heisenberg
model H xxx for a periodic system of L = 54 sites (or

101 * AL
© AL+1
* exact value of A
0 L
10 Tk tvalue of A _ |
o _ exact value of A
< o *
107} .
O
3
o
107} 1
O
10’ 10° 10°
No. of spins

FIG. 16. (Color online) Decay of energy gaps A with system size
L in the XX model. The upper line corresponds to the energy gap
A, between the ground state and the first excited state in the N = L
particle number (or S, = 0) sector. The lower line corresponds to
the energy gap A, between the ground states of the N = L and
N = L + 1 particle number sectors.
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FIG. 17. (Color online) Low-energy spectrum of Hyxx with L =
54 sites (= 108 spins). Depicted states have spins of zero (x, blue
loops), one (+, red loops), or two (o, green loop), and total number
of particles (N) between 52 and 56. Note that the second and third
spin-1 triplets are twofold degenerate.

108 spins), including the ground state and several excited
states both in the particle sector N = 54 (or S; = 0), and
in neighboring particle sectors. Recall that Hyyy is actually
invariant under a global internal SU(2) symmetry, of which
particle number is a U(l) subgroup. Correspondingly the
spectrum is organized according to irreps of SU(2), namely
singlets (total spin 0), triplets (total spin 1), quintuplets (total
spin 2), etc. Again, using the U(1) MERA, the five particle
number sectors N = 52,53,54,55, and 56 can be addressed
with independent computations. This implies, for instance, that
in order to find the gap between the first and fourth singlets, we
can simply set N = 54 and x.,p = 9 on the open index of the
top tensor £, to accommodate the first four spin-0 states and five
spin-1 states in the N = 54 sector, as seen in Fig. 17. In order to
capture the fourth singlet using the regular MERA, we would
need to consider at least ., = 19 (at a larger computational
cost and possibly lower accuracy), since this state has only the
19th lowest energy overall.

2. Reduction of computational costs

The use of U(1)-invariant tensors in the MERA also results
in a reduction of computational costs. First, U(1)-invariant
tensors, when written in the canonical form of Egs. (83) and
(84), are block diagonal and therefore require less storage
space. Table II compares the number of MERA coefficients
that need to be stored in the regular and symmetric case, for
different choices of particle number assignments relevant to
the present examples.

Second, the computation time required to manipulate
tensors is also reduced when using U(1)-invariant tensors
in the canonical form. Figure 18 shows the computation
time required for one iteration of the energy minimization
algorithm of Ref. 18 (during which all tensors in the MERA
are updated once), as a function of the total bond dimension
x - The plot compares the time required using regular tensors
and U(1)-invariant tensors. For U(1)-invariant tensors, we
display the time per iteration for three different levels of
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FIG. 18. (Color online) Computation time (in seconds) for one
iteration of the MERA energy minimization algorithm, as a function
of the bond dimension y . For sufficiently large yx, exploiting the U(1)
symmetry leads to reductions in computation time. The horizontal line
on this graph shows that this reduction in computation time equates
to the ability to evaluate MERAs with a higher bond dimension
x: For the same cost per iteration incurred when optimizing a
standard MERA in MATLAB with bond dimension x = 20, one may
choose instead to optimize a U(1)-symmetric MERA with partial
precomputation and y = 24, or with full precomputation and y = 28.

precomputation, as described in the Appendix. The figure
shows that for sufficiently large x, using U(1)-invariant tensors
leads to a shorter time per iteration of the optimization
algorithm.

In the authors’ reference implementation (written in MAT-
LAB), using the symmetry without precomputation is seen to
only reduce the computation time by about a factor of 2 for
the largest x under consideration. This is because maintaining
the canonical form for U(1)-invariant tensors still imposes a
significant overhead for the values of x considered. In contrast,
when using precomputation we obtained times shorter by a
factor of 10 or more.

