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Abstract 

Composite films comprised of silver nanoparticles (AgNPs) grown using a low-cost straightforward 

chemical bath based method have been deposited on glass microscope slides to investigate their 

potential as a sacrificial antibacterial coating. The as-deposited films have been characterised using 

scanning electron microscopy (SEM) and optical profilometry. These suggested that the films were 

relatively uniform in coverage. Chemical composition of the AgNP films has been studied by using x-

ray photoelectron spectroscopy (XPS). The XPS analysis indicated that the Ag was in a metallic form 

able to sustain plasmon behaviour, and that low levels of residual nanoparticle precursors were 

present. Particle size was characterised using transmission electron microscopy (TEM) which showed 

an average particle size of 10.6 nm. The effectiveness of the films as an antibacterial coating was 

tested against Escherichia coli. The AgNP film was determined to be effective in the killing of E.coli 

cells over a 24 hour period when compared to equivalent samples that contained no silver. Of 

particular note was that only minimal bacterial growth was detected over the first 12 hours of 

testing, up to 78.6 times less than the control samples, suggesting the film is very efficient at slowing 

initial biofilm formation. The use of AgNP based films that have been synthesised using a novel low-

cost, low-temperature and highly upscalable method is demonstrated as a promising solution for the 

deployment of silver as an effective sacrifical antimicrobial coating to counter the formation of 

potentially hazardous Gram negative biofilms. 
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1. Introduction 

Silver nanoparticles (AgNPs) have been used for a wide range of applications in modern technology, 

due to their favourable chemical and physical characteristics. AgNPs can be synthesised by a variety 

of methods including laser ablation, flame pyrolysis, electrodeposition, microwave assisted, thermal 

evaporation & chemical vapour deposition, [1-6] . One key advantage of AgNPs is that they can be 
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easily synthesised by a variety of low in cost and highly scalable solution based methods [7-18].  

AgNPs have been used in areas such as catalysis, plasmonic enhancement (e.g. of fluorescence or 

Raman scattering), as a way of enhancing drug potency, and as antifungal or antimicrobial 

compounds [19-23]. Due to their ease of synthesis they can be readily alloyed or functionalised (e.g. 

with gold) to further enhance or change aspects of their chemistry [24]. The use of these AgNPs as 

bactericides within the food and medical industries is of particular interest.  

Bacteria are able to adapt to changing extracellular and environmental conditions. Because of this 

their ability to both adhere to, and form biofilms on, surfaces of many different types and structures 

is significant and makes them a potentially dangerous contaminant [25]. For example, within the 

food industry, food can be spoiled by the excessive build-up of bacteria on a surface. This sort of 

spoilage results in an increase in food wastage and increased cost to both manufacturers and 

inevitably, consumers. More dangerously, in medical technology, bacterial biofilms may cause 

infections which can lead to conditions ranging from mild short term illnesses to serious long term 

problems or even death. There have been many different methods employed in an effort to prevent 

the formation of biofilms on surfaces. These include surface modification (i.e. the generation of 

ordered surface structures by, for example, the use of laser processing), and surface coating [25, 26]. 

Despite the many positive factors associated with using AgNPs in human focused biological 

applications, there are still some negatives. Silver ions, of which nanoparticles within the body would 

become a source, are toxic to mammalian species in high levels. This phenomenon is well 

documented, with toxicity to multiple key organs having been observed although more evidence is 

needed to better understand the levels and mechanisms [27, 28]. A potential advantage of the using 

of nanoparticle based films for antibacterial applications is that they may provide a balance between 

acting as a source of sufficient silver to prevent unwanted biofilm formation whilst keeping the 

overall dose, and thus the toxicity, to a minimum. This could yield an ideal compromise between 

effectiveness and risk. Furthermore, the ability to control the total thickness of the nanoparticle film, 

by controlling growth rate and time, to as little as a single monolayer could lead to the design of 

sacrificial films that are able to dissipate after administering the necessary amount of silver. This 

paper explores the effectiveness of novel, low temperature, low cost, and easily scalable solution 

grown silver nanoparticle based films as an antibacterial coating against biofilm formation by gram-

negative bacteria, namely Escherichia coli. 

