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Binding polynomial in molecular self-assembly
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In the present work the concept of a binding polynomial is revisited for the most widely used case of
self-assembly of identical molecular units and results in the re-construction of a link to the grand partition
function of such a system. It is found that if the self-assembly process is not pronounced (i.e., the product of the
equilibrium constant and the monomer concentration is close to zero), the binding polynomial has the meaning
of a molecular partition function that is given by the summation over energy levels of any molecule in the system.
In other cases the concept of a binding polynomial may be misleading.
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I. INTRODUCTION

Noncovalent molecular self-assembly resulting in the for-
mation of ordered supramolecular structures is a key physico-
chemical process lying at the heart of modern supramolecular
chemistry. The simplest but the most widely used partial case
of molecular self-assembly is the aggregation of molecules.
It is often modeled by the linear polymerization scheme,
featuring a relatively simple mathematical description that
enables a link to experimental observations to be defined for
the majority of cases (for reviews see [1–3]).

It has now become a common practice to use the partition
function formalism when dealing with linear polymerizations.
The central point here is the concept of a binding polynomial
Zb, often referred to as a quasipartition function or simply a
partition function, extensively reviewed in the literature [4,5].
Here Zb is given by the summation over statistical weights
(or sometimes over concentrations) of all possible types of
complexes present in the system; for instance, for the simplest
case of indefinite linear aggregation, Zb is written as

Zb = 1 + (Kc1)2 + · · · + (Kc1)i + · · · , (1)

where c1 is the concentration of monomers, K is the equilib-
rium aggregation constant, and i ∈ 1, . . . ,∞ is the number of
molecules in an i-mer aggregate.

It is important to note that the construction of the binding
polynomial uses the law of mass action allowing the setup
of a link between the concentrations ci of various complexes,
containing i molecules

ci = c1(Kc1)i−1. (2)

In Eq. (2) the equilibrium constant K is defined as
K = ci

c1ci−1
and is assumed to be independent of the number

of molecules i in the given i-mer. The magnitudes of ci

are interconnected by the mass conservation law, i.e., c0 =∑∞
i=1 ici . It is noteworthy that in this equation [as well as

in the binding polynomial (1)] the total number of molecules
is always finite, whereas i→�, which formally contains a
contradiction. Such imprecision is quite common in the theory
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of self-assembling systems [1–3] and is artificially introduced,
enabling us to evaluate the equations for c0 and Zb as a
geometric series. It allows us to represent all expressions in
a closed and simple analytical form. In order to preserve the
finiteness of c0 (and Zb), the limit limi→∞ ci = 0 and the
associated condition Kc1 < 1 should always be valid, thus
incorporating a negligible error into Eq. (1) (as a consequence
of the artificial condition i→�). The definition of K , the use
of the mass action law, and the related assumptions around it
and discussed above lie at the heart of the concept of a binding
polynomial.

If the manual construction of Zb is difficult, special
methods can be used to obtain Zb such as transfer-matrix
formalism [6], the method of sequence-generating functions
[7], an algorithmic approach [8], and some others [9,10].
Knowledge of Zb allows us to define all necessary equilibrium
characteristics of the system, e.g., to evaluate the total number
of molecules c0 and to evaluate the total number of interfaces
(contacts) between molecules, which are required to set up a
link to experimental observables [10,11].

The simplicity in construction and evaluation of the binding
polynomial has resulted in extensive use of this approach in
various physicochemical applications, including multicompo-
nent heterocomplexations [10–13], drug-biopolymer binding
[4,5,7,9], and supramolecular polymerizations [14]. However,
it is worth recalling that Zb is not a true partition function Z

and analysis of the literature suggests that its connection to
Z seems to be lost. Blind use of Zb has resulted in several
confusing points, currently being discussed in the literature,
e.g., the role of mixing entropy in molecular self-assembly
(for a review see [15]) and the overestimation of certain types
of complexes in heteroassociation (for a review see [11,16]).
The following questions therefore arise. (i) What is the link
between Zb and Z? (ii) Is there any physical meaning of Zb as
a partition function? (iii) What are the limitations of applying
the concept of a binding polynomial to a particular system? In
the present paper we shall try to answer these questions.