The magnitude of the overhead imposed by maintaining the
canonical form will depend on factors such as programming
language and machine architecture, but in general more
significant gains can be obtained by making full use of
precomputation. This option, however, requires a significant
amount of additional memory (see the Appendix), and a more
convenient middle ground can be obtained by using a partial
precomputation scheme.

VI. CONCLUSIONS

In this paper we have provided a detailed explanation of
how a global internal Abelian symmetry may be incorporated
into any tensor network algorithm. Following Ref. 52 we
considered tensor networks constructed from tensors which
were invariant under the action of the internal symmetry, and
showed how each tensor may be decomposed according to a
canonical form into degeneracy tensors (which contain all the
degrees of freedom that are not affected by the symmetry) and
structural tensors (which are completely determined by the
symmetry). We then introduced a set of primitive operations
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TABLE III. Fusion rules for the group
Z3: Outcomes of evaluating a x a’.

a
0 1 2

0 0 1 2

a’ 1 1 0
2 2 0 1

P which may be used to carry out tensor network algorithms
using Ansdtze such as MPS, PEPS, and MERA, and showed
how each of these operations can be implemented in such a
way that the canonical form is both preserved and exploited
for computational gain.

We then demonstrated the implementation of this decom-
position for tensors with an internal U(1) symmetry, and
computed multiple benchmarks demonstrating the compu-
tational costs and speedups inherent in this approach. We
found that although maintaining the canonical form imposed
additional costs when combining or splitting tensor indices,
for simulations of a sufficiently large scale these costs can
be offset by the gains made when performing permutations,
matrix multiplications, and matrix decompositions.

Finally, we implemented the MERA on a quantum spin
chain with U(1) symmetry. We showed that exploitation of
this symmetry can lead to a decrease in the computational
cost by a factor of between 10 and 20. These gains may
be used either to reduce overall computation time or to
permit substantial increases in the MERA bond dimen-
sion x, and consequently in the accuracy of the results
obtained.

Although in this paper we have focused on an example
which is a continuous Abelian group, the formalism presented
here may equally well be applied to a finite Abelian group.
In particular let us consider a cyclic group Z,, g € Z*.7
As in the case of U(1), the Hilbert space decomposes under
the action of the group into a direct sum of one-dimensional
irreps which are each characterized by an integer charge
a, and consequently most of the analysis presented in this
paper remains unchanged. In particular, matrices which are
invariant under the action of the group will be block diagonal
in the basis labeled by charge according to Eq. (35), and
symmetric tensors enjoy the canonical decomposition stated in
Egs. (83) and (84). The only objects which need modification
are the fusion and splitting maps, which need to be altered
so that they encode the fusion rules for Z, instead for U(1).
For a cyclic group Z,, the fusion of two charges a and a’
gives rise to a charge a” according to a” = (a + a’)|, where
|, indicates that the addition is performed modulo g. For
example, Z3 has charges a = 0,1,2, and the fusion rules for
Z3 take the forma x a’ — a” where the value of @” is given in
Table III.

More generally, a generic Abelian group will be character-
ized by a set of charges (a;,a3,as, . ..). When fusing two such
sets of charges (a;,a»,as, . ..) and (a},a5,a5, . . .), each charge
a; is combined with its counterpart a; according to the fusion
rule of the relevant subgroup. Once again, this behavior may
be encoded in a single fusion map Y™ and its inverse Y*Pit,
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The formalism presented in this paper is therefore directly
applicable to any Abelian group.

ACKNOWLEDGMENTS

The authors thank Ian P. McCulloch for fruitful discussions.
Support from the Australian Research Council (Grants No.
FF0668731, No. DP0878830, and No. DP1092513, and APA
scholarship) is acknowledged.

