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We consider low-rank density operatarssupported on & X N Hilbert space for arbitrary andN (M
<N), and with a positive partial transpo§ePT) ¢"A=0. For rankr (¢)<N we prove that having a PPT is
necessary and sufficient forto be separable; in this case we also provide its minimal decomposition in terms
of pure product states. It follows from this result that there is no rank-3 bound entangled states having a PPT.
We also present a necessary and sufficient condition for the separability of generic density matrices for which
the sum of the ranks a and " satisfies (¢)+r(07A)<2MN—M — N+ 2. This separability condition has
the form of a constructive check, thus also providing a pure product state decomposition for separable states,
and it works in those cases where a system of couple polynomial equations has a finite number of solutions, as
expected in most cases.

PACS numbsefs): 03.67.Hk, 03.65.Bz, 89.78.c

[. INTRODUCTION concerned with here, the approximation part is not necessary,
as for any separable state one can always find § seff;)}

Entanglement is one of the quantum properties with naf product vectors for whictkk<dim(Hg)? in the above
classical counterpart. It is closely connected to fundamentgbrmula[8].
questions of quantum mechanids?2], and to physical phe-  Several necessary conditions for separability are known:
nomena which are important for quantum information pro-werner derived a condition based on the analysis of local
cessing[3]. The relevance of entanglement effects was firstigden variables models and the mean value of the so-called
demonstrated for pure states. However, in realistic physicaipping operator[7]; the Horodeckis proposed a necessary
situations one usually deals W|t_h ml_xed states, in which PUr€riterion based onr-entropy inequalitie§9]. Peres demon-
state entanglement has been significantly weaken?d by NOISE, ted that the partial transpag® of the matrix, defined
In order to overcome the problems caused by néise, in as(m, |0 4/, vy =(n, u|o|m, v) for any fixed product ba-
order to reduce )tthe idea of distillation of entanglement in = . " .
spatially separated laboratories was introduf4f It was SIS |r.]’V.>=|e.”>A®|e">B’ must St".l be a Ie_g|t|mate _den5|ty
then proved5] that for bipartite systems of low-dimensional matrix if ¢ is sgparable[lo]. This op(_aratlonally friendly,
Hilbert spaceCMx¢N or simply MxN (that is, systems necessary .c_ond|t|on, called the positive partial transpose
with M=2 andN=2 or 3 mixed-state entanglement can (PPT) condition, turned out to be very strong.
always be distilled into its pure form. However, it turned out 500N after the Peres result, a general connection between
that in higher-dimensional system&(N>6) bound en- Positive map theory and separability was established in Ref.
tanglement[6]—which cannot be distilled, as opposed to [11], where necessary and sufficient separability conditions
free entanglement—exists. were derived in terms of positive maps. In particular, it im-

Unlike in the case of pure states, it is in general veryPlied that for systems of low dimensionM(N<6) the PPT
difficult to know whether a given mixed state is entangledcondition is also sufficient for separability. It was also shown
(inseparabmor nonentangkz)dseparabm According to the that this is not the case for systems of hlgher dimensions
definition, a state supported on a Hilbert spadgg="H, (MN>6). Later on explicit counterexamples of entangled

®Hg is separable if and only if it can be written ior  States with the PPT property were provided by means of
approximated bythe form[7] another separability criterion, based on the analysis of the

range of the density matrij8] (cf. Ref.[12]). It was then
K shown that they represent bound entangleniéht Let us
QIE pile fi)e fil, 2 p=1, (1) note that on mathematical grounds there were examples, pro-
i=1 i vided earlier[13], of elements of positive matrices cones
which can be treated as prototypes of PPT entangled states.

Where|ei 1fi> stands here for a normalized Vecter>®|fi> Sufficient conditions for Sepal’abi”ty are also known. We

e Ha®Hg. In finite-dimensional cases, the ones we will befémark that the results of Reff14] readily imply that any
state close enough to the completely random staie sepa-

rable. Thus, as quantified in Rdfl5], any mixturep = (1

*Email address: pawel@mifgate.pg.gda.pl —p)e+pm in a MXN system is separable ipb=(1
TEmail address: lewen@itp.uni-hannover.de +2/MN) ™1 or, in other words, as we wish to make explicit
*Email address: Guifre.Vidal@uibk.ac.at here, a full-rank mixed state is separable provided its small-
$Email address: Ignacio.Cirac@uibk.ac.at est eigenvalue is greater than or equal te-(2N) 1.
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On the other hand, the analysis of the range of the density We wish to remark on the importance of having separa-
matrices, first applied in the separability criterid], led to  bility conditions for low-rank density matrices, especially in
an algorithm for the optimal decomposition of mixed statesrelation to unsolved problems concerning the nature of
into separable and inseparable p4ti§], and to a systematic bound entanglemenBE). Note that such conditions are of
method of constructing examples of PPT entangled state@reat value when trying to construct states with BE. Among
and peculiar positive magd7,18. Also, the technique of the open questions we encounter the existence of BE having
diminishing the rank of a PPT density matrix by subtraction@ Nonpositive partial transpogdiPT) (see Ref[22]). Also,
of selected product vectors, which was worked out in RefWe wonder whether a finite or a vanishing amount of free