II. RESULTS AND DISCUSSION

A. Grand partition function of the self-assembling system

We start by searching for the exact form of the true grand
partition function Z of noncooperatively self-assembling
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system. Let us define the self-assembling system as the system
at isobaric-isothermal equilibrium containing N0 identical
molecular units able to interact with each other and form
complexes with an unrestricted number of molecules in them.
Hence the equilibrium distribution of various oligomers is
being formed; let the number of i-type oligomers containing
i molecules be given by Ni , which are interconnected by the
mass conservation law, i.e.,

N0 =
∞∑
i=1

iNi. (3)

Each interface between the molecules in any oligomer may
be characterized by the Gibbs free-energy change (taking the
monomer as a reference state) or binding constant K , i.e.,

�G1 = −kT ln K, (4)

where k is the Boltzmann constant. This allows us to define
the net energy of the system as a sum of �G1 over all types
of oligomers, i.e., �G = ∑∞

i=1 (i − 1)Ni�G1. The latter
enables us to write the grand partition function of the system
as

Z =
∑

, . . . ,
∑

exp

over all microstates

[
−

∞∑
i=1

(i − 1)Ni

�G1

kT

]
, (5)

where the summation is executed over all microstates of the
system that are isoenergetic.

Further evaluation of Eq. (5) requires finding the total
number of isoenergetic microstates, which is equal to the
number of ways needed to make up an equilibrium of various
oligomers with the distribution N1, N2, . . . , Ni , . . . . In order
to define this number we shall reevaluate Z as given below.

Let the partition function of an arbitrary selected oligomer
made of i molecules be equal to

exp

(
− (i − 1)�G1

kT

)
, (6)

so the partition function of Ni indistinguishable oligomers is[
exp

(− (i−1)�G1
kT

)]Ni

Ni!
. (7)

It is worth noting that the molecules forming the given
oligomer now become distinguishable within this oligomer
and their positions are not interchangeable. This means that
the overall number of ways possible to form any i-mer is
not accounted for in Eqs. (6) and (7) and any cooperative
interaction of the molecules in aggregates is ignored. This
is important in view of possible dependence of K on the
number of molecules i in an aggregate and will be discussed
below.

Multiplication of Eq. (7) over i ∈ 1, . . . ,∞ yields

exp
(−∑∞

i=1 (i − 1)Ni
�G1
kT

)
N1!N2! · · · . (8)

However, Eq. (8) is not yet a grand partition function.
A constant formation and disruption of oligomers (i.e., the
dynamic equilibrium) due to thermal fluctuations (e.g., in so-
lution) must be taken into account. This means that the content
of oligomers is constantly changing and every molecule during

the course of time can be found in any oligomer. Hence,
Eq. (8) must be multiplied by N0!, which accounts for all
possible configurations of the system containing N0 molecules.
Eventually, the grand partition function takes the final form

Z = N0!

N1!N2! · · · exp

(
−

∞∑
i=1

(i − 1)Ni

�G1

kT

)
. (9)

A comparison of Eqs. (5) and (9) enables us to conclude
that the factor N0!

N1!N2!··· may be associated with the total
number of isoenergetic microstates cycled over in Eq. (5).
It is simple to show that the partition function in Eq. (9) can be
exactly evaluated into the grand partition function of linearly
polymerizing systems derived a long time ago in [17] if the
solvent molecules are explicitly taken into consideration [in
Eq. (9) the interaction with the solvent is implicitly accounted
for in �G1].

It should be noted that the Z quantity in Eq. (9) in
fact represents the grand subpartition function of specifically
the equilibrium state, which is characterized by a certain
distribution of oligomers N1, N2, . . . , Ni , . . . in the system,
corresponding to the free-energy minimum (to be referred to in
the following as the grand partition function). Evaluation of the
grand partition function including all possible equilibrium and
nonequilibrium states of the system will require summation of
Z over all allowed values of Ni in Eq. (9) and is beyond the
scope of the concept of the equilibrium binding polynomial in
Eq. (1) considered in the present work.

The grand partition function in the form of Eq. (9) is the
true partition function and is the central object that allows us
to determine all equilibrium properties of the self-assembling
systems. We shall further discuss some of these properties that
are of importance to the understanding of the physical meaning
of the binding polynomial.

