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MATHEMATICAL MODELS OF A LIQUID FILTRATION
FROM RESERVOIRS

ANVARBEK MEIRMANOV, NELLY ERYGINA, SALTANBEK MUKHAMBETZHANOV

Abstract. This article studies the filtration from reservoirs into porous media
under gravity. We start with the exact mathematical model at the microscopic

level, describing the joint motion of a liquid in reservoir and the same liquid and

the elastic solid skeleton in the porous medium. Then using a homogenization
procedure we derive the chain of macroscopic models from the poroelasticity

equations up to the simplest Darcy’s law in the porous medium and hydraulics
in the reservoir.

1. Introduction

In article we consider a correct description of filtration from reservoirs into porous
media under gravity. Our approach is based on the way suggested by Burridge and
Keller [1] and Sanchez-Palencia [10]. We first describe the problem at the micro-
scopic level using classical equations of continuum mechanics and after that derive
all possible homogenized equations, describing the problem at the macroscopic level.

The problem in its simplest setting is modeled by two domains Ω0 and Ω having
a common boundary S0. The domain Ω0 models a reservoir and is occupied by
liquid, and the domain Ω models a porous medium. Throughout this paper we
impose the following constraints.

We will use the following assumptions:
(1) Let χ(y) be a 1-periodic function, Ys = {y ∈ Y : χ(y) = 0} be the “solid

part” of the unit cube Y = (0, 1)3 ⊂ R3, and let the “liquid part” Yf =
{y ∈ Y : χ(y) = 1} of Y be its open complement. We write γ = ∂Yf ∩ ∂Ys
and assume that γ is a Lipschitz continuous surface.

(2) The domain Eεf is a periodic repetition in R3 of the elementary cell Y εf =
εYf and the domain Eεs is a periodic repetition in R3 of the elementary cell
Y εs = εYs.

(3) The pore space Ωεf ⊂ Ω = Ω ∩ Eεf is a periodic repetition in Ω of the
elementary cell εYf , and the solid skeleton Ωεs ⊂ Ω = Ω ∩ Eεs is a peri-
odic repetition in Ω of the elementary cell εYs. The Lipschitz continuous
boundary Γε = ∂Ωεs ∩∂Ωεf is a periodic repetition in Ω of the boundary εγ.

(4) Ys and Yf are connected sets.
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(5) The pore space Ωεf and the solid skeleton Ωεs are connected domains.

Figure 1. Filtration from reservoir

Let Q = Ω0 ∪ Ω ∪ S0, S = ∂Q, S̄ = S̄1 ∪ S̄2.
We also assume that S1 is a part of the plane {x3 = 0}, e = −e3, and that the

domain Q is a subset of the half-space {x3 < 0}. Moreover we suppose that S2 is
a C2–smooth surface and in some small neighborhood of the plane {x3 = 0} it is
represented by the equation Φ(x1, x2) = 0.

The motion of the liquid in Ω0 for t > 0 is governed by the dimensionless non-
stationary Stokes system

∇ ·w = 0, (1.1)

ατ%f
∂2w
∂t2

= ∇ · Pf + %fe, Pf = αµD(x,
∂w
∂t

)− p I, (1.2)

and the joint motion of the poroelastic media in Ω for t > 0 is governed by the model
[7] consisting of the continuity equation (1.1) and the dimensionless momentum
balance equation

ατ%
ε ∂

2w
∂t2

= ∇ · P + %εe. (1.3)

Here ∇·w is the divergence of the vector w, ∇·P is the divergence of the tensor P,

P = χεαµD
(
x,
∂w
∂t

)
+ (1− χε)αλD(x,w)− p I, (1.4)

D(x,v) =
1
2
(
∇v + (∇v)∗

)
, %ε = %fχ

ε + %s(1− χε),

ατ =
L

gτ2
, αµ =

2µ
τLg ρ 0

, αλ =
2λ

Lg ρ 0
,

where I is the unit tensor, and L is the characteristic size of the physical domain in
consideration, τ is the characteristic time of the physical process, ρ 0 is the mean
density of water, g is acceleration due gravity, µ is the dynamic viscosity, λ is the
elastic constant, %f and %s are the respective mean dimensionless densities of the
liquid and the solid skeleton, correlated with the mean density of water ρ 0.