 

 

2. Experimental Techniques 

2.1 Nanoparticle Synthesis and Film Deposition 

Synthesis of the Ag precursor, chlorotris(triphenylphosphine)silver(I) (Ag(PPh3)3Cl),  was carried out 

using a modified method previously reported [29, 30]. All other chemicals were purchased from 

Sigma Aldrich and used without further purification. The Ag nanoparticle films were produced at the 

water-toluene interface using a method previously reported [31]. Briefly a toluene solution of 

Ag(PPh3)3Cl, (10 mL, 1.5 mM), was layered on top of aqueous sodium hydroxide (16 mL, 6.25 mM) in 

a clean 100 mL beaker. Identically sized beakers were used throughout to remove any effects caused 

by changing the diameter of the interface. The reactions were left to stand for, for approximately 10 

minutes, to allow the phases to stabilise. To initiate the reaction, fresh aqueous 

tetrakishydroxymethylphosphonium chloride (THPC, 80% wt% in water) (330 μL, 50 mM) was 

injected down the walls of the beaker. The beaker was immediately transferred to a temperature 



controlled oven at 50°C. Beakers were left for three hours, after which time a lustrous grey film was 

visible at the interface (Figure. 1). The final ligand is expected to be trihydroxy phosphine oxide 

(THPO) [32]. The as-grown films were subsequently transferred onto a glass substrate by piercing the 

film with a small piece of a standard sodium silicate glass microscope slide and then gently lifting the 

substrate at an angle through the film to deposit a thin layer of the nanoparticles onto the glass. The 

as-deposited films were left to dry in air overnight, prior to washing in fresh toluene and again being 

left to dry in air. 

 

  

 

Figure 1: A) a simplified reaction scheme detailing the formation of a thin layer of Ag nanoparticles 

at the water-toluene interface. B) Top-down photograph of the as-formed film. 

 

 

2.2 Characterisation 

The surface topography of the AgNP films was characterised using a STIL Micromeasure 2 confocal 

chromatic imager. The scanning area was 25 × 25 µm, and the step size was approximately 75 nm. 

The Film thickness was approximated using both the Micromeasure 2 and a Taylor Hobson Form 

Talysurf Series 2 stylus profilometer. A Hitachi TM3030 benchtop scanning electron microscope 

(SEM) was used to take high resolution surface images. The surface chemistry of the silver 

nanoparticles was characterised using a custom ultra-high vacuum x-ray photoelectron spectroscopy 



(XPS) system equipped with a 150 mm mean radius hemispherical energy analyser (Specs GmbH 

Phoibos 150) and a monochromatised Al Kα x-ray source at 1486.6 eV (Specs GmbH Focus 500). The 

scans were performed in medium area lens mode with a 7 mm diameter analyser aperture and a 30 

mm lens iris. Survey scans were performed with a pass energy of 50 eV with scans over individual 

photoelectron lines performed at 15 eV. Samples were analysed as-received with no additional 

treatment. Data was quantified using Scofield cross sections corrected for the energy dependencies 

of the analyser transmission and the effective electron attenuation lengths. High resolution 

transmission electron microscope (TEM) images were acquired using a Philips CM20 TEM with 

particle size analysis performed manually with the assistance of ImageJ software. Samples were 

prepared for TEM analysis by sonicating an AgNP film in heptane to extract the particles, and 

pipetting a portion of the resulting mixture onto a holey carbon film TEM grid. This was allowed to 

dry in air leaving a small amount of the AgNPs on the grid ready for analysis. TEM images were taken 

at a range of magnifications with an accelerating voltage of 200 keV. 

