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Abstract

The proliferation of widely available, but very different, parallel
architectures makes the ability to deliver good parallel performance
on a range of architectures, or performance portability, highly
desirable. Irregular parallel problems, where the number and size
of tasks is unpredictable, are particularly challenging and require
dynamic coordination.

The paper outlines a novel approach to delivering portable
parallel performance for irregular parallel programs. The approach
combines JIT compiler technology with dynamic scheduling and
dynamic transformation of declarative parallelism.

We specify families of algorithmic skeletons plus equations
for rewriting skeleton expressions. We present the design of a
framework that unfolds skeletons into task graphs, dynamically
schedules tasks, and dynamically rewrites skeletons, guided by a
lightweight JIT trace-based cost model, to adapt the number and
granularity of tasks for the architecture.

We outline the system architecture and prototype implementation
in Racket/Pycket. As the current prototype does not yet automati-
cally perform dynamic rewriting we present results based on manual
offline rewriting, demonstrating that (i) the system scales to hun-
dreds of cores given enough parallelism of suitable granularity, and
(ii) the JIT trace cost model predicts granularity accurately enough
to guide rewriting towards a good adaptive transformation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords parallelism; performance portability; cost model

1. Introduction

The hardware landscape is dominated by parallel architectures —
multicores, manycores, clusters, etc. These architectures have very
different performance characteristics, e. g. number of processors or
communication costs. Applications often hard-code assumptions
about the characteristics of their development platform, and thus
require significant refactoring when ported to a new parallel ar-
chitecture. The challenge of performance portability is to deliver
good parallel performance on a range of architectures with minimal
refactoring.

The performance portability challenge is already hard for prob-
lems with regular parallelism, i. e. where the number and granularity
of tasks is predictable statically. However many important problems
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Figure 1. Adaptive Skeletons execution framework.

exhibit irregular parallelism. Examples include sparse matrix op-
erations as used in PDE solvers, algorithms mining large graphs,
and core algorithms in computer algebra and symbolic computation.
This large class of problems requires dynamic adaptation as the
amount of parallelism changes during the computation.

The aim of the Adaptive Just-In-Time Parallelisation (AJITPar)
project [1] is to investigate a novel approach to deliver portable
parallel performance for programs with irregular parallelism across
a range of architectures. To this end, AJITPar combines declarative
parallelism with Just In Time (JIT) compilation, dynamic scheduling,
and dynamic transformation.

AJITPar is based on a library of Adaptive Skeletons (AS) for ex-
pressing task parallelism. These skeletons [6] are organised into fam-
ilies of parallel patterns, e. g. map, reduction, divide-and-conquer.
Crucially for adaptivity, family members may be transformed into
each other by means of rewriting according to a set of equations
expressing semantic equivalences. As program transformation by
equational rewriting is well-established in functional languages, the
AS library is implemented in Racket [15], a dialect of Scheme.

Dynamic skeleton transformation relies on the ability to dynam-
ically compile code, which is the primary reason for basing the
framework on a JIT compiler. Moreover, a trace-based JIT compiler
can be extended to estimate task granularity based on lightweight
dynamic trace cost analysis, and these estimates can inform both
dynamic scheduling and transformation.

Contributions. The paper describes the design of the Adaptive
Skeletons (AS) framework (Section 3). Figure 1 shows a block
diagram of the components of the framework and their interactions.
The execution engine and trace compiler together make up a
traditional trace-based JIT compiler. The trace analyser performs
cost analysis of hot traces as they are compiled to native code.
Trace statistics and costs are fed to the scheduler, which uses the
information to decide how to schedule tasks. If there is not enough
parallelism, or if tasks turn out to be too fine-grain, the scheduler
may ask the rewrite engine to transform the skeleton in order to adapt
parallelism. The rewrite engine uses dynamic trace cost estimates to
guide the rewriting towards tasks of suitable granularity and to rank
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alternative transformations. We detail the unfolding of skeletons
into task graphs, the design of the task graph scheduler, and the
trace-based cost model.

The AS prototype is built on top of Pycket [2], a new trace-
based JIT compiler for Racket. Section 4 outlines the design and
implementation of the current AS prototype framework, i. e. the
scheduler and trace analyser; the rewrite engine is not yet available.
The system adopts a distributed memory architecture so it can be
deployed seamlessly on a wide range of architectures, including
multicore, NUMA, and clusters.