On the common boundary S0 = ∂Ω ∩ ∂Ω0 for t > 0 the continuity conditions

lim
x→x0,x∈Ω0

w(x, t) = lim
x→x0,x∈Ω

w(x, t), (1.5)
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lim
x→x0,x∈Ω0

Pf (x, t) · n(x0) = lim
x→x0,x∈Ω

P(x, t) · n(x0), (1.6)

hold for displacements and for normal tensions. Here n(x0) is a normal vector to
the boundary S0 at x0 ∈ S0.

We completement the problem with the Neumann boundary conditions

Pf (x, t) · n = −p0(x, t)n, P(x, t) · n = −p0(x, t)n (1.7)

on the part S1
0 = S1 ∩Ω0 of the outer boundary S of the domain Q = Ω0 ∪ S0 ∪Ω

(which is also the part of the boundary ∂Ω0) for Pf and on the part S1
1 = S1 ∩ Ω

of the outer boundary S of the domain Q (which is also the part of the boundary
∂Ω) for P, the Dirichlet boundary condition

w(x, t) = 0 (1.8)

on the part S2 = S\S1 of the outer boundary S for t > 0, and initial conditions

w(x, 0) =
∂w
∂t

(x, 0) = 0, x ∈ Q. (1.9)

In (1.1)–(1.9) the characteristic function χε(x) of the domain Ωεf is given by the
expression

χε(x) = ς(x)χ(
x
ε

),

where ς(x) is the characteristic function of the domain Ω, χ(y) is the characteristic
function of the liquid cell Yf in the unit cube Y , and e is a unit vector in the
direction of gravity. The given function p0 is supposed to be smooth:∫

QT

(
|∇p0(x, t)|2 + |∇(

∂p0

∂t
)(x, t)|2

)
dx dt = P2 <∞. (1.10)

The main problem in the macroscopic description of the physical problem is the
boundary conditions on the common boundary for the solutions of homogenized
equations. There are some particular results obtained by Jäger and A. Mikelić
[3, 4, 5] for special geometry of pore space (disconnected solid skeleton) and only
for domains in R2.

We study the complete problem in R3 for the arbitrary geometry of corresponding
pore spaces. Namely, let

lim
ε↘0

ατ (ε) = τ0, lim
ε↘0

αµ(ε) = µ0, lim
ε↘0

αλ(ε) = λ0, lim
ε↘0

αµ
ε2

= µ1.

To derive the desired homogenized problem for the case µ0 = 0, λ0 = ∞, and
0 < τ0, µ1 <∞ we use (1.1)–(1.9). First we fix τ0 > 0, pass to the limit as ε↘ 0,
and get two different systems

τ0%f
∂v
∂t

+∇p = %f e, ∇ · v = 0 (1.11)

and

v(f) =
∫ t

0

B(f)(τ0; t− τ) ·
(
−∇p(f) (x, τ) + %fe

)
dτ, (1.12)

∇ · v(f) = 0 (1.13)

for the velocity v and pressure p in Ω0 and the velocity v(f) and pressure p(f) in
Ω.
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These differential equations together with the boundary conditions

lim
x→x0∈S0,x∈Ω

p(f)(x, t) = lim
x→x0∈S0,x∈Ω0

p(x, t), (1.14)

lim
x→x0∈S0,x∈Ω

v(f)(x, t) · n(x0) = lim
x→x0∈S0,x∈Ω0

v(x, t) · n(x0) (1.15)

on the common boundary S0 describe the liquid motion in the domain Q for t > 0.
After that we pass to the limit as τ0 ↘ 0 and get the usual hydraulic equation

∇p = %f e, p(x, t) = p0(t)− %fx3 ≡ p0(x, t) (1.16)

in the domain Ω0 and usual Darcy’s system

v(f) =
1
µ1

B ·
(
−∇p(f) + %fe

)
, ∇ · v(f) = 0 (1.17)

in the domain Ω, completed with the continuity condition (1.14) on the common
boundary S0.