B. Equilibrium distribution of oligomers

Let us use the common assumption that the self-assembly
process proceeds with negligible volume change. Taking the
set of nonaggregated monomer molecules as a reference state,
one can write the Gibbs free energy of the system as

G = G1N0 − kT ln Z

= G1N0 +
∞∑
i=1

(i − 1)Ni�G1 − kT ln
N0!

N1!N2! · · · . (10)

Recall that all oligomers are interconnected by the mass
conservation law in Eq. (3), which allows us to derive the
monomer concentration in the form N1 = N0 − ∑∞

i=2 iNi .
The remaining parameters Ni can now be considered as
independent variables.

In the equilibrium state the Gibbs free energy has a
minimum, hence the set of partial derivatives by Ni from
Eq. (10) must determine the equilibrium:

∂G

∂N2
= 0, . . . ,

∂G

∂Ni

= 0, . . . . (11)

062138-2



BINDING POLYNOMIAL IN MOLECULAR SELF-ASSEMBLY PHYSICAL REVIEW E 89, 062138 (2014)

Applying further the Stirling approximation ln Ni! ≈
Ni ln Ni − Ni , evaluation of Eq. (11) gives

∂G

∂Ni

= (i − 1)�G1 + kT ln
Ni

(N1)i
= 0. (12)

Solution of Eq. (12) results in the expression

Ni = N1(KN1)i−1, (13)

which coincides with the law of mass action [see Eq. (2)].
This result is probably the most important consequence of

the grand partition function (9) because it provides the physical
justification for using the law of mass action when constructing
the binding polynomial. However, the derivation given above
highlights the tight link between the explicit form of the grand
partition function Z and the law of mass action. If Z for a
particular system is different from that written in Eq. (9), the
validity of Eq. (13) for this system must always be verified
according to the derivation given in Eqs. (10)–(13). Hence,
one may conclude that great caution should be given to the
construction of the binding polynomial by means of Eq. (13)
for each particular system.

C. Link between the grand partition function
and the binding polynomial

Let us substitute Eq. (13) into Eq. (9) and evaluate the
grand partition function using the Stirling approximation for
the factorial and Eq. (4) for the link between �G1 and K:

Z = N0!

N1!N2! · · · exp

(
−

∞∑
i=1

(i − 1)Ni

�G1

kT

)

≈
[

N0

N1
exp

(
−1 +

∞∑
i=1

Ni

N0

)]N0

. (14)

Further simplification of Eq. (14) demands the introduction
of an assumption of a relatively small contribution from all
oligomers except the monomers, i.e.,

∞∑
i=1

Ni

N0
≈ 1 ⇒ KN1 ≈ 0, (15)

which allows reduction of the exponent down to

Z ≈
( ∞∑

i=1

Ni

N1

)N0

= [1 + KN1 + (KN1)2 + · · · + (KN1)i + · · · ]N0 = (Zb)N0 . (16)

Equation (16) provides an explicit link between the grand partition function Z and the binding polynomial Zb, which is the
answer to question (i) formulated in the Introduction.

In order to understand the physical meaning of Zb we rewrite Eq. (16) in the form

Z ≈ (Zb)N0 =
[
N1 + N2

1 e−�G1/kT + N3
1 e−2�G1/kT + · · · + Ni

1e
−(i−1)�G1/kT + · · ·

N1

]N0

. (17)

Analysis of Eq. (17) allows us to state that the sum in square
brackets is the sum over all possible energetic states of a given
molecule inside any type of oligomer that may be present in the
system. The (N1)i quantity represents the overall number of
ways needed to make up an oligomer from i molecules, which
is known as the degeneracy of the given energy level. Hence,
if the expressions in Eqs. (13) and (15) are valid, Zb has the
meaning of a molecular partition function that, when raised
to the power of the total number of molecules N0, becomes
equal to the grand partition function Z of the self-assembling
system. This knowledge is important for the correct application
of the concept of the binding polynomial in a particular
system and answers questions (ii) and (iii) formulated in the
Introduction.

D. Summary and discussion of basic assumptions behind
the concept of a binding polynomial

Based on the derivation of the Z and Zb quantities provided
above, it is possible to formulate a complete set of assumptions
behind the concept of the binding polynomial that are always
inferred when applying Zb to any particular system.

(a) The values for the pressure, temperature, and number
of molecules are constant. This assumption is incorporated by
writing the partition function in Eq. (9).

