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Local description of quantum inseparability
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We show how to decompose any density matrix of the simplest binary composite systems, whether separable
or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors
needed for such a decomposition. Separable states correspond to mixing from one to four pure product states.
Inseparable states can be described aspseudomixturesof four or five pure product states, and can be made
separable by mixing them with one or two pure product states.
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PACS number~s!: 03.65.Bz, 42.50.Dv, 89.70.1c
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Entanglement, inseparability, and nonlocality are some
the most genuine quantum concepts. While for pure stat
has long been well established that the nonlocal characte
the composite system is revealed in different but equiva
ways, the situation is drastically different for mixed stat
For example, for pure states the violation of some kind
Bell inequalities@1#, or the demonstration that no local hid
den variable models can account for the correlations betw
the observables in each subsystem, are equivalent defini
of nonlocality@2#. But for mixed states, described by dens
matrices, such equivalences fade away. Consider a com
ite quantum system described by a density matrixr in the
Hilbert spaceHa^Hb . In the frame set by the concepts
our opening sentence, product or factorizable states are
simplest possible states. They are of the formrp5ra^ rb ;
i.e. for them, and only for them, a description of the tw
isolated subsystems is equivalent to a description of the c
posite system. Recalling that subsystems are described b
reduced density matrices obtained via partial tracing,ra
5Trbr (rb5Trar), a density matrix corresponds to a pro
uct or factorizable state if and only if

r5Trbr ^ Trar⇔r5rp . ~1!

In addition, their index of correlation~or mutual informa-
tion!, defined in terms of von Neumann entropies of the s
tem and subsystems,

I c5Trr ln r2Trra ln ra2Trrb ln rb , ~2!

vanishes, and this happens only for them@3#. Their sub-
systems are uncorrelated. Any state which is not a prod
state presents some kind of correlation. They are called
related states. Quantum mechanics has taught us that th
a hierarchy of correlations, and the physics in the differ
ranks is different. The simplest correlated states are the c
sically correlated ones. Separable states are either unc
lated or classically correlated. Their density matrices can
ways be written in the form

rs5(
i

pirai ^ rbi , 1>pi.0, (
i

pi51, ~3!
PRA 581050-2947/98/58~2!/826~5!/$15.00
f
it
of
nt
.
f

en
ns

os-

he

-
the

-

ct
r-

e is
t
s-
re-
l-

i.e., as a mixture of product states. Their characterizatio
notoriously difficult. Thus, given a density matrix which
known to describe a separable state, algorithms for dec
posing it according to Eq.~3! have only very recently been
found @4,5#; in addition, the decomposition is not unique.
fact, only recently the authors of Refs.@6# and@7# obtained a
mathematical characterization of these states, at least w
the dimension of the composite Hilbert space is 232 or
233. For these cases the necessary and sufficient cond
for separability is that the matrix obtained by partially tran
posing the density matrixr is still a density matrix, i.e., with
only non-negative eigenvalues

rTb5~rTa!* >0⇔r5rs . ~4!

For composite systems described by Hilbert spaces of hig
dimensions, the positivity condition ofrTb is only necessary
for separability@7#. Following the hierarchy of correlations
we find states that are no longer separable, i.e.,rÞrs . These
states are called ‘‘EPR’’~Einstein, Podolsky, Rosen! @8#,
‘‘inseparable,’’ ‘‘nonlocal,’’ and sometimes ‘‘entangled’’ o
simply ‘‘quantum correlated’’ to emphasize that their corr
lations are no longer strictly classical, though often the
labels do not refer to exactly the same states. This confu
reflects the need for a further subclassification of the inse
rable states according to whether they admit local hidd
variables, whether they violate some kind of Bell inequal
@9,10#, etc.