The paper evaluates the AS prototype to discover (1) whether
the system scales given enough parallelism of suitable granularity,
and (2) whether the trace cost model can predict granularity with
sufficient accuracy to guide adaption for a specific architecture using
skeleton rewriting (Section 5). For a standard irregular benchmark
(SumEuler) on 64 cores, we report good quality task cost predictions
for three parallel versions. We demonstrate that the predictions allow
the selection of appropriate transformations that improve parallel
performance from poor to close to optimal, e. g. improving speedup
by a factor of more than 10. On a regular real-world application
(k-means clustering) we report scaling to 176 cores on a 256 core
cluster, delivering a top speedup of 101. Elsewhere we report good
speedups for two out of three further benchmarks on cluster and
NUMA architectures [12]. The datasets supporting this evaluation
is available from an open access archive [11].

2. Background

Stateless declarative parallelism. Many language designs reflect
the importance of statelessness for parallelism, e. g. the semantics of
a parallel for loop in OpenMP is typically only deterministic if the
body is stateless. Hence functional languages, where computations
are stateless by default, provide an excellent frame into which to
embed a stateless parallel coordination language.

Due to AJITPar’s range of target architectures, we base our
coordination constructs on task-parallel languages for shared- and
distributed-memory parallelism, e. g. the Haskell DSL HdpH [10].
Unlike pure task-parallel DSLs, we do not expose the task layer
directly. Instead, we provide higher-level abstractions in the form of
a library of algorithmic skeletons [6]. Importantly, the library does
not just provide skeleton implementations but also a framework for
transforming skeletons by rewriting.

Others have combined functional skeleton languages with trans-
formation, e. g. [17] rewrites data-parallel skeletons and compiles
to OpenCL, Skel [5] is a task-parallel Erlang skeleton library inte-
grated into a re-factoring tool, and the PMLS compiler [16] com-
bined profiling with feedback-directed skeleton rewriting. None of
these systems transform skeletons at runtime, as we propose to do.

Just-in-time compilers. Dynamic just-in-time (JIT) compilation
is an established technology for speeding up the execution of virtual
machine (VM) interpreters like the HotSpot Java VM.

Trace-based JIT compilers are an emerging technology in this
area, particularly popular for dynamic languages, e. g. TraceMon-
key [8] for JavaScript, LuaJIT for Lua, or PyPy [4] for Python.
Rather than compiling whole method bodies with their complex
control structure, trace-based JITs detect, compile and optimise
only hot traces, e. g. the common path through a loop body. Because
traces are straight-line pieces of code without complex control, trace-
based JITs aggressively optimise based on highly accurate analyses
that aren’t feasible in static compilers. Moreover, traces often span
several static scopes, so trace-based JITs can perform inlining and
accurate inter-procedural analysis for free.

There aren’t many trace-based JITs for functional languages yet.
Among the few is Pycket [2], a novel tracing JIT for Racket (and
often faster than the Racket VM, which runs on a traditional JIT).

Being based on PyPy’s RPython meta-tracing tool chain [4], Pycket
is also one of the most mature functional tracing JITs.

Tracing JITs have not been used much for parallelisation. A
note-worthy exception is [18], which explores an auto-parallelising
runtime system based on tracing and dynamically transforming
binary executables. However, the approach is limited to small
multicores and not addressing performance portability.

The simple linear structure of traces makes them ideal targets for
lightweight dynamic cost analysis. Augmenting a tracing JIT with
such an analysis and investigating its use in guiding the dynamic
scheduling and transformation of parallelism is a key novelty of
AJITPar.

Transformations. Program transformations are central to opti-
mising compilers. The GHC, for instance, aggressively optimises
Haskell code by equational rewriting [14]. Programmers can aid the
compiler by supplying hints in the form of rewrite rules; thanks to
Haskell’s stateless nature many helpful semantic properties of data
structures are expressible as simple equations.

Program transformations can also be used to tune parallelism.
The PMLS compiler [16], for example, tunes parallel ML code by
transforming skeletons based on offline profiling data. While this
works well for regular problems, PMLS cannot help with irregular
parallelism because it transforms code at compile time rather than
at runtime. A similar feedback-directed compile-time approach
for rewriting skeletons into OpenCL code [17] has been shown
to automatically tune regular linear algebra kernels on GPUs to
performance levels comparable with code hand-tuned by expert
library developers.

