

Article

Frequency and working memory effects in incidental learning of a complex agreement pattern

Denhovska, Nadiia, Serratrice, Ludovica and Payne, John

Available at http://clok.uclan.ac.uk/21784/

Denhovska, Nadiia ORCID: 0000-0002-3654-5892, Serratrice, Ludovica and Payne, John (2018) Frequency and working memory effects in incidental learning of a complex agreement pattern. Lingua, 207. pp. 49-70. ISSN 0024-3841

It is advisable to refer to the publisher's version if you intend to cite from the work. http://dx.doi.org/10.1016/j.lingua.2018.02.009

For more information about UCLan's research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

Frequency and working memory effects in incidental learning of a complex agreement
 pattern
 Abstract

5	Complex grammatical structures have been assumed to be best learned implicitly
6	(Krashen, 1982, 1994; Reber, 1989). However, research to date has failed to support this
7	view, instead finding that explicit training has overarching beneficial effects. The present
8	study attempted to elucidate this issue by examining how type and token frequencies in
9	incidental learning input and individual differences in the learner's working memory (WM)
10	combine to affect the receptive and productive learning of a complex agreement pattern
11	in a novel language. The findings indicated that type frequency significantly enhanced
12	receptive knowledge acquisition even more than explicit instruction. Performance on the
13	productive knowledge retrieval task was poor under all learning conditions but most
14	accurate under the explicit learning condition. WM was not implicated in incidental
15	learning, possibly indicating that all learners experience high cognitive demand imposed
16	

- *Keywords:* L2 grammar, linguistic complexity, incidental learning, frequency, working
 memory
- 19

20 1. Introduction

21	A subject of long-standing debate has been whether a complex grammatical
22	pattern can be more successfully learned under implicit (Krashen, 1982, 1994; Reber,
23	1989) rather than explicit learning conditions (Hulstijn & de Graaff, 1994). To date,
24	extensive second language acquisition (SLA) research has determined that explicit
25	training/classroom instruction is generally more beneficial than implicit training for
26	learning a complex structure in L2 (DeKeyser, 1995; N. Ellis, 1993; Norris & Ortega, 2000;
27	Robinson, 1996; Spada & Tomita, 2010). However, it may be that it is the combined
28	effects of multiple factors that trigger successful knowledge acquisition in incidental
29	learning contexts, a facet we currently know little about. Importantly, with regard to
30	considering incidental learning, Hulstijn (2005) highlighted that it is essential to
31	understand the interactions among the following factors rather than studying each factor
32	in isolation: 1) the complexity of the system underlying the data; 2) the frequency with
33	which the linguistic structures are presented to the learners in the input; and 3) learners'

individual differences with respect to knowledge, skills, and information processing (p.133).

36	The linguistic complexity of the structure is often associated with cognitive
37	complexity or learning difficulty (DeKeyser, 2005; Housen, 2014; Marsden, Williams, & Liu,
38	2013), which is affected in turn by individual differences in cognitive abilities, including
39	working memory (WM) capacity variability (Grey, Williams, & Rebuschat, 2015; Juffs &
40	Harrington, 2011; Tagarelli, Ruiz-Hernandez, Vega & Rebuschat, 2016). In addition, it has
41	been posited that the complexity of a linguistic structure interacts with its input-related
42	properties, such as the frequency of the occurrence of the structure in the input, making
43	it more or less accessible for acquisition (Housen & Simoens, 2016). Hence, frequency
44	may mediate adult incidental learning by creating a more or a less effective learning
45	context. For L1 acquisition of complex morphologies, type and token frequencies are
46	known to be vital (Tomasello, 2000, 2008). The present study thus attempts to
47	understand the effects of type and token frequencies on adult acquisition of a complex
48	L2 pattern and the extent to which the manipulation of type and token frequencies in the
49	incidental learning condition impacts the effectiveness of learning such a structure. In
50	particular, this paper focuses on the acquisition of a complex noun-adjective agreement

51	pattern in a richly inflected language (Russian) by adult novice learners (who are speakers
52	of an L1 with a less rich morphology) in terms of comprehension and production
53	modalities. Further, this paper examines how individual differences in learners' WM
54	mediate this acquisition under different learning conditions.
55	L2 morphology is known to be one of the major stumbling blocks for the novice
56	adult learner, particularly if the learner's L1 does not share the feature to be acquired in
57	L2 (DeKeyser, 2005; Larsen-Freeman, 2010). Although numerous studies have examined
58	the acquisition of inflectional morphology (Brooks, Kempe & Donachie, 2011; Kempe,
59	Brooks & Kharkhurin, 2010; Kempe & McWhinney, 1998), few have devoted attention to
60	its incidental acquisition (Brooks & Kempe, 2013; Rogers, Revesz, & Rebuschat, 2015), and
61	to our knowledge, no studies have explored the combined effect of frequency and WM
62	during the incidental learning of such complex systems.
63	
64	2. Background
65	2.1. Definition of terminology
66	First, it is important to introduce the applicable terminology. Although the terms
67	incidental learning and implicit learning are used interchangeably in the literature,

68	implicit learning is typically understood as a process of acquiring a target structure
69	without intention and awareness that results in the accumulation of implicit knowledge
70	(Williams, 2009). By contrast, explicit learning is a process during which the learner is
71	consciously involved in the processing of the stimulus input. The term incidental learning
72	is used to denote the experimental condition in which the learner is directed to the
73	meaning rather than to the grammatical structure of interest and is not informed
74	regarding any testing to follow (Rebuschat & Williams, 2012). Accordingly, learning under
75	such conditions may or may not result in implicit knowledge. The present paper does not
76	address the issue of conscious/unconscious knowledge developed under these
77	conditions. Sometimes, the notion of the "implicit learning condition" is used to refer to a
78	similar experimental paradigm (Morgan-Short et al., 2010, 2012). In the present study, we
79	follow Rebuschat and Williams (2012) and adopt the definition of incidental learning as a
80	training condition. In contrast, we use the term explicit learning condition to refer to a
81	condition where knowledge acquisition is fostered by providing metalinguistic
82	information about the target structure (Spada & Tomita, 2010; Robinson, 1996).
83	

84	We begin the paper by reviewing the literature on the incidental learning of
85	complex structures, frequency and WM. We then present and discuss our investigation of
86	the incidental learning of a number agreement pattern in a novel natural and fusional
87	language (Russian) that simultaneously marks gender and case.
88	
89	2.2. Acquisition of complex grammatical patterns under incidental learning conditions
90	
91	Various studies have employed different understandings of complexity, including
92	pedagogical, linguistic and psycholinguistic complexities (Collins, Trofimovich, White et
93	al., 2009; see Spada & Tomita, 2010 for meta-analysis). Most commonly, however,
94	research has adopted the absolute or the relative approach to defining the complexity of
95	language structure. The present study utilizes the absolute (Dahl, 2004; McWhorter, 2001,
96	2007) or structural approach (Bulte & Housen, 2012; Miestamo, 2008; Pallotti, 2015),
97	which asserts that the more parts a system has, the more complex it is. Based on this
98	definition, a morphological pattern similar to the subject of the present study, which has
99	inflectional markers signalling agreement based on number, gender and case, would be
100	considered complex as opposed to a morphological pattern that factors in only one of

101	these features. The relative approach (Kusters, 2003), in contrast, defines complexity in
102	terms of processing costs and difficulty for language users, predicting that linguistically
103	complex structures also demand that more cognitive resources be expended by the
104	learner.
105	DeKeyser (2005) further distinguishes formal structural complexity, which
106	emphasizes the complexity of the form, such as the number of forms in a paradigm, and
107	suggests – consistent with the taxonomic model of L2 complexity (Bulte & Housen, 2012)
108	- that morphological systems are more complex in richly inflected languages.
109	Consequently, scholars have noted that features in L2 that are different from the learner's
110	L1 are difficult to learn from input either implicitly or explicitly because morphology is a
111	weak cue during the initial stages of language learning.
112	Conversely, Krashen (1982) introduced the distinction between complex structures
113	that are easy to acquire [implicit] but difficult to learn [via explicit instruction] and simple
114	structures that are easy to learn but difficult to acquire, which led to several experimental
115	studies (de Graaff, 1997; DeKeyser, 1995; Robinson, 1996; Tagarelli, Ruiz-Hernandez, Vega
116	& Rebuschat, 2016; Van Daele, 2005). Research that directly compared knowledge
117	attainment of different L2 grammar structures (e.g., word order, plural marking, passives,

118	and gender agreement) generally found similar retention levels under both implicit and
119	explicit conditions (Andringa, De Glopper, & Hacquebord, 2011; de Graaff, 1997;
120	DeKeyser, 1995; Morgan-Short et al., 2010, 2012; Robinson, 1996; Williams & Evans, 1998).
121	Similar findings were obtained by research in classroom settings that employed implicit
122	(meaning-focused) and explicit (form-focused) instruction for learning grammar
123	structures in L2 French that were simple (i.e., negation) and complex (i.e., passive
124	constructions) (Van Daele, 2005). This trend was partially confirmed in more recent
125	research by Tagarelli et al. (2016), who used syntactic structures of different complexity
126	modelled on German word order in a semi-artificial language to study how complexity
127	interacts with implicit/explicit learning conditions. Higher learning effects were found for
128	all structures in the explicit learning condition.
129	Nevertheless, previous research has generally overlooked the role of factors such
130	as frequency that may mediate incidental learning, which may explain why such research
131	has failed to find the benefits of incidental learning over explicit training in acquiring
132	complex structures. The subsequent section outlines the importance of the frequency
133	factor in incidental learning and reviews the experimental literature on the role of
134	frequency in grammatical knowledge acquisition.

135 2.3. Frequency and L2 learning

137	Frequency constitutes the nucleus of implicit learning, as implicit learning is
138	understood as a process of tracking the frequencies of the items co-occurring in the
139	input and storing them in memory (Johnstone & Shanks, 2001; Knowlton & Squire, 1994;
140	Knowlton, Ramus, & Squire, 1992; Perruchet & Pacteau, 1990). Many theoretical models –
141	such as the usage-based approach to grammar (Bybee, 1998; Goldberg, 2006; Langacker,
142	1987) and connectionist models of language learning and processing (Christiansen &
143	Chater, 1999, Elman, 1991; MacWhinney, 1998) – credit frequency with a fundamental role
144	in learning. While assuming that the acquisition of grammar is a piecemeal accumulation
145	of specific constructions and frequency-based abstractions of regularities within them,
146	the usage-based approach distinguishes the different roles of type and token
147	frequencies (Bybee, 1985, 2010; Ellis, 2002, 2006; Hulstijn, 2005; Tomasello, 2000, 2008).
148	Token frequency is believed to play a significant role in strengthening new
149	representations of specific schemas and is important during the initial stages of learning,
150	whereas type frequency has a privileged role in subsequent knowledge abstraction.
151	Although having been extensively studied from the perspective of L1 acquisition and
152	processing (Abbot-Smith, Lieven, & Tomasello, 2004; Arnon & Snider, 2010; Lieven &

153	Tomasello, 2008; Tomasello, 2003) and greatly emphasized in terms of L2 acquisition
154	(Gass & Mackey, 2002; Ellis, 2002; Ellis & Ferreira-Junior, 2009), experimental evidence
155	remains limited at present with regard to the effects of type and token frequencies in
156	adult incidental learning of complex morphology.
157	The theoretical motivation for understanding the roles of type and token
158	frequencies in the incidental learning of L2 complex morphology stems from the debate
159	whether the same or different mechanisms underlie L1/L2 acquisition (Abutalebi & Green,
160	2008; Perani & Abutalebi, 2005; Ullman, 2004). If the same mechanisms that guide L1
161	grammatical development are available in adulthood, then the incidental learning of L2
162	grammar in post-puberty learners should be promoted by type and token frequencies in
163	a similar manner. An alternative theoretical perspective stipulating that L2 grammar
164	learning is fundamentally different from L1 (Bley-Vroman, 1989) and largely relies on
165	declarative rather than procedural mechanisms (Ullman, 2004) also relies on the
166	importance of frequency. Pursuant to this approach, frequency may be the trigger that
167	initiates the shift towards the recruitment of procedural mechanisms by providing more
168	experience (practice) with language (Ullman, 2001). With regard to the acquisition of
169	complex L2 structures, some approaches propose developmental timing as a function of