The issue we want to address here is whether any s
even if nonlocal, allows for some kind of local descriptio
We will see that this leads to interesting physical persp
tives about nonlocality. Thus the aim of this paper is to d
compose any separable or inseparable density matrix
binary composite system of dimension 232 in terms of only
product vectors, and to give for all cases the minimal num
of product vectors needed. In other words, we give the m
mal local description of any state, be it separable or n
~Here and in what follows, ‘‘local’’ refers to the sub
systems!. More specifically, we will start proving that an
separable density matrix can always be written as
826 © 1998 The American Physical Society
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PRA 58 827LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY
rs5(
i 51

n

pi~ uei&^ei u ^ u f i&^ f i u!, 1>pi.0, (
i 51

n

pi51,

~5!

with 1<n<4, and we will determine the minimaln as a
function of rs . This introductory result completes the resu
n<5 of Ref. @4#, and reproduces the resultn<4 of Ref. @5#
in a completely independent way. Calling statistical mixtu
of pure product statesuei& ^ u f i&, uei&PHa , and u f i&PHb
local mixtures, and calling the smallestn its cardinality, Eq.
~5! shows that any separable density matrix is a local mixt
of cardinality smaller than 5. We then come to our ma
results. First, any pure inseparable state (rq5rq

2) can be
written as

rq5~11q11q2!rs
~1 !

2(
i 51

2

qi~ ugi&^gi u ^ uhi&^hi u!, 0,qi,`, ~6!

with rs
(1) separable of cardinality 3. The subscriptq means

inseparable or quantum correlated. Second, any nonpur
separable state (rq.rq

2) can be written as

rq5~11q!rs
~1 !2q~ ug&^gu ^ uh&^hu!, 0,q,`, ~7!

with rs
(1) separable of cardinality 3 or 4. We finally dete

mine the cardinality ofrs
(1) as a function ofrq . As a con-

sequence of our results, any inseparable density matrix
be written as what we call apseudomixture,

rq5~11q!rs
~1 !2qrs

~2 ! , 0,q,`, ~8!

of cardinalityn[n(1)1n(2), n(1) andn(2) being cardinali-
ties of rs

(1) andrs
(2) . In a nutshell, then, our main result

to determine for any state its representation in the form o
local ~pseudo!mixture of minimal n(2) and then minimal
n(1). Local pseudomixtures have an interesting physical
terpretation. Equation~7!, for instance, shows that any in
separable mixed state can be made separable by mixin
with some pure product state, or that its quantum correlati
can be completely washed out with only one single lo
mixing preparation.

Before proving all this, let us mention that local pseud
mixtures lead immediately to an unambiguous measure
entanglement,

E~rq!5min q, ~9!

whereq is defined in Eq.~8!. This is unambiguous becaus
in Eq. ~8! only product states appear, and thusE(rq) just
represents the minimal local mixing needed to wash out
entanglement. Minimizingq is, however, different from
minimizing n(2) and thenn(1), which is what we do here
and we postpone its study and comparison with other
tanglement measures@5,11–13# for the time being. In order
to prove Eq.~5!, we need the following theorems.

Theorem 1. For any planeP1 in C2
^ C2 defined by two

product vectorsuv1& and uv2&, either all the states in this
plane are product vectors, or there is no other product ve
in it.
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Proof: With the help of SU~2!^SU~2! transformations,
uv1& and uv2& can always be expressed so that

P1[a1S 1
0D ^ S 1

0D1b1S cosA
sin A D ^ S cosB

sin B D , ~10!

with 0<A, B<p/2; A andB are not simultaneously vanish
ing, anda1 ,b1PC. All vectors inP1 are product vectors if
and only if sinA sinB50. If sin A sinBÞ0, then the only
product vectors contained inP1 are the generators of th
planeuv1& and uv2&.

Corollary. If r has rank 2 and is separable, it can alwa
be expressed as a statistical mixture of two pure prod
states and thusrTb is also of rank 2.

