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Optimal estimation of two-qubit pure-state entanglement

Antonio Acin, Rolf Tarrach, and Guifr&/idal
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(Received 3 November 1999; published 16 May 2000

We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure
states and of the degree of mixing of unknown single-qubit mixed states, of whidentical copies are
available. The most general measuring strategies are considered in both situations, to conclude in the first case
that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property,
optimally.

PACS numbdps): 03.67—a, 03.65.Bz

[. INTRODUCTION made compatible with an optimal estimation of the direction
of its Bloch vector.

Plenty of work has been performed in recent years on Finally, we will show that a possible way of optimally
optimal quantum measurements, i.e., on measuremengtermining the entanglement of an unknown, two-qubit
which provide the maximum possible information about anpure state consists precisely of estimating, also optimally, the
unknown quantum-mechanical pute-5] or mixed[6] state, ~degree of mixture of any of its two reduced density matrices.
of which N identical copies are available. These works fo- Therefore, in this simple bipartite case it turns out that the
cused mainly on a determination of the unknown state as §Ptimal estimation of a nonlocal parameter can be done

whole, and consequently any of its properties is also estitfough a local measurement. _ _
mated, although maybe not in an optimal way. The paper is structured as follows. Section Il is devoted to

On the other hand, recent developments on the field 0If)ackground material. We introduce a convenient parametri-

guantum information theory stressed the importance of th(_z)gthn O.f two-qubit pure _states, and can|der their isotropic
: . distribution. We also review some basic aspects on param-
guantum correlations—or entanglement—displayed by som

tat f i ¢ In the simplest of h &ter estimation and on guantum measurements. In Sec. Il we
Stales of composite systems. In the SIMpIest of SUCh COMPogy, g e problem of entanglement estimation on firmer
ite systems, the two-qubit case, all nonlocal properties o

i rounds and announce the main result of this paper: its op-
pure states depend upon only one single parameter. Suchyigha| herformance. Section IV, which is rather technical and

nonlocal parameter is the only relevant quantity invariant.q,1q well be skipped in a first reading, is devoted to a com-
under local unitary transformations on each qubit, and play{')utation of some effective density matix™)(b), an object
a central role in the quantification and optimal manipulationyhich plays a central role in deriving the optimal strategy for
of entanglement7-11]. estimating entanglement. In Sec. V tNe=1, 2, and 3 cases
In this work we analyze and solve the problem of opti- are presented in more detail in order to illustrate the general
mally estimating the entanglement of an unknown pure statease. Optimal estimation of the degree of mixing is discussed
of two qubits. This problem was also independently ad-and solved in Sec. VI, and finally Sec. VIl contains a discus-
dressed by Sancho and Huelga in a recent @2, where  sion relating estimation of both entanglement and mixing,
only a restricted class of measuring strategies is considerednd some concluding remarks.
Here, on the contrary, we will consider most general quan-
tum measurements dx identical copies of the state. Their
quality will be assessed through the gain of information they
provide about the nonlocal parameter of the state. After pre- Here we will consider a two-party scenario. Alice and
senting and proving the solution, we will conclude that theBob will shareN copies of a completely unknown two-qubit
optimal measuring strategies so defined are not equivalent faure stateg ), and their aim will be to obtain as much in-
the ones used to fully reconstruct the unknown state. As formation as possible about its entanglement. The sense in
matter of fact,all information about some relative phase of which the state isinknown the mechanisms foextracting
the unknown state turns out to be irreversibly erased as thiaformation from the system, and the schemedwaluating
entanglement is estimated. the extracted information will be briefly reviewed in what
An estimation of the degree of mixing of an unknown follows.
mixed state is a different but very much related topic that we
shall also consider here. For the single-qubit case the amount
of mixing is again specified by just one parameter, the modu-
lus of the corresponding Bloch vector, whereas in order to All that is initially known about the state of each pair of
completely specify the state two more parameters, namelyjubits is that it is pure. This corresponds to the unbiased
the direction of the Bloch vector, are also required. We shalblistribution on the Hilbert spack,=H,® H, of two qubits,
show that in this case the optimal measuring strategy on anhat is, to the only probability distribution invariant under
numberN of qubits prepared in the same mixed state can barbitrary unitary transformations oH,. It is convenient to