(b) There are negligible volume changes on the aggregate
or complex formation.

(c) The system is in a state of equilibrium. This assump-
tion enables us to operate with the subpartition function
[Eq. (9)] associated with a unique distribution of oligomers
N1, . . . , Ni , . . . corresponding to the free-energy minimum
[Eq. (11)] and results in the law of mass action [Eqs. (2) and
(13)], which is the principal component in the concept of the
binding polynomial.

(d) The self-assembly process is not pronounced, i.e.,
KN1 ≈ 0. This assumption allows us to reduce Z down to
Zb and provides the latter with physical meaning.

(e) The magnitudes of the equilibrium constant K are equal
for any stage of aggregation or complexation, i.e., independent
of the number of molecules i. This assumption neglects any
cooperativity in complexation and is incorporated depending
on how the partition function (6) of an i-mer is written [i.e.,
the summation of the energies �G1 over all (i – 1) interfaces
of the molecules in an aggregate]. Taking into account that, as
shown above, the law of mass action is tightly linked to the
way the grand partition function Z is defined, the application
of the binding polynomial Zb to a particular system with
cooperativity must be treated with caution. The cooperative
self- and heteroassemblies have attracted a great deal of
attention in supramolecular chemistry (see, e.g., [10,18,19]);
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this issue will not be discussed in the present paper. We must
note, however, a specific partial case of cooperativity, reviewed
in [20], which is fully compliant with the oligomer partition
function (6) and hence with the binding polynomial Zb. This is
a fundamental anticooperativity, intrinsic to any complexation
process, originating solely from the loss of degrees of freedom
on complexation and resulting in the dependence of K on i.
This dependence has been established for the self-assembly
process [20] and ligand-polymer complexation [21].

(f) Only a single way of formation of any i-mer Xi is
considered, viz., by sequential addition of a monomer X1 to
an (i – 1)-mer Xi−1, commonly written in the form of an

equilibrium reaction X1 + Xi−1
K↔ Xi [1,3,18,19]. An alterna-

tive way, often called the random association Xi + Xj
K↔ Xi+j

reviewed in [3], is ignored. Interestingly, of the six assumptions
listed here, this one seems to be the most contradictory. At least
two consequences of this assumption have been discussed in
the literature.

(i) The mixing of molecules constituting any i-mer should
additionally be taken into account [22], resulting in the
so-called mixing entropy contribution to the assembly process.
If so, the molecules in an aggregate become indistinguishable,
i.e., they are allowed to freely interchange their positions
within an aggregate in analogy to an ideal gas in a tube.
Such a view requires correction of Eq. (6) by introducing
terms accounting for the molecules’ interchanging and is not
compliant with molecular aggregate formation [15].

(ii) Although some experimental evidence of random
association has been reported several decades ago [23],
the overwhelming majority of published applications of the
binding polynomial to aggregation or complexation processes
use the sequential model of aggregation as an axiom. Recently,
indirect [22] and direct [3] statistical-thermodynamical proof
of the sequential mode of aggregation has been reported,

thereby supporting the appropriateness of using a binding
polynomial in the form of Eq. (1).

III. CONCLUSION

The use of the concept of a binding polynomial has become
a routine method in various applications dealing with nonco-
valent molecular self-assembly. However, nearly all currently
known applications of this method use it axiomatically without
a reference to a true grand partition function of the system and
to fundamental limitations of this approach.

In the present work we revisited the concept of binding
polynomial for the most widely used case of self-assembly (or
aggregation) of identical molecular units and reconstructed a
link to the grand partition function of such a system. It was
found that the common law of mass action (as a fundamental
basis of any binding polynomial) has a direct link to the grand
partition function. Hence, the validity of this law must always
be checked before constructing the binding polynomial for
each particular system. If the law of mass action is valid and if
the self-assembly process is not pronounced (i.e., KN1 ≈ 0),
the binding polynomial has the meaning of a molecular
partition function that is given by the summation over energy
levels of any molecule in the system (the energy levels are
related to the type of oligomer where the molecule may sit).
In such a case the use of the binding polynomial is justified.
If the above-stated conditions are not valid, the concept of the
binding polynomial may be misleading. This understanding is
important in the correct application of the concept of a binding
polynomial to particular systems.
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