APPENDIX: USE OF PRECOMPUTATION IN ITERATIVE
ALGORITHMS

We have seen that the use of the canonical form given
in Eqgs. (83) and (84) to represent U(l)-invariant tensors
can potentially lead to substantial reductions in memory
requirements and in calculation time. We also pointed out,
however, that there is an additional cost in maintaining an
invariant tensor in its canonical form, and that this is associated
with the reshaping (fusing and/or splitting) of its indices. In
some situations this additional cost may significantly reduce,
or even offset, the benefits of using the canonical form.

In this Appendix we investigate techniques for reducing
this additional cost in the context of iterative tensor network
algorithms. Many of the algorithms discussed in Sec. IIE are
iterative algorithms, repeating the same sequence of tensor
network manipulations many times over. Examples include
algorithms which compute tensor network approximations to
the ground state by minimizing the expectation value of the
energy or by simulating evolution in imaginary time, with each
iteration yielding an increasingly accurate approximation to
the ground state of the system.

The goal of this Appendix is to identify calculations which
depend only on the symmetry group, and are independent of
the variational coefficients of such algorithms. Where these
calculations are repeated in each iteration of the algorithm, we
can effectively eliminate the associated computational cost by
performing them only once, either during or prior to the first
iteration of the algorithm, and then storing and reusing these
precomputed results in subsequent iterations. We will illustrate
this procedure by considering the precomputation of a series
of operations applied to a single tensor 7.

To do this, we begin by revisiting the fusion and splitting ta-
bles of Sec. III C and introducing a graphical representation of
these objects. We then introduce a convenient decomposition
of a symmetric tensor into a matrix accompanied by multiple
fusion and/or splitting tensors, and linear maps I" that map
one such decomposition into another. These linear maps are
independent of the coefficients of the tensor being reorganized,
and consequently they are precisely the objects which can
be precomputed in order to quicken an iterative algorithm at
the expense of additional memory cost. Finally we describe
two specific precomputation schemes, differing in what is
precomputed and in how the precomputed data are utilized
during the execution of the algorithm, in order to illustrate
the tradeoff between the amount of memory needed to store
the precomputation data and the associated computational
speedup which may be obtained. In practice, the nature of the
specific implementation employed will depend on available
computational resources.
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1. Diagrammatic notation of fusing and splitting tensors

In describing how we can precompute repeated manipula-
tions of this tensor 7', we will find it useful to employ diagram-
matic representations of the fusion and splitting tables Yus
and Y*t introduced in Sec. III C. These tables implement a
linear map between a pair of indices and their fusion product,
and thus can be understood as trivalent tensors having two
input legs and one output leg (or vice versa) in accordance
with Sec. IIF. We choose to represent them graphically as
shown in Fig. 19(a), where the arrow within the circle always
points toward the coupled index. The linear maps Y™ and
Y*Plit are unitary, and consequently we impose that the tensors
of Fig. 19(a) must satisfy the identities given in Fig. 19(b),
corresponding to unitarity under the action of the conjugation
operation employed in diagrammatic tensor network notation
(vertical reflection of a tensor and the complex conjugation
of its components, typically denoted ). Our notation also
reflects the property, first noted in Sec. III C, that Y™ and
TPt may be decomposed into two pieces [Fig. 19(c)]. For
the fusion tensor, we identify the first piece (represented by a
circle containing an arrow) with the creation of a composed
index using the manner we would employ in the absence of
symmetry (2). The second piece, represented by the small
square, permutes the basis elements of the composed index,
reorganizing them according to total particle number. The
two components of the splitting tensor are then uniquely
defined by consistency with the process of conjugation for the
diagrammatic representation of tensors, and with the unitarity
condition of Fig. 19(b).