Il. PRELIMINARIES

A. Homogeneous distribution
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express the unknown stat#) e H,® H,, which depends on Wwherep(k) is given by
six parameters, in its Schmidt-like decomposition

1
1+b . . 1-b . . . p(k)=fodbf(b)p(klb), (6)
ly)= \/T|a>|b>+ \/Te'“|—a>|—b>, 1)

_ and the conditional probability of obtaining outcomehen
where the phase'®, which is usually absorbed by one of the the state’s nonlocal parameter has vabjep(k|b) will be
kets it goes with, has been left explicit. The nonlocal paramshown later. The gain of information resulting from obtain-
eterb €[0,1] characterizes the entanglement@f. Only for  ing the outcomek after the measurement is quantified by the
b=1 is|) a product statéa)®|b), and thus unentangled. Kullback information corresponding to the prior and poste-
For b<1 the state contains quantum correlatims0 cor-  fior probability density functions:
responding to a maximally entangled state. Recall that this
parameter is the modulus of the Bloch vector of the reduced K[f f]:f dbf(b|k)|n< f(blk)

. . . . ko
density matrixp, on Alice’s side, f(b)

)

1+b . . -b . A This expression has to be averaged over all the possible out-
pa=trg|)(yl= N la)(al+ N |—a)(—al, (2  comes of the measurement, so that the expected gain of in-
formation reads

and equivalently forpog. The other four parameters corre-
spond to the two directiona andb of the Bloch vectors of E[fk,f]ZE p(KK[fy,f], (8)
pa and pg. Then the unbiased distribution of pure states K
correspond$13] to the isotropic distribution o in S?, b in
S?, a in S, and the quadratic distribution df in [0,1],
which is actually also a flat distribution, & is just the

using Eq.(5), this expression can be written as

_ k|b
Jacobian corresponding to going from Cartesian to spherical K[fk,f]:z f dbf(b)p(k|b)|n(p(—|)). 9
coordinates: K p(k)
Let us note here that the value & f,,f] in Eq. (7)
da db ( dea (1 ) ; . )
f _f _f _f db3b%=1. (3  would remain unchanged if we decided to characterize the
LAr)L 4w )t 27 )9

entanglement of¢) by another parametdy=h(b) [where
h(b) is any bijective function of the original paramete}.
B. General measurements and information gain Consequently, the gain of information we computeld@iso
applies to any of the measures of entanglement so far pro-

The parties are thus provided withcopies of a pure state posed, such as the entanglement of formafidjn

|) as in Eq.(1), i.e., with the statéy)®N, and our aim is to
construct the most informative measurement on the collec- 1+b 1+b 1-b 1-b

tive, 2N-qubit system for the estimation of the parameier -1 /—|092 \/ -1/ log, \ / , (10
The optimality criterion to be used is based on the Kullback 2 2 2 2

or mutual informationK[f’,f] [14], a functional of two
probability distributionsf’ and f that is interpreted as the
gain of information in replacing the latter distribution with b

the former ond15]. In our case, for instance, the prior, un- i (12)
biased density function for the parameteis given by Eq. 2

(3), so we havef (b)=3b?. A generic measurement, allow- .

ing for the most general manipulation of the system, is repfOr the single-copy case.

resented by a resolution of the identity by means of a set of
positive operators: Ill. OPTIMAL MEASUREMENTS
FOR ENTANGLEMENT ESTIMATION

for the asymptotic regime, or the monotoid)]

> M®=1, (4) We are looking for a measurement of the form of &4,
k such that the expected gain of informatidgg. (9)] is maxi-

After the above positive operator valued measuremenrtmzed' Here and in Sec. V we will present and explain such

(POVM) has been performed, giving the outcorkewith (r;p;:malcrgﬁgsirtljgzr?ﬁrgzbwlfq/ereas their explicit construction is
probability tr(M W p®N) wherep=|¢){ |, we compute the y o

posterior density function fob, f(b|k), through the Bayes
formula A. Local and global strategies

