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We investigate the focusing of three-level atoms with a bichromatic standing wave laser field, using both
classical and quantum treatments of the problem. We find that, for the appropriate ratio of detunings to Rabi
frequencies, the atoms will experience a periodic potential which is close to harmonic across half an optical
wavelength. The field thus becomes equivalent to a periodic array of microlenses, which could be utilized to
deposit lines of atoms upon a substrate. We consider and compare two regimes, differentiated by the interaction
time of the atoms in the optical field. The first case considered, the Raman-Nath regime, is analogous to the
thin lens regime in classical optics. The second case treats the transverse atomic motion within the light field,
and investigates the distribution of atoms upon a substrate placed within the field. We investigate the extent to
which this case can be modeled classically.

PACS number~s!: 03.75.Be, 42.50.Vk, 03.65.Sq

I. INTRODUCTION

The mechanical manipulation of atoms by light is a field
of active interest, including such processes as laser cooling,
atom trapping, atomic focusing, and beam splitting@1,2#. Al-
though the scattering of electrons by light was predicted as
early as 1933@3#, it was not until 1966 that this optical
scattering effect was predicted for neutral atoms@4#, becom-
ing known as the Kapitza-Dirac effect. The first experimental
realization of optical diffraction of atoms in which the ex-
perimental conditions were sufficiently well defined to per-
mit a clear-cut comparison with theory was reported by
Gould, Ruff, and Pritchard in 1986@5#. The observed results
were found to be in good agreement with theoretical predic-
tions.

Letokhov predicted in 1968 that atoms within an optical
standing wave could be either attracted or repelled by the
antinodes of the field, changing their velocity distribution
@6#, while Kazantsev and collaborators@7# predicted the pres-
ence of velocity-dependent forces acting upon atoms moving
in an intense standing wave. The successful confinement of
neutral atoms in optical wavelength size regions between the
peaks of an optical standing wave, known as channeling, was
reported by Salomonet al. in 1987 @8#. The forces on sta-
tionary L configuration atoms in arbitrary combinations of
two standing and traveling wave fields were calculated by
Prentisset al. @9#. Using a zero-velocity approximation with
the optical Bloch equations, they showed that the force on
the atom can have components varying on a scale much less
than the optical wavelength, the scale being controlled by
varying the relative phase of the two optical fields. A recent
study of the near field regime of diffractive atom optics by
Janicke and Wilkens@10# investigates the focusing of wave
packets using two-level optical systems. They conclude that
the technique has potential applications for atom lithography.

The localization of rubidium atoms in the ladder configu-
ration has recently been observed by Groveet al. @11#. The
rectified dipole force resulting from an intense bichromatic
standing wave produces localization of cold atoms in poten-
tial wells with a period of 71mm. This experiment, in which
subwavelength channeling was not present, relies on two-

photon resonance with the ladder atom to completely rectify
the force on the wavelength scale.

Recent experiments by McClellandet al. @12# and Gupta
et al. @13# have used monochromatic laser focusing in both
one and two dimensions to deposit chromium atoms on a
silicon substrate. In one dimension, the authors used atom
force microscopy to measure a linewidth of 6566 nm for the
deposited lines of atoms, corresponding to 0.15lL , but were
not able to accurately predict their results using a semiclas-
sical model. In two dimensions, features 1361 nm high,
with a full width at half maximum~FWHM! of 80610 nm,
were fabricated in a square array with a lattice constant of
212.78 nm, or half the laser wavelength. The array covered
an area of approximately 1003200 mm. Blockley @14# has
undertaken a theoretical investigation which, applying a
quantum treatment, manages to produce most of the features
of the one-dimensional experiment of McClellandet al.

II. MOTIVATION

It is well known from classical mechanics that particles
placed at various positions in a parabolic well will all reach
the bottom after the same time interval. In classical optics a
parabola is known as one of the Cartesian surfaces which
will form perfect images by reflection or refraction. Making
the comparison between atom optics and classical physics,
we might expect that the ideal mechanism for laser focusing
would utilize an optical potential with a parabolic spatial
dependence. One of the eigenpotentials derived from the di-
agonalization of the interaction Hamiltonian of a two-level
atom with a standing wave field exhibits a shape which is
close to quadratic across part of a period. The anharmonicity
resulting from the nonquadratic portion of the potential
means that it will be difficult to obtain sharp atomic focusing
using the two-level mechanism.

In a previous work@15#, which investigated the utility of
bichromatic standing wave laser fields as a beam splitter for
three-level atoms, the present authors found that one of the
eigenpotentials of the interaction Hamiltonian has a form
which, for certain combinations of Rabi frequencies and de-
tunings, is very close to quadratic. A potential with the same
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shape can also be created using a combination of optical and
magnetic fields@16#, but magnetic fields are not always de-
sirable in practical applications. The present work is an in-
vestigation of the usefulness of the bichromatic potential for
the focusing of atomic beams, in which we both investigate
the need for a full quantum description and compare the
expected performance with that theoretically available from
a two-level system. Although the following analysis is spe-
cifically for atoms in the ladder configuration, the perfor-
mance of the system withL or V atoms is almost identical
until spontaneous emission is considered. As we shall dem-
onstrate below, spontaneous emission is not expected to be
the main cause of performance degradation, so that there is
some degree of experimental freedom in the choice of atom.