 

 

2.3 Biofilm Formation and Image Analysis 

Escherichia coli (ATCC 25922), wild-type strain obtained from Oxoid Ltd was used as the model Gram 

negative bacteria. To assess the growth and viability of E. coli biofilms in the presence of AgNP films, 

AGNP samples were autoclaved at 121°C for 15 minutes, then aseptically placed in sterile petri 

dishes. Planktonic E.coli cultures were grown overnight in tryptone soya broth (TSB) under static 

growth conditions at 37°C. These overnight culture of E. coli were then diluted to an O.D. reading of 

0.01 [33] before being added to the petri dishes. Samples were then incubated at 37oC for 

prescribed time points, 6, 12 and 24 hours. The growth cycles of E.coli strains have been well 

characterised in the literature, and the time points have been chosen accordingly to approximately 

coincide with the growth, stationary and death phases [34-36]. After each time point, the samples 

were then aseptically removed and rinsed twice with sterile PBS to remove any planktonic bacteria 

before further analysis.  

To prepare samples for SEM examination samples were washed with 0.1M sodium cacodyate and 

fixed with 2.5 % glutaraldehyde in 0.1M sodium cacodylate for 30 minutes. Fixed specimens were 

then washed twice in dH2O before being dehydrated for 10 minutes at each stage of an ascending 

methanol series (30 % to 100 %). They were then left to air dry for another 30 minutes. Each sample 

was coated in Au/Pd before SEM imaging. 

Syto-9 and propodium iodide (PI) stains were used from a LIVE/DEAD BacLight Kit obtained from 

Thermofisher Scientific Inc. Syto-9 and PI were prepared according to the literature [37]. Working 

concentrations of 6.7 µM were prepared. Samples to be analysed were aseptically placed with the 

side to be analysed facing upwards in a clean sterile petri dish. While ensuring that exposure to light 

was minimal, the prepared working concentration of Syto-9 stain was carefully dispensed onto each 

sample. The plate was wrapped in aluminium foil, to protect form light exposure, and statically 

incubated at 30°C for 30 minutes. The stain was rinsed off using 0.9 % NaCl saline solution and 

samples were placed under a Leica DM2700 M fluorescence microscope for imaging. Area coverage 

and the ratio of live to dead cells were determined by post processing of the images with ImageJ 

software. Images were processed for red-blue-green colour with the green and red split channels 

selected. Particles of at least 6 pixels were analysed, excluding the edges and outlines, to determine 

the percentage area of the surface covered by bacterium [38]. 

Commented [GS1]: cacodylate 



 

3. Results and Discussion 

3.1 Film Characterisation 

XPS spectra from the silver nanoparticle films are shown in Figure 2a with the elemental atomic 

percentage surface composition summarised in Table 1. As expected in a silver-based film, the 

dominant element found is silver. The binding energy of the Ag 3d5/2 peak was found to be 368.8 eV. 

This is ~0.5 eV higher than in the accepted reference value of 368.2 eV for bulk Ag [39] but the 

plasmon loss peaks visible at low level and approximately 4 eV displaced from their parent peaks in 

Figure 2b indicate the development of metallic structure and suggest the nanoparticles were 

sufficiently large, or the film structure suitable, to maintain a metal-like electronic structure typical 

of bulk Ag. Further, there is insufficient oxygen present for the shift to be accounted for by the 

presence of silver oxide. The small shift in binding energy of the Ag 3d5/2-3d3/2 doublet relative to the 

reference value for metallic Ag is therefore attributed to charge transfer to the substrate. The O 1s 

peak (Figure 2c) was very broad and contained three sub peaks. The broad peak at the highest 

binding energy is an x-ray excited Na KLL Auger peak. The other two components, at binding 

energies of 531.2 and 532.7 eV are assigned to double bonded and single bonded oxygen 

respectively [40]. These assignments are consistent with the presence of the THPO ligand 

coordinated through the P=O group to the surfaces of the AgNPs, together with some intensity from 

the residual hydrocarbon species as seen in the carbon 1s peak (Figure 2d). The carbon peak shows a 

main component at 285.0 eV attributed to carbon in hydrocarbon bonds. Weak components are 

seen at higher binding energies corresponding to C-O (286.1 eV), C=O (287.5 eV) and COO- (288.9 

eV) [40] functional groups and account for only 15 % of the total of approximately 27 at% of carbon. 