Before we proceed we comment on four classes of mea-

_ ~ p(k|b)f(b) surements Alice and Bob may consider in order to learn
f(b)=f(blk)= ——+——, (5) :
p(k) aboutb [12]:
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(i) Local measurements on only, say, Alice’s side, i.e., onishing eigenvalues equals the dimension of the space which
the N qubits supporting the local sta]‘ﬁN, would be the  supportd #){|®N. This is the symmetric subspace?@ifff'\‘,

most restrictive class of the hierarchy. and thug5]

(i) Uncorrelated bilocal measurement, in which each
party measures their lochl-qubit part independently, is one . (N+3)!  (N+3)(N+2)(N+1) 15
type of intermediate strategy. 3IN! 6 '

(i) Classically correlated bilocaineasurement, with clas-
sical communication between Alice and Bob, is a less re- With this notation Eq(13) reads
strictive intermediate strategy. n
mo(é\':)g(srl]%br:: r:::;urements on theé\2qubits constitute the p(k|b)=)\1(b)§1 Mi(ik)+)\2(b)i:%+l Mi(ik)+ o

Global measurements are in principle the most informa-
tive ones. But as the parametgrwhich quantifies the en- K)_ m )
tanglement of /), also completely quantifies the mixing of +)\m(b)i=n§4 1 Mii =§=:1 Aj(b)aj™. (16)
pa (@andpg), it could well happen that local measurements, " .
or bilocal measurements on the two parties, optimal for thegy supstituting this expression into E¢@), and using the
determination of the mixing, are as informative as the globajnequality[16]
ones with respect to entanglement. In fact, in reducing
| ) (4] to pa® pg ONly the relative phase is lost, and the

dependence on directioasandb and on the entanglemeht

is preserved. We have found the optimal global and local
measurement ob. The results obtained following the two where x;,y;=0, along with the fact that the POVM is a
strategies are the same, as we will discuss in Sec. VII, so atesolution of the identity in the symmetric subspace of
the extractable information about the entanglement is prex 3", i.e. Ekqjk)=nj, it follows that the average gain of
served under the partial trace operation, and the four class@sformation is bounded by

considered above turn out to be equivalent for entanglement
estimation.

FI1+ ny

n

X1

Y1

X1+ X,
Y1t+Ya

X1+ X5)In <x,4In
1 2 1

+ |(X2) 1
XZnE! (7)

m
_ Ni(b
K[fk,f]stbf(b)Z n\;(b)In i)
=1
B. Effective mixed state : f dbf(b)X;(b)

Note that all the dependence on the measuring stratdgy (18
in Eq. (9) is contained in the probabilitp(k|b) of outcome
k conditioned on the entanglement of the state being some C. Minimal most informative measuring strategy

givenb, Bound (18) can be minimally saturated through a mea-

db r da surement with m outcomes, where eactM® is the
jz 4—f1 2—tr(M(")p®N), (12  n.-dimensional projector over the subspace corresponding to
s ATlst oM the eigenvalue A, of pN(b), then having p(k|b)

da

2 4

p(k|b)=

where the sum over the rest of the parameters reflects the faan")"‘(b)' Therefore, _the construction of the optimal mea-
surement can be readily performed after the computation of

that we are only intgrested in the entanglement. This expregy spectral decomposition of sta), and this is done for
sion can also be written as an arbitraryN in Sec. IV. For a more detailed account of the

p(k|b):tr[M(k)p(N)(b)] (13) N=1, 2, and 3 cases, see Sec. V, where also the gain of
' information up toN=80 has been computed explicitly.
where the mixed state™ (b) is Note also that there are other ways measuring strategies

that can be evaluated and, consequently, there is not a unique
da db da notion of optimality. For instance, in Refisl—6] a guess for

p(N)(b)Ej —f —f — ) {(p|®N. (14  the unknown state is made depending on the outcome of the

s 4m)s2 4m)st 2m measurement, and then both guessed and unknown states are
compared using the fidelity. It can be proved, following Ref.
[16], that the optimal measurements presented here, the most
informative ones, are also optimal if we decide, alternatively,
on a fidelitylike figure of merit satisfying some very general
conditions[19].