III. THE SYSTEMS

There are two different mechanisms for achieving focus-
ing using our system, as schematically illustrated in Fig. 1.
Depending on whether the atoms are deposited outside of, or
within the standing wave field, we describe these mecha-
nisms asthin lensingandchanneling,respectively. The first
situation, analogous to the thin lens regime in classical op-
tics, treats the atom-field interaction using the Raman-Nath
approximation. The substrate on which we wish to place
lines of atoms is positioned outside the field, in a position
analogous to the focal plane of an optical lens. The second
situation, applicable for longer interaction times, investigates
atomic motion within the field. This situation can be com-
pared to the classical problem of point masses in a potential

well. In this, the regime of the experiments of McClelland
and co-workers@12,13#, the substrate is placed at some po-
sition within the laser fields.

Our analysis is two dimensional, with the atomic beam
traveling in thex direction and the two standing waves being
formed in thez direction. We have investigated the perfor-
mance of this scheme for three-level atoms in the ladder
configuration, although most of the analysis would also ap-
ply to atoms in theL and V configurations. The coherent
evolutions for these three atomic configurations, as long as
we consider only single-photon transitions, are exactly the
same. Differences arise once we consider spontaneous emis-
sion, but, as we shall demonstrate below, this will have a
negligible effect on performance compared with other ex-
pected defocusing mechanisms.

The atomic configuration of a ladder atom is as shown in
Fig. 2. The frequencies of the laser fields applied to the at-
oms are represented byv j , the detuning of these fields from
resonance byD j , the effective Rabi frequencies byV j , and
the respective spontaneous emission rates byg j , in all of
which j51,2. In contrast to the experiment of Groveet al.,
@11# our system is not two-photon resonant, as we are not
seeking to rectify the dipole force on the wavelength scale.
The polarization of each standing wave field is chosen so
that it can only drive one transition. The combined system of
atom and fields can be represented in Dirac notation using
the basis statesu1,m11,n&, u2,m,n&, andu3,m,n21&, where
the first number represents the atomic energy level,m repre-
sents the number of photons in the laser field with frequency
v1 , andn refers tov2 . We assume thatm andn are large
enough so thatm'm21 and n'n21. We will refer to
these states via the shorthand notationu1&, u2&, andu3&.

The system Hamiltonian is developed within the rotating
wave and electric dipole approximations. Usinga anda† as
the boson operators for the laser field associated withv1 ,
andb andb† for v2 , we can write the Hamiltonian as

H5H f1Ha1H int1H kin , ~1!

where the Hamiltonian for the free fields is

H f5\~v1a
†a1v2b

†b!. ~2!

The atomic Hamiltonian is

FIG. 1. Simplified schematic of the systems of atoms and fields
for the bichromatic atomic lens. The thin lens system is illustrated
by ~a!, while ~b! demonstrates the configuration required for chan-
neling.

FIG. 2. Configuration of a generic three-level ladder atom. The
Rabi frequencies imposed on each transition by laser fields with
frequencyv j are represented byV j , the detunings byD j , and the
spontaneous emission rates byg j , for all of which j51,2.
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Ha5\$~v11D1!s221~v11v21D11D2!s33%, ~3!

the interaction Hamiltonian is

H int5
\

2
$~g1as211g1* a

†s12!sinkz1~g2bs32

1g2* b
†s23!sin~kz1f!%, ~4!

and the kinetic term is

Hkin5pW •pW /2m. ~5!

In the above equations, thes i j are the atomic population and
coherence operators,gj are the coupling constants for the
appropriate fields and transitions,f is the phase difference
between the two standing waves,k can be taken as the av-
erage wave number for the two fields, andpW andm are the
atomic momentum and mass, respectively. A condition which
must be satisfied here is thatk'k1'k2 so that the correct
phase relationship is preserved across the interaction region.
This would put experimental constraints on the choice of
atoms.

We can now develop an effective semiclassical Hamil-
tonian,

Hsc5Hkin1V . ~6!

The effective interaction termV , after discarding a constant
diagonal term, can be written in matrix form as

V 5
\

2 F 0 V1sinkz 0

V1* sinkz 2D1 V2sin~kz1f!

0 V2* sin~kz1f! 2~D11D2!
G ,

~7!

in which g1a andg2b have been changed to their respective
semiclassical equivalents,V1 andV2 . The basis vectors are
u1&, u2&, andu3& as defined above.

Since we are investigating a three-level system, we find
that the Hamiltonian has three eigenpotentials, corresponding
to three different atomic eigenstates. For the correct choice

of Rabi frequencies and detunings, we find that the three
potentials come together via avoided crossings at certain
points and the bottom potential can be seen to approximate a
series of harmonic oscillators, see Fig. 3. The Rabi frequen-
cies and detunings chosen,D15D25D, with V j52A2D
( j51,2), are the same as used for the ladder system in the
authors’ earlier analysis of the bichromatic beam splitter
@15#. We have investigated the effect of differing ratios of
Rabi frequency to detuning on the harmonicity of the poten-
tial and find the optimal ratio to be close toV j /D52A2.
This can be seen by examination of Fig. 4~b!, in which least
squares measures of deviation from the exactly harmonic are
plotted against the ratioV j /D. Although there is a definite
minimum in both the curves, the performance of the bichro-
matic atomic lens is not as sensitive to the exact ratio
V j /D as is the bichromatic beam splitter. We found in nu-
merical simulations that the system has good focusing prop-
erties over at least the rangeA3<V j /D<2A3.

Only those atoms in the appropriate eigenstate will expe-
rience the desired quadratic potential. As the Rabi frequen-
cies go to zero, this eigenstate tends to becomeu1&, the
ground state of the ladder atom. We can therefore take ad-

FIG. 3. Eigenpotentials ofV for V15V252A2D. The ener-
gies are scaled such that\5k5D51.