At these relatively low levels it is likely that these components are due to the general environmental 

contamination typically seen on samples exposed to the laboratory environment and as such can be 

discounted. Figure 2e shows the weak phosphorous 2p peak. The binding energy of ~133 eV is 

consistent with the 5-valent phosphorous of the THPO ligand [41]. The presence of Si is indicative of 

a small proportion of exposed substrate glass due to possible pinholes in the film. The low level of 

Na is also due to the underlying sodium silicate glass. Inspection of the survey spectrum showed that 

the low level of S detected was present with S 2p components at 161.6 eV and 168.7 eV in 

approximately equal proportions. These binding energies match well to reference data for sulphide 

and sulphate forms respectively [41]. Ag surfaces are known to be highly reactive to environmental 

sulphur, and the presence of sulphur is attributed to a low level of contamination of the original Ag 

source material. The presence of sulphate groups indicates oxidation of a proportion of this S during 

preparation. The presence of a low level of Cl suggests some unreduced THPC from the nanoparticle 

film formation reaction. 

Element & photoelectron line Composition, atom % 

Ag 3d 52.3 

O 1s 12.9 

C 1s 27.4 

Cl 2p 2.8 

P 2p 2.5 

S 2p 1.1 

Si 2s 0.4 

Na 1s 0.7 

Table 1: XPS surface composition results from the Ag nanoparticle film 



 

 



Figure 2: XPS spectra obtained from the Ag nanoparticle films showing the survey scan (upper panel) 

and high resolution scans over the Ag 3d, O 1s, C 1s and P 2p lines. 

 

 

 

 

Figure 3: Surface profile of an Ag nanoparticle film. 

 

A 3D surface map of the AgNP films is displayed in Figure 3. The mean surface roughness (Sa) was 

found to be 7.36 nm suggesting a comparatively uniform film. The kurtosis (Sku) value of 4.01 

indicates the presence of some high peaks or valleys. These could simply be the pinhole defects 

described in the XPS. The comparatively low level of Kurtosis also suggests that the film is 

comparatively uniform. The uncoated substrate had a mean roughness of 76.1 nm and a kurtosis 

value of 3.36 demonstrating a smoothing effect caused by the AgNPs effectively filling in the gaps on 

the rougher glass substrate whilst also indicating a small increase in the amount of comparatively 

high peaks/valleys (due to a mixture of pinholes and aggregated particles). Film thickness 

measurements of the AgNP films are challenging. The difference in the reflectivity between the 

AgNP films and the substrate hinders the effectiveness of optically measuring the step height, and 

measurement using more physical means (such as stylus profilometry) also presents a problem due 

to the softness of the film. The softness can lead to film damage during measurement, caused by the 

styles tip, which results in unrealistic values. Using a combination of both of these techniques it has 

bene possible to approximate the average thickness of these AgNP films as being of the order of 



~500 nm. This is also supported by the surface shown in figure 3. Here the lowest pit, presumably a 

pinhole-type defect through to the glass substrate (as seen in the XPS), is ~550-600 nm below the 

highest points which are ~100-150 nm above the typical film surface height. Because of the easily 

controllable methodology used to produce these AgNP films, through knowledge of the growth rate 

and careful manipulation of the precursor conditions, films as thin as a few atomic layers (< 50 nm) 

could be produced. 

 

 

Figure 4: a) Transmission electron micrograph (TEM) showing several AgNPs, b) Selected area 

diffraction pattern of a typical AgNP showing evidence of polycrystallinity. 

 

 

Figure 4a shows a TEM micrograph of several sonicated AgNPs. Particle size analysis of multiple 

micrographs provided an average nanocrystal diameter of 10.6 nm ±6.83. The high standard 

deviation is an indication of the variety of different nanoparticle sizes, with a small number of large, 

aggregated nanoparticles (the largest seen in an image being 52 nm) and some somewhat smaller 

AgNPs of the order of ~5 nm.  