Equation(13) allows for an alternative interpretation to our
problem: a N-qubit mixed statepN)(b) is drawn randomly
with prior probability distributionf(b)=3b?, and we want
to determine it by estimatinb.

We will compute p(k|b) on a basis that diagonalizes
p™)(b), which will crucially turn out to be independent bf
Let us denote the positive eigenvalues pfV(b) by
Ni(b), ... Ap(b), and their multiplicity byn,, ... ny,. It has been shown that the spectrunp8f(b) determines
From the normalization of Eq14) the relation={_ ;nj\;  the maximal gain of information abobt whereas its eigen-
=1 follows. The sutm=ZX;n; of multiplicities of (nonvan-  projectors lead to the corresponding measuring strategy. Our

IV. COMPUTATION OF p®™
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next step will be the computation of the spectral decomposiwhere|-)g means that we have exactly the same vector in
tion of this effective mixed state. the second subsystem. Notice that in the expression above all
Let us rewrite the generic two-qubit pure stfEe|. (1)] as  the elements of the product bagisi;)} of the local spaces
HSN of Alice’s and Bob’sN qubits—i.e.,|u)=|++---
[4)=UaUg(Cy|+)a®|+)pg+C_[—)a®]—)B) FA) Jud =), Ju) == — )y —
_ appear in the fornu;),®|u;)g. Notice, in addition, that if
Ua®Ugly(b)), (19 e denote bym; the sum of the third spin component of all
where ¢, =\(1+b)/2, c_=(1-b)/2, the single-qubit spinors in each ket—i.e., for instanee(|+ + +))=3/2,
pure stateg+), and|—), (|+)g and|—)g) constitute an mr(|++=))=1/2, me(|=+—))=—1/2,.- - —, the terms
orthonormal basis in Alice’¢Bob's) part (corresponding to  Multiplied by the same combination of the factersandc
some fixed direction in the Bloch sphiréJ, andUg are  have the samenr in A and B. State(23) can thus also be
unitary transformations in each single-qubit space, an@XPressed as
| (b)) is a reference state.
The statep™)(b) corresponds then to a Haar integral over |,/,(b)>®N:C§i > . [u)a®|Ui)g

the group SU(2X SU(2), since it can be expressed as smyp=
N_l . . ...
p<”><b>=ngGdg[mg)M(b)D(g)T]@N, (20) ey Cq;mT:(EN,Z),l|“'>A®|“|>B+
where the indexg denotes the elements of the groG +CT__ E [U)A®|U;)g . (29
=SU(2)xXSU(2),D(g)=U®Ug is a3 X 3 irreducible rep- iimr=—N/2

resentatior(irrep) of this group andM (b) =|(b)){ (b)|. .
A well-known result in group representation theory fol- We now move frqm the ,Iocal spin basgui)a} to the
lowing from Schur's lemma, the so-called orthogonality coupleq One{lf’i>A} n Al|ces_ N qubits, and we also do thg
lemma, will be useful in the calculation of this integral. Con- zﬁ;ncielg I\?v(ﬁ?tfe Iggfljloﬂg\r’\gng lemma, that can be easily
sider a matrixA*?(B) given b ’ : .
! I (B) given by Lemma 2Let{|e;)} and{|f;)} be two orthonormal basis

in C', related by an orthogonal transformati@ so that
A“B(B)=J .d9D(9)BD (g), (21)  |e)==,04]f;), with O* =0, andO~1=0". Then,
ge
| |
where D® and D? are two unitary irreps of the grouf. > |ei>®|ei>:2 1f)e|f). (25)
Then we have the following, i=1 i=1

