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Optimal estimation of two-qubit pure-state entanglement
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We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure
states and of the degree of mixing of unknown single-qubit mixed states, of whichN identical copies are
available. The most general measuring strategies are considered in both situations, to conclude in the first case
that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property,
optimally.

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Plenty of work has been performed in recent years
optimal quantum measurements, i.e., on measurem
which provide the maximum possible information about
unknown quantum-mechanical pure@1–5# or mixed@6# state,
of which N identical copies are available. These works
cused mainly on a determination of the unknown state a
whole, and consequently any of its properties is also e
mated, although maybe not in an optimal way.

On the other hand, recent developments on the field
quantum information theory stressed the importance of
quantum correlations—or entanglement—displayed by so
states of composite systems. In the simplest of such com
ite systems, the two-qubit case, all nonlocal properties
pure states depend upon only one single parameter. Su
nonlocal parameter is the only relevant quantity invari
under local unitary transformations on each qubit, and pl
a central role in the quantification and optimal manipulat
of entanglement@7–11#.

In this work we analyze and solve the problem of op
mally estimating the entanglement of an unknown pure s
of two qubits. This problem was also independently a
dressed by Sancho and Huelga in a recent work@12#, where
only a restricted class of measuring strategies is conside
Here, on the contrary, we will consider most general qu
tum measurements onN identical copies of the state. The
quality will be assessed through the gain of information th
provide about the nonlocal parameter of the state. After p
senting and proving the solution, we will conclude that t
optimal measuring strategies so defined are not equivale
the ones used to fully reconstruct the unknown state. A
matter of fact,all information about some relative phase
the unknown state turns out to be irreversibly erased as
entanglement is estimated.

An estimation of the degree of mixing of an unknow
mixed state is a different but very much related topic that
shall also consider here. For the single-qubit case the am
of mixing is again specified by just one parameter, the mo
lus of the corresponding Bloch vector, whereas in order
completely specify the state two more parameters, nam
the direction of the Bloch vector, are also required. We sh
show that in this case the optimal measuring strategy on
numberN of qubits prepared in the same mixed state can
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made compatible with an optimal estimation of the directi
of its Bloch vector.

Finally, we will show that a possible way of optimall
determining the entanglement of an unknown, two-qu
pure state consists precisely of estimating, also optimally,
degree of mixture of any of its two reduced density matric
Therefore, in this simple bipartite case it turns out that
optimal estimation of a nonlocal parameter can be do
through a local measurement.

The paper is structured as follows. Section II is devoted
background material. We introduce a convenient parame
zation of two-qubit pure states, and consider their isotro
distribution. We also review some basic aspects on par
eter estimation and on quantum measurements. In Sec. II
pose the problem of entanglement estimation on firm
grounds and announce the main result of this paper: its
timal performance. Section IV, which is rather technical a
could well be skipped in a first reading, is devoted to a co
putation of some effective density matrixr (N)(b), an object
which plays a central role in deriving the optimal strategy
estimating entanglement. In Sec. V theN51, 2, and 3 cases
are presented in more detail in order to illustrate the gen
case. Optimal estimation of the degree of mixing is discus
and solved in Sec. VI, and finally Sec. VII contains a discu
sion relating estimation of both entanglement and mixin
and some concluding remarks.

II. PRELIMINARIES

Here we will consider a two-party scenario. Alice an
Bob will shareN copies of a completely unknown two-qub
pure stateuc&, and their aim will be to obtain as much in
formation as possible about its entanglement. The sens
which the state isunknown, the mechanisms forextracting
information from the system, and the scheme forevaluating
the extracted information will be briefly reviewed in wh
follows.

A. Homogeneous distribution

All that is initially known about the state of each pair o
qubits is that it is pure. This corresponds to the unbia
distribution on the Hilbert spaceH45H2^ H2 of two qubits,
that is, to the only probability distribution invariant unde
arbitrary unitary transformations onH4. It is convenient to
©2000 The American Physical Society07-1
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express the unknown stateuc&PH2^ H2, which depends on
six parameters, in its Schmidt-like decomposition

uc&5A11b

2
uâ&ub̂&1A12b

2
eiau2â&u2b̂&, ~1!