FIG. 4. ~a! Atomic phase shift as a function of position, derived
from integrating the bottom potential across the profile of the
bichromatic standing wave. The optical parameters are as in Fig. 3.
The dashed curve is a quadratic approximation to the phase shift.
~b! Least squares measures of the deviation from ideal harmonicity
of the potential as functions of the ratioV j /D. Plotted in arbitrary
units, the solid line defines the ideal quadratic using the second
derivative at the origin, while the dashed line uses a polynomial
fitting package.
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vantage of the fact that, if the atoms are not traveling too
fast, those that enter the field inu1& will tend to adiabatically
follow the potential as it varies over the Gaussian profile of a
real standing wave. Our numerical simulations of the transit
of atoms across a Gaussian profile field demonstrate that a
high degree of adiabaticity (.90%) can be expected. The
Gaussian profile of real standing waves also means that the
atoms will only experience the appropriate quadratic poten-
tial over a portion of their transit time. By comparison with
theoretical fields with atop hatprofile, this will also tend to
decrease the harmonicity of the accumulated phase shift.

We have used a modification of the rms width to charac-
terize the narrowness of the atomic distributions so that we
can quantitatively compare our results with those expected
from a two-level system, as well as quantifying the effects of
the broadening mechanisms we will investigate. Although
the FWHM measure gives little weight to any small back-
ground which may be present, we felt that the standard rms
measure would tend to give too much weight to the wings of
a distribution. For a distribution extending over half a wave-
length, our measure of width is defined as

W c5F*0
pcos2zuc~z!u2dz
*0

puc~z!u2dz G1/2, ~8!

noting thatp corresponds tolL/2 since we have setk51.

IV. THIN LENS REGIME

In the thin lens, Raman-Nath regime, we ignore transverse
atomic motion within the field. Formally, this imposes a con-
dition on the interaction time,

t,tRN5~vRV j !
21/2, ~9!

wherevR5\k2/2m, withm as the atomic mass, is the recoil
frequency andV j is the larger of the two Rabi frequencies.
In practice there will always be some transverse atomic mo-
tion within the field, with the Raman-Nath approximation
being valid when this is a negligible fraction of the optical
wavelength.

Within this approximation, the effect of the field is to
cause a phase shift across the atomic wave front, so that the
atomic wave function after the field attains a position-
dependent transverse momentum distribution. Analogously
to geometric optics, the wave function will become focused
some distance beyond the field, allowing lines of atoms to be
deposited on a substrate placed at the appropriate location.

The effective position-dependent Hamiltonian, Eq.~7!, is
used to calculate the time development of the atomic wave
function in the position representation as it crosses the stand-
ing wave field with transit time t. Since
@V (t),V (t8)#50;t,t8, we can write

C~z,t !5C~z,0!expF2 i

\ E
0

t

V dtG , ~10!

from which the momentum probability distribution after
transitting the field is obtained via Fourier transform,

F~p,t !5F @C~z,t !#. ~11!

The kinetic operatorHkin is then used to propagateF(p,t)
through free space, for timet f , to the substrate,

F~p,t1t f !5F~p,t !expF2 i

\ E
t

t1t f
HkindtG , ~12!

which enables calculation of the position wave function at
the focus, via inverse Fourier transform,

C~z,t1t f !5F 21@F~p,t1t f !#. ~13!

The atomic spatial distribution at the focus is then found by
taking the absolute square of the position wave function,
uC(z,t1t f)u2.

An approximate analytical expression can be readily cal-
culated for the focal length of a two-level atomic lens using
the methods of classical optics. Janicke and Wilkens@10#, for
example, have performed these calculations, deriving expres-
sions for the focal length and the focal spot size in the two-
level case. For the three-level system, however, an analytical
expression which is valid for arbitrary parameters is not eas-
ily derived. We have restricted ourselves to numerical calcu-
lations valid for each choice of Rabi frequency, wavelength,
atomic mass and detuning.

The classical optical formula for the phase shift across a
plane wave impinging on a section of lens,

df5kz2/2f , ~14!

can also be used to find the focal length for our bichromatic
atomic lens. In our case the phase shift is the integral of the
appropriate eigenpotential across the laser field and the de
Broglie wave numberkdB is substituted for the optical wave
number,

kdBz
2/2f5E

0

t

U~z,t !dt/\, ~15!

whereU(z,t) is the desired quadratic potential. We find that
the potential, even when integrated over the Gaussian profile
of a laser field, still gives a phase shift which has a closely
quadratic position dependence, as shown in Fig. 4~a!.

Use of a least squares polynomial fitting routine allows us
to approximate the phase shift across half a wavelength by a
quadratic inz,

E
0

t

U~z,t !dt/\'C ~z2z0!
21V0 , ~16!

wherez0 is the position of minimum phase shift,V0 . Using
Eqs.~15! and~16! and remembering that\51 in our system
of units, we can derive an expression for the flight time of an
atom to the focal plane,

t f5m/2C . ~17!

We found that, by fitting the phase shift curve only between
the two points of inflection, we were able to estimate the
focal length to within'5% of the empirically determined
value, demonstrating that anharmonicity does not play a ma-
jor role in this system.
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We have used a somewhat arbitrary atomic mass of
2000 for our numerical simulations in the thin lens regime,
which allows us to calculatet f in units ofD21. Remember-
ing that\5k51, this meanstRN'38/D. The atomic wave
packet is treated as a plane wave, while the laser field is
given a Gaussian profile. In the frame which follows the
longitudinal motion of the atom across the light field, the
Gaussian amplitude variation of the standing wave field
gives rise to an effective temporal variation. This variation is
also of Gaussian form and has a standard deviation of
12/A2uDu, with the field extending over64.25 standard de-
viations. The value of 12uDu21 corresponds closely to the
atomic crossing time over the 1/e intensity half-width which
is often used to characterize a laser beam experimentally.
The Rabi frequencies at the peak of the Gaussian are set at
1.1 times the optimal value in an attempt to have the atoms
experience the desired potential for a worthwhile time inter-
val.