170	the structure complexity, positing that it requires more time to master complex features
171	(Pienemann, 1989; Collins, Trofimovich, White, Cardozo, & Horst, 2009). This view implies
172	that frequency might be one of the tools that bridges the gap between the emergence
173	and mastery of such structures.
174	As noted by Bulte and Housen (2014), complexity is rarely investigated for its own
175	sake but instead with the aim of diagnosing learning success. Therefore, it is important to
176	examine the effects of high/low frequency (both type and token) with the attempt to
177	understand what fosters learning of complex structures under incidental exposure.
178	From previous research, it is known that constructions appearing in the input with
179	high frequency are acquired faster than with low frequency (Bybee, 2006; Ellis, 2001,
180	2009; Ellis & Collins, 2009; Ellis & Ferreira-Junior, 2009). Experimental research on the role
181	of token frequency in the incidental learning of L2 grammar demonstrated that it does
182	promote learning to some extent (Robinson, 1996, 2005). For instance, Robinson (2005)
183	found that although novice learners (L1 Japanese speakers) failed to generalize the newly
184	acquired pattern to novel items, they exhibited memorization-based learning of
185	ergativity marking in a previously unfamiliar L2 (Samoan). The study by Presson,
186	MacWhinney, and Tokowicz (2014) is directly relevant to the present research. The

187	authors compared the effectiveness of learning under a condition in which metalinguistic
188	explanations of the rule were provided to another condition where no such information
189	was provided, both conditions being enhanced by token frequency. The authors
190	employed intentional rather than incidental learning conditions triggered by frequency
191	but found that training with the provided metalinguistic information was more beneficial
192	for learning French gender morphology among L1 English speakers. The present study
193	extends a step further, as in the current study we manipulate both type and token
194	frequencies under incidental learning conditions in order to examine their effects on the
195	acquisition of a complex morphological agreement pattern and to compare the learning
196	effect in such conditions to the explicit learning condition.
196 197	effect in such conditions to the explicit learning condition.
	effect in such conditions to the explicit learning condition. 2.4. Working memory
197	
197 198	
197 198 199	2.4. Working memory
197 198 199 200	2.4. Working memory The relationship between structure complexity and the training conditions may be
197 198 199 200 201	2.4. Working memory The relationship between structure complexity and the training conditions may be mediated by a third factor – the learner's WM capacity. From extensive research, we

205	Harrington, 2011; Linck, Osthus, Koeth, & Bunting, 2014; Mackey, Philp, Egi, Fujii, &
206	Tatsumi, 2002; Martin & N. Ellis, 2012; Williams, 2012; Speciale, Ellis, & Bywater, 2004).
207	However, despite the overarching effect of IDs in cognitive abilities found in L2 morpho-
208	syntactic acquisition (Michael & Gollan, 2005; Miyake & Friedman, 1998; Sagarra, 2007),
209	including grammatical agreement (Keating, 2009; Kempe, Brooks, & Kharkhurin, 2010;
210	Sagarra, 2007; Sagarra & Herschensohn, 2010, 2012), the traditional view holds that WM
211	is not implicated in implicit learning (Conway, Baurnschmidt, Huang, & Pisoni, 2010;
212	Kaufman et al., 2010) or in the incidental acquisition of knowledge (Brooks and Kempe,
213	2013; Grey, Williams, & Rebuschat, 2015; Tagarelli et al., 2011).
213 214	2013; Grey, Williams, & Rebuschat, 2015; Tagarelli et al., 2011). Accepted in the field, this perspective is nonetheless contradicted by several
214	Accepted in the field, this perspective is nonetheless contradicted by several
214 215	Accepted in the field, this perspective is nonetheless contradicted by several studies that demonstrate a relationship with WM (Author, XXX; Janacsek & Nemeth, 2013;
214 215 216	Accepted in the field, this perspective is nonetheless contradicted by several studies that demonstrate a relationship with WM (Author, XXX; Janacsek & Nemeth, 2013; Bo et al., 2011; Robinson, 2005; Weitz et al., 2011; Williams & Lovatt, 2003). Such mixed
214215216217	Accepted in the field, this perspective is nonetheless contradicted by several studies that demonstrate a relationship with WM (Author, XXX; Janacsek & Nemeth, 2013; Bo et al., 2011; Robinson, 2005; Weitz et al., 2011; Williams & Lovatt, 2003). Such mixed findings might be attributed to the interaction between the nature of the target stimulus

221	With regard to the nature of the stimulus, we know that complex items are more
222	difficult to process than simple items (Hunter, Ames, & Koopman, 1983), while it is also
223	known that inflectional morphology has repeatedly been found to be difficult for adult L2
224	learners (Jiang, 2004, 2007). While the acquisition of complex structures depends on
225	individual differences in WM, the manner in which such a dependency interacts with
226	other factors in the learning context cannot be ignored. For instance, research suggests
227	that high token frequency mediates the availability of items in memory, leading to less
228	effort for processing (Ellis, 1996, 2001; Just & Carpenter, 1992; Melton, 1963).
229	Understanding how the learner's WM capacity mediates the acquisition of a
230	complex morphological pattern under different incidental learning conditions in which
231	frequency is manipulated would provide insights into whether incidental exposure, at
232	large, leads to a more successful acquisition of complex grammatical structures. The
233	present paper thus aims to further examine the combined effects of WM and frequency
234	on the successful acquisition of a complex pattern under incidental exposure.
235	
236	3. The present study

238	The present study focuses on the acquisition of a complex noun-adjective
239	agreement pattern in Russian singular and plural noun phrases by novice adult learners
240	under the three incidental learning conditions, where type and token frequencies are
241	manipulated and there is an explicit learning condition. Following Ellis (2011), we adopted
242	the following definitions of type and token frequencies: 1) token frequency refers to how
243	often a particular form with a specific lexical item appears in the input, and 2) type
244	frequency accounts for the number of distinct lexical items that can be substituted in a
245	given construction.
246	In English, number is the major agreement category and bears an explicit
247	morphological marker -s added to the noun's root (Eberhard, Cutting & Bock, 2005),
248	whereas in more fusional languages, such as Russian, both the adjective and the noun
249	are inflectionally marked not only for number but also for gender and case (Lorimor et
250	al., 2008). This study uses a natural language with a complex morphology as a stimulus
251	input. It also includes measures of both receptive and productive knowledge attainment.
252	Finally, understanding the extent to which WM is engaged in incidental learning of such
253	a structure is particularly important because, for the L2 learner with a relatively poor L1
254	morphology, acquiring fusional morphological pattern is a challenging task (Kempe and

255 MacWhinney, 1998; McDonald, 1987) that will potentially draw on available cognitive256 resources.

257	We address several research questions. (1) How do type and token frequencies
258	affect the acquisition of receptive and productive knowledge of a complex agreement
259	pattern under incidental learning conditions? (2) Do incidental learning conditions with a
260	manipulated frequency effect lead to more effective acquisition of a complex agreement
261	structure than an explicit learning condition? (3) Is a mediating effect of WM on receptive
262	and productive knowledge acquisition observable under different learning conditions?
263	
264	4. Method
265	
266	A between-subjects design was employed such that the learners were assigned to
267	one of the incidental learning conditions or the explicit learning condition. In L2 research,
268	implicit/incidental learning research training conditions are often manipulated on a
269	continuum from explicit learning conditions, in which learners are provided with
270	metalinguistic information (e.g., pedagogical rules) (DeKeyser, 1995; Norris & Ortega,
271	2000; Robinson, 1996), to implicit learning conditions, in which participants are asked to

272	focus on meaning and are not informed about the testing that will follow (Rebuschat &
273	Williams, 2012; Tagarelli et al., 2011). Following the implications of the findings by Presson
274	et al. (2014) and the vision that the rule-search condition allows for a certain degree of
275	implicitness during learning, we employed metalinguistic explanations of the rule as a
276	method of training in the explicit learning condition. The amount of time spent by
277	participants during training in the explicit and the incidental learning conditions was
278	similar. Performance accuracy was measured using both comprehension and production
279	tasks.
280	
281	4.1. Participants
281 282	<i>4.1. Participants</i>
	<i>4.1. Participants</i> Eighty adult native speakers of English (age range: 18-45, <i>M</i> age = 21) without
282	
282 283	Eighty adult native speakers of English (age range: 18-45, <i>M</i> age = 21) without
282 283 284	Eighty adult native speakers of English (age range: 18-45, <i>M</i> age = 21) without knowledge or exposure to Russian (or any other Slavic language) were included in the
282 283 284 285	Eighty adult native speakers of English (age range: 18-45, $M_{age} = 21$) without knowledge or exposure to Russian (or any other Slavic language) were included in the study (males: $n = 21$; females: $n = 59$). Following Leung and Williams (2011), participants
282 283 284 285 286	Eighty adult native speakers of English (age range: 18-45, $M_{age} = 21$) without knowledge or exposure to Russian (or any other Slavic language) were included in the study (males: $n = 21$; females: $n = 59$). Following Leung and Williams (2011), participants with advanced knowledge of a language other than English were excluded from the

per condition). Participants received either course credit or monetary compensation for
their participation. *4.2. Materials*

The set for vocabulary pre-training included Russian words, specifically, six nouns 295 and four adjectives (see Appendix for the full list of stimuli) three prepositions (k296 'towards', ot 'away from', s'with'), a particle (eto 'this'), as well as colour pictures 297 compiled using ClipArt. Only adjectives that could be easily identified in the context of 298 the pictures (e.g., small, white, old) were selected. All nouns were concrete nouns 299 300 depicting animate stereotypical story characters (e.g., karlik or 'dwarf') of either feminine or masculine natural gender. The stimuli were matched based on the number of 301 302 syllables. Nouns contained two or three syllables, and all adjectives were disyllabic. To maintain a consistent pattern, only nouns and adjectives that belonged to the inflectional 303 paradigm represented in Table 1 were chosen. For instance, feminine nouns that ended 304 with -ek in the genitive case plural, such as babushka 'grandmother' (pl. babushek), were 305 excluded. 306

TABLE 1

310	The set of training sentences contained noun-adjective agreement phrases in
311	nominative, dative, instrumental, and genitive cases for singular and plural forms of the
312	noun, and each adjective was paired with only one noun to create a novel phrase. The
313	four cases were selected based on how easy it would be to create a short story. Each
314	story depicted feminine or masculine characters and consisted of eight slides presented
315	sequentially, (four that corresponded to the agreement in the singular (nominative,
316	dative, instrumental and genitive) and four that correspond to agreement in the plural
317	(nominative, dative, instrumental and genitive)) presented sequentially. Each slide
318	contained a picture and a Russian sentence, as illustrated in Figure 1 and Table 2. There
319	were 7 novel stories in the high type frequency condition and 3 - in the low type
320	frequency condition. A token represented the repetition of a particular story and
321	therefore of the specific noun-adjective phrase in a certain agreement form (e.g.,
322	<i>malomu karliku 'towards the short dwarf; masculine, dative, singular). Thus, there were 7</i>
323	repetitions of each story in the high token frequency condition and 3 in the low token
324	frequency condition (see Table 3 for the breakdown of trials in each condition).