where the phaseeia, which is usually absorbed by one of th
kets it goes with, has been left explicit. The nonlocal para
eterb P@0,1# characterizes the entanglement ofuc&. Only for
b51 is uc& a product stateuâ& ^ ub̂&, and thus unentangled
For b,1 the state contains quantum correlationsb50 cor-
responding to a maximally entangled state. Recall that
parameter is the modulus of the Bloch vector of the redu
density matrixrA on Alice’s side,

rA[tr Buc&^cu5
11b

2
uâ&^âu1

12b

2
u2â&^2âu, ~2!

and equivalently forrB . The other four parameters corre
spond to the two directionsâ and b̂ of the Bloch vectors of
rA and rB . Then the unbiased distribution of pure stat
corresponds@13# to the isotropic distribution ofâ in S2, b̂ in
S2, a in S1, and the quadratic distribution ofb in @0,1#,
which is actually also a flat distribution, asb2 is just the
Jacobian corresponding to going from Cartesian to sphe
coordinates:

E
S2

dâ

4pES2

db̂

4pES1

da

2pE0

1

db 3b251. ~3!

B. General measurements and information gain

The parties are thus provided withN copies of a pure state
uc& as in Eq.~1!, i.e., with the stateuc& ^ N, and our aim is to
construct the most informative measurement on the col
tive, 2N-qubit system for the estimation of the parameterb.
The optimality criterion to be used is based on the Kullba
or mutual informationK@ f 8, f # @14#, a functional of two
probability distributionsf 8 and f that is interpreted as th
gain of information in replacing the latter distribution wit
the former one@15#. In our case, for instance, the prior, u
biased density function for the parameterb is given by Eq.
~3!, so we havef (b)53b2. A generic measurement, allow
ing for the most general manipulation of the system, is r
resented by a resolution of the identity by means of a se
positive operators:

(
k

M (k)5I . ~4!

After the above positive operator valued measurem
~POVM! has been performed, giving the outcomek with
probability tr(M (k)r ^ N), wherer5uc&^cu, we compute the
posterior density function forb, f (buk), through the Bayes
formula

f k~b![ f ~buk!5
p~kub! f ~b!

p~k!
, ~5!
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wherep(k) is given by

p~k!5E
0

1

db f~b!p~kub!, ~6!

and the conditional probability of obtaining outcomek when
the state’s nonlocal parameter has valueb, p(kub) will be
shown later. The gain of information resulting from obtai
ing the outcomek after the measurement is quantified by t
Kullback information corresponding to the prior and pos
rior probability density functions:

K@ f k , f #5E db f~buk!lnS f ~buk!

f ~b! D . ~7!

This expression has to be averaged over all the possible
comes of the measurement, so that the expected gain o
formation reads

K̄@ f k , f #5(
k

p~k!K@ f k , f #, ~8!

using Eq.~5!, this expression can be written as

K̄@ f k , f #5(
k
E db f~b!p~kub!lnS p~kub!

p~k! D . ~9!

Let us note here that the value ofK@ f k , f # in Eq. ~7!
would remain unchanged if we decided to characterize
entanglement ofuc& by another parameterb5h(b) @where
h(b) is any bijective function of the original parameterb].
Consequently, the gain of information we compute forb also
applies to any of the measures of entanglement so far
posed, such as the entanglement of formation@7#,

2A11b

2
log2A11b

2
2A12b

2
log2A12b

2
, ~10!

for the asymptotic regime, or the monotone@10#

A12b

2
~11!

for the single-copy case.

III. OPTIMAL MEASUREMENTS
FOR ENTANGLEMENT ESTIMATION

We are looking for a measurement of the form of Eq.~4!,
such that the expected gain of information@Eq. ~9!# is maxi-
mized. Here and in Sec. V we will present and explain su
optimal measurements, whereas their explicit constructio
mainly contained in Sec. IV.

A. Local and global strategies

Before we proceed we comment on four classes of m
surements Alice and Bob may consider in order to le
aboutb @12#:
7-2
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~i! Local measurements on only, say, Alice’s side, i.e.,
the N qubits supporting the local staterA

^ N , would be the
most restrictive class of the hierarchy.

~ii ! Uncorrelated bilocal measurement, in which eac
party measures their localN-qubit part independently, is on
type of intermediate strategy.

~ii ! Classically correlated bilocalmeasurement, with clas
sical communication between Alice and Bob, is a less
strictive intermediate strategy.