It suffices to see that for any separabler of rank 2, its
rangeR~r! is a plane of typeP1 . If it only contains two
product vectors, then necessarilyr5puv1&^v1u1(1
2p)uv2&^v2u for some 0,p,1. In the case that all vector
in R~r! are product vectors, then its spectral decomposit
gives us immediately the desired decomposition. Since
any case

r5pue1f 1&^e1f 1u1~12p!ue2f 2&^e2f 2u, ~11!

it immediately follows thatrTb is also of rank 2.
Theorem 2. Any planeP2 in C2

^ C2 contains at least one
product vector. Some planes contain only one.

Proof: Consider the planeP2 generated by two orthogona
vectors. Again, with the help of SU~2!^SU~2! transforma-
tions, it can be expressed as

P2[a2S A
0
0
B
D 1b2S CB

g
d

2CA
D , ~12!

with A,B,CPR and g,d,a2 ,b2PC. Assume that none o
the generating vectors is a product vector, that is,ABÞ0 and
C2AB1gdÞ0. Then a vector inP2 is a product vector if
and only if

a2
2AB1a2b2C~B22A2!2b2

2~C2AB1gd!50. ~13!

With the above restrictions onA, B, C, g, and d, there is
always at least one nonvanishing solution~i.e., a2 ,b2 such
that a2b2Þ0! of Eq. ~13!. There is sometimes only on
nonvanishing solution~see also Ref.@14#!.

We can now outline our procedure for finding the deco
position of a separable state into four pure product states.
will first prove that five pure product states always do t
decomposition, and then present the slightly more cumb
some proof of going from five to four pure product state
The algorithm consists of subtracting a projector onto a pr
uct vector fromrs or rs

Tb in such a way thatr (rs)1r (rs
Tb)

diminishes at least in one unity@herer (r) means the rank of
r#. We then repeat the procedure till the desired decomp
tion is obtained. Consider the most general case, a sepa
staters such that both itself and its partially transposed m
trix are of rank 4:r (rs)5r (rs

Tb)54. As we shall see, all the
other cases are subcases of this one. Now define
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828 PRA 58ANNA SANPERA, ROLF TARRACH, AND GUIFRE´ VIDAL
r~p![
1

12p
~rs2pue1 , f 1&^e1 , f 1u!, 0,p,1 ~14!

and

r~p!Tb5
1

12p
~rs

Tb2pue1 , f 1* &^e1 , f 1* u!, 0,p,1,

~15!

where ue1&PHa and u f 1&PHb are completely arbitrary
states. For small enoughp both r andrTb, are positive, and
therefore, due to Eq.~4!, separable. Let us denote byp1 the
smallest value for which a zero eigenvalue appears inr(p)
or r(p)Tb. Let us assume that forp1 one eigenvalue ofr(p)
is equal to zero, i.e.,r „r(p1)…53 and r „r(p1)Tb

…54 ~the
same argument holds for the opposite case!. Consider now a
new product vector belonging to the range ofr(p1),
ue2 , f 2&PR„r(p1)…, and define a new density matrix

r̄~p![
1

12p
„r~p1!2pue2 , f 2&^e2 , f 2u…, 0,p,1.

~16!

As before, for small enoughp, both r̄(p) and r̄(p)Tb are
non-negative and thus separable. Let us denote byp2 the
smallest value ofp for which eitherr̄(p) or r̄(p)Tb develop
a new vanishing eigenvalue. It cannot ber̄(p) unless, be-
cause of the corollary,r̄(p)Tb simultaneously develops tw
vanishing eigenvalues. Therefore, it is in generalr̄(p)Tb

which will develop a new vanishing eigenvalue, so that

r „r̄~p2!…5r „r̄~p2!Tb
…53. ~17!

As r̄(p2) has a decomposition of the type of Eq.~5! with at
least three terms, andr̄(p2)Tb has the corresponding partiall
transposed one, there always exists a product state satis
ue3 , f 3&PR„r̄(p2)… and ue3 , f 3* &PR„r̄(p2)Tb

… @15,16#. Now
define

r̃~p![
1

12p
„r̄~p2!2pue3 , f 3&^e3 , f 3u…, 0,p,1.

~18!