325	Therefore, on the basis of this there were the following conditions created and
326	participants were allocated to the following groups: high type/low token frequency, low
327	type/high token frequency and low type/low token frequency.
328	
329	TABLE 2
330	FIGURE 1
331	TABLE 3
332	
333	4.3. WM testing
334	
335	An operation span task (Unsworth, Heitz, Schrock, & Engle, 2005) was used to
336	measure WM. This task was obtained from the Attention and WM Lab at Georgia
337	Institute of Technology and has been previously used in several studies (Redick et al.,
338	2012; Turner & Engle, 1989; Unsworth & Engle, 2008). The operation span task (Juffs &
339	Harrington, 2011) is a complex WM span task that measures both the storage and
340	processing components of WM.

341	In this task, participants were presented with simple arithmetical operations, such
342	as $(2 \times 1) + 1 = 3$, and were asked to judge their correctness as quickly as possible by
343	mouse-clicking a true or false box on the computer screen. Immediately after each
344	operation was judged, an English letter appeared on the screen, and participants were
345	instructed to memorize the letters in the order in which they were presented. Following
346	Unsworth et al. (2005), the OSpan score was calculated as the sum of all set sizes that were
347	perfectly recalled, considering the order of presentation. The highest possible score was
348	75.
349	
350	4.4. Procedure
351	
352	Participants first completed the WM test, then a pretraining phase, followed by
353	the training and the testing phases. The testing phase consisted of two immediate post-
354	tests that measured receptive and productive knowledge.
355	
356	4.4.1. Pretraining

357	For the vocabulary test, participants were instructed to memorize the six target
358	Russian nouns, four adjectives, three prepositions, and the particle <i>eto</i> (see Appendix)
359	while reading through the slides on their computer screens at their own pace. Each slide
360	contained a Russian word (transliterated into the Latin alphabet), its English translation,
361	and a matching picture. The adjectives were presented in the masculine gender,
362	nominative case, and singular form. Following the memorization phase, participants
363	completed the vocabulary test. They saw a picture and a transliterated Russian word
364	presented via E-Prime 2 (Psychology Software Tools, Pittsburgh, PA) and were asked to
365	press 1 (match) or 2 (mismatch) on the keyboard to indicate whether the word matched
366	the picture. After their response, either Correct or Incorrect, together with the overall
367	percentage score, appeared on the computer screen. Participants had to score at least
368	85% on the vocabulary test to proceed to the training phase.
369	

4.4.2. Training in incidental learning conditions

Participants in the incidental learning conditions were not informed about the
linguistic structure or that there would be a testing phase. These participants were
randomly assigned to one of the three incidental learning conditions (low type/high)

374	token, low type/low token, high type/low token frequency). Depending on the condition,
375	they were presented with varying numbers of types and tokens for the training items (see
376	Table 3). Participants were informed that they were going to view stories about different
377	characters and that their task was to look at the pictures, read the Russian sentences
378	silently and try to understand the meaning. Participants received the following
379	instructions: "Now you will see stories about different characters. Please, look at the
380	picture, read the sentence to yourself and try to understand its meaning". In each
381	condition, as presented on the computer screen via E-Prime 2 (Psychology Software
382	Tools, Pittsburgh, PA), participants viewed sequences of pictures about stereotypical
383	story characters of masculine and feminine grammatical gender overlapping with their
384	biological gender and written Russian sentences containing the agreement pattern in
385	singular and plural forms. Each sequence contained eight pictures that were presented
386	for 3000 <i>ms</i> each in the following order: nominative (singular, plural); dative (singular,
387	plural); instrumental (singular, plural); and genitive cases (singular, plural) (see Figure 1).
388	Each slide contained a Russian sentence with embedded noun-adjective agreement in
389	singular or plural form and a picture representing a boy going towards, with or away

from a stereotypical story character or characters of a feminine or a masculine gender
(e.g., dwarf). The presentation of each sequence was randomized.

393 *4.4.3.* Training in the explicit learning condition

394

395 During training, participants in the explicit learning condition were provided with metalinguistic information about noun-adjective agreement and were informed that they 396 397 would be tested on their acquisition of this knowledge. Agreement according to number, 398 gender and case was explained using two examples for each agreement rule. Each example was represented by a slide containing a Russian sentence that was transliterated 399 into the Latin alphabet with adjectival and noun endings highlighted in bold, an English 400 translation written underneath the transliteration and a semantically corresponding 401 402 picture similar to the pictures presented to participants in the incidental learning 403 conditions. After receiving metalinguistic explanations regarding the agreement rules, 404 participants were given 15 minutes to examine the slides again at their own pace and to 405 memorize the morphological pattern.

4.4.4. Testing

408	For all the conditions, the participants completed a recognition and a production
409	task immediately after training. The recognition task was a number decision task that
410	tested their receptive knowledge of the agreement pattern in all its possible variations.
411	Such a task draws more upon implicit processing than a grammaticality judgement task
412	(GJT) (Anton-Mendez, 1999). The researchers assessed whether the learner could abstract
413	the notion of plurality/singularity expressed by the complex pattern of inflectional
414	markers different across the masculine and feminine agreement constructions in different
415	cases that were presented during training. Participants were told that they would next
416	see sentences similar to those they had previously seen, and they were asked to press 1
417	to indicate that the sentence described one character or 2 if the sentence described
418	more than one character. The test consisted of 28 grammatical Russian sentences. There
419	were 14 old items, i.e., sentences presented during training, and 14 new items, i.e.,
420	sentences composed of previously unseen nouns and adjectives. If no response was
421	recorded, each stimulus would time out after 3000 <i>ms</i> . Sentences presented during
422	training and containing familiar adjectival phrases were included to test whether the
423	learning was based on memorization, whereas new items were included to test whether

424	participants could generalize acquired knowledge to new instances. The same factors
425	that were controlled in the training items were controlled in the new items. Accuracy of
426	the participant response and reaction time (RT) on each item were collected during the
427	recognition task via E-Prime 2.
428	After completing the recognition task, participants were asked to complete a fill-
429	in-the-blank production task that consisted of 28 slides containing pictures and
430	grammatical Russian sentences (14 old and 14 new). In each block, half of the stimuli
431	consisted of agreement in the singular and half consisted of agreement in the plural.
432	Across the blocks, there were seven items with agreement in the feminine singular, seven
433	in the feminine plural, seven in the masculine singular, and seven in the masculine plural.
434	Participants had to fill in a blank for the adjectival ending (e.g., <i>Idu k mal karliku</i> 'I am
435	going towards the small dwarf'); accuracy for each item were recorded. Production and
436	recognition tasks were counterbalanced across the participants, with half of the
437	participants completing a recognition task first, and half – a production task first. All tasks
438	were completed in one session, which lasted between 60 and 90 minutes.
439	

440 5. Results

441	The data were analysed using logistic and linear regression models in R, version
442	3.2.3, by applying a Generalized Linear Model (GLM) in the R Commander software
443	package (R Development Core Team, 2015). We checked for normality and homogeneity
444	by visual inspections of the plots of residuals against fitted values. A backwards model
445	selection procedure was employed that began with a full model including all parameters
446	and then excluded the parameters one at a time. An ANOVA function was used to
447	determine whether the parameter significantly improved the model (Baayen, 2008).
448	When fitting the model, all fixed effects of theoretical interest were retained in the
449	models, even if they were non-significant. For a summary of model coefficients, see Table
450	4. Throughout the paper, MCMC-estimated p values that are considered significant at
451	the α = 0.05 level are presented.
452	
453	5.1. Explicit vs incidental learning
454	
455	The responses were scored for accuracy. A response was coded as correct if the learner
456	was able to recognize the number agreement or produce the complete appropriate
457	ending for the agreement pattern. Each participant received a maximum of 28 points for

458	correct responses in calculating their accuracy scores (see Table 5 for the overall
459	accuracy and WM scores). Although general performance for comprehension accuracy
460	was above chance (see Figure 2 for mean scores per condition), production levels under
461	all conditions were low (Figure 3).
462	
463	FIGURE 2
464	FIGURE 3
465	
466	First, a logistic regression with <i>glmer</i> model function was run to analyse the
467	accuracy of comprehension of the agreement pattern under both explicit and incidental
468	learning conditions. Condition (explicit learning, high type/low token; low type/high
469	token; low type/low token frequency), block (old items, new items; with old items used as
470	a reference category) and the operation span score were included in the model as fixed
471	effects, and item was entered as a random effect. The data were treatment-coded for
472	learning condition. To compare the effectiveness of the learning condition on knowledge
473	retention, the explicit learning condition was used as the reference category. As
474	presented in Table 7, participants in the high type/low token frequency (incidental

475	learning) condition exhibited higher accuracy for comprehension of the agreement
476	pattern than participants in the explicit learning condition. Individual reaction times (RT s)
477	collected during the recognition task exceeding ± 2 SD were eliminated. The mean error
478	rate was 0.2%. We then ran a linear regression with <i>glmer</i> model function with
479	condition (explicit learning, high type/low token; low type/high token; low type/low token
480	frequency), block (old items, new items) and operation span score as fixed effects and
481	with item as the random effect to investigate the differences in RT s. Significantly shorter
482	<i>RT</i> s were found for the participants in the low type/low token frequency condition than
483	for those in the explicit learning condition; moreover, participants in the latter group also
484	performed less accurately in agreement comprehension. However, with respect to
485	comprehension accuracy and <i>RT</i> s, no difference between old and new items was found,
486	and there was no effect of WM on either comprehension accuracy or <i>RT</i> s.
487	
488	FIGURE 4
489	TABLE 6
490	
491	Participants' responses to the fill-in-the blank task were coded for accuracy such
492	that 1 indicated that the participant produced a complete adjectival ending in a relevant

493	position and 0 indicated that the participant produced either no ending or an inaccurate
494	ending. The same model used in the analysis of comprehension accuracy was run to
495	determine production accuracy. The analysis revealed that participants in the explicit
496	learning condition significantly outperformed participants engaged in all of the incidental
497	learning conditions in the production of complete endings. Moreover, it was determined
498	that participants correctly answered questions regarding old items significantly more
499	than new items. Finally, in contrast to production, there was an effect of WM on
500	productive knowledge retrieval.
501	
502	TABLE 7
502 503	TABLE 7
	TABLE 7 5.2. Frequency and knowledge acquisition under incidental learning conditions
503	
503 504	
503 504 505	5.2. Frequency and knowledge acquisition under incidental learning conditions
503 504 505 506	<i>5.2. Frequency and knowledge acquisition under incidental learning conditions</i> To further explore the effect of frequency on incidental learning, we ran the same model
503 504 505 506 507	<i>5.2. Frequency and knowledge acquisition under incidental learning conditions</i> To further explore the effect of frequency on incidental learning, we ran the same model but included only the incidental conditions. The model included condition (high type/low

5.2.1. Frequency and receptive knowledge

514	The analysis using the model with the high type/low token frequency condition as a
515	reference category revealed that participants in the low type/high token condition ($M =$
516	84.50%, <i>SD</i> = 11.50%, β = -3.83, <i>Wald z</i> = -2.05, <i>SE</i> = 1.87, <i>p</i> = .04) and the low type/low
517	token frequency ($M = 70.50\%$, $SD = 27.80\%$) condition recognized the agreement
518	pattern less accurately than participants in the high type/low token frequency condition
519	$(M = 89.50\%, SD = 5.90\%; \beta = -1.17, Wald z = -6.74, SE = 1.74, p < .001)$. We then ran the
520	same model using the low type/low token frequency condition as a reference category
521	and found that participants in the low type/high token frequency condition performed
522	significantly better than participants in the low type/low token frequency condition (eta =
523	7.88, <i>Wald z</i> = 5.21, <i>SE</i> = 1.51, p < .001). No significant difference between old vs new
524	items with respect to participant accuracy was found (β = 7.28, <i>Wald z</i> = 1.32, <i>SE</i> = 5.53,
525	<i>ρ</i> = .18).
526	To analyse <i>RT</i> s, a linear regression model was run with the same variables as