It should also be noted that due to their high surface energy relative to their size, the silver 

nanoparticles, as suggested in the XPS, may have agglomerated somewhat in the film (indeed Figure 

5 also appears to show some patches of thicker silver where agglomeration has definitively taken 

place)[42]. The sample preparation for TEM was likely to have caused a level of deagglomeration to 

occur, as a result of sonication in the sample preparation. The nanoparticle sizes observed will 

therefore be a lower limit for the sizes of the particle agglomerations within the film that perform 

the bioactive role. Whilst the behaviour of agglomerations and individual nanoparticles will 

inevitably differ, the low level of preparation required to deagglomerate the sample for TEM 

measurement suggests that the individual nanoparticle portions may not be overly strongly bound 

to the agglomerate allowing them to detach easily. 

Figure 4b displays a selected area diffraction pattern of a re-deposited AgNP film showing concentric 

rings indicating polycrystallinity [43] but without the individual diffraction spots seen in SAED 

patterns of highly crystalline Ag nanoparticles [44, 45].  

 

 



 

   

Figure 5: Scanning electron microscopy (SEM) of the AgNP films at a) 3,000× and b) 10,000× 

magnification. 

 

SEM images of the as-deposited AgNP films are displayed in Figure 5. The film demonstrates a good 

level of coverage over the glass substrate, however there is also evidence of aggregation into clearly 

visible clumps, or thicker areas, of silver. As shown in Figure 6, these aggregates were not present on 

the surface of the samples that had been submerged in the TSB medium. This is indicative of a level 

of film degradation, which supports the idea of using these films as sacrificial layers. A sacrificial 

silver film would be capable of releasing a small amount of antibacterial silver particles before 

disappearing, although it should be stated that these sort of films would need to be thinner than 

those used in this study.  

 

 

3.2 Antimicrobial activity against E.coli 

Although the precise mechanisms of AgNP toxicity against Gram-negative bacteria are not fully 

understood [46], mechanisms and order of action of AgNPs have been proposed according to the 

morphological and structural changes caused to the bacterial cells [47]. Initial antibacterial action of 

AgNPs occurs through the release of silver ions (Ag+) as well as from either disruption of or damage 

to the cell wall and membrane caused by the AgNPs themselves [46]. The nanoparticles are able to 

attach to the cell membrane and penetrate inside the bacteria, where the Ag+ ions released may be 

lethal as they disrupt DNA replication, metabolism, cell signalling and cell division [46, 47]. SEM 

micrographs of E.coli adhered to surfaces with and without AgNP coating are displayed in Figure 6. 

Figure 6a shows the silver film after incubation in TSB as a control sample with no bacteria present. 

The silver shows, as would be expected, no growth of bacterial colonies. This demonstrates an 

absence of surface or broth contamination. Figures 6b and 6c display a control sample of the bare 

glass slide in the bacteria containing TSB. The E. coli cells, unexposed to silver, are smooth and show 

the typical characteristics of rod cell shape and size (~3 µm). The adhered cells exposed to the AgNP 

films, however, were damaged severely (Figures 6d-g). Many of the cells were noticeably 

translucent, suggesting leakage of internal cell content, and others were misshapen, with pits, and 

fragmented. With the cells that have flattened and taken on a translucent appearance it is possible 



to see the silver film through the cell in the images. This apparent transparency to the electrons of 

the SEM suggests severe thinning of the bacterial cell structure, allowing contrast from the 

underlying substrate to be visible. Pit formation on the surface of E.coli cells post exposure to AgNPs 

has been frequently reported in the literature. Sondi and Salopek-Sondi, for example, demonstrated 

in their work the formation of pits within the cell membrane [48].  

 

 



 

 

Figure 6: Scanning electron microscopy (SEM) of the AgNP films. A) Control sample of silver in TSB 

with no bacteria, B and C) E.coli adhered to glass reference sample after 24 hours of incubation in 



TSB D-G) E.coli adhered to AgNP film samples after 24 hours of incubation in TSB. Denatured E.coli 

on (circled) Ag nanoparticle films after 24 hours of incubation.  