~iv! Global measurements on the 2N qubits constitute the
most general case.

Global measurements are in principle the most inform
tive ones. But as the parameterb, which quantifies the en
tanglement ofuc&, also completely quantifies the mixing o
rA ~andrB), it could well happen that local measuremen
or bilocal measurements on the two parties, optimal for
determination of the mixing, are as informative as the glo
ones with respect to entanglement. In fact, in reduc
uc&^cu to rA^ rB only the relative phasea is lost, and the
dependence on directionsâ andb̂ and on the entanglementb
is preserved. We have found the optimal global and lo
measurement ofb. The results obtained following the tw
strategies are the same, as we will discuss in Sec. VII, so
the extractable information about the entanglement is p
served under the partial trace operation, and the four cla
considered above turn out to be equivalent for entanglem
estimation.

B. Effective mixed state

Note that all the dependence on the measuring strateg~4!
in Eq. ~9! is contained in the probabilityp(kub) of outcome
k conditioned on the entanglement of the state being so
given b,

p~kub!5E
S2

dâ

4pES2

db̂

4pES1

da

2p
tr~M (k)r ^ N!, ~12!

where the sum over the rest of the parameters reflects the
that we are only interested in the entanglement. This exp
sion can also be written as

p~kub!5tr@M (k)r (N)~b!#, ~13!

where the mixed stater (N)(b) is

r (N)~b![E
S2

dâ

4pES2

db̂

4pES1

da

2p
uc&^cu ^ N. ~14!

Equation~13! allows for an alternative interpretation to ou
problem: a 2N-qubit mixed stater (N)(b) is drawn randomly
with prior probability distributionf (b)53b2, and we want
to determine it by estimatingb.

We will compute p(kub) on a basis that diagonalize
r (N)(b), which will crucially turn out to be independent ofb.
Let us denote the positive eigenvalues ofr (N)(b) by
l1(b), . . . ,lm(b), and their multiplicity by n1 , . . . ,nm .
From the normalization of Eq.~14! the relation( j 51

m njl j

51 follows. The sumn[( jnj of multiplicities of ~nonvan-
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ishing! eigenvalues equals the dimension of the space wh
supportsuc&^cu ^ N. This is the symmetric subspace ofH 4

^ N ,
and thus@5#

n5
~N13!!

3!N!
5

~N13!~N12!~N11!

6
. ~15!

With this notation Eq.~13! reads

p~kub!5l1~b!(
i 51

n1

Mii
(k)1l2~b! (

i 5n111

n11n2

Mii
(k)1•••

1lm~b! (
i 5n2nm11

n

Mii
(k)[(

j 51

m

l j~b!qj
(k) . ~16!

By substituting this expression into Eq.~9!, and using the
inequality @16#

~x11x2!lnS x11x2

y11y2
D<x1lnS x1

y1
D1x2lnS x2

y2
D , ~17!

where xi ,yi>0, along with the fact that the POVM is
resolution of the identity in the symmetric subspace
H 4

^ N , i.e. (kqj
(k)5nj , it follows that the average gain o

information is bounded by

K̄@ f k , f #<E db f~b!(
j 51

m

njl j~b!lnS l j~b!

E db f~b!l j~b!D .

~18!

C. Minimal most informative measuring strategy

Bound ~18! can be minimally saturated through a me
surement with m outcomes, where eachM (k) is the
nk-dimensional projector over the subspace correspondin
the eigenvalue lk of r (N)(b), then having p(kub)
5nklk(b). Therefore, the construction of the optimal me
surement can be readily performed after the computation
the spectral decomposition of state~14!, and this is done for
an arbitraryN in Sec. IV. For a more detailed account of th
N51, 2, and 3 cases, see Sec. V, where also the gai
information up toN580 has been computed explicitly.

Note also that there are other ways measuring strate
that can be evaluated and, consequently, there is not a un
notion of optimality. For instance, in Refs.@1–6# a guess for
the unknown state is made depending on the outcome of
measurement, and then both guessed and unknown state
compared using the fidelity. It can be proved, following R
@16#, that the optimal measurements presented here, the
informative ones, are also optimal if we decide, alternative
on a fidelitylike figure of merit satisfying some very gener
conditions@19#.