So, if we need to take into account the water flow from reservoir, we have to use
the first approximation (1.11)–(1.15). If we need the simplest model, we use the
second approximation (1.16)–(1.17). Other homogenized models of (1.1)–(1.9) one
may find in [7].

The notation of functional spaces and norm there are the same as in [6].

2. Main results

Definition 2.1. We say that the pair of functions {wε, pε}, such that

pε ∈ L2(QT ),wε,
∂wε

∂t
,
(
ζ + (1− ζ)χε

)
∇∂wε

∂t
,∇wε ∈ L2(QT ),

is a weak solution of the problem (1.1)–(1.9), if it satisfies the continuity equation
(1.1) almost everywhere in QT = Q × (0, T ), the boundary condition (1.8), the
initial condition (1.9) for the function wε, and the integral identity∫

QT

(
− τ0 %̃ ε

∂wε

∂t
· ∂ϕ
∂t

+
(
ζPf + (1− ζ)P

)
: D(x, ϕ)

)
dx dt

=
∫
QT

(
%̃ εe · ϕ−∇ · (ϕp0)

)
dx dt

(2.1)

for all smooth functions ϕ, such that ϕ(x, t) = 0 at the boundary S2
T , and ϕ(x, T ) =

0, x ∈ Q.

In (2.1) the convolution A : B of two tensors A = (Aij) and B = (Bij) is defined
as A : B = tr(A · B) =

∑3
i,j=1AijBji,

Pf = αµD(x,
∂w ε

∂t
)− p ε I,

P = χεαµD
(
x,
∂wχε

∂t

)
+ (1− χε)αλD(x,wχε)− pεχε I,

%̃ ε =
(
ζ + (1− ζ)χε

)
%f + (1− ζ)(1− χε)%s

and ζ = ζ(x) is the characteristic function of the domain Ω0 in Q.
The equation (2.1) obviously contains equations (1.2) and (1.3), and boundary

conditions (1.6) and (1.7).
The solution of the problem (1.1)–(1.9) possesses different smoothness in domains

Ωεf and Ωεs. To preserve the best properties - which the solution possesses in the
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solid part - we extend the function wε from the solid part Ωεs of the domain Ω onto
the whole domain Ω. To do this we use the extension result (see [2, 8], and [7,
Lemma B.4.2]): there exists an extension

wε
s = EΩε

s

(
wε
)
, EΩε

s
: W1

2(Ωεs)→W1
2(Ω), (2.2)

such that (
1− χε(x)

)(
wε(x, t)−wε

s(x, t)
)

= 0, x ∈ Ω, t ∈ (0, T ), (2.3)

and ∫
Ω

|wε
s(x, t)|2dx 6 C0

∫
Ωε

s

|wε(x, t)|2dx,∫
Ω

|D
(
x,wε

s(x, t)
)
|2dx 6 C0

∫
Ωε

s

|D
(
x,wε(x, t)

)
|2dx, t ∈ (0, T ),

(2.4)

where C0 is independent of ε, and t ∈ (0, T ).

Theorem 2.2. Let
p0 = p0(t). (2.5)

Then for all ε > 0 and for an arbitrary time interval [0, T ] there exists a unique
generalized solution of problem (1.1)–(1.9) and

max
0≤t≤T

∫
Q

(
α2
τ |
∂2wε

∂t2
|2 + ατ |

∂wε

∂t
|2 + αλ(1− ζ)(1− χε)|D(x,wε)|2

)
dx

+
∫
QT

(
|pε|2 + αµ

(
ζ + (1− ζ)χε

)
|D(x,

∂wε

∂t
)|2
)
dx dt 6 C0,

(2.6)

here and in what follows, we denote as C0 any constant independent of τ0 and ε.

Theorem 2.3. Under the conditions of Theorem 2.2 let

µ0 = 0, 0 < µ1, τ0 <∞, λ0 =∞
{wε, pε} be the weak solution of the problem (1.1)–(1.9) and wε

s = EΩε
s

(
wε
)

be an
extension (2.4) from the domain Ωεs onto the domain Ω.