 

 

Bactericidal effects of AgNP films were investigated against E.coli bacteria over a period of 24 hours, 

as demonstrated in Figure 7, by epifluorescence microscopy following Syto-9 and PI staining. The 

bacterial membrane permeability to these dyes depends upon the cell membrane integrity, 

therefore distinguishing the viability of the bacterial cell. Syto-9 is a small molecule capable of 

penetrating cell walls with relative ease, and stains the cells green, regardless of their viability. PI on 

the other hand cannot pass through intact cell membranes, so that only cells with compromised 

membranes can be labelled with this red fluorescent dye. From this, it is possible to infer that live 

bacteria will fluoresce green due to the presence of Syto-9, and the dead cells (i.e. those with 

compromised membranes) will fluoresce red due to the PI [49]. As demonstrated in Figure 6, the 

unexposed bacterial cells remain intact (i.e. green), whereas the E.coli exposed to the AgNP films are 

predominantly denatured (i.e. red). Therefore it can be inferred that the surface AgNPs exhibited a 

strong antibacterial effect at all the prescribed time points relative to the control samples. As the 

cells continued to grow over the investigated time period this supports, with the observations from 

the SEM images, that the E.coli cell membrane has been disaggregated supporting the cell 

membrane disruption mechanism of AgNPs. The images also show multiple comparatively dark areas 

with little/no coverage of bacteria. This could be indicative of morphological effects from the 

substrate (either coated or non-coated) influencing the location of initial bacterial attachment or 

providing areas for preferential growth. The greater average roughness measured on the glass 

substrate is highly likely to cause a more uneven distribution as, whilst it has been demonstrated 

that ordered micro/nanostructuring may inhibit bacterial attachment, features can provide 

preferential regions for bacteria to align with [25, 50]. 

 

 

 



 

Figure 7: Fluorescence micrographs of A) the AgNP free control sample and B) the AgNP films after 6, 

12 and 24 hours incubation time in TSB. The scale bar in the top left of each image is 100 µm. Green 

fluorescent colour indicates intact and live cells, whereas red fluorescent colour indicates dead cells 

with compromised cell membranes. It should be noted that whilst some of the images (e.g. B-12 hr) 

appear green to the eye, closer examination shows the interior of the bacteria stained red indicating 

cell death and the green appearance only showing from the outer cell membrane area. 

 

 

 

 



 

3.3 Percentage area coverage of viable E. coli cells 

Figure 8 displays the percentage area coverage results for both live and dead E. coli cells. It is readily 

observable that the AgNP film was highly effective at reducing the number of live E. coli cells 

adhered to the surface at all measured time periods (6, 12 and 24 hours). The glass control samples 

demonstrated an increase in the quantity of viable bacterial cells over the first 12 hours. In 

comparison, the AgNP coated samples showed a fairly constant level of viable cells with the quantity 

of dead cells increasing greatly. This confirms the bactericidal effect of the films. Crucially, the 

quantity of live bacterial cells seen on the surface of the AgNP coated slides is only minimal, relative 

to the control samples, after 6 hours suggesting that the AgNPs are very effective at slowing the 

initial formation of a live biofilm. The mean percentage area coverage for the control samples after 6 

hours was found to be 2.38 ±0.80%, whereas the AgNP coated slides had a mean percentage 

coverage of 0.035 ±0.01%. This is 1.47 % of the coverage seen in the control sample, or a factor of 

68.0 times less. After 12 hours the mean percentage area coverage for the control samples was 

found to be 5.50 ±1.17%, whereas for the AgNP coated samples the coverage was 0.07 ±0.05%. This 

equates to 1.27 % of the coverage seen in the control sample, or a factor of 78.6 times less coverage 

by live bacteria. 