n gt
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FIG. 19. (a) Graphical representation of the fusion tensor Y s
and the splitting tensor Y***. (b) The tensors Y and Y*' are
unitary, and thus yield the identity when contracted pairwise as shown.
(c) A fusion tensor decomposed into two parts. The first part (indicated
by a circle with an arrow) performs the tensor product of input irreps,
nata X nptg. The resultis an index that labels pairs (n4t4,nptp). The
second part (indicated by a rectangle) is a permutation that associates
each pair (nata,nptg) with a unique (n43t,,,), corresponding to a
vector in the coupled basis of V45,
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FIG. 20. (Color online) Binary tree decomposition of a symmetric
tensor 7 having components Tilizi%i4i5i6 The tree 7 is comprised of
a matrix M as the root node, four splitting tensors as internal nodes,
and iy,i,,...,i¢ as its leaf indices. No incoming or outgoing arrows are
indicated on the indices in the figure, as the decomposition is valid
for any such assignment of directional arrows.

These requirements have an important consequence. Sup-
pose the first part of Y€ implements b x ¢ — d by iterating
rapidly over the values of b and more slowly over the values of
¢, and b lies clockwise of ¢ on the graphical representation of
Yfse This then means that on the graphical representation
of TSPt which implements d — b x ¢, index b must lie
counterclockwise of c. It is therefore vitally important to
distinguish between the splitting tensor and a rotated depiction
of the fusing tensor. To this end we require that when using
this diagrammatic notation, all tensors (with the exception
of the fusion and splitting tensors) must be drawn with only
downward-going legs, as seen, for example, in Fig. 20, though
the legs are still free to carry either incoming or outgoing
arrows as before.

2. Tree decomposition

We find it convenient to decompose a rank-k, U(1)-invariant
tensor 7', having components T,l,2 .i,» as a binary tree tensor
network 7 consisting of a matrix M which we will call the root
node, and of k — 2 splitting tensors TP as branching internal
nodes, with the leaf indices of tree 7 corresponding to the
indices {i,is, ... ,ix} of tensor T. We refer to decomposition
T as a tree decomposition of 7. Figure 20 shows an example
of tree decomposition for a rank-6 tensor. It is of the form

7o — E : split split
Tlllmwslf’ - M]”ZTMHH J%sz%jzx,is

JisJ2sJ3sJa
split split
Xszﬁlz Hsz;%imis’ (A1)

where {1, j», j3, j4} are the internal indices of the tree.

The same tensor 7 may be decomposed as a tree in
many different ways, corresponding to different choices of
the fusion tree. As an example we show two different but
equivalent decompositions of a rank-4 tensor in Fig. 21.
Different choices 77,75, ... of tree decomposmon for tensor
T will lead to different matrix representations M 1,M2, ... of
the same tensor. Finally, Fig. 22 shows how to obtain the tree
decompositions from f}] iisi, Dy introducing an appropriate
resolution of the identity, constructed from pairs of fusion
operators Y™ and splitting operators Yt in accordance
with Fig. 19(b).
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FIG. 21. (Color online) Two possible tree decompositions of a
rank-4 tensor T'. Different choices 7,7;, ... of tree decomposition
for tensor 7' lead to different matrices M, Ma, . . . for the same tensor.

The representation of a tensor 7' by means of a tree
decomposition is particularly useful because many tensor
network algorithms may be understood as a sequence of
operations carried out on tensors reduced to matrix form.
For example, consider tensor network algorithms such as
MPS, MERA, and PEPS. When tensors are updated in these
algorithms, the new tensor is typically created as a matrix, to
which operations from the primitive set P of Sec. II D are then
applied. When they are decomposed or contracted with other
tensors, this may once again take place with the tensor in matrix
form. Any such matrix form may always be understood as the
matrix component of an appropriate tree decomposition 7 of
tensor 7', where the sequence of operations reshaping tensor
T to matrix M corresponds to the contents of the shaded area
in Fig. 22.

ll 12 13 14

FIG. 22. (Color online) Tree decompositions of tensor T are
obtained by contracting the tensor with an appropriate resolution
of the identity on its indices, selected according to the desired choice
of the fusion tree 7. In each instance, evaluation of the contents of
the shaded region yields the appropriate matrix M.
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FIG. 23. (Color online) A matrix M; can be reorganized into
another matrix M, by means of fusion tensors, splitting tensors, and
the permutation of indices. These operations define a one-to-one
linear map I that acts to reorganize the coefficients of M;. I' does
not depend on the coefficients of M, but solely on the sequence of
operations performed.