[19], turned out to be very useful. This technique and Other§ntaln%lement is riquired to asyrg;c)jtotically creatle bound en-
; ; tangled states. There are, in addition, several conjectures

have quite recently allowed one to study operationally nec- .
d y y op y oncerning bound entanglemefgee Refs.[6,17,23-25)

essary and sufficient separability conditions for states of gamon them several connected o capacites of auantum
2X N system[20]. In particular it has been shown tha all 9 P q

- channels and bound-entanglement-assisted distillation. Fi-
PPT. states of ra'_”" smaller thakare separable_(ru) the sepa- nally, we have been recently able to establish a general con-
rability of generic states such thato)+r(¢'A)<3N re-

. i nection between low-rank bound entangled states and posi-
duces to analyzing the roots of some complex polynontals e maps. This connection allows for a systematic

constructive separability criterion was derived, thus also proggnstruction of independent linear maps in arbitrary dimen-
viding the decomposition of such separable states into PUrions, including N, where the procedures based on unex-
product states and (jii) states invariant under partial trans- tendiple product bases do not wdiks]. The discussion of
pose, and those that are not “very different” from their par- this connection will be presented elsewhere.
tial transpose are necessarily separable. This paper is organized as follows: we start by generaliz-
This paper can be considered an extension and generalihg some needed results of Rg20] related to diminishing
zation of Ref.[20]. Results(i) and (i), obtained there for 2 the rank ofp by subtracting projectors on product vectors. In
X N systems are here generalized nontrivially to the case ofec. Ill we present our theorem about the separability of
M X N systems 1 <N). We show, namely, that any stage  states with ranksN. In Section IV the necessary and suffi-
supported onM XN (M=N) and with rankr(g)<N is cient separability conditions for generic matrices wi(lp)
separable if its partial transpose is positive; and the separarr (@ '2)<2MN—M—N+2 are formulated, and discussed
bility of generic PPT density matrices with(@)+r(o») in the context of X 3 systems. Finally, Sec. V contains our
<2MN-M —N+2 reduces to solving a system of coupled conclusions and acknowledgments.
polynomial equations. In both cases a pure product state de-

composition for separable states is obtained. _ I DIMINISHING OF THE RANK—GENERALIZATIONS
Throughout this paper we make use of the following defi- ) )
nition: we say that a stafe acting onM X N is supportedon Before we turn to the main results of this paper we need

M X N if this is the smallest product Hilbert space on whicht0 generalize some of those presented in [&f]. Consider

p can act. Let us introduce the local rank®,) andr(gg), @ Stateg of aMx N system satisfying "4=0. Throughout
where o g= Trago are the reduced density operators. It this papei(X),R(X),k(X), andr (X) denote the kernel, the
immediately follows from the first of the above results that'ange, the dimension of the kernel, and the rank of the op-
there is no PPT bound entanglement of rank 3. Indeed, gratorX, respectively. We will denote the orthonormal bases
rank-3 state either has at least one of the local ramkp,)  In Ha andHg, by {|a)}; and{|b))}{L,;, and by|e*) the
andr(pg) greater than 3, and in this case is distillaf®é]  complex conjugated vector g&) in the orthonormal basis
(i.e., p™ is not positive, or else can be supported on a|1)a, --.[M)a in which we perform the partial transposi-
MN<=6 or a 3x3 system, and thus is separable. This im-tion; that is, if|e) ==, a;]i}, then|e* ) =S  af[i).

plies, in particular, that the bound entangled states con- For the time being we do not requild<N. The follow-
structed with the UPB methdd 7], and those based on the ing lemma is a generalization of lemma 6 of Re] proved
chess-board structure of eigenvectf24] are optimal with there forM =2.

respect to their ranks. Lemma L1.If 3 [f)ecV, such that|a;,f)eK(g) for i
For our second main result, concerned with those PPE1,... M—1, then eitheli) |ay ,f) e K(o) or (ii)

density matrices for which the sum of ranks satisfiég)

+r(e™)<2MN—-M—N+2, we identify the eligible prod- elaw,f)=lam,9),

uct vectorg[that is, those that can appear in decomposition

(1) if p is separable with the solutions of a system of o"Alay* ,fY=lay* ,9) (2

coupled polynomial equations. We analyze these equations,

which are arguably expected to have only a finite number ofor some|g) e C".

solutions. For this case we present a construdiiee, lead- Proof. From the assumptions we have immediately
ing to a product state decompositianethod to check sepa- ¢™|a* ,f)=0 (i=1,... M—1). In particular¥|h)eCN,
rability. Also, for the same case we discuss an alternativewe have (ay* ,h|oAJa;* ,f)=0 or, equivalently,
constructive method to check separability numerically. Theséa; ,h|¢|ay ,f)=0. Since|h) is arbitrary, we have either
checks represent a necessary and sufficient condition fatatement(i) or o|ay,f)=|ay,g) for some|g)#0. The
separability. second case needs further analysis. In a similar way we can
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prove that eithep Ajay* ,f)=0 [which is still equivalent to
statementi)] or o TAlay* ,f)=|ay* ,g’) for some|g’)#0.
It remains to prove that|g’)=|g). Indeed, |g’)
=(au*|e"™ay* ,f)=(am|elay,f)=]g). The second

lemma below is also a generalization of the results from Re

[20].

