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A theory o f  coherent X-ray radiation is proposed, which is generated when a relativistic electron is 
transversing a hybrid target consisting o f  two parallel plates: amorphous and crystalline. Within a two-wave 
approximation o f the dynamic diffraction theory, expressions describing the spectral-angular density o f  
coherent radiation from this target are obtained.
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INTRODUCTION

Emission of a relativistic electron in crystalline or amorphous media has been commonly dealt with separately. 
In this work, within the framework of a two-wave approximation of the dynamic diffraction theory we for the first time 
address coherent X-ray radiation of a relativistic electron transversing a complex target consisting of amorphous and 
crystalline components. At the first and second boundaries in the structure of the target, transition radiation (TR) is 
generated [1, 2], which later gives rise to diffraction transition radiation (DTR) produced on a system of parallel atomic 
planes of the single-crystal plate along the Bragg direction [3-6]. When a relativistic electron transverses the single
crystal layer of the target, its Coulomb field is scattered on a system of parallel atomic planes of the crystal, producing 
parametric X-ray radiation (PXR) [7-9], with the PXR photons moving together with the DTR photons along the Bragg 
scattering direction. The process of coherent X-ray scattering of relativistic electrons in a crystal, including PXR and 
DTR, was developed in [10-14] within the framework of a two-wave approximation of the dynamic theory of X-ray 
diffraction. It is noteworthy that in [10, 11] coherent X-ray radiation is treated in a particular case of symmetrical 
reflection, where the reflecting system of atomic planes of a crystal is parallel with respect to the surface of the target in 
the case of the Bragg scattering geometry and normal to it in the case of the Laue scattering geometry. In [12-14], 
a dynamic theory of coherent X-ray radiation of relativistic electrons in a crystal was developed for a general case of 
asymmetrical reflection of the electron’s field with respect to the target surface, where the system of parallel reflecting 
layers of the target could be located at an arbitrary angle to the surface.

In this work, for the first time we investigate coherent radiation of a relativistic electron transversing 
a composite medium consisting of the amorphous and crystalline plates. In the Laue scattering geometry, we consider 
the dynamic diffraction of PXR and DTR photons in a crystalline plate under conditions of an asymmetric reflection of 
the field with respect to the target surface. In this case, the emitted photons leave the target through its boundary. Within 
the framework of a two-wave approximation of the dynamic diffraction theory, we obtained a set of expressions 
describing the spectral-angular distribution of PXR and DTR in this structure. We also consider a possibility of
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Fig. 1. Geometry of the process of radiation of a relativistic electron in a composite structure.

increasing the intensity of DTR of a relativistic electron without increasing its energy for the case where an amorphous 
plate is located in front of the crystalline plate.

1. RADIATION AMPLITUDE

Let us look at the process of coherent X-ray radiation of a relativistic electron transversing a bilayer composite 
structure at velocity V in the Laue scattering geometry. Assume a target composed of the amorphous and crystalline 
plates (Fig. 1), whose thicknesses are a and b , respectively. Let us denote the dielectric susceptibility of the 
amorphous medium as %a and those of the crystalline medium %0 and %g .

The Fourier transform of the electric field

E (k ,ю) = J dt d 3r E (r ,t)exp(m t - ikr) (1)

will be found from the Maxwell equation

(k2 -ю 2(1 + %0))E (k ,ю) -k ( k E (k ,ю ))-ю 2£  %-gE(k + g ,ю) = 4nm J(k ,ю ), (2)
g

where J  (k, ю) = 2n eV  5(ю - k V ) is the electron current density.