IV. COMPUTATION OF r „N…

It has been shown that the spectrum ofr (N)(b) determines
the maximal gain of information aboutb, whereas its eigen-
projectors lead to the corresponding measuring strategy.
7-3
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next step will be the computation of the spectral decomp
tion of this effective mixed state.

Let us rewrite the generic two-qubit pure state@Eq. ~1!# as

uc&5UA^ UB~c1u1&A^ u1&B1c2u2&A^ u2&B)

[UA^ UBuc~b!&, ~19!

where c1[A(11b)/2, c2[A(12b)/2, the single-qubit
pure statesu1&A and u2&A (u1&B and u2&B) constitute an
orthonormal basis in Alice’s~Bob’s! part ~corresponding to
some fixed direction in the Bloch sphere!, UA and UB are
unitary transformations in each single-qubit space, a
uc(b)& is a reference state.

The stater (N)(b) corresponds then to a Haar integral ov
the group SU(2)3SU(2), since it can be expressed as

r (N)~b!5E
gPG

dg@D~g!M ~b!D~g!†# ^ N, ~20!

where the indexg denotes the elements of the groupG
5SU(2)3SU(2), D(g)5UA^ UB is a 1

2 3 1
2 irreducible rep-

resentation~irrep! of this group andM (b)5uc(b)&^c(b)u.
A well-known result in group representation theory fo

lowing from Schur’s lemma, the so-called orthogonal
lemma, will be useful in the calculation of this integral. Co
sider a matrixAab(B) given by

Aab~B!5E
gPG

dgDa~g!BDb†~g!, ~21!

where Da and Db are two unitary irreps of the groupG.
Then we have the following,

Lemma 1 (orthogonality lemma):

Aab~B!5a~B!dabI , ~22!

soAab(B) is zero if the two representations are inequivale
and proportional to the identity if the two representations
equivalent.

In order to benefit from this lemma we identifyB with
M (b) ^ N5uc(b)&^c(b)u ^ N and then consider the releva
irreps of SU(2)3SU(2) borne by theN-fold tensor product
of the 1

2 3 1
2 irrep of the group. These representations are

support of the stateuc(b)& ^ N, and our next task is to recog
nize them.

The stateuc(b)& ^ N can be expanded as

uc~b!& ^ N5c1
N u11•••11&A^ u•&B ,

1c1
N21c2~ u11•••12&A^ u•&B1•••

1u21•••11&A^ u•&B),

1c1
N22c2

2 ~ u1•••122&A^ u•&B1•••

1u221•••1&A^ u•&B),

1c1
N23c2

3 ~ !1•••1c1c2
N21~ !,

1c2
N u22•••22&A^ u•&B , ~23!
06230
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where u•&B means that we have exactly the same vector
the second subsystem. Notice that in the expression abov
the elements of the product basis$uui&% of the local spaces
H 2

^ N of Alice’s and Bob’sN qubits—i.e.,uu1&5u11•••

11&, uu2&5u11•••12&, . . . ,uu2N&5u22•••22& —
appear in the formuui&A^ uui&B . Notice, in addition, that if
we denote bymT the sum of the third spin component of a
spinors in each ket—i.e., for instancemT(u111&)53/2,
mT(u112&)51/2, mT(u212&)521/2,•••–, the terms
multiplied by the same combination of the factorsc1 andc2

have the samemT in A and B. State~23! can thus also be
expressed as

uc~b!& ^ N5c1
N (

i ;mT5N/2
uui&A^ uui&B

1c1
N21c2 (

i ;mT5(N/2)21
uui&A^ uui&B1•••

1c2
N (

i ;mT52N/2
uui&A^ uui&B . ~24!

We now move from the local spin basis$uui&A% to the
coupled one$uv i&A% in Alice’s N qubits, and we also do the
same in Bob’s. The following lemma, that can be eas
checked, will be useful here.

Lemma 2: Let $uei&% and$u f i&% be two orthonormal basis
in C l , related by an orthogonal transformationO, so that
uei&5( jOi j u f j&, with O* 5O, andO215O†. Then,

(
i 51

l

uei& ^ uei&5(
i 51

l

u f i& ^ u f i&. ~25!