Lemma 2If o satisfies the assumptions of lemma 1, and

the possibility(ii) of lemma 1 holds, then

e1=0—\ay,g)(au 9|, ©)

where A "1=(ay ,gle "Yay,g) and (i) ¢, is a PPT state
with r(ey)=r(e)—1 andr(e;)=r(e™)~1; (i) 0, is
supported either on aM—1)X(N—1) or on aM X (N
—1); and(iii) o, is separable iffo is separable.

Proof. Following corollary 1 and lemma 2 from Rg20],
we observe that

lap ,9){aw .9
Q1=0— — @
<aMag|Q |a|v|a9>

is positive, and that(o4)=r(g)—1. Then(i) follows from
taking into account that, since

N t=(ay.gle Yaw.9)=(g|f)
=(ay*,gle"™ tau* .9), (5
we have that

lap™ ,9)(am* 9|
(ay*.gle™ Yau* ,g)’

QlTA: Ta—

(6)

so that aIsogIA is positive andr(QIA)=r(QTA)—1. From
assumptions on the kernel @f it follows that all vectors
{la;, )™, belong to the kernel ob;; henceg, can be
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1

—mm)(@ﬂ, 9

1 —
W—W|g><9|—ﬂ

fand that therefore it is positivef. lemma 1 in Ref[20]).

Ill. ALL RANK- N PPT STATES SUPPORTED ON
AN MXN SYSTEM (M=N) ARE SEPARABLE

In this section we generalize the following theorem
proved in Ref[20].

Theorem(Theorem 1 of Ref[20]). Let o be a PPT state
of rank N supported on a N space. Themw is separable,
and can be written as

N
9221 e fi)(e fil, (10)

with all {|f;)} linearly independent.

We will express a density matrix in terms of its reduced
operators(ia|eo|ja) acting onHg. For instance, we will
write Eqg. (10) as

Bt
C

o >

e= ; (11)

where A=(1|p|1)=0, C=(2|p|2)=0, and B=(2|p|1).
More generally, arM X N density matrix will be expressed
as

Ell E12 ElM
El, Ex .

0= , (12
EIM EMM

where nowE;;=(i,|@|ja). We start by using the previous

embedded into 8 X (N— 1) space. On the other hand, since theorem to prove the following.

e1a=0a—Ng|g)|ay)(aml, r(@i1a) must be eitherM
=r(pop) or M—1, which finishes the proof dfi). In order to

Lemma 3.Let o be a rankN PPT state supported on a
2% N space. Then after a reversible local filtering operation,

prove (i) let us assume that is separable, and let us also the state is proportional to the matrikereafter called the

show thatp, is also(if o, is separable, then obviouspy is
also separabjeSinceg|a; ,f)=0 (i=1,... M—1), we can
always write

0= lei,fi)er fil+|aw)(an® 7, (7)

where(f|f;)=0, andz is a positive operator acting @H". If
we impose|ay ,g)=0|ay,f) we obtain|g)=7|f), and
therefore|g) e R(7). We can write

0= |, fi)(e fil +lau)aml@(n—Alg)al), (8)

so that if we show that the operaton{ \|g){g|)=0 then
we have thatp; is separable. Using Ed5), we have that
such an operator is

2XN canonical forn:

B'B

3=| g

(13

BT
| }=[B s 10,

with B normal, i.e.[B,B"]=0.

Proof . We write density matrix10) in the form of Eq.
(11). Because there is only a finite number|ef)’s in Eq.
(10), we can always find a vectéa) such thatale;)# 0 for
all i. Let this|a) be the second element of the orthonormal
basis in Alice’s space, i.e|2)=|a). The matrix

1A reversible transformation is a transformation that can be re-
versed with nonzero probability. A local filtering in Bob’s sitle
®V is then reversible if the operatdtcan be inverted, i.e., 7
exists.
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6=<a|g|a>=i:21 (ale)|?Ifi)(fil

then has the maximal rarik, since|f;) are linearly indepen-

dent. Taking the local filte/=(\/C) ~* on Bob's side(this
corresponds to sandwiching the state betweery and |
@ V"), we obtain