It is clear from the corollary that ap3 exists such that

r „r̃~p3!>0…5r „r̃~p3!Tb>0…52, ~19!

and then it immediately follows that

r̃~p3![p4ue4 , f 4&^e4 , f 4u

1~12p4!ue5 , f 5&^e5 , f 5u, 0,p4,1, ~20!

completing thus the decomposition of any separable st
Therefore,
ing

te.

rs5p1P11p2~12p1!P21p3~12p2!~12p1!P3

1p4~12p3!~12p2!~12p1!P4

1~12p4!~12p3!~12p2!~12p1!P5 , ~21!

where Pi[uei , f i&^ei , f i u are projectors onto pure produc
vectors. This proves Eq.~5! with n<5. Notice that ifr (rs)
1r (rs

Tb),8, thenn,5.

Let us now show that even whenr (rs)1r (rs
Tb)58 one

can always find a decomposition into four pure product sta
instead of five. To do this, we shall prove that there alwa
exists at least one projectorP5ue, f &^e, f u and its partially
transposedPTb5ue, f * &^e, f * u that can be subtracted fromrs

and rs
Tb, respectively, in such a way that positivity is pr

served and the rank of both matrices diminishes simu
neously by one unit. Let us proceed by defining as in E
~14!, but for each of the five product projectors of Eq.~21!,
the following five matrices:

r i~p![
1

12p
~rs2puei , f i&^ei , f i u!,

0,p,1, i 51, . . . ,5. ~22!

We will fix two sets of five values ofp by the ten conditions

r „r i~p5si !>0…53,
~23!

r „r i
Tb~p5 s̄i !>0…53.

These conditions determine the maximal weightssi ,s̄i con-
sistent with positivity, with which the projectorsPi

5uei , f i&^ei , f i u and Pi
Tb5uei , f i* &^ei , f i* u can be subtracted

from rs and rs
Tb, respectively. We now show that it is im

possible thatsi, s̄i ; i or thatsi. s̄i ; i . From Ref.@13# one
knows the expressions forsi and s̄i as defined above:

si5
1

^ei , f i urs
21uei , f i&

,

~24!

s̄i5
1

^ei , f i* u~rs
Tb!21uei , f i* &

.

If we call the probabilities for whichPi appears inrs @cf. Eq.
~5!# pi , then if, say,si, s̄i ; i , it immediately follows that

(
i 51

5

pisi
21.(

i 51

5

pi s̄i
21, ~25!

which from Eq.~24! reads

(
i 51

5

pi^ei , f i urs
21uei , f i&.(

i 51

5

pi^ei , f i* u~rs
Tb!21uei , f i* &,

~26!

or, equivalently,

Tr~rsrs
21!.Tr„rs

Tb~rs
Tb!21

…, ~27!
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PRA 58 829LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY
which cannot be. Thus at least for onei , say j , sj> s̄j . If
they are equal, then subtracting thisuej , f j&^ej , f j u from rs in
Eq. ~14! allows us to reach

r „r~sj !>0…5r „r~sj !
Tb>0…53 ~28!

in one step. Ifsj. s̄j , then by connectivity of the space o
product vectors and continuity ofs and s̄ as defined by Eq.
~24! as functions of the states of this space, there exists
ue, f &^e, f u which hass5 s̄, and for which Eq.~28! holds.
Thus a decomposition with four terms always exists, and
~5! has been proven with

n5max„r ~rs!,r ~rs
Tb!…<4. ~29!

Let us now obtain our main results, which refer to insep
rable states. From Eq.~4! we know that

inf s~rTb!,0⇔r5rq , ~30!

wheres~r! means the spectrum ofr. Let us prove thatrTb

has only one negative eigenvalue. If there were two o
could always find, according to theorem 2, a product vec
ue, f & in the plane defined by the corresponding two eig
vectors, and for which obviously

^e, f urq
Tbue, f &,0. ~31!

But the above expression is equivalent to

^e, f * urque, f * &,0, ~32!

which is impossible, sincerq>0. We will call the eigenvec-
tor of negative eigenvalueuN&, i.e.,

rq
TbuN&52NuN&, N.0. ~33!