The flight time from the field to the focal plane is found
from the numerical results by calculating the maximum of
uc(z,t)u2 at each time step. This will have its maximum
value when the atomic distribution is most sharply focused,
as shown in Fig. 5. The atomic distribution at the focus re-
sulting from a calculation using the above parameters is
shown in Fig. 6, demonstrating that the plane wave becomes
sharply focused, with little in the way of background. The
near harmonicity of the potential is demonstrated by the fact
that the predicted focal time is 109uDu21, whereas the em-
pirically determined time is 115uDu21. The atomic distribu-
tions at these two times are almost indistinguishable when
plotted on the scale of Fig. 6. Using the formula of Eq.~8!,
the peak width for this somewhat idealized situation of an
atomic plane wave with zero initial transverse velocity is
found to equal 0.043lL . This demonstrates that the bichro-
matic atomic lens is capable, in principle, of producing lin-
ewidths of very much less than an optical wavelength. The
FWHM measure for this distribution is 0.012lL . We realize
that these widths will not be achievable in practice, but to
give some idea of what is actually achievable we will inves-
tigate some of the possible broadening mechanisms below, in
Sec. VI.

V. CHANNELING WITHIN THE LASER FIELDS

The thin lens, Raman-Nath, approximation is only appli-
cable to the cases where the interaction time between the
atoms and the field is such that the transverse kinetic energy
gained by the atoms remains much less than the depth of the
light-induced potential. In physical terms, this means that we
ignore any transverse atomic motion within the field. In re-
ality, the atoms will develop a transverse momentum compo-
nent which, in the bichromatic system under investigation,
means that they will oscillate within the potential, focusing
and defocusing with a period dependent on the square root of
the atomic mass. This motion within the field, known as
channeling, was first observed experimentally by Salomon
et al. @8# and is the mechanism used for focusing chromium
atoms in the experiment of McClelland and co-workers
@12,13#. While the single standing wave potentials used for
channeling in the above experiments can only be considered
as near harmonic over a small portion of their wavelengths,
the bichromatic potential is closely harmonic over most of a
half-wavelength period, promising much better performance
for atom lithography.

The physical apparatus required to focus atoms by the
channeling mechanism differs from the thin lens apparatus in
that the substrate now needs to be placed within the laser
field, as in Fig. 1~b!. The optimum position for the substrate
can be closely calculated by considering the period of a har-
monic oscillator. Writing the harmonic oscillator potential as

y5 1
2 mv2z2, ~18!

wherem is a particle mass andv is the oscillation frequency,
the periodT is simply 2p/v. As in Sec. IV, we can fit our
calculated potential with a quadratic, Eq.~16!, so that the
period of oscillation becomes

T5pA2m/C . ~19!

FIG. 5. Maximum ofuc(z,t)u2 as a function of flight time after
the field, for the thin lens system.

FIG. 6. Atomic distributions at the focus of the thin lens system,
for the optical parameters described in the text and a flight time of
115uDu21. Note that all atomic distribution plots are normalized so
that *0

l/2ucu2dz51. The dashed line results from considering the
coherent evolution only. The solid line includes spontaneous emis-
sion effects with decay rates ofg15g25V/100. The bottom, dash-
dotted line is the result forg15g25V/10.
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The small degree of anharmonicity of the bichromatic poten-
tial means that the first focal plane will give the narrowest
distribution, with subsequent peaks broadening as individual
atoms tend to be refocused after different times. The first
focal plane for a plane wave input beam is found after a
flight time tc'T/4.

The atomic motion within the field cannot be calculated
by direct time integration of the Hamiltonian as in Eq.~10!,
since the two terms in the full Hamiltonian, Eq.~6!, do not
commute. We have therefore used an incremental symme-
trized split-operator method@17#, accurate to third order in
the time increment used, to develop numerical solutions for
this regime. The time evolution of the atomic wave packet
across the field is governed by the Schro¨dinger equation

i\
dC

dt
5~Hkin1V !C, ~20!

wherein we have suppressed the time and position depen-
dence ofHkin and V . For each time incrementDt, the
atomic wave function, written asF(p,t) in momentum rep-
resentation andC(z,t) in position representation, so that
F(p,t)5F $C(z,t)%, is evolved via

F~ t1Dt !5exp~2 iKDt/2!F $exp~2 iVDt !

3F 21@exp~2 iKDt/2!F~p,t !#%, ~21!

in which K5Hkin /\ andV5V /\.
We have first investigated the idealized case of a mono-

chromatic plane wave atomic beam interacting coherently
with an optical field with a top hat profile. Since there is no
slow turning on of the interaction, we cannot use adiabatic
following to ensure the atom experiences the desired poten-
tial, so that we have prepared the atomic beam in the appro-
priate eigenstate. This is, of course, much easier to perform
theoretically than in practice. The atomic distribution at the
first focal plane is shown as the dash-dotted line in Fig. 8,
using the same optical parameters as in the thin lens analysis,
V52A2D. For this peak,W c50.02lL , with a FWHM of
0.016lL . The interaction timet int542.6uDu21 is determined
empirically by finding the maximum value of the peak value
of uc(z,t)u2 as a function of interaction time with the field.
This maximum value is plotted in Fig. 7 versus interaction
time. It can be seen that the first focal plane gives the opti-
mum focusing, subsequent focusings giving lower peaks.
The predicted focal time for the parameters used, from the
period as in Eq.~19!, is 43.1uDu21, which differs from the
empirically determined time by less than 2%. The atomic
distribution at the predicted focus is almost indistinguishable
from that at the actual focus.