A BT
B I

o= : (14

which is still positive and a PPbecause any local operation

preserves the PPT propeff§]). We can write

o=3+diad A,0], (15)
where the positive matri®, from expression(13) has rank
r(2)=N as its kernelK(X) has at least dimensioN con-
taining all vectors of the type
[¢0)=1)If)+[2)[ - Bf), (16)
while its range has at least dimensibndue to the identity
entry on the diagonal. Note that djag, 0] is also positive,
because the positivity op implies that A=A—B'B=0
[27]. Now, since in additiorr (p)=r (), we also have that
R(p)=R(Z)2R(diad A,0]), that isK (diad A,0]) DK(Z).
ButK(X) is spanned by the states of Efj6), for which then
(¢¢|diad A,0]| ;) =0, which finally impliesA|f)=0 V|f).
This ends the proof of the fact thAt=0, or in other words
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c’lc D' ct
o~po=| D B'B B[, (18)
C B |

with both B and C normal and some unknowBD. Indeed,
expression(18), as well as the normality d8 andC, follow
from the fact that after a local projection by projectdétg
®l=(|k)(k|+|3)(3])®I, k=1,2 we obtain a XN state
satisfying the assumptions of lemma 3.

Now, note that (¥ o|W)=0 for |W;)=|2)|f)
—|3)|Bf). Sincep=0, we have that
0=e|¥y)=[1)|D'f-C"Bf), (19

which, asf is arbitrary, leads t® "= C'B. Thus formula(17)
holds. Finally we shall use the latter, as well as the normality
of B andC, to prove tha{B,C']=[B,C]=0. We have

c'c B'C C
oTa~pTa= C'B B'B B, (20)
ct BT |

and we can check that for anjfyeCN and for |®;)
=|2)|f)—|3)|BTf), (d¢]oTA|®;)=0. As ¢ is the PPT, this
implies that

e™|®p)=|1)|[B'.CIf) (2D)
must vanish. Since the above equation holds for arbifrfgry

we have immediately thdtB,C']=[C,B"]'=0. The nor-
mality of B and of C' implies that these operators can be

that A=B'B. This therefore proves the canonical form of decomposed as a complex linear combination of projectors

Eq. (13), but not yet the normality oB. The latter property

can be simply proven from the positivity @4, which im-
plies thatBB"—B'B=0 [27]. The latter(positive) operator

into eigenvectors. That they commute means that they actu-
ally have the same eigenvectors, and thus s8 dodC, i.e.
[B,C]=0.

has at the same time, a null trace, and therefore it must van- Lemma 5.Any PPT state supported on XN space
ish. ThusB is normal, as stated. Let us now prove the gen{M=N) satisfying that(i) r(¢)=N, (ii) in some product

eralization of lemma 3 to the case of<3 systems K
=3), and then to thé XN case, whereM <N from now
on.

basisr(E;;)=N for somei, can be transformed after a re-
versible local transformation to the canonical form

Lemma 4Let ¢ be a PPT state of rarfitin a 3x N space. 0~Z'2=[Cy, ... Cu-1.11"C1. ... Cu-1.1],
Let the reduced stateg and the entryEs; in some local (22
basis also have the same radkTheng can be transformed
using some reversible local transformation to the canonicaith [C; .C/1=[C;,C;]=0,i,j=1,... M—1.

form
o~[C,B,I]'[C,B,I], (17)

whereC andB are normal, andiB,C']=[B,C]=0.

Note that in lemma 4, in contrast to lemma 3, we assum

that on some basis(Ezg) =N. Later on, in theorem 1, we
will prove that this assumption is always satisfied.
Proof. In order to obtain the identity matrikat the diag-

onal, we use an analogous reversible local filter to the one
used in the proof of lemma 3. After this, we readily obtain

the form

Proof . This follows easily from the application of lem-
mas 3 and 4. In particular one has to use the local projections
Pal=(lk)(k|+|M}M[)@l, 1<sk<M, P'®&I=(|m){m|
+ M Y{m' [+ MY M])®1, I=sm<m’'<M. As an immedi-
ate consequence we have the following lemma.

Lemma 6.Any PPT state supported on & XN space

E(‘MsN) satisfying that(i) r(e)=N, (ii) in some product

basisr(E;)=N for somei, is separable, and can be ex-
pressed as

N
§=i§l e fi) e fil, (23
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where{|e;)} are possibly unnormalized, addf;)} are lin- by a local projection on Alice’s sid&) is an unnormalized
early independent. PPT state acting itM X N. For Bob’s reduced matridVg

Proof. We make use of lemma 5. It is easy to see that the="Trg(W), we shall consider two alternative possibiliti€s:
matrix Z'Z has nonzero eigenvectors of the fofm,b;).  r(Wg)=N, and(ii) r(Wg)<N.

Here|b;) is theith common eigenvector of all operatdEs, In case(i) we must haver(W)=N, as otherwise we
cl while [e)T=[c¥, ... cM™D 1]is a row of allith ei-  would have the fact that the global rank is less than one of
genvalues of matrice€,, ...,Cy_1,l. Thus, after some the local ranks, resulting in the distillability @f, andergoin
reversible local transformation, statebecomes violation of the PPT conditiofi6,26]. But this means thatV
N is a PPT state supported &hx N with global and local rank
~ equal toN. According to the induction assumption, it is thus
Q:;l e, bi)(e; by, (24 separable, and for some product basis has an éhfrjor
somei=2,... M+1 with rankN. But thenp has an entry
where{|b;)} are orthonormal. Reversing the previous localE;; with rankN in the same product basis, and from lemmas
filtering, we obtain Eq(23). 5 and 6 it follows immediately that it is separable.