527 those used for the analysis of comprehension accuracy. There was no significant

528	difference between participants' response times for those in the high type/low token
529	condition ($M = 1014.58$, $SD = 20.76$) and those in the low type/high token frequency
530	condition ($M = 1034.64$, $SD = 23.20$, $\beta = 6.97$, t value = .20, $SE = 37.02$, $p = .84$).
531	However, the response times for those in the low type/low token frequency condition
532	were significantly shorter than the response times for those in the high type/low token
533	condition (β = -132.52, <i>t value</i> = -3.76, <i>SE</i> = 35.26, <i>p</i> < .001). When running the model
534	for the low type/low token frequency condition ($M = 896.50$, $SD = 27.50$) as the
535	reference category, it was found that participants' <i>RT</i> s in the low type/high token
536	frequency condition (β = 139.50, <i>t value</i> = 4.12, <i>SE</i> = 33.90, <i>p</i> < .001) were also
537	significantly longer than the <i>RT</i> s for participants in the low type/low token frequency
538	condition. No significant difference was found in participants' accuracy between old and
539	new items (β = -49.65, <i>t value</i> =48, <i>SE</i> = 103.54, <i>p</i> = .63), and no WM effect was found
540	for either comprehension accuracy (β = 8.58, <i>Wald z</i> = 1.58, <i>SE</i> = 5.43, <i>p</i> = .11) or <i>RT</i> s (β
541	= 1.60, <i>t value</i> = 1.49, <i>SE</i> = 1.07, <i>p</i> = .14).
542	
543	5.2.2. Frequency and productive knowledge

545	The same logistic regression model used for the analysis of comprehension
546	accuracy was employed for investigating production accuracy. First, the model was run
547	with high type/low token frequency as a reference level and determined that participants
548	in the low type/high token frequency condition were more likely to recall the correct
549	adjectival ending ($M = 13.90\%$, $SD = 14.9\%$) than participants in the high type/low token
550	frequency condition (<i>M</i> = 8.60%, <i>SD</i> = 9.90%, β = 5.46, <i>Wald z</i> = 2.62, <i>SE</i> = 2.08, <i>p</i> =
551	.009). Production accuracy performance did not differ between participants in the low
552	type/low token frequency condition ($M = 9.80\%$, SD = 10.50%) and the high type/low
553	token frequency condition (β = 1.14, <i>Wald z</i> = .52, <i>SE</i> = 2.22, <i>p</i> = .61). The analysis of the
554	low type/low token frequency condition as a reference category indicated that
555	participants in the low type/high token frequency condition recalled endings more
556	accurately than those in the low type/low token frequency condition (β = 4.39, <i>Wald z</i> =
557	2.25, SE = 1.95, p = .02). Participants also recalled significantly more correct endings for
558	old items than for new items (β = 1.95, <i>Wald z</i> = 2.94, <i>SE</i> = 6.63, p = .03). Finally, with
559	respect to comprehension, the analysis revealed that WM had no significant effect on
560	production (β = 7.85, <i>Wald z</i> = 1.20, <i>SE</i> = 6.57, <i>p</i> = .23).

564	This study aimed to investigate the roles of type and token frequencies in the
565	incidental acquisition of a complex noun-adjective agreement pattern and the mediating
566	effect of individual differences in learners' WM. We were interested in examining the
567	extent to which the combined effects of frequency in the incidental input and the
568	learner's WM might help to override the lack of explicit instruction when acquiring a
569	complex structure.
570	Our findings indicate that even during the initial stages of learning under
571	incidental exposure, speakers of an L1 with a relatively poor morphological system were
572	sensitive to morphological cues and could successfully recognize plurality represented by
573	a complex morphological pattern. This confirms previous research on languages with less
574	fusional morphology, such as in L2 Spanish and French (De Garavito & White, 2002;
575	McCarthy, 2008; White et al., 2004), and on languages with a high fusional agreement
576	morphology, such as Russian (Brooks, Kempe, & Sionov, 2006; Kempe et al., 2010), as
577	well as incidental learning studies regarding the acquisition of complex morphological
578	systems (Brooks & Kempe, 2013; Rogers, Revesz, & Rebuschat, 2015). The accessibility of

579	the concept of plurality, based on the dichotomous distinction between one and more
580	than one referent (Dispaldro, Ruggiero, & Scali, 2014) may provide an additional
581	contribution to the learning of such complex morphological patterns. Although
582	grammaticalized in English, number is believed to be prelinguistic in nature and more
583	semantically salient (Dispaldro, Ruggiero, & Scali, 2014; Eberhard, 1999).
584	Moreover, the complexity of the stimulus itself may facilitate its proneness to
585	being better captured by the implicit learning mechanisms. Even within the artificial
586	language learning paradigm, research demonstrates a stronger learning effect when the
587	input was complex and contained multiple levels of regularities as opposed to when it
588	was simplified (Saffran & Wilson, 2003; Thiessen & Saffran, 2009). Since natural
589	languages are believed to be inherently richer in cues and complexity than artificial
590	language systems (Erickson & Thiessen, 2015), when employing a natural language as a
591	stimulus in research, more pronounced incidental learning effect may be found.
592	In addition, despite the assumption that utilizing artificial language systems in
593	incidental learning experiments, generally provides insight into the natural language
594	learning (Ettlinger et al., 2016; Robinson, 2010), scholars, nevertheless, underscore the
595	importance of employing more natural language stimuli in current incidental learning

596	research (Erickson & Thiessen, 2015). To date, only a few studies used natural languages
597	as a material (Brooks & Kempe, 2013; Godfroid, 2016). The present study, therefore, adds
598	to this trend and extends the existing artificial language learning research by utilizing a
599	natural language within the incidental learning paradigm.
600	Some incidental learning conditions in the present study appeared to be more
601	effective at promoting learning at the level of recognition of a complex linguistic pattern
602	than the explicit learning condition where knowledge acquisition was fostered by
603	metalinguistic information. This finding is consistent with the theoretic stipulation that
604	incidental exposure bestows a greater advantage on learning a complex grammatical
605	structure (Krashen, 1982, 1994; Reber, 1989), and it also confirms the existent research
606	that provides evidence of higher knowledge attainment under incidental learning
607	conditions as opposed to intentional learning conditions (DeKeyser, 1995; Robinson,
608	1996) in adult L2 learners. It is widely acknowledged in the literature that L2 inflectional
609	morphology represents the greatest challenge for learners compared to other areas of
610	morpho-syntax (DeKeyser, 2005; Larsen-Freeman, 2010). This premise is confirmed by
611	research that compares different types of grammatical knowledge and finds fewer errors
612	in word order acquisition compared to morphology (Grey et al., 2014). Moreover, during

613	the post-critical period age, such knowledge must be acquired explicitly and be triggered
614	by declarative mechanisms, as some theories suggest (Ullman, 2004). Therefore, the high
615	learning effect obtained in the present study under the incidental learning condition and
616	enhanced by type frequency supports both the assumption that incidental exposure can
617	help adults to override maturational constraints on learning and Krashen's claim
618	(Krashen, 1982, 1994), with the correction, however, that an incidental learning mode
619	requires additional triggers. The role of frequency, as one such trigger, is generally
620	consistent with the cognitive-associative view of L2 acquisition (N. Ellis, 2002; 2012) and
621	the research that demonstrates the positive frequency impact on L2 morphology
622	learning (Bowden, Gelfand, Sanz, & Ullman, 2010).
623	Overall, as our findings suggest, although the participants in the explicit learning
624	conditions exhibited higher production accuracy than those in the incidental learning
625	conditions, the explicit learning mode was not effective for acquiring a complex pattern.
626	In the present study, performance, even in production domain, that is dependent on
627	higher order processes (Keenen & MacWhinney, 1987) and conscious knowledge
628	remained below chance in all learning conditions, including the explicit learning
629	condition. Future research may consider ways to improve such performance in a

630	longitudinal study. Perhaps adopting a paradigm in which training is conducted over
631	multiple sessions would help to identify those factors involved in successful productive
632	knowledge acquisition and the exposure mode that is most beneficial.
633	
634	6.1. Frequency and incidental learning
635	
636	As demonstrated by the results of the present study, frequency interacts with the
637	learning condition and provides interesting and differential effects for the productive and
638	receptive acquisition of a complex pattern under incidental exposure. Receptive
639	knowledge acquisition is affected by type frequency, whereas productive knowledge
640	acquisition is affected by token frequency. According to Bybee (1985), type frequency
641	promotes the generalization of grammatical structures. Thus, for successful recognition,
642	the learner must develop an abstract schema by collecting a sizeable number of types of
643	a given construction (Bybee & Thompson, 2000; N. Ellis, 2002; Plunkett & Marchman,
644	1991). Our findings indicate that the larger the number of different lexical items
645	appearing within a complex stimulus pattern during training, the more accurate the
646	identification and generalization of the agreement structure.

647	For productive knowledge acquisition, frequency interacts differently with the
648	incidental learning condition and the complex stimulus input, providing a higher learning
649	effect under the condition with high token frequency. This indicates that the item-based
650	learning trend is similar to L1 acquisition, where a learner begins with memorizing the
651	pattern based on specific construction examples (Braine and Brooks, 1995; Brooks,
652	Tomasello, Dodson and Lewis, 1999; Tomasello, 2000, 2008). The item-based learning
653	effect is also supported by the finding that participants performed better on old items
654	than on new items with respect to production but not with respect to comprehension.
655	Such a discrepancy in frequency effects for learning incidentally between
656	production and comprehension reinforces the general assumption that comprehension
657	precedes production in language acquisition (e.g., learning of morphology in children)
658	(Clark & Hecht, 1982); the acquisition of singular-plural constructions (Fraser, Bellugi, &
659	Brown, 1963), and the L2 adult learning of inflectional morphology (Fenson, Dale,
660	Reznick, Bates, et al., 1994). It also reflects the differences in the sub-processes involved
661	in production and comprehension (Tanner, Nicol & Brehm, 2014).
662	To better understand how frequency impacts the acquisition of a complex
663	structure under incidental exposure in different modalities and the extent to which we

664	can examine effective learning in the production domain, a more extended study may be
665	insightful. For instance, providing enhanced training over several sessions or
666	manipulating different degrees of frequency in the input would yield a more
667	comprehensive picture.
668	
669	6.2. Working Memory
670	Finally, we also aimed to explore the mediating effect of WM on the acquisition of
671	a complex structure under different incidental learning conditions enhanced by type and
672	token frequencies. The null WM effect indicates that it is the frequency alone that shapes
673	the learning of a linguistically complex structure. One possible explanation, which is also
674	consistent with the assumption of automaticity and the effortless nature of the implicit
675	learning process (Shiffrin and Schneider, 1977), is that when the stimulus is sufficiently
676	complex, implicit learning mechanisms underpin such learning without relying on
677	cognitive resources.
678	To support this assumption, previous research on adult implicit learning provides
679	ample evidence suggesting that WM is not implicated. This applies to those studies
680	focusing on the relationship between WM and grammatical knowledge acquisition under

incidental learning conditions (Tagarelli et al., 2011, 2016; Yang & Li, 2012), to studies
employing sequence learning (Conway et al., 2011; Kaufman et al., 2010), and to research
focusing on the productive acquisition of a Russian case-marking system (Brooks and
Kempe, 2013).