We have also considered the more realistic case where the
laser field is given a Gaussian profile, where it is not so easy
to calculate the focal time except by inspecting the maximum
of ucu2 at each time increment. In an attempt to have the field
exhibit a profile closer to the ideal top hat, we have added
three Gaussian profile fields, spaced at one standard devia-
tion apart. The standard deviation of each individual Gauss-
ian, in the time frame which follows an individual atom, is
69/A2uDu, with the interaction being turned on at that point
in the Gaussian where the effective Rabi frequency becomes
Vexp(29/2). This standard deviation is equivalent to the

time for a sodium atom, at the rms velocity for a temperature
of 1800 K, to travel 0.2 mm. At the center of the field,
V52A2uDu. We have used the attributes of the sodium atom
to set our length and mass scales, with the time scale set by
havingD5200 MHz. The 589 nm sodium wavelength, taken
together with the unit values for\,k, andD, result in an
atomic mass for the sodium atom of 634 in our particular
system of units.

The results of our calculations are shown as the solid line
in Fig. 8, which shows the atomic distribution at the first
focal plane, after a flight time oft int5112.8uDu21. This is
much longer than the flight time with a top hat profile be-
cause the atom experiences a much shallower potential in the

FIG. 7. Maximum of uc(z,t)u2 as a function of flight time
within the field, for the channeling system. In contrast to the thin
lens system, we can see that the atoms will periodically focus and
defocus, although the initial focus gives the best performance.

FIG. 8. The atomic distributionuc(z,t int)u2 after interaction time
t int542.6uDu21 within a field with a top hat profile is represented by
the dash-dotted line. As the input atomic wave function was a plane
wave, this distribution will repeat everylL/2. The second highest
peak, with the solid line, represents the focused atomic distribution
for channeling in a laser field with Gaussian profile and
t int5112.8uDu21. The dashed line represents the distribution for the
same parameters, but with spontaneous rates ofg15g25V/100.
The lowest, dotted, line is forg15g25V/10.
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wings of the Gaussian. As in the thin lens case, the ladder
atoms must enter the field in their ground state and a high
degree of adiabatic following was present in our simulations.
The focal peak is also more squat than for the top hat profile
field, with W c50.04lL , although the FWHM measure has
the same value. Comparison of the two atomic distributions
in Fig. 8 shows that the FWHM measure is somewhat mis-
leading.

VI. BROADENING EFFECTS

The cases we have treated so far are simplified in both the
quantum and classical senses. There will always be sources
of quantum noise present, namely, spontaneous emission and
laser amplitude and phase fluctuations. Spontaneous emis-
sion is often countered by tuning away from resonance, at
the expense of weakening the interaction. However, the ratio
V/D must be preserved in order to obtain the required shape
of potential. We must also consider completely classical
broadening mechanisms. In classical optics the two main
mechanisms affecting the performance of optical elements
are chromatic and spherical aberration. Chromatic aberration,
resulting from the different wavelengths present in light, has
a counterpart in atom optics in that any input atomic beam
will always have a three-dimensional velocity distribution.
Spherical aberration results because optical lenses are usu-
ally ground using partly spherical surfaces rather than one of
the Cartesian surfaces which give ideal performance. The
counterpart in our schemes results from anharmonicity of the
potential, in that it cannot be perfectly represented by a qua-
dratic.

In practice, the effects of spontaneous emission can be
minimized by increasing the field intensity, meaning that the
interaction time is shortened, thus giving any individual atom
less time in which to emit. Although the atoms used in ex-
periments are usually sourced from an atomic oven, thereby
possessing a Maxwellian velocity distribution, this can be
adjusted by precooling and velocity selection mechanisms,
thus minimizing the effects of differing interaction times. We
have seen that the predictions of focal length using a qua-
dratic approximation to the potential are very accurate, dem-
onstrating that anharmonicity will not play a large role in
these schemes. Although we have produced results in this
paper for a particular ratio of Rabi frequency to detuning, our
investigations show that this exact ratio is not as crucial as in
the previously analyzed bichromatic beam splitter@15#. The
potential remains closely harmonic over a reasonable range
of values.

A. Spontaneous emission

The extent to which spontaneous emission will degrade
the performance of our systems will depend on several fac-
tors. Among these are the actual atoms used, the interaction
time, and the laser intensity. Atoms which can be prepared in
the ladder andL configurations have an advantage in that
they enter the interaction regime in a ground state and, hence
must be Rabi cycled into an upper state before there is any
possibility of emission. This does not hold for atoms in the
V configuration, for which the state which adiabatically fol-
lows the focusing potential is one of the excited states.

There are two ways in which spontaneous emission af-
fects performance. The first is that the spontaneously emitted
photon gives a momentum kick to the atom, meaning that it
will no longer be exactly on a focusing trajectory. The sec-
ond is that the internal state of the atom changes, so that it
will no longer be in the eigenstate appropriate to the focusing
potential. The relatively short times over which these mecha-
nisms can take effect means that we would not expect the
effects of spontaneous emission, all else being equal, to be as
large as for the bichromatic beam splitter. In that application,
we considered that all atoms were detected at infinity, in their
ground state. This meant that, having left the field in an
intermediate state, most experienced at least one emission on
their way to the detector. The time involved meant that a
small kick in momentum space could turn into a reasonable
displacement in position space. In our present schemes,
where the substrate is either within the field or a short dis-
tance beyond it, a small change in momentum will not have
sufficient time to cause significant change in position.