Remark.The above procedure gives a constructive algo- Now consider caséii). If W hasr(Wg)<N, then obvi-
rithm to decompose any state which satisfies the assumptiomsisly there exist a sequence of product vectfas,f)
of the lemma. eK(W), i=2,... M+1. We immediately check that they

The main disadvantage of the above results is that all ofnust belong to kernel a#. That means that the assumptions
them contain assumptions abauiE;;)=N for somei and of the lemma 1 are fulfilled. The possibility) of this lemma
for some product basis, which as we have mentioned, are neannot hold, because otherwise one could empethto
necessary. Our main theorem is free of that assumitien (M +1)X(N—1) space, and(gg) would beN—1 instead
it shows that such ak; always exists To prove this we of N. Possibility(ii) of Lemma 1 means that can be written
have to use induction with respecttb+N=K, and use the in the form(cf. lemma 2
previous lemmas. We consider onlfo) =N, as a PPT state ,
supported orM X N cannot have smaller rank. Indeed, since e=e¢'+\1g)(1gl, 27
r(eg)=N, if r(¢)<N thenp is distillable, which implies
that oA is not positive[26].

Theorem 1.All rank-N PPT stateso supported onM
XN are separable.

Proof. We will prove that in some product basis we have,[0 R(o')
r(E;) =|_\l for somei. The separability op will follow from At the.same time it must hold thago)=N— 1, since(i)
the previous lemmas. Let us observe that the theorem and the | | . > . )
latter fact are true foM =2 and arbitraryN=2. In particular ob's space has now OnN_l, dimensions, an’(i|) r(e)
they are true foM+N=K=4 and 5. Let us assume that c&nnot be smaller thaN—1, sinceN=r(¢g=05+[g)(g|)
they hold forM + N<K. We shall now demonstrate that they @1d|g)(g| can increase at most in one unit the rankog.
also hold forM+N=K +1. All this means that the matrip’ fulfills the induction as-

To this end let us consider the casegBupported on an Sumption as M +1)+(N—1)=K (or M+(N—-1)=K—1)
(M+1)xN space, withM+1<N, r(o,)=M+1, r(gg) andr(g’)=r(og), andergoit is separable and has in some
=N, andM +N=K. In an orthonormal, product basis repre- product basiga; ,b;) the entryE/;=(a;|¢’|a;) with rank N

wherep’ is a rankN—1 PPT state supported either on an
(M+1)X(N—1) subspace or on aM X (N—1) subspace,
A1=(1g|pY1,9), and|1,g)(1g] is an unnormalized pro-
jector onto a product state such th@it|1,g) is orthogonal

sentation, state has the form of an\i +1)x (M +1) ma- ~ —1. Lemma 6 implies then that (=¢'+X|1,9)(1,9|) can
trix with NX N entries: be decomposed into
N—1
Ell ElZ e El,M 1
) ' > e fiXer fil +A|10) (1l (28
E12 E22 R R i=1
o= . (25

where|g) is linearly independent from the set @flso lin-

EI,M+1 cor ovv Emrimen early independ_emtvect(_)rs|bi>. Since the_re is only a finite
number of projectors in the decomposition above, we can
Let us consider the following/l X M submatrix ofp: always find a vectota) in Alice’s space such thate;|a)
#0#(1|e). Including such a vector in a product basis to
Exx» Ezs ... Eamsi expresse, we will obtain the wished-for rankt element
E£3 Ex ... . (ale]a). This completes the proof of the induction step, and
W(p)=W= , by induction thus completes the proof of the theorem.
Ebme1 -+ -+ Emiimen IV. SEPARABILITY CRITERIA FOR
(26) RANK ()4 RANK (0 TA)<2MN—M—N+2

resulting after removing the first row and the first column In this section we generalize the results obtained fei2
from representatiof5). As the latter action can be achieved systems in Ref.[20]. The idea is that a PPT density
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operator ¢ with r(@)+r(¢™)<2MN—M—-N+2 may of an orthonormal basi§a;)} in Alice’s space will imply

have a finite number of product vectdss,f;) in its range, that(1|a;)#0 foralli=1,... L. In this basisx, can be set
such that|ef ,f;)e R(¢"4). These product vectors are the equal to 1.

only possible candidates to appear in decomposifian(1)] Equations(33) can be rewritten as

[8]. Finding them requires solving a system of polynomial N .