Now, note that the unitary transformation relating the loc
basis and the coupled one is real~since all the Clebsch-
Gordan coefficients are real!, and that there is a conservatio
rule for the total third spin component~i.e., the Clebsch-
Gordan coefficients that couple two states with third com
nentm1 andm2 to a coupled state with third componentm
are proportional todm,m11m2

). Then Eq.~24! can be reex-
pressed, using the previous two facts and lemma 2, in
coupled basis as

uc~b!& ^ N5c1
N (

i ;mT5N/2
uv i&A^ uv i&B

1c1
N21c2 (

i ;mT5~N/2! 21
uv i&A^ uv i&B1•••

1c2
N (

i ;mT52N/2
uv i&A^ uv i&B ~26!

~see the examples in Sec. V for more details!. We note that
the symmetry between the terms inA and inB allows us to
derive Eq.~26! from Eq. ~24!.

Let us now have a closer look into Eq.~26!. The term
with coefficient c1

N corresponds simply to the state with
total spin j maximal in both Alice’s and Bob’s subsystem
7-4
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~i.e., j A5 j B5N/2) and also maximal third spin compone
m, namely,mA5mB5N/2. We can thus write, with the no
tation u j AmA&A^ u j BmB&B , uv1&[uv1&A^ uv1&B5uN/2N/2&A
^ uN/2N/2&B . This state belongs to aN/2^ N/2 irrep of the
group SU(2)3SU(2). Thecoefficientc1

N21c2 corresponds
to all states withmA5mB5(N/2)21. Apart from uv2&
[uN/2(N/2)21&A^ uN/2(N/2)21&B , which again belongs to
the previousN/2^ N/2 irrep, the remainingN21 kets,uv3&
•••uvN11& have j A5 j B5(N/2)21, and thus belong toN
21 different ~but equivalent!

S N

2
21D ^ S N

2
21D

irreps of the group. But since only the linear combinati
uv3&1•••1uvN11& appears, the relevant irrep is just th
symmetric combination of the latterN21 ones, which we
will denote by

H S N

2
21D ^ S N

2
21D J

sym

,

and which no longer decomposes as the product of two irr
of SU(2). Thesame applies for

S N

2
22D ^ S N

2
22D

irreps, and so on.
Thus, the space which supports the initial state can

decomposed in terms of irreps of SU(2)3SU(2) as

N

2
^

N

2
% H S N

2
21D ^ S N

2
21D J

sym

% •••% H N mod 2

2
^

N mod 2

2 J
sym

,

~27!

whereN mod 2 is equal to 1 for oddN and equal to zero for
evenN. It can be checked that this result agrees dimens
ally with formula ~15!.

The decomposition shown above in terms of the relev
irreps of the group SU(2)3SU(2), together with the or-
thogonality lemma, can be used to solve the integral in
~20!. As we have argued, when plugging Eq.~26! into Eq.
~20! the cross terms corresponding to inequivale
representations—such asuv1&(^v3u1•••1^vN11u)—vanish
as we integrate, while the terms within the sam
representation—such asuv1&^v1u—lead to a contribution
proportional to the identity in the subspace associated w
the representation. So the stater (N)(b) is equal to

r (N)~b!5l1~b!I N/2^ N/21l2~b!I { @(N/2)21] ^ [(N/2)21]%sym

1•••1lm~b!I $[ ~N mod 2!/2] ^ [ ~N mod 2!/2]%sym
. ~28!

This is the spectral decomposition we are looking for, wh
$l j% are the entanglement dependent eigenvalues ofr (N)(b),
06230
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the trace of the identities giving the corresponding mu
plicities $nj%. It is important to notice that, as it was men
tioned before, the eigenspaces are independent ofb.

The calculation ofnjl j can now be readily performed
from Eq. ~26! by computing the trace of the projection o
uc(b)&N into each relevant irrep. The determination of t
spectrum ofr (N)(b) completes, as we have shown, the co
struction of the optimal measurement for the estimation
the entanglement. In Sec. V some examples are studie
order to clarify the implementation of the procedure.

V. SOME EXAMPLES: THE NÄ1,2,3 CASES AND BEYOND

In this section we will apply the procedure describ
above to obtain the optimal estimation ofb when one, two,
and three identical copies of the initial state are at our d
posal.

A. NÄ1

The simplest case,N51, is now straightforward. The
state written as in Eq.~19! belongs to the1

2 ^
1
2 irrep of

SU(2)3SU(2). From Eq.~20! we have, using the orthogo
nality lemma as in Eq.~28!,

r (1)~b!5E dgD~g!M ~b!D~g!†5l1~b!I . ~29!