Since the electromagnetic field induced is nearly transverse within the X-ray frequency range, so the incident 
electromagnetic wave E (k, ю) and the one diffracted in the crystal E (k + g, ю) are controlled by two amplitudes with
different values of transverse polarization

E (k, ю) = £'01) (k, ю)е01) + £02) (k, ю)е02),
(3)

E (k + g, ю) = E(g \ k , ю)е1(1) + £g2)(k, ю)е(̂ ),

where vectors e0̂1) and e02) are perpendicular to vector k , while vectors e1(1) and e}2) are perpendicular to vector

kg = k + g . Vectors e(02), e{2) lie within the plane of vectors k and kg ( n -polarization), and vectors е0^ and e1(1)
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are perpendicular to it ( ct -polarization), and g  is the reciprocal lattice vector determining the system of reflecting

atomic planes in the crystal plate. Within the framework of a two-wave approximation of the dynamic diffraction
theory, equation (2) is reduced to a well-known system of equations [15]

(ю2(1 + %0) -  k 2) E(0s) + ю2 x_ g C (s) Egs) = 8n2ieaQVP(s) 8(ra- k V ),
(4)

ю2%gC(s)E0s) + (ю2(1 + X0) -  kg)E g ) = 0,

where %g , %-g are the coefficients of a Fourier expansion of the dielectric susceptibility of the crystal over the 

reciprocal lattice vectors g

%(ю,r ) = £% g (ro)exp(igr) = £ ( (ю) + i%g(ю))exp(igr) . (5)
g g

Quantities С(s) and P (s) in the system of equations (4) have been defined as follows:

C (s) = e0s)e(s ) , С(1) = 1, С(2) = cos20B ,

P ( s) = e0s)(p / ц), P (1) = sin ф , P (2) = cos ф . (6)

Here ^ = k -  ю V / V is the component of the virtual photon momentum, perpendicular to the particle velocity V , its 
absolute value being ц = ю0 / V , where 0 << 1 is the angle between vectors k and V , 0B is the Bragg angle, and ф 
is the azimuthal radiation angle calculated from the plane formed by the velocity vectors V and the reciprocal lattice 
vector g  in the crystal. The length of vector g  could be expressed via the Bragg angle and the Bragg frequency o B as

bW
follows: g  = 2bB sin0B / V . The angle between vector —— and the wave vector of the incident wave k is denoted asV 2

ю V
0 , and the angle between vector —— + g  and the wave vector of the diffracted wave k„ is denoted as 0 '. The systemV 2

of equations (4) for parameter s = 1 describes ct -polarized fields, and for s = 2 -  n -polarized ones.
Let us solve the dispersion equation following from the system of equations (4)

(ю2(1 + %0) - k2)(ю2(1 + %0) - k2) - ю4%-g%gC(s)2 = 0 , (7)

using standard procedures of the dynamic theory of diffraction of X-ray waves in a crystal [16]. We need the lengths of 
the wave vectors k and k g of photons in the crystal given by

k = ю^1 + %Lj + X0 , kg =ю^1 + %Lj + Xg . (8)

The dynamic contributions X0 and Xg for X-ray waves are related as [16]

Xg = ? + X »  £ .  <9)
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Since these contributions are small ( |X01 << ю , |Xg | << ю ), when substituting (8) into (7), we can neglect the 

terms quadratic with respect to X0 and Xg . This yields us two solutions for each of the incident and diffracted waves

X(U) = ю 
s 4

(

P ^ P 2 + 4% g %-gС (s)2 X01,2) = ю-Ю- 
0 4Yg

(
- P ^ P 2 + 4% g X-g С(« ' i (10)

where P = a  -  %0
(  Y ^

1 -1 £ 
. Y0,

1 2  2
a  = —r(kg -  k ) ,  y0 = cos y 0, уg = cos у  g , y 0 is the angle between the incident wave

vector k and that normal to the surface of the plate n , and у  g is the angle between the wave vector kg and vector n

(see Fig. 1). Since the dynamic contributions are small, we can show that 9 « 9' (see Fig. 1), hence in what follows we 
shall denote angle 9' as 9 .