equations. First we show how to solve these equations in a Alay, ....ayiel, . ...ay)|f)=0, (35

generic case(namely, when the coefficients of such equa- T . . .
tions do not happen to satisfy a large series of conditionsl\f(\;c\;:“sr_e thek(e) +k(e®)]1xN matrix A is defined as fol-

which amounts to having only a finite number of solutipns

once all the product staté$e; ,f;)}-=5" have been obtained, - M -
we present an algorithmic method to check whetheis > am(K]|
separable. This is done in a finite number of computational m=1
steps, and thus operationally solves the problem of separa-
bility for states withr(o)+r(e™")<2MN—-M—N+2 and M
finite L.
inite ;1 am<kE}9)|
.k * 0\ —
A. Eligible product vectors Alay, ... am;ag, ....ay)= M ~
_ : = > am(KY
Let the linearly independent vectdis;) and|K;) form a =1
basis in the kernel op and in the kernel ofp ", respec-
tively:
M
. * /.M
K(e)=spad|Ki),i=1,... k(e)}, (29 2, andkoy)
K(e™=spad[K;),i=1,... k(e™)}. (30 [ Dyoyxn(@) a8
=| o % .

Here we consider the case whiefp) +k(¢"A)=M+N—2.  DigeTe)xnla™)
We can always exparjt;) and|K;) in an orthonormal basis I Eq. (35) holds for somef)+0 and|e)+0, this means
in Alice’s space: that for the corresponding set afs the rank ofA is smaller

" thanN. Therefore, in order to identify eligible product vec-
" tors we have to require that at most—1 rows of A be
|Ki)= mE—O Im, k"), 31 linearly independent vectors. In what follows we restrict our-
- selves to the limiting cas&(e)+k(e™)=M+N-2, the
M others containing more restrictions and consequently less so-
A Tm lutions than this.
|Ki>_mzzo Im k). (32 Let us then také&l — 1 rows ofA, say the first ones, and let
us require that each of the remainifg—1 rows be linearly
A product vectore,f) belonging to the rangR(e) must be  dependent on them. Recall that we can useMhel vari-
orthogonal to allK;); simultaneously, if its partial complex ablesas,, ... ,ay in order to achieve this. Then parameter
conjugation belongs t®(o '), |e* ,f) must be orthogonal counting strongly suggests that we need to fix all the- 1

to all|K;). Thus the eligible product vectors are the solutions®'S in order to makeA have a rank smaller thaN, this

of k(o) +k(0TA) equations, namely, corresponding to a zero measure set of points inntiepace
[a1=1,a,, ...,ay]. We will, in addition, relate the number
(Kile,f)=0, i=1,... k(o) of solutions to the roots of complex polynomials, which un-

der generic conditions have only a finite number of roots.
(33) Numerical experience acquired for the<x® case further

~ . supports the expectation that the number of solutisigpi-
(Kile*,f)=0, i=1,... k(e™). cally finite.

Let us now expande) in the above formula as B. Generic polynomials

@ Let us discuss further sufficient conditions for the exis-

. tence of a finite set of solutions, while presenting a system-

=] & |. (34) atic method to find them once the conditions are fulfilled.
ap This method also works fde(@) + k(e ™A)<M+N—2, sim-

ply by adding more equations.
We restrict ourselves ta;=1. The reason for this is that Matrix A will have at most ranfN—1 after requiring that
we expect to find only dinite numberL of inequivalent all its rankN minors vanish. At the risk of finally finding
vectors|e; , f;) that fulfill the requirements. A generic choice more solutions than just those of Eq85), we can impose
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that onlyM — 1 of these minors vanish. The reason for doingSuppose these projectors are not linearly independent. This
so is that this will already allow us to prove that only a finite means we can fin@;c;|e;,f;){e;,f;|=0 with at least some
number of product vectors fulfill E:33) under somege-  nonvanishingc; e R. SetA=min{p;/c;}. Then the decompo-
neric circumstances. Thus we consider the determinant o$ition

Nx N submatrices oA formed by taking its firsN—1 rows

and then also one of thkl —1 remaining ones. We shall r(e)2
denote these minors b§(zy, ... Zom), i=1,... M—1, o= (pi—\c)le,fi)e fil, (39)
wherez;=q; andzj, y=aj (i=1,... M) will be taken as i=1
2(M—1) independent variablez{=zy ,,=1). Again, this
will only imply that when we now set also corresponds to a convex combination of the previous
projectors|e;, f;){e;,f;|, but with at least one of the terms
Fi(z, ... 2om)=0 @3 having vanishing weight. Now, if the remaining projectors

do not yet form a linearly independent set, we can repeat the
) ] ] same procedure and dispose of another product projector.
fori=1,... M—1, some of the solutions we find do not Thjs can be iterated until we expregsas a convex combi-
correspond to product vectors, although all feg,f;) we  nation of linearly independent product projectors.
look for are among the solutions of EG7). Consequently, once we obtain all product vectesf;)

We have 2M —1). variable;zi and the same number cR(o) such thaje® ,f,)eR(™), i=1,... L<w,we can
2(M—1) of polynomial equations for thenM —1 coming  finq out whetherp is separable by proceeding as follows.
from the minorsF(z;,z) =0 and the remainingyl —1 (i) We build all possible maximal subsets of linearly in-
from its complex conjugation, which are inequivalent to thedependent projectorse; ,f;)(e ,f;| [with at least L,

first ones as the variables are mapped according t%ma){r(e),r(QTA)} elementd Note that there is only a finite

Z—Z.w, i=1,..., M, under complex conjugation. number of subsets.