Then the sequences {ζpε}, {ζwε}, {ζ ∂w
ε

∂t }, {ζ
∂2wε

∂t2 }, {(1 − ζ)χε pε}, {(1 −
ζ)χε wε}, {(1 − ζ)χε ∂w

ε

∂t } and {(1 − ζ)χε ∂
2wε

∂t2 } converge weakly in L2(QT ) and
L2(QT ) to the functions p ∈ W 1,0

2 (Ω0
T ), w, ζv, ζ ∂v∂t , (1 − ζ)mp(f) ∈ W 1,0

2 (ΩT ),
(1 − ζ)w(f), (1 − ζ)v(f) and (1 − ζ)∂v

(f)

∂t respectively as ε → 0, and the sequence
{wε

s} converges strongly in W1,0
2 (ΩT ) to zero as ε→ 0.

The limiting pressure p and the limiting velocity v of the liquid in the domain
Ω0 satisfy in Ω0 for t > 0 the system

τ0%f
∂v
∂t

+∇p = %f e, ∇ · v = 0 (2.7)

In the domain Ω for t > 0 limiting functions solve the homogenized system, con-
sisting of the continuity equation

∇ · v(f) = 0, (2.8)

and the homogenized momentum balance equation

v(f) =
∫ t

0

B(f)(τ0; t− τ) ·
(
−∇p(f) (x, τ) + %fe

)
dτ. (2.9)
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The problem is complemented with the continuity conditions

lim
x→x0∈S0, x∈Ω

p(f)(x, t) = lim
x→x0∈S0, x∈Ω0

p(x, t), (2.10)

lim
x→x0∈S0, x∈Ω

v(f)(x, t) · n(x0) = lim
x→x0∈S0, x∈Ω0

v(x, t) · n(x0) (2.11)

on the common boundary S0, the boundary condition

p(x, t) = p0(t) (2.12)

on the part S1
0 = S1 ∩ Ω0 of the outer boundary S, the boundary condition

v(f)(x, t) · n(x) = 0 (2.13)

on the part S2 of the outer boundary S, the boundary condition

p(f)(x, t) = p0(t) (2.14)

on the part S1
1 of the outer boundary S, and homogeneous initial conditions

v(x, 0) = 0, x ∈ Ω0. (2.15)

In (2.7)–(2.15), n(x) is a unit normal to S0 (or S2) at x ∈ S0 (or S2),

%̂ = m%f + (1−m) %s, m =
∫
Y

χ(y)dy,

and the symmetric matrix B(f)(τ0; t) is given by (4.14) below.
Finally, for the solution v, p, v(f), and p(f) of the problem (2.7)–(2.15) satisfy

the estimate ∫
Ω0

T

(
τ2
0 |
∂v
∂t
|2 + τ0|v|2 + |∇p|2

)
dx dt

+
∫

ΩT

(
τ2
0 |
∂v(f)

∂t
|2 + |v(f)|2 + |∇p(f)|2

)
dx dt 6 C0.

(2.16)

Theorem 2.4. Under the conditions of Theorem 2.3, let {v(f,k), p(f,k), pk} be a
solution of (2.7)–(2.15) with τ0 = 1

k .
Then the sequence {p(f,k)} converges weakly in W 1,0

2 (ΩT ) to the function p(f),
the sequence {v(f,k)} converges weakly in L2(ΩT ) to the function v(f), and the
sequence {pk} converges strongly in W 1,0

2 (Ω0
T ) to the function p0(x, t) = p0(t)−%fx3

as k →∞.
In the domain Ω for t > 0 limiting functions solve the homogenized system,

consisting of the continuity equation

∇ · v(f) = 0 (2.17)

and Darcy’s law

v(f) =
1
µ1

B ·
(
−∇p(f) + %fe

)
, (2.18)

for the liquid component, completed with the boundary conditions (2.13), (2.14),
and the boundary condition

p(f) = p0(x, t) (2.19)

on the common boundary S0 for t > 0.
The symmetric constant matrix B is given by (5.3) below.
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3. Proof of Theorem 2.2

The proof of this theorem is straightforward and is based on the energy equalities
1
2

∫
Q

(
ατ %̃

ε|∂wε

∂t
(x, t)|2 + αλ(1− ζ)(1− χε)|D

(
x,wε(x, t)