3. Adaptive Skeletons

This section presents the design of the Adaptive Skeleton library
for expressing and transforming parallelism, and outlines how the
framework adapts parallelism to the current execution architecture.
Adaptive skeletons are based on a standard set of algorithmic skele-
tons [6] for specifying task-based parallelism within Racket [15].
The AS framework expands skeletons to task graphs and schedules
tasks to workers; expansion and scheduling happen at runtime to
support tasks with irregular granularity. The AS framework is based
on the Pycket [2] trace-based JIT compiler for Racket, and we have
developed cost models for Pycket JIT traces and technologies to
extract and analyse the costs of the traces after the warm up pe-
riod. The cost information will be used to guide both the dynamic
task scheduler, and a skeleton transformation engine. The latter
adapts the task granularity of the running program to suit the current
architecture by rewriting skeletons according to a standard set of
equations.

Although the skeletons are implemented in Racket we choose to
present their type signatures and semantics in a Haskell-like syntax
for brevity, and in our opinion readability. This section glosses over
serialisability, assuming that all types are serialisable, including
function types; how serialisation is realised is outlined in Section 4.

3.1 Task Graph

Programs are expressed in terms of skeletons rather than individual
tasks, thus the functional semantics of programs can be understood
without knowledge of its task dependencies. However, the parallel
behaviour of a skeleton is best described by providing a translation
to a graph making explicit its tasks and their dependencies.

A task graph is an acyclic directed bipartite graph, the vertices
of which are alternately tasks and futures, and the edges of which
are dependencies. Given a task f and futures a and b, an edge from
a to f indicates that a is an input of f , whereas an edge from f to b
indicates that b is an output of f .
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Figure 2. Task graph example.

A future is a storage cell that is initially empty and can be filled
once. A task is essentially a function call. A task f is enabled if all
of its input futures are full, otherwise f is blocked. When enabled,
f may be evaluated by applying the function to the values stored in
the input futures; the result of the application fills f ’s output future.

The AS scheduler distributes task groups, i. e. connected sub-
graphs of the task graph, as depicted in Figure 2. A task group is
enabled if its tasks can be evaluated in some order (implied by the
dependencies) without blocking. We call a future interior if it is
accessed (written or read) exclusively by tasks in a single task group;
futures that are shared between task groups are called boundary.
In our distributed memory execution model we expect that interior
futures are read and written using shared memory, while reads and
writes of boundary futures require communication. The goal of the
AS rewrite engine is to transform the skeletons in the program so
that the associated task graph has a sufficient number of task groups,
while minimising the number and size of boundary futures.

The AS framework hides the task graph almost completely from
programmers. Accessing futures is handled transparently by the
system, simply producing their value in case they are full. In case
an empty future is accessed, the system suspends evaluation until
that future is filled, as elaborated in Section 3.4.

The only primitive exposed to the programmer (or skeleton
developer) is spawn which adds a new task to the task graph.
Semantically, spawn f a_1 ... a_n is the same as function application
f a_1 ... a_n but the implementation transparently promotes the
inputs ai to futures, creates a new future b, and adds a task f with
inputs a1, . . . , an and output b to the task graph.

3.2 Skeletons

Figure 5 introduces a selection of well-known data parallel map and
reduce skeletons. The skeletons are specified in a Haskell-inspired
equational style over lists yet can be defined over any container type.
The function argument to reduce must be an associative reduction
operator, i. e. distribute over list concatenation according to the
equation g (xs_1 ++ ... ++ xs_n) = g [g xs_1, ..., g xs_n].

The parallel behaviour of parMap and parReduce is defined in
terms of spawn. The parMap skeleton produces a flat task graph, that
is, no task depends on any other task, and returns a list of futures. In
contrast, parReduce only generates a single reduction task, taking a
list of futures and returning a single future.

parSumEuler : : [ I n t ] −> I n t
parSumEuler = parReduce sum . parMap t o t i e n t

t o t i e n t : : I n t −> I n t
t o t i e n t n = l e n g t h [ k | k <− [ 1 . . n ] , gcd n k == 1]

Figure 3. Parallel SumEuler benchmark.

parReduce sum . parMap t o t i e n t

=(6,7) reduce sum . map t o t i e n t

=(5) reduce sum . map t o t i e n t . concat . chunk 20

=(3) reduce sum . concat . map (map t o t i e n t ) . chunk 20

=(4) reduce sum .

map ( reduce sum ) . map (map t o t i e n t ) . chunk 20

=(1) reduce sum .

map ( reduce sum . map t o t i e n t ) . chunk 20

=(6,7) parReduce sum .

parMap ( reduce sum . map t o t i e n t ) . chunk 20

Figure 4. Derivation of parallel SumEuler with fused reduction.