For ease of solving the problem, let us present the length of the wave vector of free photons in an amorphous 
medium ka = ю^ 1 + %a as

'‘a = "!■  ) + £ (Xg ^ (11)

where

Xg =X * ю
у0

f  -2 . t\2 \
Y + 9 - X . * = юp + Yg .* = ю

X g= - : “  + X0, X0 = ю
2 Y0

f  -2 . t\2 \
Y + 9 - %0 (12)

and give the free photon emitted in the Bragg direction by

k0 =ю| 1+ X0 l + Xg (13)

where Xg = -ю %0

Using the above-introduced notations and the system of equations (4), write the expressions for the fields. In 
vacuum, in front of the target the field consists of pseudo-photons of the Coulomb field of a relativistic electron incident 
on the target

E (s)vacI
0

8n2ieV9P(s) Yg (  % 2 у0 X P у0 ^
------------------------ %0--------- X g + P—

ю Y 0 l ю Y g Y g >(X x - X * + (14)

In an amorphous medium, the field consists of the Coulomb field of an electron and that of the emitted free 
photons Ea

E1 - I
(s)sr = 
0 “

8n2ieV9P(s) Yg ( .......... 2 у0 X у0 V1
-------------------- - %0 +%a----------- X g + P---

ю Y 0 l ю Y g Y g
s g  g - X g) + E s) 8 (X ( -  Xg ). (15)

In a crystal medium, for the incident and diffracted waves the field consists of the Coulomb field of 
a relativistic electron and two fields of free X-ray waves propagating in the crystal

co
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E1 (s)cr _ 
0 “

8n2ieV 0P(s)
Y

-ю p - 2ю — X0 
Y0

4 I t  ( -X<1) + ( -X<2))
5 (  -X 0*) + 4 s)(l’5(X0 -X™) + E 5 ( X 0 - X ® ) , (16a)

E,(s)cr = 8n2ieV 0P( s) 2.. C(s)ю %

4 т -  (X, - X™ Ж Е )
Y g

5 (  -X g ) + £gs)(1)5(Xg -X(1)) + 4 s)(2)5(Xg -X (E ) . (16b)

The incident and diffracted fields in the crystal are related by the expression E0s)cr = (2юХg / ю2%gC(s))£'gs)cr 

following from the second equation of the system of equations (4).
The field emitted in vacuum behind the target along the Bragg direction will be given by the following:

Egs)vacI1 = Egs)Rad 5(x g - x g )  . (17)

To determine the amplitude of the radiation field Egs)Rad , let us use the boundary conditions on three boundaries of the 

composite target under study

x gi— a X gi— a

J E0s)vac 1 d X = JE0s)srdX , J E0s)sr e Yg d X = JE0s)cr e Yg dXg

X gi—a X g(a+6) X gi-s- (a+b)
J Egs)cr e Yg dX g = 0 , J Egs)cr e -g dX g = J E g )vacI1 e -g d  X g . (18)

Since in this work the investigation of the process of radiation of a relativistic electron in a composite medium 
is limited to the rectilinear motion of the electron, so two mechanisms contribute to the total radiation yield, 
specifically, diffracted transition radiation and parametric X-ray radiation. From the total amplitude of coherent 
radiation, let us single out the amplitudes corresponding to these radiation mechanisms and write them as two 
summands

E (s)Rad = E(s) + e( s)
c g ~ CPXR ~l~ DTR > (19a)

E(s) _
. I ®%0 , * 1(a +b) , ч

8n2ieV0P(s) 11 ~  +Xg J_Y~ ю2%C (s)
PXR

2 ю ^ ( -Xg2))

%0 - 0 2 -Y 2 2 IL ( - x? )

Y  x_ ® ^b >i f
Yg -1

%0 - 0 2 -Y 2 2h . (x g -x g 2))

( iX g Y  ь ^
Yy -1 (19b)

g
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E (s) -DTR _

2 ( )  i “Ю + X* 1(a + b)
8n2ieVQF(s) i [ 2 + \

---------- e
ю

ю2Х gC (s)