Each spontaneous photon will give the emitting atom a
momentum kick whose direction, and hence projection on
the z axis, will depend on the dipole distribution

N ~p8!5
3

8\k F11S p8

\kD
2G , ~22!

where p85\kcosu, with u the angle made by the photon
direction and thez axis @18#. In the thin lens, this process
may also occur for atoms which leave the field in an excited
state, since there is a possibility of decay en route to the
substrate.

We have modeled these effects for ladder configuration
atoms via the techniques of quantum Monte Carlo wave
function simulation@19#. To perform this analysis for the thin
lens, we add imaginary decay terms to the effective interac-
tion HamiltonianV so that it is no longer Hermitian,

V MC5
\

2 F 0 V1sinkz 0

V1* sinkz 2~D12 ig1! V2sin~kz1f!

0 V2* sin~kz1f! 2~D11D22 ig2!
G .

~23!

In the above,g1 represents the spontaneous decay rate from
u2& to u1&, with g2 representing that fromu3& to u2&. Use of
a non-Hermitian Hamiltonian to govern the time develop-
ment of the wave function means that the norm ofc is now
time dependent, decaying at a rate governed by the size of
the spontaneous emission rates and the populations of the
excited states. Comparison of the squared norm with ran-
domly generated numbers between 0 and 1 is used to decide
when a spontaneous emission takes place. Comparisons of
the expectation values of the level populations with other
random numbers are used to decide which level decays and
the transverse component of the momentum kick is gener-
ated using random numbers in accordance with the distribu-
tion given above, Eq.~22!. After each spontaneous emission,
the wave function is renormalized and the process begins
again, continuing until the atom has crossed the field. We
then propagate the atom through space to the substrate, using
Hkin with decay terms added, and following a similar pro-
cess to that used within the field. Summing a large number of
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individual atomic trajectories and calculating the variance in
the mean allows us to determine when the resulting atomic
distribution will approach closely to that predicted by master
equation techniques. We found that 200 trajectories were
enough for the plus and minus one standard deviation plots
to be almost indistinguishable from the mean on the scale we
have used.

The result of a Monte Carlo calculation using decay rates
of g15g25V/100@20# is reproduced as the solid line in Fig.
6. While there is a small amount of background present that
does not exist in the coherent case and the height to width
ratio is slightly reduced, the actual lensing performance is
still acceptable. The 200 trajectories calculated experienced
115 spontaneous emissions within the field, with none be-
tween the field and the detector. The FWHM of this distri-
bution is 0.020lL , with W c50.053lL . Our investigations
show that the atomic distribution will not be significantly
worse than the coherent case if the Rabi frequency can be
raised to the order of 100 times the spontaneous emission
rate.

On the other hand, we can see from the dash-dotted line in
the same figure that, if the Rabi frequency is as low as ten
times the spontaneous rate, the central focusing peak is still
visible, but there is also a large amount of broad, flat back-
ground. With an average of 9.2 spontaneous emissions per
trajectory, we now obtain a FWHM of 0.049lL , with
W 50.091lL . Although these figures still suggest a reason-
able focusing performance, they are in fact misleading. If, for
example, we are interested in laying down narrow conduc-
tion paths on a resistive substrate,ucu2 should go almost to
zero over at least a reasonable portion of the half-wavelength
width. In this case the broad background apparent in Fig. 6
would mean that electrons could be conducted everywhere
across the substrate.

In the channeling scheme, spontaneous emission can only
occur within the field. The main effect will be that an atom,
after spontaneous emission, will no longer experience the
focusing potential. Analysis of the situation proceeds almost
as in the thin lens case, using the non-Hermitian Hamiltonian
V MC in a quantum Monte Carlo wave function simulation.
As in the coherent case, we use the split-operator technique,
also using the kinetic operator within the field. The result of
a simulation of 200 trajectories with a spontaneous emission
rate,g15g25V/100, is shown as the dashed line in Fig. 8.
The FWHM of this peak is 0.02lL , with W c50.05lL , re-
sulting from 155 spontaneous emissions during an interac-
tion time of 112.8D21. By comparing Fig. 6 with Fig. 8, we
can see that, for a similar spontaneous rate, the effects on the
two systems are very similar, as is to be expected. A larger
spontaneous rate ofV/10, demonstrated by the dotted line in
Fig. 8, has again degraded the performance considerably. For
both systems, the field intensity will need to be such that the
Rabi frequency is much greater than the spontaneous emis-
sion rate if we are to overcome the broadening effects of
incoherent processes.

B. Velocity distribution

In atom optics experiments involving atomic beams, the
atoms are usually emitted from an oven operating at a rela-
tively high temperature. The output of an oven at tempera-

tureT will consist of atoms possessing a range of velocities
which, to a close approximation, will obey a Maxwellian
distribution with the probability of any atom having a veloc-
ity betweenv andv1dv being represented by

P~v !dv}v3exp~2mv2/2kT!, ~24!

wherem is the atomic mass,k is Boltzmann’s constant, and
T is the temperature in kelvins. The effect of this velocity
distribution on the bichromatic atomic lens will be to cause
the atoms to undergo the interaction for differing times and
therefore become focused at different distances. In many
atom optics experiments, the output of the oven is colli-
mated, so as to give a small angular spread, and then put
through an optical molasses setup which cools the beam in
the transverse direction. As the longitudinal velocity will
then be very much larger than any remaining transverse com-
ponent, we feel justified in considering that the input to the
field can be treated as having a zero transverse momentum
component.