The eigenvaluel1(b)5 1
4 is obtained by taking the trace i

the expression above. The probabilityp(kub) @see Eq.~13!#
is independent ofb, so thatp(k)5p(kub) and the average
Kullback information@Eq. ~9!# vanishes. Consequently, n
information whatsoever can be obtained about the entan
ment of a completely unknown pure state if only one copy
at our disposal.

B. NÄ2

For theN52 case the initial state has the form, from Eq
~23! or ~24!,

uc~b!& ^ 25c1
2 u11&A^ u•&B1c1c2~ u12&A

^ u•&B1u21&A^ u•&B)1c2
2 u22&A^ u•&B ,

~30!

Now, using lemma 2 and the conservation law mention
above for the Clebsch-Gordan coefficients@cf. Eq. ~26!#, we
can rewrite the state as

uc~b!& ^ 25c1
2 u11&A^ u•&B1c1c2~ u10&A^ u•&B1u00&A

^ u•&B)1c2
2 u121&A^ u•&B , ~31!

where for each party the coupled basis is related to the lo
one by means of an orthogonal transformation, as usual

u11&5u11&, u121&5u22&,
~32!

u10&5
1

A2
~ u12&1u21&),
7-5



, t

i-

a

q

16-
ir-
ing

f

tain
I
nce

ent

al
nt.

the
the
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u00&5
1

A2
~ u12&2u21&).

The stateuc(b)& ^ 2 in Eq. ~31! is supported then in the 1
^ 1 and the 0̂ 0 irreps of SU(2)3SU(2), and now the
application of lemma 1 gives forr (2)(b):

r (2)~b!5l1~b!I 1^ 11l2~b!I 0^ 0 . ~33!

We just need to pick up the contributions of Eq.~31! to each
irrep, that is the trace of the corresponding projections
find that

n1l1~b!5~c1
4 1c1

2 c2
2 1c2

4 !5
31b2

4
,

~34!

n2l2~b!5c1
2 c2

2 5
12b2

4
.

The optimal measurement@see Eq.~18!# then consists of
two projectors onto the 1̂1 and 0̂ 0 irreps of SU(2)
^ SU(2), with probabilities p(1ub)5n1l1(b)5(31b2)/4
and p(2ub)5n2l2(b)5(12b2)/4, and from themp(1)
5 9

10 and p(2)5 1
10 . Finally the gain of information can be

computed, using Eq.~9!, and it givesK̄50.0375 bits.

C. NÄ3

The last case we want to discuss isN53. Starting now
from Eq. ~26!, we have

uc~b!& ^ 35c1
3 u3/23

2 &A^ u•&B1c1
2 c2~ u3/21

2 &A^ u•&B1u1/21
2 &A

^ u•&B1u1/28 1
2 &A^ u•&B)1c1c2

2 ~ u3/22 1
2 &A^ u•&B

1u1/22 1
2 &A^ u•&B1u1/282 1

2 &A^ u•&B)

1c2
3 u3/22 3

2 &A^ u•&B , ~35!

we observe that only contributions to the3
2 ^

3
2 and to two

different 1
2 ^

1
2 irreps of SU(2)3SU(2) appear. Notice, in

addition, that since in this expansion the contributions to1
2

^
1
2 and to 1

2 8^
1
2 8 only appear in a symmetric linear comb

nation ~i.e., u1/21
2 &A^ u•&B1u1/28 1

2 &A^ u•&B and u1/22 1
2 &A

^ u•&B1u1/282 1
2 &A^ u•&B), the relevant irreps is precisely

symmetric combination of the two latter ones,$ 1
2 ^

1
2 %sym.

The orthogonality lemma gives now

r (3)~b!5l1~b!I 3/2^ 3/21l2~b!I $1/2^ 1/2%sym
. ~36!

Finally, by collecting the traces of each projection of E
~35! onto each irrep, we obtain

n1l1~b!5~c1
6 1c1

4 c2
2 1c1

2 c2
4 1c2

6 !5
11b2

2
,

~37!

n2l2~b!52~c1
4 c2

2 1c1
2 c2

4 !5
12b2

2
,

06230
o

.

and thus the optimal measurement is composed by
dimensional and four-dimensional projectors into the two
reps shown above, the corresponding probabilities be
p(1ub)5(11b2)/2 and p(2ub)5(12b2)/2. From these,
p(1)5 4

5 and p(2)5 1
5 , and the gain of information is o

0.084 bits.