No theorem exists for complex polynomial(«,a*) (i) For each of these subsets we expresas a linear
which allows us to know the number of roots they have.combination of projectors in the subset.
However, in agenericcase, namely wheﬁ(&,&*) is not (iii ) If this is possible, then we have to see whether the
proportional to its complex conjugate, we can prove thatcoefficients of the linear combination are all positive.
only a finite number of solutions exist. In Rg20], a method We immediately have the separability criterion tlgais

to find such roots was developed for polynomials dependingeparable if all coefficients are non-negativeanleas} one
on one @ and its complex conjugate. Accordingly, from of the linear combinations described above.

P(a,a*) another polynomiaQ(«) containing all the roots

of P was obtained. Such a method admits a generalization to
the present case, which we shall discuss later by means of an o o
example when analyzing states of & 3 system. As already e note that for @ with just a finite, but large number
mentioned, we were not able to determine when a densit@f eI|g|bI_e product vectors, it may be impractical to construct
matrix ¢ will lead to a set ohongenerigpolynomials. How- all possible sqbsets of linearly mdependc_ent product projec-
ever, we expect this to be rarely the case. In what follows wd0rs as described above. In this case linear programming
will assume that the polynomials derived framaregeneric theory[28] has developed various methods to try to find a

and that therefore there is only a finite number of producgolution to whethep can be expressed as a linear combina-
vectors that can appear in E@). tion, with positive weights, of the over complete but finite set

of projectors|e;,f;)(e;,f;|. However, for this aim, we pro-

pose to use the best separable approximd@s$»n) method,
C. Separability criterion developed by us in Ref16]. It also has nice physical analo-
gies for nonseparable states, providing the expansion

D. Numerical methods

When the number of solutions of E@3) is finite, we can
formulate a necessary and sufficient separability condition 0=0s+(1—\)do,
which follows from the following general theorem.

Theorem 2(also see Refl8]). A statep of rankr (o) is
separable if it can be written as a convex combination of a
most min{r(e)r(e™? linearly independentprojectors
le;,fi)(e;,fi| onto product vectors.

Proof. The inverse implication is obvious. For the direct
implication we will assume, without loss of generality, that
r(e)<r(eo'»). Caratheodoris’ theorem then tells us timat
can be expressed as a convex combination(gf)? product

herepos=Z=;A;P; is a separable state=>;A; is maximal,

nd finally o is a state that does not have any product
vector in its range. Referen¢&6] described an efficient al-
gorithm for finding such expansion, by optimizing each of
the Ay’s individually, and each of the pairs; and A; with
respect toA;+A;. For the purpose of checking if a given
matrix is separable, the BSA method of REt6] is suffi-
cient; in the context of the present paper it is interesting to

projectors, introduce a generalization of the results of Rd6] to PPT
r(e)? stateq29].

_ Lemma 7.Let o be a PPT state. For a given set f

= iler, fie  fil. 38 i

€ ;1 piler fiXer il 39 =|e;,f;)(e;,f;|, such that the product vectorge,f;)
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eR(80), such thatlef ,f;) e R(sp™4), there exists the best 2
separable approximation @, in the form Z a5R§(a3)=0; (49
e=est(1-1)de, on the other hand we multiply E¢42) by Q3(«3) and Eq.

whereo.=3,A,P; is a separable state=3; A, is maximal, (43) by P3(a3), again subtract them, and after dividing by

and finally 50=0, and5pTA=0. Moreover, there does not ¥z W€ obtain

exist a product vectore,f)e R(8p), such that|e*,f) 2

eR(s0™). > a5Si(as)=0. (46)
The proof of the above lemma is the same as the proof in =0

Ref. [16]. Similarly, one can find an efficient algorithm for

finding the BSA, by requiring that al\; should be maximal,

ie.,

Finally, applying the same trick but now to Eq#l5) and
(46), we obtain two linear equations far,, from which a
unigue 18th-order equation far; follows. Therefore, there
-1 are at most 18 different values ag which in principle could
Aizmin(<ei ,fi|(p—_2 Aij) lei, fiy L, lead to an eligible product vector. For each such values one
171 should now still solve the three third-order equati@42)—
-1 (44) for a5, and see which solutions survive, if aﬁi}.inally,
pTa—>) AjPJ.TA) |er ,fi)‘l), (40)  for those triadg 1,a»,a3] which indeed fulfill Eqs.(42)—
J# (44), we can diagonalizeA and find Bob’s corresponding
and all pairs ofA; andA; should be maximized with respect :f)g511|8vector|f> In the kemel ofA. We have thus obtained

anngﬁcﬁf }‘o-:—rzlsforreﬁ‘im\a/vr?l?crx \;:vﬁln baeISSrebseenet)e(:grifsssv(\j/hlgr:n Before _going into the qoncIL_lsions we shall briefly di_scuss
[31] ' the question of the reIa’Flve_S|ze O(Q) andr(e™). It is
' natural to expect that this difference is not too large. How-
ever some naive intuitions must be abandorisee Ref.
E. Example: 3X3 system [30]). Here we shall make the simple observation.
We end this section by describing with an example in a ObservationLet ¢ be a PPT state. If kernel f contains
3% 3 system how to estimate the numteof eligible prod-  the range of some PPT state then the kernel op ™4 con-
uct vectors. This example illustrates how to generalize tdains the range of ™4, so thatr (¢ "A)<MN-—r (o).