We will now see thatrq can be made separable by mixing
statistically with an adequate separable density matrix,rs

(2) ,
i.e.,

r~q![
1

11q
~rq1qrs

~2 !!, ~34!

where 0,q,` is such that

r~q!Tb5
1

11q
~rq

Tb1qrs
~2 !Tb!>0. ~35!

We want to do this in a doubly minimal way. We want
choosers

(2) to have a minimal rank, and we then choose
minimal q, i.e., such thatr(q)Tb just develops a vanishing
eigenvalue@r „r(q)Tb

…,4#. Notice that due to the Hellmann
Feynman theorem@17# the only eigenvalue ofrq

Tb which can
become zero by adding a non-negative operator is its n
tive eigenvalue. We will show how this is done as a functi
of the rank ofrq .

~1! Assumer (rq)51. Here rq represents an entangle
pure state, which can always be written with the help of
SU~2!^SU~2! transformations in its canonical form@cf. Eq.
~12!# ^eu[(cosA,0,0,sinA) with cosA sinA.0. It turns out
that ^Nu5(1/&)(0,1,21,0), and thatr (rq

Tb)54, ass(rq
Tb)
ne

q.

-

e
r
-

e

a-

e

5$cos2 A, sin2 A, cosA sinA,2cosA sinA(52N)%. So, in
this case, the minimalq satisfiesr „r(q)Tb

…53. This implies
that the rank ofrs

(2) cannot be 1. Indeed, if it were 1, a
r (rq)51, it would imply r „r(q)…52. But the two conditions
r „r(q)Tb

…53 andr „r(q)…52 cannot be simultaneously sa
isfied for a separable density matrix~cf. Corollary!. On the
other hand ars

(2) with r (rs
(2))52 which does the job can

always be found. It leads tor „r(q)Tb
…5r „r(q)…53. It can

be implemented by choosing the two product vectors wh
statistically mixed representrs

(2) to be the vectorsugi ,hi&
given by the Schmidt decomposition ofuN&,uN&
5c1ug1 ,h1* &1c2ug2 ,h2* &. This proves Eq.~6! with rs

(1)

5r(q), q5q11q2 , and where the result of Eq.~29! shows
that the cardinality ofrs

(1) is 3.
~2! Assumer (rq)52. Taking ue, f &PR(rq), which by

theorem 2 always exists, we writerq in the form @13#

rq5
1

11p
~ uC&^Cu1pue, f &^e, f u!, p.0, ~36!

where uC& is an entangled vector which belongs toR(rq).
Let us now prove thatr (rq

Tb)54. In order to do so, writeuC&
in its canonical formue&. Consider the partial transpose o
Eq. ~36!. Recall~from the previous case! that (ue&^eu)Tb has
three positive eigenvalues and one negative eigenvalue.
negative eigenvalue cannot vanish by adding the n
negative operatorue, f * &^e, f * u, because thenrq

Tb>0, which
from Eq.~4! is inconsistent withrq being inseparable. Thus
recalling that positive eigenvalues certainly cannot be m
to vanish, provesr (rq

Tb)54. This, in fact, always holds, so

that r (rq
Tb)54 independently ofr (rq). It is now not too

difficult to show that for anyue, f & there always exists at leas
one rs

(2)[ug,h&^g,hu, which allows us to satisfy Eq.~35!
with r „r(q)…5r „r(q)Tb

…53. This is done by demanding tha
the determinant ofr(q)Tb as given by Eq.~35!, with rq
given by Eq.~36!, vanishes. The resulting equation, at mo
linear in q, is most easily solved using foruC& its canonical
form. A value forq.0 and a pure productug,h& for which
the determinant vanishes can then always be found. The
shot of this is that Eq.~7! holds with rs

(1)5r(q) of cardi-
nality 3.

