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Operational criterion and constructive checks for the separability of low-rank density matrices

Paweł Horodecki,1,2,* Maciej Lewenstein,1,† Guifré Vidal,3,‡ and Ignacio Cirac,3,§
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We consider low-rank density operators% supported on aM3N Hilbert space for arbitraryM andN (M
<N), and with a positive partial transpose~PPT! %TA>0. For rankr (%)<N we prove that having a PPT is
necessary and sufficient for% to be separable; in this case we also provide its minimal decomposition in terms
of pure product states. It follows from this result that there is no rank-3 bound entangled states having a PPT.
We also present a necessary and sufficient condition for the separability of generic density matrices for which
the sum of the ranks of% and%TA satisfiesr (%)1r (%TA)<2MN2M2N12. This separability condition has
the form of a constructive check, thus also providing a pure product state decomposition for separable states,
and it works in those cases where a system of couple polynomial equations has a finite number of solutions, as
expected in most cases.

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Entanglement is one of the quantum properties with
classical counterpart. It is closely connected to fundame
questions of quantum mechanics@1,2#, and to physical phe-
nomena which are important for quantum information p
cessing@3#. The relevance of entanglement effects was fi
demonstrated for pure states. However, in realistic phys
situations one usually deals with mixed states, in which pu
state entanglement has been significantly weakened by n
In order to overcome the problems caused by noise~i.e., in
order to reduce it! the idea of distillation of entanglement i
spatially separated laboratories was introduced@4#. It was
then proved@5# that for bipartite systems of low-dimension
Hilbert spaceC M3C N or simply M3N ~that is, systems
with M52 and N52 or 3! mixed-state entanglement ca
always be distilled into its pure form. However, it turned o
that in higher-dimensional systems (MN.6) bound en-
tanglement@6#—which cannot be distilled, as opposed
free entanglement—exists.

Unlike in the case of pure states, it is in general ve
difficult to know whether a given mixed state is entangl
~inseparable! or nonentangled~separable!. According to the
definition, a state supported on a Hilbert spaceHAB5HA
^ HB is separable if and only if it can be written in~or
approximated by! the form @7#

%5(
i 51

k

pi uei , f i&^ei , f i u, (
i

pi51, ~1!

whereuei , f i& stands here for a normalized vectoruei& ^ u f i&
PHA^ HB . In finite-dimensional cases, the ones we will
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concerned with here, the approximation part is not necess
as for any separable state one can always find a set$uei , f i&%
of product vectors for whichk<dim(HAB)2 in the above
formula @8#.

Several necessary conditions for separability are kno
Werner derived a condition based on the analysis of lo
hidden variables models and the mean value of the so-ca
flipping operator@7#; the Horodeckis proposed a necessa
criterion based ona-entropy inequalities@9#. Peres demon-
strated that the partial transpose%TA of the matrix%, defined
as ^m,mu%TAun,n&5^n,mu%um,n& for any fixed product ba-
sis un,n&[uen&A^ uen&B , must still be a legitimate density
matrix if % is separable@10#. This operationally friendly,
necessary condition, called the positive partial transp
~PPT! condition, turned out to be very strong.

Soon after the Peres result, a general connection betw
positive map theory and separability was established in R
@11#, where necessary and sufficient separability conditio
were derived in terms of positive maps. In particular, it im
plied that for systems of low dimensions (MN<6) the PPT
condition is also sufficient for separability. It was also show
that this is not the case for systems of higher dimensi
(MN.6). Later on explicit counterexamples of entangl
states with the PPT property were provided by means
another separability criterion, based on the analysis of
range of the density matrix@8# ~cf. Ref. @12#!. It was then
shown that they represent bound entanglement@6#. Let us
note that on mathematical grounds there were examples,
vided earlier@13#, of elements of positive matrices cone
which can be treated as prototypes of PPT entangled sta

Sufficient conditions for separability are also known. W
remark that the results of Ref.@14# readily imply that any
state close enough to the completely random statep is sepa-
rable. Thus, as quantified in Ref.@15#, any mixture%̃5(1
2p)%1pp in a M3N system is separable ifp>(1
12/MN)21 or, in other words, as we wish to make explic
here, a full-rank mixed state is separable provided its sm
est eigenvalue is greater than or equal to (21MN)21.
©2000 The American Physical Society10-1
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On the other hand, the analysis of the range of the den
matrices, first applied in the separability criterion@8#, led to
an algorithm for the optimal decomposition of mixed sta
into separable and inseparable parts@16#, and to a systematic
method of constructing examples of PPT entangled st
and peculiar positive maps@17,18#. Also, the technique of
diminishing the rank of a PPT density matrix by subtracti
of selected product vectors, which was worked out in R
@19#, turned out to be very useful. This technique and oth
have quite recently allowed one to study operationally n
essary and sufficient separability conditions for states o
23N system@20#. In particular it has been shown that~i! all
PPT states of rank smaller thanN are separable;~ii ! the sepa-
rability of generic states such thatr (%)1r (%TA)<3N re-
duces to analyzing the roots of some complex polynomial~a
constructive separability criterion was derived, thus also p
viding the decomposition of such separable states into p
product states!; and ~iii ! states invariant under partial tran
pose, and those that are not ‘‘very different’’ from their pa
tial transpose are necessarily separable.