3. Mapping between tree decompositions

Suppose now that we have a tensor 7' in matrix form
Ml, which is associated with a particular choice of tree
decomposition 77, and we wish to transform it into another
matrix form M>, corresponding to another tree decomposition
7. As indicated, this process may frequently arise during the
application of many common tensor network algorithms. The
new matrix M, can be obtained from M; by means of a series
of reshaping (splitting/fusing) and permuting operations, as
indicated in Fig. 23, and this series of operations may be
understood as defining a map I':

M, = T'(M,). (A2)
The map I' is a linear map which depends only on the
tree structure of 77 and 7, and is independent of the
coefficients of Ml. Moreover, I' is unitary, and it follows
from the construction of fusing and splitting tensors and
the behavior of permutation of indices (which serves to
relocate the coefficients of a tensor) that I' simply reorganizes
the coefficients of M; into the coefficients of M, in a one-to-
one fashion.

Therefore one way to compute the matrix M, from
matrix M is by first computing the linear map I", which is
independent of the specific coefficients in tensor 7, and by
then applying it to M.

4. Precomputation schemes for iterative tensor
network algorithms

The observation that the map I' is independent of the
specific coefficients in M| is particularly useful in the context
of iterative tensor network algorithms. It implies that, although
the coefficients in M 1 will change from iteration to iteration,
the linear map I" in Eq. (A2) remains unchanged. It is therefore
possible to calculate the map I" once, during the first iteration
of the simulation, and then to store it in memory and reuse
it during subsequent iterations. We refer to such a strategy
as a precomputation scheme. Figure 24 contrasts the program
flow of a generic iterative tensor network algorithm with and
without precomputation of the transformations I.
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Begin Begin
Initialization Initialization
k=0 k=0

do first
iteration

no
yes

~do End

iteration

! no

3 Read I" maps
o
Led k=k+1 iteration
< k=k+1
(a) (b)

FIG. 24. (Color online) Flow diagram for the execution of a
predetermined number of iterations of a generic iterative tensor
network algorithm, (a) without any precomputation and (b) with
precomputation of the operations I'.

Using such a precomputation scheme, a significant speedup
of simulations can be obtained, at the price of storing
potentially large amounts of precomputed data (as a single
iteration of the algorithm may require the application of many
different transformations I"). Therefore a tradeoff necessarily
exists between the amount of speedup that can be obtained and
the memory requirement that this entails. In this section we
describe two different precomputation schemes. The first one
fully precomputes and stores all maps I', and is relatively
straightforward to implement. This results in the maximal
increase in simulation speed, but implementation requires a
large amount of memory. The second scheme only partially
precomputes the maps I, resulting in a moderate speedup of
simulations, but with memory requirements which are also
similarly more modest.

a. Maximal precomputation scheme

As noted in Sec. III of this Appendix, applying the map '
to a matrix M; simply reorganizes its coefficients to produce
the matrix Mz. Moreover, if the indices of matrices M 1 and
M, are fused to yield vectors V| and V, then the map I' may
be understood as a permutation matrix, and this in turn may be
concisely represented as a string of integers I' = y1, ..., ¥
such that entry i of V, = I'V; is given by entry y; of vector
V1. Because all of the elements from which I" is composed
are sparse, unitary, and composed entirely of 0’s and 1’s,
the permutation to which I' corresponds may be calculated
at a total cost of only O(|M,|), where |M;| counts only
the elements of M; which are not fixed to be zero by the
symmetry constraints of Eq. (83). In essence, for each element
of the vector V; one identifies the corresponding number and
degeneracy indices (nlM ' ,tiM‘) on each leg i € {1,2} of matrix
M;. One can then read down the figure, applying each table
Yfuse or TSPt in turn to identify the corresponding labels (n’,¢")
on the intermediate legs, until finally the corresponding labels
on the indices of Mz are obtained. There is then a further 1:1

mapping from each set of labels (nllﬂz,tfﬂz), (nfz,tfz) on M,
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to the corresponding entry in V5, completing the definition of
I' as a map from \71 to \72.