In comparison, the proportion of dead cells on the glass control slides stays comparatively constant 

over the 24 hours with the number of viable cells remaining constant, within error, between 12 and 

24 hours. Alternatively the Ag films, after 24 hours, show an increase in the proportion of viable cells 

and a decrease in the proportion of dead cells in comparison to the films after 12 hours. After 24 

hours, although the coverage of live cells has increased for the AgNP coated samples (1.92 ±0.71%), 

the area coverage is still only 42.29 % (a factor of 2.4 times less) of that observed on the control 

samples (4.54 ±1.52%). This could be due to either depletion of the film, reducing the bactericidal 

effect, or sufficient bacterial death as to provide a sort of barrier layer sufficient to limit the effects 

of silver on new bacteria, thus allowing them to begin to form a fresh biofilm. Whilst this leads to 

questions over the longevity of an AgNP film it would support the idea of the usage of the films as a 

sacrificial layer to prevent initial biofilm formation as there is a clear delay in significant bacterial 

growth. Indeed it was also noted that upon submersion into the TSB that the wash resistance of the 

silver film was limited, possibly indicating that this mechanism, i.e. film depletion, may be the 

primary reason for the improved bacterial growth with the AgNP films after 24 hours. Further 

improvements for the wash resistance and longevity of the coating may be required to optimise the 

layers. Polymer-coated silver nanoparticles have been shown to be more stable in both water and 

simulated biological fluids [51, 52]. It has also been found that AgNPs on bulk matrixes have weak 

washing resistance, however samples with a high wt% were still found to exhibit strong antimicrobial 

action after 120 hour wash test [53]. Therefore by improving the wash resistance of the AgNP film by 

immobilising them within the pores of porous substrates such as silica, long term antimicrobial 

activity with lower AgNP concentration may be achieved [54]. The standard deviations as a 

proportion of the bacterial coverage of both sets of samples are very similar. In the case of the silver 

coated samples, the proportional standard deviation is lower for the amount of dead bacteria 

(compared to the control) and larger for the live. This can be explained by the dominant effect of 

silver being to kill the bacteria. With relatively large numbers of dead bacteria on the surface the 

coverage will be more consistent from sample to sample, the reverse being true for the glass where, 

due to no additional threat to the bacteria’s survival the live coverage is more consistent. Many 

factors will influence the regions of a substrate that bacteria adhere to, from composition, surface 

free energy, topography and micro-/nanoroughness. It is possible that the more-uneven surface of 



the glass (as demonstrated in section 3.1) promotes a more uneven distribution of initial bacterial 

attachment.  

Time (Hours)

4 6 8 10 12 14 16 18 20 22 24 26

A
re

a
 C

o
ve

ra
g
e
 (

%
)

0

2

4

6

8

AgNP - Dead 
AgNP - Live 
Glass - Live 
Glass - Dead 

 

 

Figure 8: Mean percentage area covered by adhered E. coli, comparing the viability on the control 

and AgNP coated samples.  

 

 

4. Conclusions 

The antibacterial effect of AgNP films on Gram-negative E. coli bacteria has been explored as a 

method to limit biofilm formation. The films were deposited using a very simple, and highly 

controllable, low-cost one-pot synthesis. The films were approximately 500 nm in thickness and 

uniform in coverage. Chemical analysis suggested that a level of aggregation had occurred between 

the nanoparticles, with the TEM providing a lower size limit through particle size analysis which 

showed the average particle size to be ~10.6 nm in diameter. The TEM only provides a lower limit for 

the particle size as an aspect of the sample preparation results in a level of deagglomeration of the 

film. The AgNP films deposited on the glass slide have been shown to effectively kill E.coli bacteria in 

comparison to an uncoated slide. Samples exhibited higher percentage of dead cell adhered to the 

samples coated in the Ag film compared to that of the uncoated sample. With particular 

effectiveness within the first 12 hours when the levels of live bacteria detected on the surface was 



up to 78.6 times lower than that observed on glass control samples. This demonstrates that the 

AgNPs are particularly effective at preventing initial biofilm formation, although the level of live 

bacteria does start to increase by 24 hours exposure time. With regards to the mechanism of 

antibacterial activity, the SEM images suggest a high degree of cell disruption. The SEM images 

display a severe loss of morphological integrity where the E.coli show differential structural loss in 

the flattening of the cell. This study suggests that the development of a very thin sacrificial 

antibacterial coating, for usage in the medical industry in particular, made up of AgNP based films is 

viable. 
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