Figure 3 shows a small example expressed using these skeletons,
summing up Euler’s totient function over a list of integers. This
is naturally expressed as a map followed by a reduce, hence
parallelised by composing parMap with parReduce.

The example illustrates how skeletons may generate large num-
bers of fine grain tasks, in this case one task calling totient for
each element of the input list. This may hamper performance as the
overheads of distributed scheduling dominate task runtime.

The parMap and parReduce skeletons both give rise to families of
tunable skeletons with the same functional semantics yet different
parallel behaviour. Typically, these skeletons take extra parameters
that govern the number of tasks generated, and hence the task
granularity. Figure 5 shows two sample tunable skeletons. Both split
their input lists into segments of size k (using function chunk). The
parMapChunk skeleton generates tasks that map f over each segment,
thereby increasing the task granularity. In contrast, parReduceChunk

decreases the task granularity, as it generates a two-level tree of
reduce tasks by reducing each segment with g, and then reducing
the list of reduction results with g again.

The AS framework is designed to be extensible, and a richer set
of skeletons with associated transformations is given in [12]. Most
importantly, the set of tunable skeletons is not fixed as more tunable
skeletons are derivable by equational reasoning (Section 3.3).

3.3 Skeleton Transformation by Rewriting

The AS framework is designed to adapt the granularity of tasks
by transforming the underlying skeletons and Figure 6 presents a
set of fairly standard equations for rewriting skeleton-based code.
This style of program transformation goes back to Bird’s work on
algebraic identities [3] in the 1980s. Equations (6) and (7) relate
the skeletons in each family to each other. The remaining equations
state various laws about the interaction between the sequential map
and reduce skeletons and the list transformations chunk and concat,
e. g. map fusion (1).

Equations (6) and (7) are derivable and generally sufficient to
replace a basic skeleton with a corresponding tunable one. How-
ever, rewriting composite skeleton expressions using the remaining
equations may produce better results. Figure 4 demonstrates this by
deriving a more efficient implementation of the SumEuler bench-
mark from Figure 3. The derived implementation partially fuses the
reduce and map skeletons, and effectively computes the sequential
SumEuler function on list segments of size 20 in parallel before
summing the results.

3.4 Adaptive Execution Framework

The adaptive skeleton execution framework combines dynamic
scheduling of tasks with adaptive skeleton transformation. The
framework employs a master/worker architecture, where the master
occupies a single core and each worker occupies a single core. The
master is responsible for scheduling and transformation whereas the
workers simply execute tasks. Section 4 discusses the implementa-
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map : : ( a −> b ) −> [ a ] −> [ b ] L i s t t r a n s f o r m a t i o n s : reduce : : ( [ a ] −> a ) −> [ a ] −> a
map f [ ] = [ ] chunk : : I n t −> [ a ] −> [ [ a ] ] reduce g xs = g xs
map f ( x : xs ) = f x : map f xs concat : : [ [ a ] ] −> [ a ]

parMap : : ( a −> b ) −> [ a ] −> [ b ] parReduce : : ( [ a ] −> a ) −> [ a ] −> a
parMap f [ ] = [ ] parReduce g xs = spawn g xs
parMap f ( x : xs ) = spawn f x : parMap f xs

parMapChunk : : I n t −> ( a −> b ) −> [ a ] −> [ b ] parReduceChunk : : I n t −> ( [ a ] −> a ) −> [ a ] −> a
parMapChunk k f = parReduceChunk k g =

concat . parMap (map f ) . chunk k parReduce g . parMap ( reduce g ) . chunk k

Figure 5. Sample skeletons in the map (left) and reduce (right) families; the tunable *Chunk skeletons are derivable by equational reasoning.

F u s i on : C a n c e l l a t i o n :
( 1 ) map g . map f = map ( g . f ) ( 5 ) concat . chunk k = id

D i s t r i b u t i v i t y : S k e l e t o n f a m i l i e s :
( 2 ) chunk k . map f = map (map f ) . chunk k ( 6 ) map = parMap = parMapChunk k
( 3 ) map f . concat = concat . map (map f ) ( 7 ) reduce = parReduce = parReduceChunk k
( 4 ) reduce g . concat = reduce g . map ( reduce g )

Figure 6. Equational laws about lists and skeleton transformations.

tion of workers in detail; here we focus on how the master adapts
task granularity for the current architecture.