Lemma 1 (orthogonality lemma)
Now, note that the unitary transformation relating the local
A“¥(B)=a(B) s8I, (220  basis and the coupled one is rgaince all the Clebsch-
Gordan coefficients are reabnd that there is a conservation
soA“A(B) is zero if the two representations are inequivalentrule for the total third spin componeriie., the Clebsch-
and proportional to the identity if the two representations areésordan coefficients that couple two states with third compo-
equivalent. nentm; andm, to a coupled state with third component
In order to benefit from this lemma we identify with  are proportional t00m m,+m,). Then Eq.(24) can be reex-
M () “M=|y(b))(y(b)|*" and then consider the relevant pressed, using the previous two facts and lemma 2, in the
irreps of SU(2)X SU(2) borne by theé\-fold tensor product coupled basis as
of the 3 X 1 irrep of the gro't“Jp. These representations are the
support of the stathy(b))®", and our next task is to recog-
nize them. PO [p(b)N=c X |v)a®lvi)s
The stateg #(b))®N can be expanded as imr=2

N-1
lp(0))*N=cl[++.--++)a®[ ), Ty C—i;mT:(Ele)_l|Ui>A®|Ui>B+"'
el e (|4 DA )t
+cl i - 26
=+ +H)a®])e), C_i;mT;N/2|v'>A®|v'>B (26)

el T2 (|4 = ) Dpt -

(see the examples in Sec. V for more dejai&e note that

I ) the symmetry between the termsAnand inB allows us to
Flm= o 4)a®l)e), derive Eq.(26) from Eq. (24).
+eN733( )+, cNH ), Let us now have a closer look into E(R6). The term

N with coefficientcﬁ corresponds simply to the state with a
+el[— = = —)a®] )8, (23)  total spinj maximal in both Alice’s and Bob’s subsystem

062307-4



OPTIMAL ESTIMATION OF TWO-QUBIT PURE-STAE. .. PHYSICAL REVIEW A 61 062307

(i.e., ja=jg=N/2) and also maximal third spin component the trace of the identities giving the corresponding multi-
m, namely,my=mg=N/2. We can thus write, with the no- plicities {n;}. It is important to notice that, as it was men-
tation |lam)a®|Bmg)s, |vi)=|v)a®|v1)s=|"V?N/2),  tioned before, the eigenspaces are independeht of

®|N2N/2)g . This state belongs to BN/2@ N/2 irrep of the The calculation ofn;\; can now be readily performed
group SU(2)X SU(2). Thecoefficientc\ "*c_ corresponds from Eq._ (26) by computing_the trace of the _proj_ection of
to all states withma=mg=(N/2)—1. Apart from |v,) |¢p(b)>N into each relevant irrep. The determination of the

=|V2(N/2)—1),® |N?(N/2)—1)g, which again belongs to spectrum ofp™N)(b) completes, as we have shown, the con-

the previousN/2® N/2 irrep, the remainindN— 1 kets, |v3) struction of the optimal measurement for the estimation of
- luns1) have ja=jg=(N/2)—1, and thus belong td the entanglement. In Sec. V some examples are studied in

—1 different(but equivalent order to clarify the implementation of the procedure.
(E B 1) % (ﬂ B 1) V. SOME EXAMPLES: THE N=1,2,3 CASES AND BEYOND
2 2

In this section we will apply the procedure described
irreps of the group. But since only the linear combination@P0Ve to obtain the optimal estimation fwvhen one, two,
lus)+ -+ +|vns1) appears, the relevant irrep is just the and three identical copies of the initial state are at our dis-

symmetric combination of the lattéd—1 ones, which we POsal:
state written as in Eq(19) belongs to the;®3 irrep of

will denote by
N N
[[z-1)elz 2
SU(2)X SU(2). From Eq.(20) we have, using the orthogo-
and which no longer decomposes as the product of two irrepgality lemma as in Eq(28),
of SU(2). Thesame applies for