)
|2
)
dx

+ αµ

∫ t

0

∫
Q

(
ζ + (1− ζ)χε

)
D
(
x,
∂wε

∂τ
(x, τ)

)
|2dxdτ

=
∫ t

0

∫
Q

%̃ εe · ∂wε

∂t
(x, τ)dxdτ,

(3.1)

and
1
2

∫
Q

(
ατ %̃

ε|∂
2wε

∂t2
(x, t)|2 + αλ(1− ζ)(1− χε)|D

(
x,
∂wε

∂t
(x, t)

)
|2
)
dx

+ αµ

∫ t

0

∫
Q

(
ζ + (1− ζ)χε

)
|D
(
x,
∂2wε

∂τ2
(x, τ)

)
|2dxdτ

=
1
2

∫
Q

ατ %̃
ε|∂

2wε

∂t2
|2(x, 0)dx = I0.

(3.2)

We may use, for example, Galerkin’s method. This method shows that for any
t > 0 and any divergent free function ϕ ∈W 1

2 (Q), vanishing at x ∈ S2, the equality∫
Q

ατ %̃
ε ∂

2wε

∂t2
(x, t) · ϕ(x)dx+

∫
Q

(
ζPf + (1− ζ)P

)
(x, t) : D

(
x, ϕ(x)

)
dx

=
∫
Q

%̃ εe · ϕ(x)dx

holds. For t = 0 Pf + (1− ζ)P = 0, we have∫
Q

ατ %̃
ε ∂

2wε

∂t2
(x, 0) · ϕ(x)dx =

∫
Q

%̃ εe · ϕ(x)dx.

In particular, Galerkin’s method states that ∂2wε

∂t2 (x, 0) is a divergent free function
in Q. Therefore, for

ϕ(x) =
∂2wε

∂t2
(x, 0),∫

Q

ατ %̃
ε|∂

2wε

∂t2
(x, 0)|2dx =

∫
Q

%̃ εe · ∂
2wε

∂t2
(x, 0)dx,

which implies ∫
Q

ατ %̃
ε|∂

2wε

∂t2
(x, 0)|2dx 6

C0

ατ
.

The above relation and (3.2) provide an estimate of the time derivative ∂2wε

∂t2 in
(2.6).

To estimate the right-hand side of (3.1) we use representations

%̃ ε = %f + (1− ζ)(1− χε)(%s − %f ), e = −∇x3,

integration by parts and the continuity equation (1.1),

%f

∫
Q

e ·wεdx = −%f
∫
Q

(∇x3) ·wεdx = 0.
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So,

I =
∫ t

0

∫
Q

%̃ εe · ∂wε

∂t
dxdτ

= −%f
∫
Q

(∇x3) ·wεdx+ (%s − %f )
∫

Ω

(1− χε)e ·wεdx

= (%s − %f )
∫

Ω

(1− χε)e ·wεdx.

Next we apply the Hölder inequality,

I 6 (%s − %f )
( ∫

Ω

dx
)1/2( ∫

Ω

(1− χε)|wε|2dx
)1/2

6
(%s − %f )2

2δ
|Ω|+ δ

2

∫
Ω

(1− χε)|wε|2dx

and the extension wε
s = EΩε

s

(
wε
)

(see [7, Appendix B, Lemma B.4.2]) from the
domain Ωεs onto the domain Q with Friedrichs-Poincaré’s inequality:

I1 =
∫

Ω

(1− χε)|wε|2dx =
∫

Ω

(1− χε)|wε
s|2dx 6 C

∫
Ω

(1− χε)|∇wε
s|2dx,

and Korn’s inequality∫
Ω

(1− χε)|∇wε
s|2dx 6 C

∫
Ω

(1− χε)|D(x,wε
s)|2dx

= C

∫
Q

(1− χε)(1− ζ)|D(x,wε)|2dx.

Finally one has

I 6
(%s − %f )2

2δ
|Ω|+ C

δ

2

∫
Q

(1− χε)(1− ζ)|D(x,wε)|2dx,

which together with (3.2) prove (2.6) for terms, containing in (3.1) and (3.2).
The pressure p is estimated as a linear functional ([7, Chapter 3, Theorem 3.1]).