D. NÌ3

We have applied the same, general procedure to ob
the gain of information up toN580, as reported in Table
and Fig. 1. We observe a logarithmic asymptotic depende
of the gain of information on the numberN of available
copies ofuc&, which reads

K̄'0.44 log2N ~38!

bits of information onb.

VI. OPTIMAL ESTIMATION OF MIXING

So far we have considered the most general measurem
involving the whole space (H2^ H2) ^ N of N copies of a
two-qubit pure state. Now we are going to study optim
local measurements for the estimation of its entangleme
Alice will perform a collective measurement over theN cop-

TABLE I. Average gain of informationK̄ aboutb givenN cop-
ies of the stateuc&.

N K̄

1 0
2 0.03751
3 0.08397
4 0.13259
5 0.18059
10 0.39245
20 0.69639
40 1.07422
60 1.32005
80 1.50261

FIG. 1. Average gain of informationK̄ aboutb given N copies
of the stateuc&. The points represent the results obtained by
described optimal measurement, while the line shows
asymptotic behavior.
7-6
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ies of the staterA in Eq. ~2! at her disposal in order to
estimate the parameterb. Consequently, we are also studyin
optimal strategies for estimating the degree of mixing o
single-qubit mixed state, whenN copies are available.

In order to study the latter with more generality we w
consider a generic prior distributionf (b) for the degree of
mixing while keeping an isotropic distribution in the Bloc
vector directionâ of the unknown mixed state, with

E
S2

dâ

4pE0

1

db f~b!51. ~39!

A general measurement on the local composite system
porting the staterA

^ N consists of a resolution of the identit
in the corresponding Hilbert spaceH 2

^ N by means of posi-
tive operatorsM (k). The gain of information is as in Eq.~9!,
where now

p~kub!5tr@M (k)rA
(N)~b!#, ~40!

so that we need to compute the effective mixed state

rA
(N)~b![E

gPG
dg@D~g!rA~b!D~g!†# ^ N, ~41!

where the integral is performed over the groupG5SU(2)
and a single copy of the mixed state

rA5UArA~b!UA
† ~42!

has been expressed, as before, in terms of a reference
rA(b)[(c1

2 u1&^1u1c2
2 u2&^2u) and a unitary transforma

tion UA . The procedure to be followed is analogous to t
previous one, the spectral decomposition of the state~41!,
allowing us to build the optimal measurement.

The density matrixrA(b) ^ N can be written—by using a
straightforward modification of lemma 2 and the mention
properties of the Clebsh-Gordan coefficients—in terms of
coupled basis$uv i&A% as

rA~b! ^ N5c1
2N (

i ;mT5N/2
uv i&^v i uA

1c1
2(N21)c2

2 (
i ;mT5(N/2)21

uv i&^v i uA1•••

1c2
2N (

i ;mT52(N/2)
uv i&^v i uA . ~43!

Notice that the important role played before by the symme
between the kets inA andB @cf. Eq. ~26!# is now played by
the symmetry between the terms in the bra and in the
However we see that now there are no cross-terms betw
inequivalent irreps of SU~2!, and that equivalent irreps, suc
as theN21 copies of the@(N/2)21# irrep, obtain equal but
independent contributions. The spaceH 2

^ N , decomposed in
terms of irreps of SU~2! is ~see also Refs.@6# and @17#!
06230
a
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H 2
^ N5

N

2
% S N

2
21D % •••% S N

2
21D

% •••%
N mod 2

2
% •••%

N mod 2

2
. ~44!

The spectral decomposition ofrA
(N)(b) is determined by

application of the orthogonality lemma. Since equivalent
reps receive always the same contributions in the decom
sition ~43!, the corresponding eigenvalues are equal, so
Eq. ~41! reads

rA
(N)~b!5l1

L~b!I N/21l2
L~b!„I (N/2)211•••1I (N/2)21…1•••

1lm
L ~b!„I ~N mod 2!/21•••1I ~N mod 2!/2…. ~45!

This is, of course, simply what remains from Eq.~28! when
Bob’s subsystem is traced out, and we have included
whole derivation only for completeness.