(  x® -xg x(„2) -xg 1i-5---- g-b
'<g -  e '<g

2 » ^  ( - x ® )
‘g

x . юя/ 2 -2 \
1 -i 2 ^ (  ^  )

2 , -2 л 2 , -2
+ У - la  0 +Y

a 2 —2 r\2 —2
la  - 0  - У l 0 - 0  - У ,

(19c)

Expression (19b) represents the amplitude of the PXR field of a relativistic electron in a composite medium, 
which is generated when the electron transverses the plate located behind the amorphous one. Expression (19c) 
describes the amplitude of the diffracted transition radiation in the composite structure under study. The summands in 
the square brackets correspond to the transition radiation components emitted from the first and the second boundaries, 
respectively, which later on are diffracted in the crystal plate along the Bragg direction.

2. SPECTRAL-ANGULAR DENSITY OF RADIATION

Substituting (19b) and (19c) into the expression for the spectral-angular density of X-ray radiation

d  2 NI--------
d » d  Q

-  ю2(2л)-6 £  |Egs)Rad|
s-1

(20)

we obtain an expression describing the spectral-angular densities of PXR and DTR of a relativistic electron in the 
composite bilayer structure under study

d 2 N(s) -2a n pxr ^ F ( s)2
2

R ( s )

d » d Q 4л2 (02 + у 2 - 10)2 PXR
(21a)

Rpxr -  (1 4  / )2 [1 + exp (-2B (s)p(s)Д(1)) -

-2exp ( b (s)p(s)Д(1))cos(.S(s) (a (s) + ( | - лЙ 2^ ) / в ) ) s) + ^ - ^ Й Г + I ) / в)2 + p (s)2Д'

(21b)

2\As) 2d 2 N
ю- DTR F (s) G(0, ю)RDTrd » d  Q 4л2

(s) (22a)

G(0, ю) - 0 2
02 +у-2 02 +у-2 - i a

exp ( —ю 1 - a ̂  + 02
У0 ^ 2 +у-2 - i a  02 +у- 2 - l 0 ,
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+202
,2 + - -2 02 + - -2 -%a 1 0 2 + - -2 -%a 0 2 + - -2 -% 0 ;

I юя 2 -2 | I ю%я
(cos I 2- — (0 + -  - %a) I exp I -  a

(22b)

2
^Dtr. = — V “ [exp(-2B (s)p(s)Д(1)) + e x p ( (s)p(s)Д(2)) 

|(ю )2 + e L v ' v ’

-2  • exp ( -  B( s )p( s cos
2 B( s)V | 2 + 8

(22c)

where

Д(2) = 8 + 1 , 1 - 8  l ( s) , k
(s)

ct( s) =•

28 28 U  s)2 + 8 ^

I  02

Vtst

1 л

(s )2
(1) = 8 + 1  - 1 - 8  ^( s) К s)

д (1) =
+ 8

l%0| + Y2 |%c
( s )  =  %V - -

%0

28 28
V^( s)2 +8 ^ + 8

,c  (s)
B( s) = ■ f a  IC(s) b

2 -0
k( s) =

%g C(s) 

%0

I (s) (ю) =
2sin

V 2f a  I c(

1 ю(1 -  0 COSф cot0B) | + 1 -8

s) 1 J + 2 V ^
8=

sin(5 + 0B) 
sin (5 -0 B) P( s) = %o

|%g|C(s) '
(23)

In the resulting expressions (21) and (22), functions ^PXR and ^DtR represent the PXR and DTR spectra that within

the dynamic diffraction theory describe propagation of free and bound X-ray photons through a crystal plate, 
respectively. Function G(0, ю) describes the angular dependence of the diffraction transition radiation and consists of

three summands. The first summand corresponds to the transition radiation generated by a relativistic electron 
transversing the first boundary, which further propagates in the amorphous medium and is diffracted in the crystal plate 
in the Bragg direction. The second summand corresponds to the transition radiation generated on the second boundary 
(between the amorphous medium and the crystal) and to the radiation diffracted in the crystal plate along the Bragg 
direction. The third summand describes the interference of these two DTR waves.