Master threads. The master executes three threads, potentially
concurrently.

The evaluator evaluates the main program sequentially. When
evaluating skeleton expressions, it expands the task graph by spawn-
ing new tasks as described in Section 3.2. When the evaluator at-
tempts to access an empty future, it will block until that future is
filled.

The scheduler distributes enabled task groups to idle workers.
Decisions on the size of the groups are guided by cost models
for computation and communication (see below). The scheduler
also monitors execution time and communication overheads of
scheduled task groups to establish (i) whether the cost models
predict accurately, (ii) how regular tasks are, and (iii) whether most
of the tasks fall within the target granularity range. After a warm up
period the scheduler reacts to granularity being persistently out of
range by signalling the transformer.

The transformer thread executes the rewrite engine that employs
a randomised rewrite strategy on the skeletons; a similar strategy has
been used successfully to compile skeletons to high-performance
OpenCL code [17]. Random rewriting produces several alternative
skeleton expressions that are semantically equivalent to the original.
The rewrite engine expands (in a similar way to the evaluator)
each expression into a task graph in order to predict its runtime
using the computation and communication cost models. Finally, the
rewrite engine picks the best task graph and signals the scheduler
and evaluator to restart the program.

Pragmatics of skeleton rewriting. Transformation is potentially
costly, both in terms of time and memory spent on rewriting, task
graph expansion and cost analysis, and in terms of work lost due
to restarts. Rewriting costs can be limited by grouping rewrite
steps into phases and limiting the number of steps per phase as
in [17]; expressions that expand to very large task graphs are likely
to perform poorly and can be discarded even before cost analysis.
Moreover the cost analysis will often be cheap as task graphs usually
contain many replicated tasks so the time to analyse individual tasks
can be amortised.

The cost of restarts can be controlled by restricting restarts to
a warm up phase of a few seconds, and by limiting the number of

restarts. The cost of restarts can also reduced if the parallelism is
divided into a sequence of phases, e. g. simulation steps, or iterations
of k-means clustering. In these cases only the currently active phase
needs to be restarted, preserving the work of previous phases.

3.5 Cost Models

It may appear that both scheduler and transformer require accurate
task computation and communication time predictions before a task
runs. In fact the scheduler tolerates inaccuracy. Irregularly sized
tasks can be scheduled dynamically without accurate information of
their expected runtime at the expense of some (usually moderate)
overheads — work stealing schedulers typically manage this sce-
nario well. What matters for the scheduler is to capture the ratio of
computation to communication in order to select task groups that
minimise this ratio.

Similarly, the transformer requires only relative, rather than
absolute measures like actual runtimes or latencies. Relative cost
predictions will be used to compare alternative transformations of
the same skeleton expression. Since the transformations mainly
affect the parallel coordination and leave the sequential code largely
untouched, consistency of predictions (e. g. two tasks executing
almost the same code will have very similar costs) is more important
than accuracy.

Cost of computation. We have developed simple cost models
for predicting the runtime of tasks. These cost models hook into
the trace-based JIT compiler (Pycket), intercepting traces after the
optimisation phase and just before compiling to native code. The
cost of a trace, γ(Tr), is computed as the weighted sum of the k
instructions in the trace. The cost of a task (typically consisting
of several loops spanning several traces) can be inferred from the
cost of its traces and the value of its trace counters from the Pycket
runtime. The weights for each instruction class are determined once
for each target architecture by running a suite of benchmarks. The
equation below shows the trace cost model parameterised for the
cluster measured in section 5.

γ(Tr) =

k
∑

i=1



















4.884× 10−4, if op
i
∈ numeric

4.797× 10−3, if op
i
∈ alloc

4.623× 10−4, if op
i
∈ guard

0, otherwise
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The resulting computational cost models are not very accurate
in absolute terms but they are consistent and accurately reflect the
costs of pre- and post-transformed skeleton expressions [13].

Cost of communication. To predict communication overheads,
the AS framework employs a simple linear cost model that depends
on the type and size of the data communicated, i. e. on the contents
of boundary futures. The model reflects that the overheads of TCP
dominate the cost of sending small messages, whereas for large
messages serialisation dominates (and is linear in the size of the
payload). We established the parameters for this model in a series
of serialisation experiments reported elsewhere [12]. We omit the
formal model here due to lack of space; Section 5.1 compares
some of its predicted overheads against overheads measured in
the SumEuler benchmark.