A.N=1

] ' The simplest caseN=1, is now straightforward. The
sym

N N p<1><b>=J dgD(g)M(b)D(g)"=Ny(b)I. (29
E— 2|® E -2
The eigenvalue\;(b)=% is obtained by taking the trace in
irreps, and so on. the expression above. The probabiliiyk|b) [see Eq.(13)]
Thus, the space which supports the initial state can bés independent ob, so thatp(k)=p(k|b) and the average
decomposed in terms of irreps of SURPU(2) as Kullback information[Eqg. (9)] vanishes. Consequently, no
information whatsoever can be obtained about the entangle-
ﬂ@ EEB N 1)e N 1 ment of a completely unknown pure state if only one copy is
2 2 2 2 at our disposal.
sym
Nmod2 Nmod?2 B.N=2
DB ® , L
2 2 sym For theN=2 case the initial state has the form, from Egs.
(27) (23 or (24),
whereN mod 2 is equal to 1 for odtll and equal to zero for |4(D))22=c2 |+ +)a®|-dgtcic_(|+—)a
evenN. It can be checked that this result agrees dimension- 5
ally with formula (15). ®|)gt+|—+)a®|)e) +ci|——)a®] e,
The decomposition shown above in terms of the relevant (30)

irreps of the group SU(2¥SU(2), together with the or-

thogonality lemma, can be used to solve the integral in EgNow, using lemma 2 and the conservation law mentioned
(20). As we have argued, when plugging E@6) into Eq.  above for the Clebsch-Gordan coefficiefté Eq. (26)], we
(20) the cross terms corresponding to inequivalentcan rewrite the state as

representations—such &s;)((vg|+ - - - +{vyi1|)—Vvanish

as we integrate, while the terms within the same |#(0))**=ci[*1)a®] )gtc c (|'0)a®|-)g+]°0)a

ol 1 the e 1 toe Subspace associateq with ol )o) +62 1= 1)as] s, @3
the representation. So the stae’(b) is equal to where for each party the coupled basis is related to the local
p(N)(b):)\l(b)lN/2®N/2+)\2(b)|{[(N/2)7l]®[(N/2)71]}sym one by means of an orthogonal transformation, as usual,

o A AP (N mod 21210 (N mod 2/2]} gy (29) FD=l++) IF=D=l=-), (32)
This is the spectral decomposition we are looking for, where |20y = i(| )=+,
{\;} are the entanglement dependent eigenvalugs™¢b), NA

062307-5



ANTONIO ACiN, ROLF TARRACH, AND GUIFREVIDAL

100)= (|4 —)— |~ +)).
%

The state|#(b))®? in Eqg. (31) is supported then in the 1
®1 and the ®O irreps of SU(2XSU(2), and now the
application of lemma 1 gives fq5(?)(b):

pA(b)=N1(b)l 151+ N2(b)lgeo- (33

We just need to pick up the contributions of E§1) to each

irrep, that is the trace of the corresponding projections, to

find that

3+b?

nini(b)=(ct +c2c? +c*)= R

(39

1_
noA,(b)=c2c? = 4

The optimal measuremefgee Eq.(18)] then consists of
two projectors onto the @1 and 090 irreps of SU(2)
®SU(2), with probabilities p(1|b)=n;\(b)=(3+b?)/4
and p(2|b)=n,\,(b)=(1—b?)/4, and from themp(1)
=% andp(2)=75. Finally the gain of information can be
computed, using E9), and it givesKk =0.0375 bhits.

C.N=3

The last case we want to discussNs=3. Starting now
from Eq. (26), we have

[ih(0))#3=c3[¥B) a0 )pt+cic_(|¥23)a0] )e+["%3)a

®] )p+ "2 5)a® ] )p) + .2 (12— 3)a0] )g

+M2—5)a®| e+ |YZ = $)a®] )g)

+¢2 2= 3)a@] s, (35
we observe that only contributions to tBe» 3 and to two
different 3® 3 irreps of SU(2)X SU(2) appear. Notice, in

addition, that since in this expansion the contributiong to
®3 and to3’'® 3’ only appear in a symmetric linear combi-

nation (i.e., [“3)a®] )g+[*2 5)a®|-)e and |Y2=3)a
®|)g+|¥2 —3)a®|-)g), the relevant irreps is precisely a
symmetric combination of the two latter ongs,® 3}sym.
The orthogonality lemma gives now

p®(0) =N 1(b)l 3125312+ N 2(0) 11726 Y2 gy (36)

Finally, by collecting the traces of each projection of Eq.