It should be mentioned here that when a pure entang
state@rq with r (rq)51# is obtained as the limit of a mixed
entangled staterq with r (rq)52, the value ofq correspond-
ing to the mixed state diverges. This is what makes it nec
sary to addtwo pure product states to a pure entangled st
if one wants to wash out all entanglement, keeping
weights finite.

~3! Assumer (rq)53. As the previous case always a
lowed us to find ars

(2) with r „rs
(2)

…51, this isa fortiori true
now too. This proves Eq.~7!, but it is now not obvious
whether it can always be done with ars

(1) of cardinality 3. In
fact, it cannot, as the analysis of the following counterexa
ple shows:

rq5
1

11p11p2
~ uC&^Cu1p1ue1 , f 1&^e1 , f 1u1p2ue2 , f 2&

3^e2 , f 2u!, pi.0, ~37!
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830 PRA 58ANNA SANPERA, ROLF TARRACH, AND GUIFRE´ VIDAL
with uC&5ue&, ^e1u5^ f i u5(1,0), and^e2u5(0,1). Indeed,
none of theug,h& vectors belonging toR(rq), which either
haveug&5ue2& or uh&5u f i&, does the job, and thusr „r(q)…
54. On the other hand it is easy to find examples ofrq for
which r „r(q)…5r „r(q)Tb

…53. Thus Eq.~7! is proven but
rs

(1) does not have always cardinality 3. This parallels
ambiguity ofn for separable states of rank 3, for which al
sometimesn53 and sometimesn54.

~4! Finally, assumer (rq)54. In this case, obviously Eq
~7! holds forrs

(1) of cardinality 4.
To summarize, we have proven that any separable sta

C2
^ C2 is a local mixture of at most cardinality 4, that an

inseparable state inC2
^ C2 is a local pseudomixture of car

dinality 4 or 5 and that any inseparable state can be m
separable by mixing it with only one single pure produ
v.

nt

A

e

in

de
t

state, except if it is pure, in which case it needs to be mix
with two pure product states. Therefore, when a state
only quantum correlations, these can be made classica
mixing it with two pure product states, while, when it ha
both classical and quantum correlations, mixing it with o
single pure product state suffices to wash out all quan
correlations.
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port from CICYT ~Spain! Grant No. AEN95-0590, and
CIRIT ~Catalonia! Grant No. 1996SGR-00066. G.V. ac
knowledges CIRIT Grant No. 1997FI-00068 PG.
.

.

. A
@1# J. S. Bell, Physics~Long Island City, NY! 1, 1995~1964!; J. F.
Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Re
Lett. 23, 880 ~1969!.

@2# N. Gisin, Phys. Lett. A154, 201 ~1991!.
@3# S. M. Barnett and S. J. Phoenix, Phys. Rev. A40, 2404~1989!.
@4# A. Sanpera, R. Tarrach, and G. Vidal, e-pri

quant-ph/9707041.
@5# W. K. Wootters, Phys. Rev. Lett.80, 2245~1998!.
@6# A. Peres, Phys. Rev. Lett.77, 1413~1996!.
@7# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 1 ~1996!.
@8# A. Einstein, B. Podolski, and N. Rosen, Phys. Rev.47, 777

~1935!.
@9# R. F. Werner, Phys. Rev. A40, 4277~1989!.

@10# P. Horodecki and R. Horodecki, Phys. Rev. Lett.76, 2196
~1996!.
@11# C. H. Bennett, D. P. DiVincenzo, J. A Smolin, and W. K

Wootters, Phys. Rev. A54, 3824~1996!.
@12# V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys

Rev. Lett.78, 2275~1997!.
@13# M. Lewenstein and A. Sanpera, Phys. Rev. Lett.80, 2261

~1998!.
@14# M Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A56, 33

~1997!.
@15# L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett

183, 14 ~1993!.
@16# P. Horodecki, Phys. Lett. A232, 333 ~1997!.
@17# H. Hellmann, Acta Physicochim. URSS6, 913 ~1935!; R. P.

Feynman, Phys. Rev.56, 340 ~1939!.