We have simulated a Maxwellian distribution for atoms
with the sodium mass, emitted from an oven at 1800 K, by
calculating individual trajectories with differing interaction
times. The individual velocities are randomly chosen in ac-
cordance with the above distribution, Eq.~24!. The focal
length used is that for an atom at the rms velocity,

v rms5A3kT/m. ~25!

The extent to which this thermal velocity distribution de-
grades the focusing of the thin lens can be seen in Fig. 9,
which is the result of 1000 trajectories in which spontaneous
emission has been neglected. The input beam is considered
as a plane wave and the laser field is given the same intensity
profile as in Fig. 8. The FWHM for this distribution is
0.04lL , with W c50.09lL . It is immediately apparent that,
to retain a good focusing performance, the spread in veloci-
ties will need to be narrowed by some means. We have con-
sidered that the beam can somehow bechoppedso that only

FIG. 9. Thin lens distributions for an atomic beam with the
Maxwellian longitudinal velocity distribution considered. The solid
line is the result for the full range of velocities, while the dashed
line is for a Maxwellian longitudinal velocity distribution, somehow
chopped so that only velocities from 0.9v rms to 1.1v rms remain.
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a narrow spread of velocities aboutv rms need be considered.
The result for a distribution Maxwellian in form, but extend-
ing only over the rangev rms610%, is shown as the dashed
line in Fig. 9. This distribution has a FWHM of 0.016lL ,
with W c50.044lL .

A longitudinal velocity distribution will affect the perfor-
mance of the channeling system in exactly the same manner,
as can be seen from Fig. 10. The dashed line represents a
chopped distribution which includes velocities from
0.5v rms to 1.5v rms, with FWHM of 0.023lL and
W c50.06lL . The solid line gives the results for a distribu-
tion from 0.9v rms to 1.1v rms, with FWHM of 0.016lL and
W c50.044lL . Comparison of the peak shapes in Fig. 9 and
Fig. 10 shows that the two numerical measures of the focus-
ing performance are of limited utility, with more information
available from the actual pictorial distributions.

In practice we can see that both systems will be relatively
more sensitive to a distribution in atomic velocities than to
spontaneous emission. This can be seen in the solid line of
Fig. 10, which demonstrates the effects of both spontaneous
emission, withg15g25V/100, and a velocity range of
0.9v rms–1.1v rms on the channeling system. We can see that
the resulting atomic distribution is closer to the dashed line
of Fig. 10 than to the dashed line of Fig. 8, demonstrating
that the velocity spread has had a greater effect than has
spontaneous emission. The effects on the thin lens system are
very similar.

We have seen that there are physical limits on the focus-
ing performance of the two systems. The broadening mecha-
nism which can be expected to have the most marked effect
is the range of longitudinal velocities in the input atomic
beam, the analog of chromatic aberration in classical optics.
Although this velocity distribution is a completely classical
phenomenon, the extent to which the input beam can be
cooled will ultimately depend on quantum limits. Defocusing
due to anharmonicity of the potential can be minimized by
careful choice of atomic transitions, while the effects of

spontaneous emission can be ameliorated by choice of atom
and an increase of laser power. One broadening effect we
have not considered, which is mentioned by McClelland
et al. @12#, is possible movement of atoms on the substrate
after deposition.

VII. CLASSICAL TREATMENT OF CHANNELING

The channeling of atoms in a harmonic optical potential
has a classical analog in the motion of point masses in a
parabolic well. It is well known that the time for particles to
reach the bottom of a parabolic well is independent of initial
position, resulting in the particles all reaching the bottom at
the same time. This time can be calculated exactly as in the
optical channeling treated above, Eq.~19!.

It is of interest to investigate a classical treatment of chan-
neling for two reasons. First, comparison with the quantum
results obtained above will demonstrate if there are any dis-
tinctly quantum features of the interaction. Secondly, on a
more practical level, the classical calculations are less expen-
sive in terms of computation time. If an experimenter, for
example, wishes to investigate the change in focal length as
parameters are varied, it is much quicker to run a classical
simulation than a full quantum one.

The extent to which purely quantum effects exist is best
found by investigating the simplest scenario, in which we
consider the motion of evenly spaced point masses, analo-
gous to a plane wave, in the potential obtained by diagonal-
ization of the interaction Hamiltonian, Eq.~7!. The trans-
verse force on each mass is found by differentiation of the
potential, and Newton’s laws then give the resulting velocity
and position. In this simplest case, we consider that the po-
tential and the longitudinal velocity of the point masses both
remain constant. The masses initially have zero transverse
momentum. We found that the best focusing performance
occurred after a time which was the average for the masses
to reach the center of the potential. As in the quantum case,
this time was very close to that calculated using a quadratic
approximation for the potential. The result of this basic cal-
culation, analyzing the trajectories of 1000 point masses,
shows that the classical distribution is narrower than the
quantum one. There is a classically forbidden region, in
which no particles are present, whereas in the quantum
analysis there is a small, but nonvanishing probability that an
atom will be found in this region.

We have also investigated the more realistic situation in
which the potential is not constant, but has the same profile
as the Gaussian laser field, and the point masses have a ther-
mal longitudinal velocity distribution. The potential is that
which an atom would experience with perfect adiabatic fol-
lowing. We have considered the effects of coherent evolution
only since, although the random momentum kicks of spon-
taneous emission could be simulated classically, the different
potential experienced by an atom which has emitted is not so
easily simulated. As our motivation is to develop a simpler
method of predicting the broad features of the atomic mo-
tion, and, as shown above, the velocity distribution is the
main contributor to broadening of the focused distribution,
we have ignored spontaneous emission.