An alternative interpretation of the null WM effect could relate to the nature of 685 the agreement structure used in the present study. It might be the case that plurality 686 itself may induce a processing cost (Tanner et al., 2014) or that the linguistic complexity 687 of the morphological system, which factors in several agreement variables, places a high 688 689 cognitive demand on knowledge retrieval, thus hindering access to WM (Caplan and Waters, 1999; Hopp, 2006, 2010; McDonald, 2006). This line of thinking may suggest that 690 691 the structure employed in the current study was, in principle, too complex to be acquired, regardless of individual variations among learners with respect to their WM 692 693 capacity. For instance, Sagarra (2007), who investigated agreement processing in L2, found that WM was engaged when the complexity of the target structure was low but 694 695 that WM was not involved in the processing of more complex structures. WM was found 696 to be a predictor for understanding sentences with within-phrase gender agreement 697 violations (e.g., La mujer lava la blusa *blanco en la cocina 'The woman washes the

698	*white (masc) blouse (fem) in the kitchen') by English L2 learners of Spanish but was not
699	a predictor for sentences that contained gender agreement violations across clauses,
700	which represents a more challenging task for the learner. In this sense, the linguistic
701	complexity of the structure under investigation taps into cognitive complexity. The null
702	correlation with WM may indicate that the present pattern is more cognitively
703	demanding for all language learners (Housen & Simoens, 2016) when it is to be acquired
704	without intention and awareness.
705	In spite of the positive results reported herein, one possible limitation of the
706	present study involves the comparability between explicit and incidental learning
707	conditions. The rationale behind choosing the metalinguistic explanation training rather
708	than employing a rule-search condition involves the robust learning effect typically
709	reported in the literature in the explicit learning conditions where metalinguistic
710	information about the target structure was provided to the learner. Another potential
711	limitation of the study was the difficulty in teasing apart the categories of gender, case
712	and number when testing the acquisition of a complex agreement pattern. A similar
713	challenge was recorded by Brooks, Kempe and Sionov (2006) and attributed to the
714	inflectional syncretism of the Russian language. However, obtaining information about

715	how well each of the grammatical category was learned by future research might provide
716	a better understanding about acquisition of complex systems. Finally, exploring how
717	other factors, such as stereotypical gender (Molinaro, Su & Carreiras, 2016; Siyanova-
718	Chanturia, Pesciarelli & Cacciari, 2012) of the stimuli used in the present study, may foster
719	learning of a morphological pattern could be another potential trend of research.
720	Despite its limitations, nevertheless, the advantage of the current research is its
721	contribution to the growing understanding of L2 grammatical acquisition and its use of a
722	natural language system. Studies of the incidental learning of natural language
723	grammars are limited because research traditionally used artificial languages. Despite
724	providing control over confounding factors, artificial languages present a much-
725	simplified version of natural language (Hulstijn et al., 2014).
726	
727	7. Conclusion
728	Overall, the present findings confirm that learning effects emerge from the
729	complex synergies of the complexity of the target structure being acquired and the
730	learning context with available facilitating factors. This study offers evidence that the
731	incidental learning condition can be more beneficial for receptive acquisition of a

732	complex structure if fostered by type frequency. It shows that within the receptive
733	domain a complex grammatical structure can be acquired incidentally more effectively,
734	even when compared to the explicit learning mode. This evidence is in line with the
735	theoretical claim that a complex grammatical structure is best to be learned
736	incidentally/implicitly (Krashen, 1982, 1994; Reber, 1989). Moreover, our study also
737	provide empirical evidence for the suggestion that in order to better understand the
738	acquisition of complex structures incidentally it is necessary to study the interaction
739	between the learning condition and the role of other facilitating factors – such as
740	frequency – in the input (Hulstijn, 2005). However, further research is needed to
741	illuminate productive acquisition. Generally, our findings add to the existing incidental
742	learning research and to the usage-based approach to second language acquisition (N.
743	Ellis, 2002, 2012).
744	
745	References
746	Andringa, S., De Glopper, K., & Hacquebord, H. (2011). Effects of explicit and implicit
747	instruction on free written response task performance. Language Learning, 61, 868 –
748	903.

- Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word phrases.
- Journal of Memory & Language, 62, 67–82.
- 751 Baddeley, A. (2010). Working memory. *Current Biology, 20* (4), 136-140.
- 752 Barber, H., & Carreiras, (2005). Grammatical gender and number agreement in Spanish:
- An ERP comparison. *Journal of Cognitive Neuroscience, 17,* 137-153.
- 754 Baayen, R. (2008). Analyzing Linguistic Data. A Practical Introduction to Statistics Using R.
- 755 Cambridge University Press.
- 756 Blackwell, A., & Bates, E. (1995). Inducing agrammatic profiles in normals: Evidence for the
- selective vulnerability of morphology under cognitive resource limitation. *Journal of*
- 758 *Cognitive Neuroscience, 7,* 228–257.
- Bo, J., Jennett, S., & Seidler, R. (2011). Working memory capacity correlates with implicit
- serial reaction time task performance. *Experimental Brain Research, 214* (1), 73-81.
- 761 Bock, K. (1987). An effect of the accessibility of word forms on sentence structures.
- 762 *Journal of Memory & Language, 26*, 119-137.
- 763 Bock, K, & Irwin, D. (1980). Syntactic effects of information availability in sentence
- production. *Journal of Verbal Learning & Verbal Behavior, 19*, 467-484.

- 765 Bock, K., & Warren, R. (1985). Conceptual accessibility and syntactic structure in sentence
- 766 formulation. *Cognition, 21*, 47-67.
- 767 Bowden, H., Gelfand, M., Sanz, C., & Ullman, M. (2010). Verbal inflectional morphology in
- 768 L1 and L2 Spanish: A frequency effects study examining storage versus
- composition. *Language Learning*, *60* (1), 44-87.
- 770 Braine, M., & Brooks, P. (1995). Verb argument structure and the problem of avoiding an
- overgeneral grammar. In Tomasello, M., & Merriman, W (eds.) *Beyond Names for*
- 772 *Things: Young Children's Acquisition of Verbs*. Hillsdale, NJ: Erlbaum, 352–376.
- Brooks, P, & Kempe, V. (2013). Individual differences in adult foreign language learning:
- The mediating effect of metalinguistic awareness. *Memory & Cognition 41*, 281-296.
- Brooks, P., Tomasello, M., Dodson, K, & Lewis, L. (1999). Young children's
- overgeneralizations with fixed transitivity verbs. *Child Development, 70*, 1325–1337.
- Bulté, B., & Housen, A. (2012). Defining and operationalising L2 complexity. In A. Housen,
- F. Kuiken, & I. Vedder (Eds.), *Dimensions of L2 performance and profi ciency—*
- *investigating complexity, accuracy and fl uency in SLA* (pp. 21 46).
- 780 Amsterdam/Philadelphia: John Benjamins.

- 781 Bulté, B., & Housen, A. (2014). Conceptualizing and measuring short-term changes in L2
- 782 writing complexity. *Journal of Second Language Writing*, *26*, 42-65.

783 Bybee, J. (1985). *Morphology: A Study of the Relation Between Meaning and Form.*

- 784 Philadelphia, PA: John Benjamins.
- 785 Bybee, J, & Thompson, S. (2000). Three frequency effects in syntax. *Berkeley Linguistic*
- 786 *Society*, *23*, 378–388.
- 787 Caplan, D., & Waters, G. (1999). Verbal working memory and sentence comprehension.
- 788 Behavioral Brain Science, 22, 77–94.
- 789 Christiansen, M., & Chater, N. (1999). Towards a connectionist model of recursion in
- human linguistic performance. *Cognitive Science, 23,* 157–205.
- 791 Clark, E., & Hecht, B. (1983). Comprehension, production, and language
- acquisition. *Annual Review of Psychology, 34,* 325-349.
- 793 Collins, L. (2004). The particulars on universals: A comparison of the acquisition of tense-
- aspect morphology among Japanese and French-speaking learners of English.
- 795 *Canadian Modern Language Review, 61,* 251-274.

796	Collings, L., Trofimovich, P., White, J., Cardoso, W., & Horst, M. (2009). Some input on the
797	easy/difficult grammar question: An empirical study. The Modern Language Journal,
798	<i>93,</i> 336-353.
799	Conway, C., Baurnschmidt, A., Huang, S., & Pisoni, D. (2011). Implicit statistical learning in
800	language processing: Word predictability is the key. <i>Cognition, 114</i> , 356-371.
801	Dahl, Ö. (2004). The Growth and Maintenance of Linguistic Complexity. John Benjamins
802	Publishing.
803	de Graaff, R. (1997). The eXperanto experiment: Effects of explicit instruction on second
804	language acquisition. Studies in Second Language Acquisition, 19, 249–297.
805	DeKeyser, R. (1995). Learning second language grammar rules: An experiment with a
806	miniature linguistic system. Studies in Second Language Acquisition, 17, 379-410.
807	DeKeyser, R. (2000). The robustness of critical period effects in second language
808	acquisition. Studies in Second Language Acquisition, 22, 499–533.
809	DeKeyser, R. (2005). What makes learning second-language grammar difficult? A review
810	of issues. <i>Language Learning, 55</i> , 1-25.
811	DeKeyser, R., & Sokalski, K. (1996). The differential role of comprehension and production
812	practice. <i>Language Learning, 46,</i> 613–642.

813	De Vincenzi, M., & Di Domenico, E. (1999). A distinction among features: the role of
814	gener and number in the retrieval of pronoun antecendents. Rivista di linguística, 11,
815	41-74.
816	Dornyei, Z. (2005). The Psychology of the Language Learner. Hillsdale, NJ: Erlbaum
817	Associates.
818	Eberhard, K. (1999). The accessibility of conceptual number to the processes of subject-
819	verb agreement in English. Journal of Memory and Language, 41, 560-578.
820	Eberhard, K, Cutting, J, & Bock, K. (2005). Making syntax of sense: number agreement in
821	sentence production. Psychological Review, 112, 531.
822	Ellis, N. (1993). Rules and instances in foreign language learning: interactions of implicit
823	and explicit knowledge. European Journal of Cognitive Psychology, 5, 289-318.
824	Ellis, N. (2002). Frequency effects in language processing: A review with implications for
825	theories of implicit and explicit language acquisition. Studies in Second Language
826	Acquisition, 24, 143-188.
827	Ellis, N. (2005). At the interface: dynamic interactions of explicit and implicit language
828	knowledge, Studies in Second Language Acquisition, 27, 305–352.

829	Ellis, N. (2006).	The associative-	-cognitive	CREED. In	N VanPatten,	B., &	Williams, J.	. (eds).

- 830 *Theories in Second Language Acquisition: An introduction*. Cambridge: CUP.
- 831 Ellis, N. (2012). Formulaic language and second language acquisition: Zipf and the phrasal
- teddy bear. Annual Review of Applied Linguistics, 32, 17-44.
- 833 Ellis, N., & Ferreira-Junior, F. (2009). Construction learning as a function of frequency,
- frequency distribution, and function. *The Modern Language Journal, 93*, 370-385.
- 835 Ellis, N., Frey, E., & Jalkanen, I. (2008). The psycholinguistic reality of collocation and
- 836 semantic prosody: Lexical access. In: Romer, U., & Schulze, R. (eds.) *Exploring the*
- 837 *Lexis-grammar Interface*. Amsterdam, the Netherlands: John Benjamins.
- 838 Ellis, N., O'Donnell, M., & Romer, U. (2014). The processing of verb-argument
- 839 constructions is sensitive to form, function, frequency, contingency and
- 840 prototypicality. *Cognitive Linguistics, 25*, 55-98.
- 841 Elman, J. (1991). Distributed representations, simple recurrent networks, and grammatical
- structure. *Machine Learning, 7,* 195–225.
- 843 Erickson, L., & Thiessen, E. (2015). Statistical learning of language: theory, validity, and
- 844 predictions of a statistical learning account of language acquisition. *Developmental*
- 845 *Review, 37*, 66-108.