(35) onto each irrep, we obtain

1+b?
2 1

nihq(b)=(c8 +c%c? +c2ct +cb)=
37
1-b?

no\p(b)=2(c%c? +c%c?)= 5

PHYSICAL REVIEW A 61 062307

TABLE I. Average gain of informatiorK aboutb givenN cop-
ies of the statéy).

N K

1 0

2 0.03751
3 0.08397
4 0.13259
5 0.18059
10 0.39245
20 0.69639
40 1.07422
60 1.32005
80 1.50261

and thus the optimal measurement is composed by 16-
dimensional and four-dimensional projectors into the two ir-
reps shown above, the corresponding probabilities being
p(1]b)=(1+b?/2 and p(2|b)=(1—b?)/2. From these,
p(1)=% and p(2)=%, and the gain of information is of
0.084 bits.

D. N>3

We have applied the same, general procedure to obtain
the gain of information up tdN=380, as reported in Table |
and Fig. 1. We observe a logarithmic asymptotic dependence
of the gain of information on the numbéd of available
copies of|¢), which reads

K~0.44 logN (39

bits of information onb.

VI. OPTIMAL ESTIMATION OF MIXING

So far we have considered the most general measurement
involving the whole spaceH,®H,)®N of N copies of a
two-qubit pure state. Now we are going to study optimal
local measurements for the estimation of its entanglement.
Alice will perform a collective measurement over tNecop-

Average K

1.

N

o o O O
N o o o B

1 2 3 4 1ln(N)

FIG. 1. Average gain of informatioK aboutb given N copies
of the state|¢). The points represent the results obtained by the
described optimal measurement, while the line shows the
asymptotic behavior.
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ies of the statep, in Eq. (2) at her disposal in order to N [N N
estimate the parametbr Consequently, we are also studying H?N=§ & 27 1) -0 5 1)
optimal strategies for estimating the degree of mixing of a
single-qubit mixed state, whe copies are available. N mod 2 N mod 2
In order to study the latter with more generality we will & o000 ——F—. (49

consider a generic prior distributiof{b) for the degree of

mixing while keeping an isotropic distribution in the Bloch ¢ spectral decomposition gm(AN)(b) is determined by

vector directiona of the unknown mixed state, with application of the orthogonality lemma. Since equivalent ir-
reps receive always the same contributions in the decompo-
da (1 sition (43), the corresponding eigenvalues are equal, so that
f 24—]0 db f(b)=1. (39 Eq. (41) reads

N L L
A general measurement on the local composite system sup‘-’g\ )(b):)‘l(b)lN/2+>‘2(b)(I(N/2)—1+ el -Dt
porting the state;f“ consists of a resolution of the identity +)\an(b)(|(N mod 22+ * + 1 (N mod 2/2)- (45)
in the corresponding Hilbert spadéff“ by means of posi-
tive operatoraV (V. The gain of information is as in E¢9), This is, of course, simply what remains from Eg8) when

where now Bob’s subsystem is traced out, and we have included the
whole derivation only for completeness.
p(k|b) =t M®pMN(h)7], (40) Equations(16)—(18) still hold, and therefore the optimal
measurement for the degree of mixingorresponds, for any
so that we need to compute the effective mixed state isotropic distribution, to projections onto each of the sub-

spaces associated with the eigenval{ie}. The gain of
f1@N information is then given by the right-hand side of E4g).
Gdg[D(g)pA(b)D(g) I"%, (4D Notice that both the number of outcomes and the correspond-
ing probabilitiesp(k|b) =ng\(b) are equal to the ones ob-
where the integral is performed over the groBg-SU(2) tained before for entanglement estimation. In particular, it

pib)=

ge

and a single copy of the mixed state follows that there is no way to learn about the degree of
mixture of an unknown mixed state if only one copy is avail-
pa=Unapa(b)U} (42 able
has been expressed, as before, in terms of a reference state VII. DISCUSSION AND CONCLUSIONS

=(c2 2| _y(— i -
’).A(b)_(c+|+><+ | +¢%[—)(~]) and a unitary transforma In this work we have presented an optimal strategy for the
tion U, . The procedure to be followed is analogous to the

. h | d . f the std estimation of the entanglement of two-qubit pure states,
previous one, the spectral decomposition of the statg, when N copies are available. Such optimal measurement is
allowing us to build the optimal measurement.