4. Prototype Framework Implementation

A prototype adaptive skeleton execution framework to implement
the design in Section 3 is under development. This section outlines
some key design decisions and the current implementation status.

The current prototype executes task-parallel computations on
shared- or distributed-memory architectures using TCP-based mes-
sage passing. It implements dynamic scheduling and monitors task
runtimes and communication overheads. The current system is a
fairly conventional distributed-memory parallel functional language
implementation; a more detailed discussion can be found in [12].

The prototype extracts task costs using dynamic trace cost
analysis based on the model of Section 3.5. That is, we have
implemented functional blocks (a), (b), (c) and (e) in Figure 1,
but have yet to implement the rewrite engine — block (d). The
current implementation is the basis for the preliminary performance
evaluation in Section 5, but the transformations are performed
manually following the equations in Figure 6.

4.1 System Architecture

The runtime environment consists of a central master and multiple
workers; each being a separate OS process, possibly on different
hosts. The master runs a standard Racket VM, the workers run
Pycket. The master maintains the current task graph and schedules
enabled task groups to idle workers. Each worker executes task
groups, one task at a time, and returns the results to the master.
Upon receiving results the master updates the task graph, which may
unblock previously blocked task groups.

The master and workers behave much like actors, i. e. they do not
share state, are single threaded and communicate by sending mes-
sages over TCP connections. In part, these design choices are born
out of the restrictions of Pycket, which does not (yet) support concur-
rency. However, they also simplify the implementation of workers,
which execute a simple receive-eval-send loop. Nonetheless, there
are drawbacks compared to a shared-memory design:

• TCP-based message passing can add significant latency, particu-
larly for large messages.

• All messages need to be serialised by the sender side and deseri-
alised by the receiver, which can cause significant overhead for
large messages. (In fact, Section 4.2 demonstrates that serialisa-
tion dominates the cost of message passing.)

The decision to adopt a centralised scheduler rather than dis-
tributed work stealing was taken with transformations in mind. Dis-
tributed schedulers typically lack an accurate global view of current
system load and performance, hence it is harder to decide when and
how to transform skeletons. Moreover, distributed schedulers tend
to produce more random schedules, making it harder to determine
whether performance gains are down to good transformations or
lucky scheduling.
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Figure 7. Triangular matrices of integers: serialisation and deseri-
alisation throughput.

4.2 Closures, Tasks and Serialisation

In contrast to Racket, Pycket currently expects a fixed program
at startup and cannot (yet) load code dynamically. To provide the
code mobility required in a distributed system, we resort to explicit
closures, which are essentially static global function pointers, similar
to closures in distributed Haskell DSLs like CloudHaskell [7] and
HdpH [10]. Tasks and task groups are layered on top, linking
closures to input and output futures. Thus, evaluating a task amounts
to reading its input futures, evaluating the closure and writing the
result to its output future.

Task groups and futures (results) must be serialised to byte
strings that can be transmitted over TCP sockets. Racket offers
a serialisation library for this purpose but the library does not work
in Pycket. Hence we have implemented our own serialisation library,
specifically designed for fast serialisation of tree-like data structures.
(In fact, the library relies on data being acyclic; attempting to
serialise cycles will likely result in the system live-locking.)

We have benchmarked our serialisation library on a number of
typical data structures, including binary trees, vectors and matrices.
We have also compared the performance of serialisation in Pycket

(snapshot 14 May 20151) to builtin serialisation in Racket 6.1 and
Java 1.8. Here, we reproduce the throughput measurements for
serialising triangular matrices of 64-bit integers, see Figure 7. The
experiments were performed on a system with 2.13GHz Intel Xeon
E5506 CPU and 12 GByte RAM.

We observe that the Pycket serialisation throughput is consis-
tently the best — it is only beaten by Java throughput when seri-
alising very large data structures. (This is likely a result of Java’s
memory manager being better able to handle very large objects.)
The picture for deserialisation is more mixed; here Racket’s builtin
library beats everyone on medium-size and large data structures

1 https://github.com/pycket/pycket/commit/0eea5c4
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is woefully slow on small data structures. We also observe that
throughput in Pycket stays well below 1000 Mbit/s, which is an
order of magnitude lower than the throughput of modern networking
hardware (10 Gbit/s). Hence, for large messages communication la-
tency will be dominated by the time taken to serialise and deserialise
messages, rather than by the speed of the network.