846	Ettlinger, M., Morgan-Short, K., Faretta-Stutenberg, M., & Wong, P. (2016). The
847	relationship between artificial and second language learning. <i>Cognitive science</i> , 40(4),
848	822-847.
849	Godfroid, A. (2016). The effects of implicit instruction on implicit and explicit knowledge
850	development. Studies in Second Language Acquisition, 38(2), 177-215.
851	Grey, S., Williams, J. N., & Rebuschat, P. (2014). Incidental exposure and L3 learning of
852	morphosyntax. Studies in Second Language Acquisition, 36, 1–34.
853	Hopp, H. (2006). Syntactic features and reanalysis in near-native processing. Second
854	Language Research, 22, 369–397.
855	Hopp, H. (2010). Ultimate attainment in L2 inflection: Performance similarities between
856	non-native and native speakers. <i>Lingua, 120</i> , 901–931.
857	Housen, A. (2014). Difficulty and complexity of language features and second language
858	instruction. The Encyclopedia of Applied Linguistics, 1-7.
859	Housen, A., Pierrard, M., & Van Daele, S. (2005). Structure complexity and the efficacy of
860	explicit grammar instruction. In Housen, A., & Pierrard, M. (eds.) Investigations in
861	Instructed Second Language Acquisition. Berlin and New York: Mouton de
862	Gruyter, 235–270.

863	Housen, A., & Simoens, H. (2016). Introduction: Cognitive perspectives on difficulty and
864	complexity in L2 acquisition. <i>Studies in Second Language Acquisition, 38,</i> 163 –
865	175.
866	Hulstijn, J. (2005) Theoretical and empirical issues in the study of implicit and explicit
867	second-language learning. Studies in Second Language Acquisition, 27, 129-140.
868	Hulstijn J, & de Graaff, R. (1994). Under what conditions does explicit knowledge of a
869	second language facilitate the acquisition of implicit knowledge? A research proposal.
870	AILA Review, 11, 97-112.
871	Hummel, K. (2009). Aptitude, phonological memory, and second language proficiency in
872	non-novice adult learners. Applied Psycholinguistics, 30, 225–249.
873	Hunter, M., Ames, E., & Koopman, R. (1983). Effects of stimulus complexity and
874	familiarization time on infant preferences for novel and familiar
875	stimuli. <i>Developmental Psychology, 19</i> (3), 338-352.
876	Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory:
877	correlated or complicated? <i>Cortex, 49</i> (8), 2001-2006.
878	Jiang, N. (2004). Morphological insensitivity in second language processing. Applied
879	<i>Psycholinguistics</i> , 25, 603–634.

- Jiang, N. (2007). Selective integration of linguistic knowledge in adult second language
- learning. *Language Learning*, 57, 1–33.
- Jiang, N., & Nekrasova, T. (2007). The processing of formulaic sequences by second
- language speakers. *The Modern Language Journal, 91*, 433-445.
- Juffs, A., & Harrington, M. (2011). Aspects of working memory and L2 learning. Language
- 885 *Teaching*, *44*, 137 166.
- Johnson, J., & Newport, E. (1989). Critical period effects in second language learning: The
- influence of maturational state on the acquisition of English as a second
- language. *Cognitive Psychology*, *21*(1), 60-99.
- Just, M., & Carpenter, P. (1992). A capacity theory of comprehension: Individual
- differences in working memory. *Psychological Review, 99,* 122-149.
- Kaufman, S., Deyoung, C., Gray, J., Jiménez, L., Brown, J., & Mackintosh, N. (2010). Implicit
- learning as an ability. *Cognition, 116*, 321-340.
- 893 Kempe, V., Brooks, P., & Kharkhurin, A. (2010). Cognitive predictors of generalization of
- 894 Russian grammatical gender categories. *Language Learning, 60*, 127–153.
- 895 Kempe, V., & MacWhinney, B. (1998). The acquisition of case marking by adult learners of
- Russian and German. *Studies in Second Language Acquisition, 20,* 543-587.

897	Keenan, J. M., & MacWhinney, B. (1987). Understanding the Relationship between
898	Comprehension and Production. In H. W. Dechert & M Raupach (Eds.),
899	Psycholinguistic Models of Production (pp. 149–155). Norwood, N.J.: Ablex Publishing
900	Corporation.
901	Krashen, S. (1982). Principles and Practive in Second Language Acquisition. Oxford:
902	Pergamon.
903	Krashen, S. (1994). The input hypothesis and its rivals. In Ellis N (eds.) Implicit and Explicit
904	Learning of Languages. London: Academic Press, 45-77.
905	Kusters, W. (2003). Linguistic Complexity. Netherlands Graduate School of Linguistics.
906	Larsen-Freeman, D. (2010). Not so fast: A discussion of L2 morpheme processing and
907	acquisition. Language Learning, 60, 221-230.
908	Linck, J., Osthus, P., Koeth, J., & Bunting, M. (2014). Working memory and second
909	language comprehension and production: A meta-analysis. Psychonomic Bulletin &
910	<i>Review, 21</i> , 861–883.
911	Lorimor, H., Bock, K., Zalkind, E., Sheyman, A., & Beard, R. (2008). Agreement and
912	attraction in Russian. Language and Cognitive Processes, 23, 769-799.

913	Marsden, E., Williams, J., & Liu, X. (2013). Learning novel morphology: The role of
914	meaning and orientation of attention at initial exposure. Studies in Second Language
915	<i>Acquisition, 35,</i> 619 – 654.
916	McCarthy, C. (2008). Morphological variability in the comprehension of agreement: an
917	argument for representation over computation. Second Language Research, 24, 459–
918	486.
919	McDonald, J. (2006). Beyond the critical period: Processing-based explanations for poor
920	grammaticality judgment performance by late second language learners. Journal of
921	Memory and Language, 55, 381–401.
922	McDonald, J., Bock, K., & Kelly, M. (1993). Word and world order: Semantic, phonological,
923	and metrical determinants of serial position. Cognitive Psychology, 25, 188-230.
924	MacDonald, M., Just, M., & Carpenter, P. (1992). Working memory constraints on the
925	processing of syntactic ambiguity. Cognitive Psychology, 24, 56–98.
926	MacWhinney, B. (1998). Models of the emergence of language. Annual Review of
927	<i>Psychology, 49,</i> 199–227.

928	Martin K (9. Ellic NL	(2012) TL	an rolar of	phonologica	I chart torm	momonyan	dworking
920	IVIALUII, N. C	X EIIIS, IN.	(2012). II	ie roles of	prioriologica	I SHOIL-LEITH	memory an	u working

- 929 memory in L2 grammar and vocabulary learning. *Studies in Second Language*
- 930 *Acquisition, 34,* 379-413.
- 931 McWhorter, J. (2001). The world's simplest grammars are creole grammars. *Linguistic*
- 932 *typology*, *5* (2), 125-166.
- 933 McWhorter, J. (2007). Language Interrupted: Signs of Non-native Acquisition in Standard
- 934 *Language Grammars*. Oxford University Press.
- 935 Melton, A. (1963). Implications of short-term memory for a general theory of
- 936 memory. *Journal of Memory and Language, 2*, 1-28.
- 937 Miestamo, M. (2008). Grammatical complexity in a cross-linguistic perspective. In M.
- 938 Miestamo, K. Sinnemaki, & F. Karlsson (Eds.), *Language complexity: Typology, contact,*
- 939 *change* (pp. 23 42). Amsterdam and Philadelphia: Benjamins.
- 940 Miyake, A., & Friedman, N. (1998). Individual differences in second language proficiency:
- 941 Working memory as "language aptitude". In Healy, A., & Bourne, L. (eds.) *Foreign*
- 942 Language Learning: Psycholinguistic Studies on Training and Retention. Mahwah, NJ:
- Lawrence Erlbaum, 339–364.
- 944 Molinaro, N., Su, J., & Carreiras, M. (2016). Stereotypes override grammar: Social
- 945 knowledge in sentence comprehension. *Brain and Language*, *155*, 36-43.

946	Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. (2010). Second language
947	acquisition of gender agreement in explicit and implicit training conditions: An event-
948	related potential study. Language Learning, 60, 154-193.
949	Nakamura, D. (2012). Input skewedness, consistency, and order of frequent verbs in
950	frequency-driven second language construction learning: A replication and extension
951	of Casenhiser and Goldberg (2005) to adult second language acquisition. IRAL, 50, 1-
952	37.
953	Norris, J., & Ortega, L. (2000). Effectiveness of L2 instruction: A research synthesis and
954	quantitative meta-analysis. Language Learning, 50, 417-528.
955	Pallotti, G. (2015). A simple view of linguistic complexity. Second Language Research, 31,
956	117 – 134.
957	Pienemann, M. (1989). Is language teachable? Psycholinguistic experiments and
958	hypotheses. <i>Applied Linguistics, 10,</i> 52–79.
959	Plunkett, K., & Marchman, V. (1991). U-Shaped learning and frequency effects in a
960	muitilayered perceptron: Implications for child language acquisition. Cognition, 38,
961	43-102.

- 962 Presson, N., MacWhinney, B., & Tokowicz, N. (2014). Learning grammatical gender: The
- 963 use of rules by novice learners. *Applied Psycholinguistics, 35,* 709-737.

964 Reali, F., & Christiansen, M. (2009). Sequential learning and the interaction between

- 965 biological and linguistic adaptation in language evolution. *Interaction Studies, 10*, 5–
- 966 30.

967 Reber, A. (1989). Implicit learning and tacit knowledge. *Journal* of *Experimental*

- 968 *Psychology: General 118,* 219-235.
- 969 Rebuschat, P., & Williams, J. (2012). Implicit and explicit knowledge in second language
- 970 acquisition. *Applied Psycholinguistics, 33,* 1-28.
- 971 Robinson, P. (1996). Learning simple and complex second language rules under implicit,
- 972 incidental, rule-search and instructed conditions. *Studies in Second Language*
- 973 *Acquisition, 18,* 27-67.

874 Robinson, P. (2005). Cognitive abilities, chunk-strength, and frequency effects in implicit

- 975 artificial grammar and incidental L2 learning: Replications of Reber, Walkenfeld, and
- 976 Hernstadt (1991) and Knowlton, and Squire (1996) and their relevance for SLA. *Studies*
- *in Second Language Acquisition, 27,* 235-268.

978	Robinson, P. (2010). Implicit artificial grammar and incidental natural second language
979	learning: How comparable are they? <i>Language Learning</i> , 6 (2), 245-263.
980	Roehr, K. (2008). Linguistic and metalinguistic categories in second language learning.
981	Cognitive Linguistics, 19, 67-106.Rogers, J., Revesz, A., & Rebuschat, P. (2015). Implicit
982	and explicit knowledge of inflectional morphology. Applied Psycholinguistics, 1-32.
983	Saffran, J., & Wilson, D. (2003). From syllables to syntax: Multilevel statistical learning by
984	12-month-old infants. <i>Infancy, 4</i> (2), 273–284.
985	Sagarra, N. (2007). Online processing of gender agreement in low proficient English–
986	Spanish late bilinguals. In: Cabrera MJ, CamachoJ, Deprez V, Flores N, and Sanchez L
987	(Eds.) Romance linguistics 2006: Selected papers from the 36th Linguistic Symposium
988	on Romance Languages. Amsterdam: John Benjamins, 240-253.
989	Sagarra, N. & Herschensohn, J. (2010). The role of proficiency and working memory in
990	gender and number agreement processing in L1 and L2 Spanish. Lingua, 120, 2022-
991	2039.
992	Sagarra, N., & Herschensohn, J. (2012). Processing of gender and number agreement in
993	late Spanish bilinguals. International Journal of Bilingualism, 17, 607-627.