. . . ) also minimal, in the sense that it consists of the minimum
The density matrixp,(b)®N can be written—by using a

. AL ; number of outcomes, namelN/2+1-(N+1)/2 outcomes
straightforward modification of lemma 2 and the mentioned . 4 o even-oddN-copy case. Most of the corresponding

properties of the Clebsh-Gordan coefficients—in terms of th‘?)rojectors are of dimension greater than 1, and of course any

coupled basig|vi)a} as further decomposition of them can be used in principle to
obtain, simultaneously, some additional information about
pA(b)®N:CiN' 2 o) vila other properties of th_e unkr_10wn state, although our optimal

N/2 POVM is not compatible with projecting onto states of the

form |4,)®N as optimal POVM for state determination are

iimy=

+Ci(Nfl)027 2 lvi){vilat - [2-5], _and the_:y are thus less poyverful for tha_lt purpose.
i;mp=(N/2)—1 An interesting particular case is when the initial state is a
product state, i.elh=1. It can be seen that in this situation
42N loid(vila. (43 we have only an outcome corresponding to the space of
ismr=—(N/2) maximum spin, sinca;A1(1)=1. Therefore, if the outcome

k, with k>1, is obtained, we can be assured that the state is
Notice that the important role played before by the symmetryentangled.
between the kets iA andB [cf. Eq.(26)] is now played by In Sec. VI we were also concerned with the optimal esti-
the symmetry between the terms in the bra and in the keination of the degree of mixing. Our optimal measurement,
However we see that now there are no cross-terms betweeiyain minimal, can be used, for instance, to quantify the
inequivalent irreps of S(2), and that equivalent irreps, such degree of purity of states created by a preparation device
as theN—1 copies of th¢ (N/2)—1] irrep, obtain equal but whose polarization direction we ignore. Our strategy is actu-
independent contributions. The spaké™, decomposed in ally complementary to the one aiming at optimally revealing
terms of irreps of S(2) is (see also Refd6] and[17]) the direction of polarization of the staf&]. As a matter of
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fact, the optimal POVM we obtained is just a coarse grainingover. This operation erases the information contained in
of the one obtained in Ref6] for optimal estimation of them as well.

mixed states, which turned out also to reach the optimal stan- It would be challenging to address the same question for
dards of direction estimation obtained in Rgf]. Conse- bipartite mixed states, and for systems shared by more than
quently, the direction and modulus of the Bloch vector of antwo parties. Note that in none of these cases is optimal esti-
unknown mixed state can be optimally estimated simultaination of the nonlocal parameters possible by means of local
neously. Note that this is not a frequent situation. If, instead(0r €ven uncorrelated bilogaeasuring strategies. This is
we would like to estimate the, y, andz components of the the case for mixed states begayge any given _reduced density
Bloch vector independently, we would have obtained incomMatrix pa may correspond to infinitely many mixed stajes
patible optimal strategiegconsider, e.g., theN=1 case, with different degrees of entanglement, so that not even in
where an optimal measurement for the component of thi€ limit N—c can the entanglement gf be properly in-

Bloch | directiom . f erred fromps". The mere existence of hidden nonlocal
och vector along directiom consists of a two outcome 55 neterf18]—that is, of entanglement parameters that are
measurement projecting on that direcjion

: ! . erased during the partial trace operation—also prevents un-
Finally, we can argue thatilocal measurements, either correlated local strategies from being optimal for estimation
uncorrelatedor classically correlateddo not imply any im-  of pure-state tripartite entanglement. To conclude, two-qubit

provement of the simpletpcal ones for entanglement esti- pyre-state entanglement, a quantum nonlocal property, can
mation. Once we obtain an outcome from Alice’s local mea-e optimally estimated by means of local, but collective,

surement, we can compute Bob’s effective state, and it isneasurements.
clear from Eq.(28) that his outcome will be the same as
Alice’s, so that no extra information olm will be obtained. ACKNOWLEDGMENTS
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