The results of a classical analysis with parameters which
are the equivalent of those used for the dashed line of Fig. 8

FIG. 10. Channeling distributions at the first focus for an atomic
beam with Maxwellian longitudinal velocity distribution consid-
ered. The dash-dotted line includes velocities in the range
0.5v rms–1.5v rms, while the solid and dashed lines include only
those in the range 0.9v rms–1.1v rms, with the dashed line represent-
ing coherent evolution and the solid line including the effects of
spontaneous emission rates ofg15g25V/100.
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are shown as the solid line in Fig. 11. All point masses are
considered to have the same longitudinal velocity and the
potential has a Gaussian longitudinal profile. While the
shapes of the two distributions are different, with the classi-
cal result showing a double peaked structure and having
greater width, the focal lengths are almost exactly the same,
despite being found by different methods. This shows that a
relatively simple classical computation of channeling could
be of practical use in finding the optimum position for the
substrate, even though, as discovered by McClellandet al.
@12# it will not accurately predict the profile of the atomic
distribution. The dashed line in Fig. 11 is the classical result
for a chopped Maxwellian distribution, including 0.9v rms–
0.9v rms, and a Gaussian profile field. Comparison with the
dashed line in Fig. 10 shows that the classical and quantum
results are only qualitatively similar, although the focal
length is again accurately predicted. This provides evidence
that the fine features of the resulting atomic distribution re-
sult from the quantum effects of interference within the wave
function, rather than from any classical effects.

VIII. TWO-LEVEL COMPARISON

Some of the practical difficulties involved in the bichro-
matic atomic lens, such as finding atoms possessing transi-
tions which can take the required form and tuning two sepa-
rate standing waves, mean that it would not be worth
persevering with unless it offers clear advantages over a two-
level system. The obvious advantage is that the bichromatic
potential is much closer to being harmonic over its full
width, whereas the potential from a single standing wave is
approximately harmonic for only a fraction of the width.
This will mean that much narrower focusing is possible with
the bichromatic lens, without having to prepare the width of
the input atomic beam. The chromatic aberration resulting
from different atomic velocities will have more of an effect
on the two-level system, as fast atoms beginning in the wings

of the potential will experience a smaller phase shift, hence
less deviation towards the center than in the bichromatic
lens. This will result in a broadening of the focused distribu-
tion. Spontaneous emission will not be expected to have any
greater effect in the bichromatic lens if ladder orL configu-
ration atoms are used, as it is a ground state which adiabati-
cally becomes the eigenstate of the focusing potential.

We have performed numerical simulations using two-
level atoms for both the thin lens and channeling systems.
The degree of harmonicity of the two-level potential depends
on the ratioV/D, with an increasing ratio giving a better
coherent focusing performance. Unfortunately this is also the
regime where spontaneous emission begins to have a marked
effect. Our investigations show that the bichromatic lens pro-
duces an atomic distribution which has a height to width
ratio which is at least 1.7 times greater than can be expected
from a two-level lens. We find that there is more broad back-
ground around the central peak in the two-level case and our
measure of width,W c , is at least 50% greater with the
monochromatic lens, all else being equal. These results dem-
onstrate that the bichromatic lens has clear advantages in
performance over an atomic lens using a single standing
wave and two-level atoms.

IX. CONCLUSION

We have investigated the performance of a proposed
atomic lens using three-level atoms and two standing wave
optical fields. The focusing potential can in principle be
made very close to the ideal harmonic shape and the focal
lengths for both the thin lens and channeling systems can be
accurately predicted. We have shown that spontaneous emis-
sion will not play a major role in performance degradation if
the laser intensities are high enough. The main cause of
broadening will be the differing velocities present in an
atomic beam. Some effort will need to be made to prepare
the input beam to have as small a range of velocities as
possible. We have shown that the bichromatic lens, because
of the near harmonicity of the potential, offers clear advan-
tages over atomic lenses using two-level atoms.

There is an experimental freedom in the choice of atomic
configuration since spontaneous emission does not play a
major role. The important factors in the choice of atom will
be the optical wavelength of the transition and the lifetime of
the lowest of the three levels used. The shorter the wave-
length, the better the available focusing will be. The lowest
level lifetime will need to be long enough that, once pumped
into the appropriate starting level, most of the atoms will not
emit from this level before deposition on the substrate has
occurred. There seem to be many possible choices forL and
V systems, with, for example, the alkali-metal atoms as used
in velocity selective coherent population trapping having
suitable transitions. Atoms having ladder transitions with
suitable energies are more difficult to find. One possible can-
didate is rubidium as used by Groveet al. @11#. The adjacent
transitions have wavelengths of 780.2 nm and 776.0 nm, so
that k2'1.005k1 , meaning that the potential is close to the
optimum over a region approximately 20 wavelengths in
width.

It will be possible to deposit very narrow lines of atoms,
with widths of very much less than the wavelength of the

FIG. 11. The results of classical calculations for the focusing of
1000 equally spaced point masses in the quantum potential. The
masses have zero initial transverse momentum. The solid line is the
result when all masses have the same longitudinal velocity. The
dashed line represents masses with an initial longitudinal velocity
distribution extending from 0.9v rms to 1.1v rms.
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optical transitions used, if the input beam can be prepared
appropriately. The background present between these lines is
small enough that this technique could have possible appli-
cations in, for example, the fabrication of circuitry compo-
nents. It should also be possible to deposit very smalldotsof
atoms by using two orthogonal bichromatic lenses, either
sequentially or simultaneously.
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