5. Preliminary Evaluation

This section evaluates the AS prototype implementation investi-
gating (i) whether the lightweight JIT trace based cost model can
predict the cost of transformations with reasonable accuracy (Sec-
tion 5.1), and (ii) whether (a previous version of) the prototype
can scale to hundreds of workers (Section 5.2). The performance
of further benchmarks (Fibonacci, SumEuler, Mandelbrot, matrix
multiplication) on a cluster and two NUMA servers is reported
in [12].

All measurements are repeated 7 times and we base speedup
calculations on mean runtimes. The experiments are performed
on a cluster of 17 16-core servers (2GHz Xeon E5 v2 CPU, 64
GByte RAM, Ubuntu 14.04) connected by 10 Gbit Ethernet. For
Section 5.1, the AS prototype is based on a Pycket snapshot from 23

May 20162 built on Racket 6.5 and RPython 5.1.2. The experiments

in Section 5.2 are based on an older snapshot from 10 June 20153

built on Racket 6.2 and RPython 2.6.0.

5.1 Effectiveness of the JIT Trace Cost Model

To evaluate the usefulness of the trace cost model (Section 3.5)
for predicting how task granularity changes when transforming
skeletons, we perform a series of experiments computing the sum
of Euler’s totient function over an interval of 64000 integers. The
skeletons are transformed manually offline, and not automatically
during execution. The sequential runtime is 503s; we display parallel
runtimes and speedups of three parallel versions on 64 workers in
the table on top of Figure 8.

The table shows that version 1, the untransformed parSumEuler,
a parallel map followed by a reduction, performs poorly. The sched-
uler can detect poor performance early on. It starts by scheduling a
random selection of enabled tasks, and continuously monitors task
runtimes, costs and overheads, i. e. the time to serialise data, send it
over TCP and deserisalise it at the other end.

The top graph of Figure 8 shows a distribution of runtimes, costs
and overheads of some 64 tasks, typical of what the scheduler might
encounter for version 1. Here we have discarded runtime and cost
data of the very first tasks (which are tainted by JIT warm up effects).
Tasks appear on the x-axis in the order they were created during
the unfolding of the parMap skeleton. Runtimes appear to increase
linearly (if noisily) by up to an order of magnitude, as do costs,
showing a reasonable correlation between the two quantities. The
gap between cost and observed runtime is down to the imprecise
nature of the cost model overall [13]. However, we can increase
precision markedly by adjusting the cost through a linear correction
that is fit via regression analysis. Visually, the adjusted cost appears
to track runtimes well; in fact adjusted cost almost always deviates
less than 20% from observed runtime.

In contrast to runtime and cost, the measured overheads are
extremely ariable, and many are off the scale, indicating that the
scheduler is overwhelmed by small tasks. Using a simple statistical
analysis that is robust against outliers, e. g. taking the median, the
scheduler decides whether to transform version 1 in the hope of
finding a better one. In this case, median adjusted cost is 9.8ms,
but median overhead is an excessive 44ms (despite tasks only

2 https://github.com/pycket/pycket/commit/89464a4

3 https://github.com/pycket/pycket/commit/2f9dc62

Version Runtime Speedup

(1) parSumEuler (Figure 3) 121.0s 4.1
(2) chunked map (chunksize k = 20) 10.2s 49.2
(3) chunked map + fused reduction (Figure 4) 10.1s 50.0
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Figure 8. Cost, runtime and overheads of 64 randomly selected
SumEuler tasks: version 1 (top) versus version 2 (bottom).

communicating small amounts of data). Hence the scheduler triggers
a skeleton rewrite by waking the transformer.

As a first attempt, the transformer may rewrite the skeleton
expression parReduce sum . parMap totient by replacing parMap with
parMapChunk k to produce version 2. What value of k should the
transformer choose? Aiming for an average granularity of 100
to 200ms, the transformer picks k = 20 and predicts a median
granularity of 196ms. The transformation does not change the
amount of data communicated, yet it does reduce the total number of
tasks by a factor 20, which should reduce pressure on the scheduler
and bring down overheads.

The second row of the table in Figure 8 demonstrates how this
simple transformation has improved performance ten-fold. The
bottom graph of Figure 8 shows the distribution of overheads,
runtimes, cost and adjusted cost (using the same linear correction as
before) of a random sample of 64 tasks of this transformed version.
The data looks less noisy and the overheads have come down. This
is confirmed by statistical analysis: median adjusted cost is 149ms,
median overhead 1.4ms, and the error between cost and runtime
is again almost always less then 20%. At this point the scheduler
may well decide that the ratio of computation to communication is
appropriate and run to completion.