994	Shiffrin,	R.,	& S	chneide	r, W	. (1977).	Controlled	and	automatic	human	inform	ation
-----	-----------	-----	-----	---------	------	-----------	------------	-----	-----------	-------	--------	-------

995 processing: II Perceptual learning, automatic attending and general theory.

996 *Psychological Review, 84,* 127-190.

- 997 Slobin, D. (1985). Crosslinguistic evidence for the language making capacity. In: D. Slobin
- 998 (Eds.) The Crosslinguistic Study of Language Acquisition. Hillsdale, NJ: Erlbaum, 1157–
- 999 1249.
- 1000 Spada, N., & Tomita, Y. (2010). Interactions between type of instruction and type of

1001 language features: A meta-analysis. *Language Learning, 60*, 263–308.

- 1002 Speciale, G., Ellis, N., & Bywater, T. (2004). Phonological sequence learning and short-
- 1003 term store capacity determine second language vocabulary acquisition. *Applied*
- 1004 *Psycholinguistics, 25*, 293–321.
- 1005 Siyanova-Chanturia, A., Pesciarelli, F., & Cacciari, C. (2012). The electrophysiological
- underpinnings of processing gender stereotypes in language. *PLoS One*, *7* (12), 11007 11.
- 1008 Tagarelli, K., Borges-Mota, M., & Rebuschat, P. (2011). The role of WM in implicit and
- 1009 explicit language learning, 2061-2066.

1010	Tagarelli, K. M., Ruiz-Hernández, S., Vega, J. L. M., & Rebuschat, P. (2016). Variability in
1011	second language learning: The roles of individual differences, learning conditions, and
1012	linguistic complexity. <i>Studies in Second Language Acquisition</i> , <i>38</i> (2), 293 – 316.
1013	Taguchi, N. (2007). Chunk learning and the development of spoken discourse in a
1014	Japanese as a foreign language classroom. Language Teaching Research, 11, 433–457.
1015	Tanner, D., Nicol, J., & Brehm, L. (2014). The time-course of feature interface in
1016	agreement comprehension: Multiple mechanisms and asymmetrical attraction.
1017	Journal of Memory and Language, 76, 195-215.
1018	Thiessen, E., & Saffran, J. (2003). When cues collide: Use of stress and statistical cues to
1019	word boundaries by 7-to 9-month–old infants. <i>Developmental Psychology</i> , 39 (4),
1020	706–716.
1021	Tomasello, M. (2000). The item-based nature of children's early syntactic development.
1022	Trends in Cognitive Sciences, 4, 156-163.
1023	Tomasello, M. (2008). Origins of Human Communication. Cambridge: The MIT Press.
1024	Unsworth, N., Heitz, R., Schrock, J., & Engle, R. (2005). An automated version of the

1025 operation span task. *Behavior Research Methods, 37,* 498-505.

- 1026 Waters G, Caplan, D., & Yampolsky, S. (2003). On-line syntactic processing under
- 1027 concurrent memory load. *Psychonomic Bulletin and Review, 10,* 88–95.
- 1028 Weitz, D., O'Shea, G., Zook, N., & Needham, W. (2011). Working memory and sequence
- 1029 learning in the Hebb digits task: Awareness is predicted by individual differences in
- 1030 operation span. *The American Journal of Psychology, 124* (1): 49-62.
- 1031 Williams, J. (2012). Working memory and SLA. In S. M. Gass & A. Mackey (Eds.), The
- 1032 *Routledge handbook of second language acquisition* (pp. 427–441). New York, NY:
- 1033 Routledge.
- 1034 Williams, J. & Evans, J. (1998). What kind of focus and on which forms? In: Doughty C and
- 1035 Williams J (eds.) Focus on Form in Classroom Second Language Acquisition.
- 1036 Cambridge: Cambridge University Press, 139–155.
- 1037 Williams, J. & Lovatt, P. (2003). Phonological memory and rule learning. *Language*
- 1038 *Learning*, *53*, 67–121.
- 1039 Yang, J. & Li, P. (2012) Brain networks of explicit and implicit learning. *PLOSONE 7*: 1–9.
- 1040
- 1041

Appendix

Vocabulary Training and Test

	Noun	Adjective	Preposition
	vedma – witch	krasniy – red	Idu k – I am going towards
	karlik– dwarf	jeltiy – yellow	Idu s – I am going with
	nevesta – bride	lisiy – bald	Idu ot – I am going from
	vdova – widow	maliy – small	
	pojarnik – firefighter		
	begun – runner		
6			
.7 .8	Training Sentences		
.9	Masculine singular		
0	Eto seriy pojarnik/ This is a g	rey firefighter	
1	ldu k seromu pojarniku/ I an	n going towards the grey firef	ighter
2	ldu s serim pojarnikom/ I an	n going with the grey firefight	er
3	ldu ot serogo pojarnika/ I ar	n going away from the grey fi	refighter
4			
5	Eto maliy karlik/ This is a sm	all dwarf	

- 1056 Idu k malomu karliku/ I am going towards the small dwarf
- 1057 Idu s malim karlikom/ I am going with the small dwarf
- 1058 Idu ot malogo karlika / I am going away from the small dwarf
- 1059
- 1060 Eto jeltiy begun/ This is a yellow runner
- 1061 Idu k jeltomu begun/ I am going towards the yellow runner
- 1062 Idu s jeltim begunom/ I am going with the yellow runner
- 1063 Idu ot jeltogo beguna/ I am going away from the yellow runner
- 1064
- 1065 Eto yuniy shkolnik/ This is a young schoolboy
- 1066 Idu k yunomu shkolniku/ I am going towards the young schoolboy
- 1067 Idu s yunim shkolnikom/ I am going with the young schoolboy
- 1068 Idu ot yunogo shkolnika/ I am going away from the young schoolboy
- 1069
- 1070 Eto lisiy letchik/ This is a bald pilot
- 1071 Idu k lisomu letchiku/ I am going towards the bald pilot
- 1072 Idu s lisim letchikom/ I am going with the bald pilot

1073	Idu ot lisogo letchika	/ I am going away	/ from the bald pilot
------	------------------------	-------------------	-----------------------

1075	Eto temni	y fokusnik/	This is a	brunette	conjurer

- 1076 Idu k temnomu fokusniku/ I am going towards the brunette conjurer
- 1077 Idu s temnim fokusnikom/ I am going with the brunette conjurer
- 1078 Idu ot temnogo fokusnika/ I am going away from the brunette conjurer
- 1079
- 1080 Eto krupniy ohotnik/ This is a big hunter
- 1081 Idu k krupnomu ohotniku/ I am going towards the big hunter
- 1082 Idu s krupnim ohotnikom/ I am going with the big hunter
- 1083 Idu ot krupnogo ohotnika/ I am going away from the big hunter

1084

1085 Masculine plural

- 1086 Eto serie pojarniki/ These are grey firefighters
- 1087 Idu k serim pojarnikam/ I am going towards the grey firefighters
- 1088 Idu s serimi pojarnikami/ I am going with the grey firefighters
- 1089 Idu ot serih pojarnikov/ I am going away from the grey firefighters

- 1091 Eto malie karliki/ These are small dwarves
- 1092 Idu k malim karlikam/ I am going towards the small dwarves
- 1093 Idu s malimi karlikami/ I am going with the small dwarves
- 1094 Idu ot malih karlikov/ I am going away from the small dwarves

- 1096 Eto jeltie beguni/ These are yellow runners
- 1097 Idu k jeltim begunam/ I am going towards the yellow runners
- 1098 Idu s jeltimi begnami/ I am going with the yellow runners
- 1099 Idu ot jeltih begunov/ I am going away from the yellow runners
- 1100
- 1101
- 1102 Eto yunie shkolniki/ These are young schoolboys
- 1103 Idu k yunim shkolnikam/ I am going towards the young schoolboys
- 1104 Idu s yunimi shkolnikami/ I am going with the young schoolboys
- 1105 Idu ot yunih shkolnikov/ I am going away from the young schoolboys

- 1107 Eto lisie letchiki/ These are a bald pilots
- 1108 Idu k lisim letchikam/ I am going towards the bald pilots

- 1110 Idu ot lisih letchikov/ I am going away from the bald pilots
- 1111
- 1112 Eto temnie fokusniki/ These are brunette conjurers
- 1113 Idu k temnim fokusnikam/ I am going towards the brunette conjurers
- 1114 Idu s temnimi fokusnikami/ I am going with the brunette conjurers
- 1115 Idu ot temnih fokusnikov/ I am going away from the brunette conjurers

- 1117 Eto krupnie ohotniki/ These are big hunters
- 1118 Idu k krpnim ohotnikam/ I am going towards the big hunters
- 1119 Idu s krpnimi ohotnikami/ I am going with the big hunters
- 1120 Idu ot krpnih ohotnikov/ I am going away from the big hunters
- 1121
- 1122 Feminine singular
- 1123 Eto grustnaya vdova/ This is a sad widow
- 1124 Idu k grustnoy vdove/ I am going towards the sad widow
- 1125 Idu s grustnoy vdovoy/ I am going with the sad widow

1126 Idu ot grustnoy vdovi/ I am going away from the sad widow

1127

1128	Eto belaya ne	evesta/ This is	an white bride
------	---------------	-----------------	----------------

- 1129 Idu k beloy neveste/ I am going towards the white bride
- 1130 Idu s beloy nevestoy/ I am going with the white bride
- 1131 Idu ot beloy nevesti/ I am going away from the white bride

1132

- 1133 Eto hudaya stryapuha/ This is a thin cook
- 1134 Idu k hudoy stryapuhe/ I am going towards the thin cook
- 1135 Idu s hudoy stryapuhoy/ I am going with the thin cook
- 1136 Idu ot hudoy stryapuhi/ I am going away from the thin cook

1137

- 1138 Eto svetlaya podruga/ This is a blonde friend
- 1139 Idu k svetloy podruge/ I am going towards the blonde friend
- 1140 Idu s svetloy podrugoy/ I am going with the blonde friend
- 1141 Idu ot svetloy podrugi/ I am going away from the blonde friend

- 1143 Eto tolstaya tkachiha/ This is a fat weaver
- 1144 Idu k tolstoy tkachihe/ I am going towards the fat weaver
- 1145 Idu s tolstoy tkachihoy/ I am going with the fat weaver
- 1146 Idu ot tolstoy tkachihi/ I am going away from the fat weaver

- 1148 Eto staraya portniha/ This is an old dressmaker
- 1149 Idu k staroy portnihe/ I am going towards the old dressmaker
- 1150 Idu s staroy portnihoy/ I am going with the old dressmaker
- 1151 Idu ot staroy portnihi/ I am going away from the old dressmaker

1152

- 1153 Eto chernaya plovchiha/ This is a black swimmer
- 1154 Idu k chernoy plovchihe/ I am going towards the black swimmer
- 1155 Idu s chernoy plovchihoy/ I am going with the black swimmer
- 1156 Idu ot chernoy plovchihe/ I am going away from the black swimmer

1157

1158 Feminine plural

1159 Eto grustnie vdovi/ These are sad widows

1160	Idu k grustnim vdovam/ I am going towards the sad widows
1161	Idu s grustnimi vdovami/ I am going with the sad widows
1162 1163	Idu ot grustnih vdov/ I am going away from the sad widows
1164 1165	Eto belieie nevesti/ These are white brides
1166	Idu k beieim nevestam/ I am going towards the white brides
1167	Idu s belimii nevestami/ I am going with the white brides
1168	Iduu ot belih nevest/ I am going away from the white brides
1169	
1170	Eto hudie stryapuhi/ These are thin cooks
1171	Idu k hudim stryapuham/ I am going towards the thin cooks
1172	Idu s hudimi stryapuhami/ I am going with the thin cooks
1173	Idu ot hudih stryapuh/ I am going away from the thin cooks
1174	
1175	Eto svetlie podrugi/ These are blonde friends
1176	Idu k svetlim podrugam/ I am going towards the blonde friends
1177	Idu s svetlimi podrugami/ I am going with the blonde friends
1178	Iduu ot svetlih podrug/ I am going away from the blonde friends