4. Proof of Theorem 2.3

Here we use the method of two-scale convergence, suggested by Nguetseng [9].
This method states that any bounded in L2(QT ) sequence {un} contains two-scale
convergent subsequence {unk

}, such that∫
QT

unk
(x, t)ϕ(x, t,

x
ε

) dx dt→
∫
QT

(∫
Y

U(x, t,y)ϕ(x, t,y)dy
)
dx dt

as ε → 0 for any smooth 1–periodic in y function ϕ(x, t,y). The 1-periodic in y
function U(x, t,y) ∈ L2(QT × Y ) is called a two-scale limit of the sequence {unk

}.
On the basis of estimates (2.6) and Nguetseng’s theorem we conclude that as

ε→ 0,

pε → p(x, t) weakly and two-scale in L2(Ω0
T ),

pεχε → p(f)(x, t)χ(y) two-scale in L2(ΩT ),

pεχε ⇀mp(f)(x, t) weakly in L2(ΩT ), m =
∫
Y

χ(y)dy,
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∂wε

∂t
⇀ v weakly in L2(QT ),

∂2wε

∂t2
⇀

∂v
∂t

(x, t) weakly in L2(QT ),

∂wε

∂t
→ V(x, t,y) two-scale in L2(QT ),

∂2wε

∂t2
→ ∂V

∂t
(x, t,y) two-scale in L2(QT ),

εD
(
x,
∂wε

∂t

)
→ D

(
y,V(x, t,y)

)
two-scale in L2(QT ),

wε
s → 0 strongly in W1,0

2 (ΩT ).

Moreover, ∫
QT

∫
Y

(
τ0|V|2 + τ2

0 |
∂V
∂t
|2 + |D

(
y,V)|2

)
dy dx dt 6 C0, (4.1)

where C0 is independent of τ0.
A general theory says that the two-scale limit usually depends on all variables

x, t, and y. A detailed analysis for the case µ0 = 0 ([7, Chapter 1], [10]) shows that
the two-scale limit of pressures does not depend on the variable y in Ω0

T and has a
special form in ΩT .

The similar analysis shows that

ζV = ζ v(x, t). (4.2)

In fact, the two-scale limit in (2.1) as ε→ 0 with test functions ϕ = ϕ0(x
ε )ψ(x, t),

where ϕ0(y) is 1-periodic in y function with suppϕ0 ⊂ Yf , such that ∇y · ϕ0 = 0
for y ∈ Y and ψ is a smooth function with suppψ ⊂ Ω0

T results in∫
Ω0

T

(
(A− %f e · a)ψ − pa · ∇ψ

)
dx dt = 0,

where

A =
∫
Y

τ0%f
∂V
∂t
· ϕ0dy = 〈∂V

∂t
· ϕ0〉.

Following [7, Appendix B, Lemma B.5.3] for any unit vector a there exists a smooth
function ϕ0(y) with suppϕ0 ⊂ Yf , such that ∇y · ϕ0 = 0 for y ∈ Y and 〈ϕ0〉 = a.

Due to arbitrary choice of the test function ψ and vector a the last identity
means the existence of ∇p ∈ L2(Ω0

T ) and it may be rewritten as∫
Ω0

T

(
A− (%f e−∇p) · a

)
ψ dx dt = 0.

After reintegration with respect to variables (x, t) we arrive to the integral identity∫
Y

(τ0%f
∂V
∂t
− %f e +∇p) · ϕ0dy = 0,

which is equivalent to the differential equation

τ0%f
∂V
∂t

(x, t,y) = %f e−∇p(x, t).