Further improvements are possible however. If the transformer
performs more elaborate rewrites, e. g. the ones detailed in Figure 4,
it will find a third version that partially fuses the reduction with
the map. Comparing the task graphs for versions 2 and 3 (both
with chunksize k = 20), the transformer finds both appear similar.
Both feature 3200 map tasks, yet they differ in the final reduce
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task. Version 2 reduces 64000 integers whereas version 3 reduces
only 3200 integers. Consequently, our communication cost model
predicts communication costs for the reduce tasks of 66ms for
version 2 and 5.4ms for version 3. This is broadly consistent with
observed reduce task overheads of 124ms and 10.3ms, respectively.
As a result of the lower communication overhead, version 3 exhibits
a marginally better speedup (see Figure 8).

Systematic experiments with different chunksizes show that
k = 50 is optimal for this instance of SumEuler, resulting in
a speedup of 53.6. This demonstrates that the cost models can
effectively guide the rewrite engine to a version whose performance
is close to optimal.

5.2 Small Case Study: K-means on a Distributed Platform

To assess the performance of an earlier AS prototype on a realistic
benchmark application, we implement the iterative refinement
algorithm, or Lloyd’s algorithm, for k-means clustering. Given a
classification of N d-dimensional data points into k clusters, an
iteration of the algorithm refines the classification by re-classifying
each data point to the cluster whose centroid is nearest. Then the
algorithm re-computes the cluster centroids based on the refined
classification, and starts the next iteration. The algorithm terminates
when the classification becomes stable.

Each iteration consists of a parallel map (re-classifying data
points) and reduce (re-computing centroids). The map is chunked
and partially fused with the reduction, similar to the SumEuler
example. Since each iteration depends on the centroids computed in
the previous round, the parallel algorithm synchronises after each
iteration by broadcasting the new centroids (as a k × d matrix).

We benchmark on a data set of 4.9 million 40-dimensional data
points, derived from a data set of KDD-99 data mining competi-
tion [9]. We classify into k = 250, 500, 1000 clusters. To compare
timings, we stop after 20 iterations (instead of running to conver-
gence). We measure wall-clock time, excluding system startup and
time taken to read the input. To measure scaling we vary the number
of workers from 16 to 256.

Figure 9 shows a log/log plot of parallel runtimes and speedups
depending on the number of workers. Sequential runtime is linear
in k and is 14039 seconds for k = 1000 (which is 2.4× slower than
a sequential implementation in C). For each k, the system scales
to 160 and peaks at 176 workers, with a top speedup of 101×, and
42× over sequential C. Performance drops upwards of 192 workers
due to too many Pycket instances (more than 12 per 16-core node)
competing for the memory bus.

6. Discussion

We have outlined a novel approach to delivering portable perfor-
mance for irregularly parallel programs that combines declarative
parallelism with JIT technology, dynamic scheduling, and dynamic
transformation. If the approach is successful it may help improve
the performance portability of many languages with tracing JIT-
compilers.

We have presented the design of an adaptive skeleton (AS) library
with a task graph implementation, JIT trace costing, and transfor-
mations that adapt skeletons for parallel architectures (Section 3).
We have sketched the current state of the prototype implementation
(Section 4).

The results of the preliminary evaluation of the prototype are
encouraging (Section 5). The system scales given enough parallelism
of suitable granularity, e. g. Figure 8 reports a maximum speedup of
50 on 64 workers for SumEuler, and Figure 9 a maximum speedup
of 101 on 176 workers for the k-means case study. Moreover
Figure 8 shows that the trace cost model can predict granularity
with sufficient accuracy to guide program transformation, and hence
adaption, for a specific architecture.
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Figure 9. Runtimes and speedups 20 iterations of k-means.

The prototype AS implementation has some performance issues,
as detailed in [12], but these are readily addressed. Given that the
skeletons were manually transformed to produce the SumEuler ver-
sions reported in Figure 8, the key remaining technical challenge is
to implement the skeleton rewrite engine to automate the transfor-
mations. If effective this will enable fully automatic adaption to the
underlying architecture during program execution. The potential of
the approach can then be assessed by evaluating the performance of
the full AS framework on both benchmarks and case studies, and on
a range of parallel architectures.
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