Expressions (21) and (22), derived within the dynamic diffraction theory, which describe the spectral-angular 
distribution of PXR and DTR of a relativistic electron in a composite medium consisting of the amorphous and 
crystalline plates, represent the principal result of this work. These expressions take into consideration the asymmetry of 
reflection of the field relative to the surface of the target (parameter 8) in a crystalline plate. They allow the effects of 
dynamic diffraction to be revealed and the radiation yield to be optimized as a function of the target parameters.

The expressions describing the angular density of PXR and DTR, following from (21) and (22), are given by

dN(s) dN PXR
d  Q

e2 P (s)2 
24n (02 +Y-2 -%0)2 -

J ^PXR^)
d  ю
ю

(24a)

dN(s) dN DTR
d  Q 4n

-P (s)2 J G(0, ю)^D tr (ю)
d  ю (24b)
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Fig. 2 Fig. 3

Fig. 2. PXR spectrum and DTR spectra for the thickness of the amorphous carbon plate a = 4 ц т  
and without any plate (a = 0).

Fig. 3. Angular density of PXR and angular densities of DTR for the parameters listed in Fig. 2.

For illustrative purposes, let us address the process of radiation of a relativistic electron transversing 
a composite bilayer structure consisting of amorphous carbon and crystalline silicon. Consider ct -polarized waves 
( s = 1). Note that the energy in the calculations was taken to be comparatively low Е = 200 MeV, and the system of

reflecting parallel atomic planes (111) of silicon was assumed to be perpendicular to the boundary of the target (5 = 90° 
), i.e., we deal with a conventional case of symmetrical reflection. Shown in Fig. 2 are the curves describing the PXR 
spectrum (dotted line) and DTR spectra for a fixed observation angle 9 for two cases: in the first, the thickness of the 
amorphous target а = 4 ^m and in the second there is no plate (a = 0). It is evident that the presence of a carbon plate 
in front of the crystalline silicon plate considerably increases the spectral-angular density of DTR. It should also be 
noted that PXR is generated in the crystalline plate only and is independent of the presence of an amorphous plate. This 
circumstance could be used, e.g., to identify peaks in the PXR and DTR in real experiments.

Let us address the angular density of both types of radiation. The curves describing the PXR and DTR angular 
densities, which were built using formulas (24) for the same parameters as those in Fig. 2, are presented in Fig. 3. 
Figure 3 suggests that the angular density of PXR from the bilayer target under study can considerably increase 
compared to a single-layer crystalline target. It should be underlined that the principal contributions both into the 
spectral-angular (Fig. 2) and into the angular (Fig. 3) DTR density in the case under study come from the TR waves 
generated on the first boundary (vacuum-amorphous medium) and the interference terms of the TR waves from the first 
and the second boundaries. The contribution from the first wave and the interference term corresponds to the first and 
third summands in expression (22b). Note also that the curves in Figs. 2 and 3 have been built for the crystal plate 
thickness that is optimal for the DTR yield, in other words, for a thickness that would ensure maximum DTR yield. This 
result is appealing from the perspective of designing a monochromatic X-ray source relying on the radiation of 
relativistic electrons in periodic media.

SUMMARY

Within the framework of a two-wave approximation of the dynamic diffraction theory, we have developed 
a theory of coherent X-ray radiation of a relativistic electron transversing a composite medium consisting of amorphous 
and crystalline plates. Relying on this approximation, we have derived a set of expressions describing spectral-angular 
densities of parametric X-ray and diffraction transition radiation. We have demonstrated that the spectral-angular
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density of DTR from a composite target consisting of the amorphous and crystalline plates can significantly exceed that 
from a single crystalline plate of the same thickness.

This study has been supported by the RF Ministry of education and science (project part of TOR 
No. 3.500.2014/K in the field of scientific research).
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