(e fil

several independeni’s the method developed in R¢R0]. The above observation about rank ef follows easily
Supposer(e)<4 and r(o)<9. For r(p)=4 and from the fact that TrAB)=Tr(ATAB'4). Note thato can be
r(e'4) =9 (the least favorable casematrix A reads a separable sta{@1]. In particular, if the kernel o con-
tains any system af orthogonal product vectoisn particu-

™ (Kl + arp(kE] + ag(k3] T lar UPB set[17]) thenr (o) cannot exceed the value of

(K] + arp(K2| + ag(K3 MN-—n. The same holds i#- from our observation is a PPT

bound entangled state defined as a UPB complerfiefjt

A= (kg +ax(kd|+as(ky |, (41)  The rank of the latter does not change under partial trans-

(k}1|+a2<k§|+a3<k§| pose, so agairr (@A) cannot exceed the value N
1 ) 3 —r (o). It can be also extended in other direction: taking
| (k| + aa(ks| + as(ks| as a nontrivial PPT invariant state. Apart from alk being

. . complements of real UPB'’s, there is an other nontrivial class
SO that a}fter constructing the-a3 submatrlces!\l"z:g by tak- (provided in Ref[32]) of NX N states of that kind all having
ing the first two-rows ofA qnd one of the remaining rows at r(o)=[N(N—1)/2]+ 1. From the above discussion and the
a time, we obtain three third-order equations dgrand a: theorem 1, we immediately know, for example, that for all

3 the 3X3 PPT entangled states with the kernel containing
T T
F.=detM = kpk -0, 42 UPB complements both ranks(g'2) and r(o'2) must
! ! g‘o a2P3(@3) 42 amount to either 4 or 5, so they cannot differ much from
each othef33].

3

Fo=detM,= >, a5Q¥(a3)=0, (43) V. CONCLUSIONS
k=0

In this paper we have presented a relatively complete list
Fs=detM;=0, (44) of separability criteria for density matrices of low rank.

whereP¢(x) denotes arsth-order polynomial inx. By only

using Egs.(42) and(43) we can obtain two quadratic equa-  2ngte that, for a giverws, in principle we could find zero, one,
tions ina; as follows: on the one hand we multiply Ed2) o, or three valid values of,. For simplicity in the final estima-
by Q3(as), and Eq.(43) by P3(as), and then subtract them, tion of the numbeL of eligible product vectors we assume that to
leading to each solutionvs there corresponds at most one vadigl
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There are two problems, however, which remain open andors are at the same time product vectors in the sense of 2

are worth further studies. X2x2. (ii) In 2X2X2 spaces generic PPT states
(i) In our analysis of the kernels @f and @™ we have  with r(e)+r(e"™ +r(o™®) +r(oTc)<4x8-2x2+1

essentially used only those of their properties that are conse=29 have a finite number of product vectors in their range,

quences of the dimensionality. On the other hand, it is eXsych that the partial conjugates of those product vectors are

partial transpose operation. It would be important to investi-
gate such relations, since it would probably automatically
place much more stringent restrictions on the existence of
separable matrices of low rank.

(i) All of the results of this paper can be generalized to  This work was supported by Deutsche Forshungsgemein-
the case of multipartite systems, and in particular threeschaft (SFB 407 and Schwerpunkt “Quanteninformations-
partite systems. We have already obtained several results, bugrarbeitung’), the Gsterreichisher Fonds zur Feerung der
we leave a detailed and complete discussion of this problerwissenschaftlichen Forschun¢SFB P1), the European
to a separate publication. Let us just mention here that acFMR network ERB-FMRX-CT96-0087 project EQUIP
cording to our studies we made the following conclusidhs. (Contract No. IST-1999-1105%3and the Institute for Quan-
There are no rank PPT entangled states fbb<X NXN sys-  tum Information Gmbh. J. I. C. thanks the University of
tems.(ii) In 2X2X2 spaces PPT states of rank 4 are sepaHannover for hospitality. P. H. acknowledges the grant from
rable with respect to the 24 space of Alice and the joint Deutscher Akademisher Austauschdienst. We thank S. Kar-
space of Bob and Charles, and posses, a unique decomposas, A. Sanpera, J. Smolin, and B. Terhal for fruitful discus-
tion into a sum of four projectors onto product vectors in 2sions. We thank J. Werner for indicating to us relations to
X 4 space; they are fully separable if those four product veclinear programming theory.
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