It proves our statement and, at the same time, the first equation in (2.7).
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Using this fact and the strong convergence of the sequence {∂w
ε
s

∂t } to zero we
obtain that

∂wε

∂t
= ζ

∂wε

∂t
+ (1− ζ)χε

∂wε

∂t
+ (1− ζ)(1− χε)∂wε

∂t
→ ζv(x, t) + (1− ζ)χ(y)V(x, t,y)

two-scale in L2(QT ) as ε→ 0, or

V(x, t,y) = ζv(x, t) + (1− ζ)χ(y)V(x, t,y). (4.3)

Thus, V = 0 in Ys and we may apply Friedrichs-Poincaré’s inequality, which to-
gether with (4.1) imply∫

QT

∫
Y

|V|2dy dx dt 6 C0

∫
QT

∫
Y

|D
(
y,V)|2

)
dx dt 6 C0. (4.4)

The two-scale limit in (2.1) as ε → 0 with test functions ϕ = ϕ0(x
ε )ψ(x, t), where

ϕ0(y) is 1-periodic in y function, such that ∇y ·ϕ0 = 0 for y ∈ Y , and suppϕ0 ⊂ Yf
and ψ is a smooth function, vanishing at t = T and at S2, results in∫

QT

a · ∇( p0 ψ) dx dt+
∫

Ω0
T

(
(τ0%f

∂v
∂t
− %f e) · aψ − pa · ∇ψ)

)
dx dt

+
∫

ΩT

(
τ0%f

∂v(f)

∂t
− %̂ e) · aψ +B ψ − p(f) a · ∇ψ

)
dx dt = 0.

(4.5)

Here
a = 〈ϕ0〉, v(f) = 〈Vχ〉, B = µ1〈D

(
y,V) : D

(
y, ϕ0)〉.

As before, we conclude that ∇p ∈ L2(Ω0
T ), ∇p(f) ∈ L2(ΩT ):∫

Ω0
T

|∇p(x, t)|2 dx dt+
∫

ΩT

|∇p(f)(x, t)|2 dx dt 6 C0, (4.6)

hold true the continuity condition (2.10) on the common boundary S0, boundary
conditions (2.12) and (2.14) on the outer boundary S, and initial condition (2.15).

For the function ψ with a compact support in ΩT (4.5) implies the integral
identity∫

Yf

(
(τ0%f

∂V
∂t

+∇p(f) − %̂ e) · ϕ0 + µ1D
(
y,V) : D

(
y, ϕ0)

)
dy = 0. (4.7)

The reintegration of this identity results in the differential equation

τ0%f
∂V
∂t
− µ1∇y · D

(
y,V) = −∇y Π−∇p(f) + %̂ e (4.8)

in the domain Yf for t > 0 and for almost all x ∈ Ω.
The term ∇y Π has appeared virtue of the condition ∇y ·ϕ0 = 0 on an arbitrary

function ϕ0.
To derive the limiting continuity equations we rewrite (1.1) in its equivalent form

as an integral identity∫
QT

∇ξ ·
(
ζ
∂wε

∂t
+ (1− ζ)

(
χε
∂wε

∂t
+ (1− χε) ∂wε

s

∂t

))
dx dt = 0, (4.9)

which holds true for any smooth function ξ vanishing at the part S1 of the boundary
S.
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The limit in (4.9) as ε→ 0 results in the integral identity∫
QT

∇ξ ·
(
ζ v + (1− ζ)v(f)

)
dx dt = 0, (4.10)

which is equivalent to the continuity equation in (2.7), continuity equation (2.8),
continuity condition (2.11) on the common boundary S0, and boundary condition
(2.13).

Finally, the limit in (4.9) as ε → 0 with test function ξ in the form ξ =
εξ0(x, t)ξ1(x

ε ), where ξ1(y) is 1-periodic smooth function and supp ξ0 ⊂ ΩT , leads
to the integral identity∫

QT

ξ0(x, t)
( ∫

Yf

∇yξ1(y) ·V(x, t,y)dy
)
dx dt = 0,

and, consequently, to the differential equation

∇y ·V = 0 (4.11)

in the domain Yf .
The representation (4.3) and the smoothness of V evidently imply the boundary

condition

V(x, t,y) = 0, y ∈ γ = ∂Yf ∩ Ys. (4.12)

To find correctly V we complete differential equations (4.8) and (4.11) and bound-
ary condition (4.12) with initial condition

V(x, 0,y) = 0, y ∈ Yf . (4.13)

Problem (4.8), (4.11)–(4.13) for τ0 = 1 has been solved in [7, Chapter 3, Theorem
3.5]. Therefore, we simply formulate the result.