1179	
1180	Eto tolstie tkachihi/ These are fat weavers
1181	Idu k tolstim tkachiham/ I am going towards the fat weavers
1182	Idu s tolstimi tkachihami/ I am going with the fat weavers
1183	Idu ot tolstih tkachih/ I am going away from the fat weavers
1184	
1185	Eto starie portnihi/ These are old dressmakers
1186	Idu k starim portniham/ I am going towards the old dressmakers
1187	Idu s starimi portnihami/ I am going with the old dressmakers
1188	Idu ot starih portnih/ I am going away from the old dressmakers
1189	
1190	
1191	Eto chernie plovchihi/ These are black swimmers
1192	Idu k chernim plovchiham/ I am going towards the black swimmers
1193	Idu s cherntimi plovchihami/ I am going with the black swimmers
1194	Idu ot chernih plovchih/ I am going away from the black swimmers
1195	

Table 1

1198 1199 1200 1201 1202 Inflectional Paradigm in Russian for the Adjective and the Noun According to Number, Gender and Case

Case		M	Masculine		Feminine			
	Sing Adj.	gular N	P Adj.	'lural N	Sing Adj.	ular N	Pli Adj.	ural N
XT · · ·								
Nominative	-iy	Ø	-ie	-i	-aya	-a	-ie	-i
Dative	-omu	-u	-im	-am	-oy	-е	-im	-am
Instrumental	-im	-om	-imi	-ami	-oy	-oy	-imi	-ami
Genitive	-ogo	-a	-ih	-OV	-oy	-i	-ih	Ø

1222 Table 2

	Case	Masculine singular	Masculine plural
	Nominative	Eto maliy karlik- This is a small dwarf	Eto malie karliki- These are small dwarves
		<i>Eto mal-iy karlik-Ø</i> This Ø-cop small-M.NOM.SG dwarf-M.NOM.SG	<i>Eto mal-ie karlik-i</i> These Ø-cop small-M.NOM.PL dwarf-M.NOM.PL
	Dative	Idu k malomu karliku- I am going towards the small dwarf	Idu k malim karlikam- I am going towards the small dwarves
		<i>Idu k mal-omu karliku</i> I am going towards small-M.DAT.SG dwarf- M.DAT.SG	<i>Idu k mal-im karlik-am</i> I am going towards small-M.DAT.PL dwarf- M.DAT.PL
	Instrumental	Idu s malim karlikom- I am going with the small dwarf	Idu s malimi karlikami- I am going with the small dwarves
		<i>Idu s mal-im karlik-om</i> I am going with small-M.INST.SG dwarf- M.INST.SG	<i>Idu s mal-imi karlikami</i> I am going with small-M.INST.PL dwarf- M.INST.PL
	Genitive	Idu ot malogo karlika- I am going away from the small dwarf	Idu ot malih karlikov- I am going away from the small dwarves
		<i>Idu ot mal-ogo karlik-a</i> I am going away from small-M.GEN.SG dwarf- M.GEN.SG	<i>Idu ot mal-ih karlik-ov</i> I am going away from small-M.GEN.PL dwarf- M.GEN.PL
1224 1225 1226	<i>Note:</i> Stereo stimuli	typical story characters rather than stere	eotypical gender characters were included as
1227			
1228			
1229			
1230			
1231			
1232			
1233			
1234			
1235			
1236			

1223 Examples of Training Sentences Presented to Participants

1238 Table 3

1239 Distribution of Types and Tokens during Training

Incidenal learn condition	ning	Feminine gender	Masculine gender	Case	Number	Repeated	N of trials
high type/low frequency	token	7 stories	7 stories	4 cases	2 (singular, plural)	3 times.	336
low type/high frequency	token	3 stories	3 stories	4 cases	2 (singular, plural)	7 times	336
low type/low t frequency	oken	3 stories	3 stories	4 cases	2 (singular, plural)	3 times	144
0							
1							
2							
3							
4							
5							
5							
7							
3							
)							
)							
l							
2							
3							
1							
i							
i							

1258 Table 4

1259 Model Selection

Predictor	AIC	BIC	Pr (>Chisq)
Condition	1536.88	1553.16	<i>p</i> < .001
Operation Span	1536.37	1558.07	.113
Block (old vs. new)	1537.30	1564.43	.548
Number	1539.30	1571.86	.759
Gender	1542.87	1586.28	.810
Case	1538.57	1598.26	.133
Condition x block	1536.52	1607.07	.062
Condition x number	1540.01	1621.41	.724
Number x gender	1543.82	1636.07	.903
Block x number	1544.61	1642.29	.272

Full model: Condition, Operation Span, Block, Number, Gender, Case.

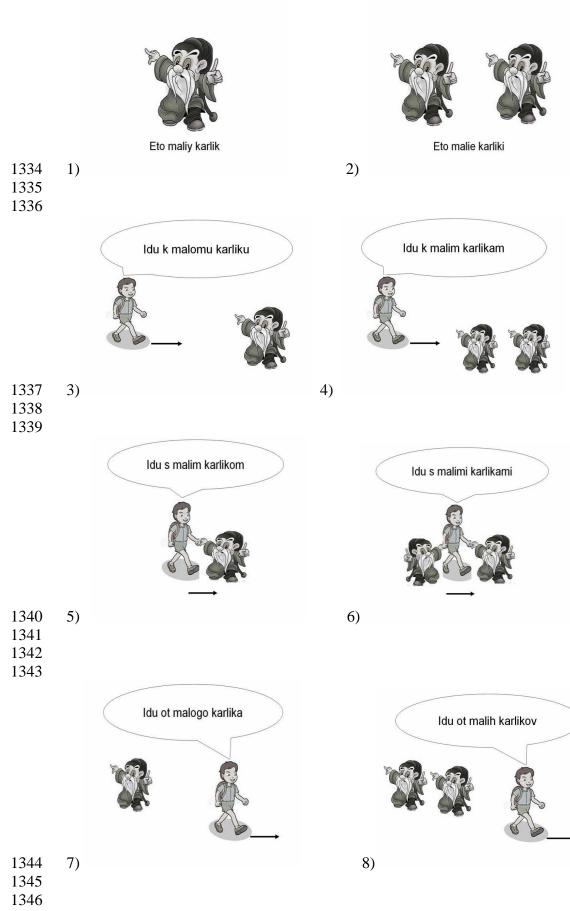
1261	Condition X Block,	Condition X Number,	Number X Gender,	Block X Number
------	--------------------	---------------------	------------------	----------------

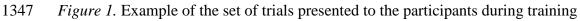
1273 Table 5

1274 Descriptive Statistics for Participants' Accuracy and WM Scores

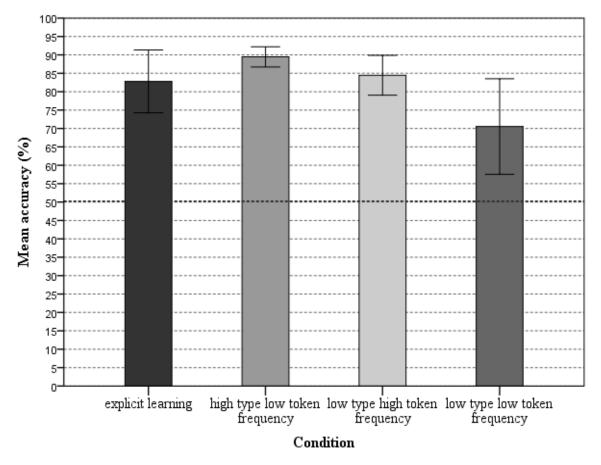
	W	/M	Comprei	hension	Proc	luction
Condition	М	SD	М	SD	М	SL
High type/low token	51.70	14.22	25.05	1.64	2.40	2.7
Low type/high token	59.90	13.67	23.65	3.23	3.90	4.1
Low type/low token	60.75	10.52	19.75	7.77	2.75	2.9
Note: M and SD represent r	aw scores					

1295 Table 6

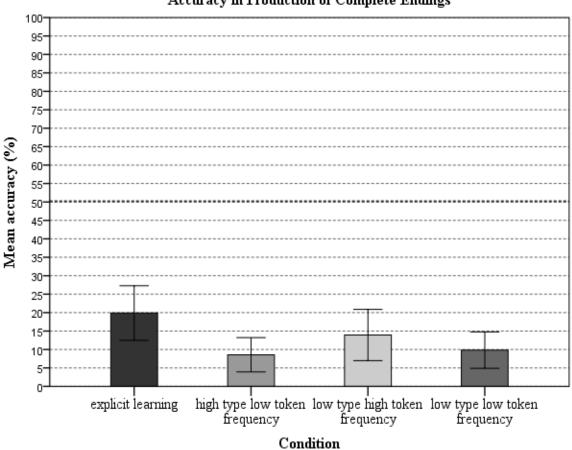

1296 Explicit Learning Condition vs. Incidental Learning Conditions for Comprehension


		Comp	rehension acc	curacy	Con	nprehension .	<i>RT</i> s
	Condition	Std. Error	Wald z	p value	Std. Error	t value	p value
	High type/low token frequency	1.76	3.30	< .001***	33.25	0.67	0.51
	Low type/high token frequency	1.60	0.74	0.46	33.26	0.94	0.34
	Low type/low token frequency	1.45	-4.64	<.001***	33.35	-3.24	0.001**
	Block (old vs. new)	4.35	0.34	0.66	88.43	0.25	0.80
	Operation span	4.14	0.29	0.77	0.86	1.56	0.12
7							

1313 Table 7


Production accuracy								
Condition	Std. Error	Wald z	<i>p</i> value					
High type/low token frequency	0.19	-5.53	<.001**					
Low type/high token frequency	0.16	-3.50	<.001**					
Low type/low token frequency	0.17	-5.43	<.001**					
Block (old vs. new)	0.40	-1.94	0.05*					
Operation span	0.00	2.16	0.03*					

1314 Explicit vs. Incidental Learning for Production



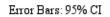
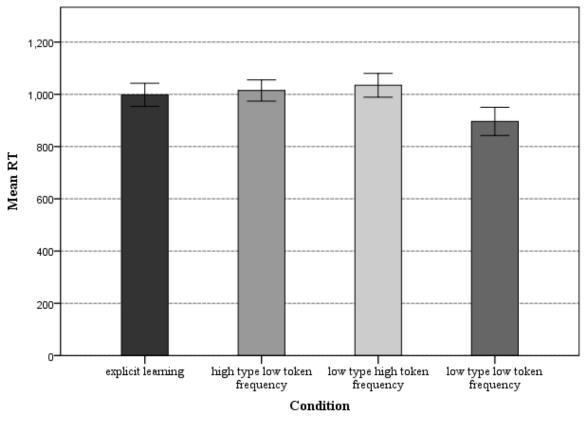

Accuracy in Comprehension

Figure 2. Accuracy performance by percentages of participants in the explicit learning andincidental learning conditions on the recognition task



Accuracy in Production of Complete Endings

Figure 3. Accuracy in production of endings (%) by participants in the explicit learning andincidental learning conditions on the fill-in-the-blank task

RTs in Comprehension

Error Bars: 95% Cl

Figure 4. Mean *RT*s of participants in the explicit learning and incidental learning conditions on

- 1382 the recognition task