Storing the map I' for a transformation such as the one
shown in Fig. 23 imposes a memory cost of O(|M;]). The
application of this map also incurs a computational cost of
0(|M 1), but computational overhead is saved in not having to
reconstruct the map I" on every iteration of the algorithm.

b. Partial precomputation scheme

The O(|M;]) memory cost incurred in the previous scheme
can be significant for large matrices. However, we may reduce
this cost by replacing the single permutation I' employed in
that scheme with multiple smaller operations which may also
be precomputed. In this approach M is retained in matrix form
rather than being reshaped into a vector, and we precompute
permutations to be performed on its rows and columns.

First, we decompose all the fusion and splitting tensors into
two pieces in accordance with Fig. 19(c). Next, we recognize
that any permutations applied to one or more legs of a fusion or
splitting tensor may always be written as a single permutation
applied to the coupled index [Fig. 25(a)]. We use this to replace
all permutations on the intermediate indices of the diagram
with equivalent permutations acting only on the indices of
M, and the open indices, as shown for a simple example
in Fig. 25(b). The residual fusion and splitting operations,
depicted by just a circle enclosing an arrow, then simply carry
out fusion and splitting of indices as would be performed in the
absence of symmetry (2), (3). These operations are typically
far faster than their symmetric counterparts as they do not need
to sort the entries of their output indices according to particle
number.

FIG. 25. (Color online) (a) Permutations applied to one or more
legs of a fusion or splitting tensor can be replaced by an appropriate
permutation on the coupled index. This process can be used to
replace all permutations applied on internal indices of a diagram
such as Fig. 23 with net permutations on the indices of M; and on
the open indices of the network, as in shown in (b). The residual
fusion and splitting operations, depicted as an arrow in a circle,
simply perform the basic tensor product operation and its inverse,
Egs. (2) and (3), as described in Fig. 19(c) and Sec. I of this
Appendix.
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In subsequent iterations, the matrix M2 is obtained from
M, by consecutively

(1) permuting the rows and columns of M; using the
precomputed net permutations which act on the legs of Mj;

(2) performing any elementary (nonsymmetric) splitting,
permuting of indices, and fusing operations, as described by
the gray-shaded region in Fig. 25(b);

(3) permuting the rows and columns of the resulting matrix,
using the precomputed net permutations which act on the open
legs of Fig. 25(b).

When matrix M, is defined compactly, as in Eq. (83),
so that elements which are identically zero by symmetry
are not explicitly stored, a tensor 7 is constructed from
multiple blocks identified by U(1) charge labels on their
indices [f"n],,zm,,k in Eq. (83)]. Under these conditions the
elementary splitting, fusing, and permutation operations of
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step (2) above are applied to each individual block, but some
additional computational overhead is incurred in determining
the necessary rearrangements of these blocks arising out of the
actions performed. This rearrangement may be computed on
the fly, or may also be precomputed as a mapping between the
arrangement of blocks in M 1 and that in M2

The memory required to store the precomputation data in
this scheme is dominated by the size of the net permutations

collected on the matrix indices, and is therefore of O(v/|M, ).
The overall cost of obtaining M, from M; is once again of
O(|M,)), but is in general higher than the previous scheme as
this cost now involves two complete permutations of the matrix
coefficients, as well as a reorganization of the block structure of
M, which may possibly be computed at runtime. Nevertheless,
in situations where memory constraints are significant, partial
precomputation schemes of this sort may be preferred.
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