Lemma 4.1. For almost all x ∈ Ω the function v(f) = 〈χV〉 satisfies equation
(2.9), where

B(f)(τ0; t) =
3∑
i=1

( ∫
Yf

V(f)
i (y, t)dy

)
⊗ ei, (4.14)

and V(f)
i , i = 1, 2, 3, are solutions to the periodic initial boundary value problem

τ0%f
∂V(f)

i

∂t
= µ1∇y · D

(
y,V(f)

i )−∇yΠ(f)
i , (y, t) ∈ Yf × (0, T ), (4.15)

∇y ·V(f)
i = 0, (y, t) ∈ Yf , t > 0, (4.16)

τ0%fV
(f)
i (y, 0) = ei, y ∈ Yf , (4.17)

V(f)
i (y, t) = 0, y ∈ γ, t > 0. (4.18)

In (4.14) a⊗ b is a second order tensor, such that

(a⊗ b) · c = a(b · c)

for any vectors a, b, and c. The estimate (2.16) follows from (4.1), (4.4), and (4.6).
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5. Proof of Theorem 2.4

Estimates (2.16), (4.1), (4.4), and (4.6) imply the strong convergence of the
sequence {pk} in W 1,0

2 (Ω0
T ), the weak compactness of the sequence {p(f,k)} in

W 1,0
2 (ΩT ), the weak compactness of the sequence {v(f,k)} in L2(ΩT ), and the weak

compactness of the sequences {Vk} and {∇yVk} in L2(ΩT × Yf ).
Let p, p(f), and v(f) be the limits of above mentioned sequences. First of all

note that in virtue of the continuity condition (2.10) functions p̃k, where p̃k = pk

in Ω0
T and p̃k = pf,k in ΩT , belongs to W 1,0

2 (QT ) and uniformly bounded there
with respect to k. Therefore, the weak limit p̃ of the sequence {p̃k} in W 1,0

2 (QT )
coincides with p in Ω0

T and with p(f) in ΩT . It means that these functions p and
p(f) still satisfy the continuity condition (2.10) on the common boundary S0 and
boundary conditions (2.12) and (2.14) on the outer boundary S.

Now we note that due to strong convergence of { 1
kvk} to zero in L2(Ω0

T ) the
function p satisfies in Ω0

T hydraulic’s equation

∇p = %f e,

which together with the boundary condition (2.12) result in the equality

p = p0(x, t) = p0(t)− %fx3,

and the boundary condition (2.19).
We do not know, how to pass to the limit as k →∞ in the equation (2.9) to get

Darcy’s law, but we may do it using the integral identity (4.7), if we rewrite it as∫ T

0

∫
Yf

((1
k
%fVk ∂ψ

∂t
+ ψ(∇p(f,k) − %̂ e)

)
· ϕ0 + ψµ1D

(
y,Vk) : D

(
y, ϕ0)

)
dydt = 0

(5.1)
with test function ψ(t) vanishing at t = 0 and T = 0.

The limit as k →∞ results in integral identities∫ T

0

ψ
(∫

Yf

(
(∇p(f) − %̂ e) · ϕ0 + ψµ1D

(
y,V) : D

(
y, ϕ0)

)
dy
)
dt = 0,∫

Yf

(
(∇p(f) − %̂ e) · ϕ0 + ψµ1D

(
y,V) : D

(
y, ϕ0)

)
dy = 0,

and the differential equation

µ1∇y · D
(
y,V) = −∇y Π−∇p(f) + %̂ e. (5.2)

It is obvious that the continuity equation (4.11) and boundary condition (4.12) for
functions Vk will remain valid for the limit function V.

Problem (5.2), (4.11), and (4.12) is well-known (see [10], [7]) and its solution
v(f) = 〈χV〉 is given by (2.18), where

B =
3∑
i=1

( ∫
Yf

V (i)(y)dy
)
⊗ ei =

3∑
i=1

〈χV (i)〉 ⊗ ei, (5.3)

and 1-periodic functions V (i)(y), i = 1, 2, 3, solve the periodic boundary value
problem

µ1∇y · D
(
y,V (i)

)
−∇Π(i) = −ei, (5.4)

∇ · V (i) = 0, y ∈ Yf , (5.5)
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V (i) = 0, y ∈ γ. (5.6)
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