Equations~16!–~18! still hold, and therefore the optima
measurement for the degree of mixingb corresponds, for any
isotropic distribution, to projections onto each of the su
spaces associated with the eigenvalues$lk

L%. The gain of
information is then given by the right-hand side of Eq.~18!.
Notice that both the number of outcomes and the correspo
ing probabilitiesp(kub)5nk

Llk
L(b) are equal to the ones ob

tained before for entanglement estimation. In particular
follows that there is no way to learn about the degree
mixture of an unknown mixed state if only one copy is ava
able.

VII. DISCUSSION AND CONCLUSIONS

In this work we have presented an optimal strategy for
estimation of the entanglement of two-qubit pure stat
when N copies are available. Such optimal measuremen
also minimal, in the sense that it consists of the minimu
number of outcomes, namely,N/211-(N11)/2 outcomes
for the even-odd-N-copy case. Most of the correspondin
projectors are of dimension greater than 1, and of course
further decomposition of them can be used in principle
obtain, simultaneously, some additional information ab
other properties of the unknown state, although our optim
POVM is not compatible with projecting onto states of t
form uc i&

^ N as optimal POVM for state determination a
@2–5#, and they are thus less powerful for that purpose.

An interesting particular case is when the initial state i
product state, i.e.,b51. It can be seen that in this situatio
we have only an outcome corresponding to the space
maximum spin, sincen1l1(1)51. Therefore, if the outcome
k, with k.1, is obtained, we can be assured that the stat
entangled.

In Sec. VI we were also concerned with the optimal es
mation of the degree of mixing. Our optimal measureme
again minimal, can be used, for instance, to quantify
degree of purity of states created by a preparation de
whose polarization direction we ignore. Our strategy is ac
ally complementary to the one aiming at optimally reveali
the direction of polarization of the state@1#. As a matter of
7-7
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fact, the optimal POVM we obtained is just a coarse grain
of the one obtained in Ref.@6# for optimal estimation of
mixed states, which turned out also to reach the optimal s
dards of direction estimation obtained in Ref.@1#. Conse-
quently, the direction and modulus of the Bloch vector of
unknown mixed state can be optimally estimated simu
neously. Note that this is not a frequent situation. If, inste
we would like to estimate thex, y, andz components of the
Bloch vector independently, we would have obtained inco
patible optimal strategies~consider, e.g., theN51 case,
where an optimal measurement for the component of
Bloch vector along directionn̂ consists of a two outcome
measurement projecting on that direction!.

Finally, we can argue thatbilocal measurements, eithe
uncorrelatedor classically correlated, do not imply any im-
provement of the simpler,local ones for entanglement est
mation. Once we obtain an outcome from Alice’s local me
surement, we can compute Bob’s effective state, and
clear from Eq.~28! that his outcome will be the same a
Alice’s, so that no extra information onb will be obtained.
We have also seen that the optimal global measuremen
uc& ^ N is perfectly mimicked by a local one onrA

^ N ~or
rB

^ N), so that actually all four classes of measurements c
sidered in Sec. III A are equivalent. In fact, with hindsigh
one can understand this result: local measurements are
formed on the reduced density matrix, which is obtained b
partial trace over the other subsystem. This operation er
the information contained in the parametersa and b̂ of Eq.
~1!. On the other hand, the global measurement can be in
preted as being performed on the effective density matrix
Eq. ~14!, where the same parameters have been integr
m

nt

e

m

o
a
ey
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over. This operation erases the information contained
them as well.

It would be challenging to address the same question
bipartite mixed states, and for systems shared by more
two parties. Note that in none of these cases is optimal e
mation of the nonlocal parameters possible by means of lo
~or even uncorrelated bilocal! measuring strategies. This i
the case for mixed states because any given reduced de
matrix rA may correspond to infinitely many mixed statesr,
with different degrees of entanglement, so that not even
the limit N→` can the entanglement ofr be properly in-
ferred from rA

^ N . The mere existence of hidden nonloc
parameters@18#—that is, of entanglement parameters that a
erased during the partial trace operation—also prevents
correlated local strategies from being optimal for estimat
of pure-state tripartite entanglement. To conclude, two-qu
pure-state entanglement, a quantum nonlocal property,
be optimally estimated by means of local, but collectiv
measurements.
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