This paper can be considered an extension and gene
zation of Ref.@20#. Results~i! and ~ii !, obtained there for 2
3N systems are here generalized nontrivially to the cas
M3N systems (M<N). We show, namely, that any state%
supported onM3N (M<N) and with rank r (%)<N is
separable if its partial transpose is positive; and the sep
bility of generic PPT density matrices withr (%)1r (%TA)
<2MN2M2N12 reduces to solving a system of coupl
polynomial equations. In both cases a pure product state
composition for separable states is obtained.

Throughout this paper we make use of the following de
nition: we say that a stater acting onM3N is supportedon
M3N if this is the smallest product Hilbert space on whi
r can act. Let us introduce the local ranksr (%A) andr (%B),
where %A,B[ TrA,B% are the reduced density operators.
immediately follows from the first of the above results th
there is no PPT bound entanglement of rank 3. Indee
rank-3 stater either has at least one of the local ranksr (rA)
and r (rB) greater than 3, and in this case is distillable@26#
~i.e., rTA is not positive!, or else can be supported on
MN<6 or a 333 system, and thus is separable. This i
plies, in particular, that the bound entangled states c
structed with the UPB method@17#, and those based on th
chess-board structure of eigenvectors@21# are optimal with
respect to their ranks.

For our second main result, concerned with those P
density matrices for which the sum of ranks satisfiesr (%)
1r (%TA)<2MN2M2N12, we identify the eligible prod-
uct vectors@that is, those that can appear in decomposit
~1! if r is separable# with the solutions of a system o
coupled polynomial equations. We analyze these equati
which are arguably expected to have only a finite numbe
solutions. For this case we present a constructive~i.e., lead-
ing to a product state decomposition! method to check sepa
rability. Also, for the same case we discuss an alternat
constructive method to check separability numerically. Th
checks represent a necessary and sufficient condition
separability.
03231
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We wish to remark on the importance of having sepa
bility conditions for low-rank density matrices, especially
relation to unsolved problems concerning the nature
bound entanglement~BE!. Note that such conditions are o
great value when trying to construct states with BE. Amo
the open questions we encounter the existence of BE ha
a nonpositive partial transpose~NPT! ~see Ref.@22#!. Also,
we wonder whether a finite or a vanishing amount of fr
entanglement is required to asymptotically create bound
tangled states. There are, in addition, several conject
concerning bound entanglement~see Refs.@6,17,23–25#!
among them several connected to capacities of quan
channels and bound-entanglement-assisted distillation.
nally, we have been recently able to establish a general c
nection between low-rank bound entangled states and p
tive maps. This connection allows for a systema
construction of independent linear maps in arbitrary dim
sions, including 23N, where the procedures based on une
tendible product bases do not work@18#. The discussion of
this connection will be presented elsewhere.

This paper is organized as follows: we start by genera
ing some needed results of Ref.@20# related to diminishing
the rank ofr by subtracting projectors on product vectors.
Sec. III we present our theorem about the separability
states with rank<N. In Section IV the necessary and suffi
cient separability conditions for generic matrices withr (%)
1r (%TA)<2MN2M2N12 are formulated, and discusse
in the context of 333 systems. Finally, Sec. V contains ou
conclusions and acknowledgments.

II. DIMINISHING OF THE RANK—GENERALIZATIONS

Before we turn to the main results of this paper we ne
to generalize some of those presented in Ref.@20#. Consider
a state% of a M3N system satisfying%TA>0. Throughout
this paperK(X),R(X),k(X), andr (X) denote the kernel, the
range, the dimension of the kernel, and the rank of the
eratorX, respectively. We will denote the orthonormal bas
in HA andHB , by $uai&% i 51

M and$ubi&% i 51
N , and byue* & the

complex conjugated vector ofue& in the orthonormal basis
u1&A , . . . ,uM &A in which we perform the partial transpos
tion; that is, if ue&5( i 51

M a i u i &, thenue* &5( i 51
M a i* u i &.

For the time being we do not requireM<N. The follow-
ing lemma is a generalization of lemma 6 of Ref.@20# proved
there forM52.

Lemma 1.If ' u f &PC N, such thatuai , f &PK(%) for i
51, . . . ,M21, then either~i! uaM , f &PK(%) or ~ii !

%uaM , f &5uaM ,g&,

%TAuaM* , f &5uaM* ,g& ~2!

for someug&PC N.
Proof. From the assumptions we have immediate

%TAuai* , f &50 (i 51, . . . ,M21). In particular;uh&PC N,
we have ^aM* ,hu%TAuai* , f &50 or, equivalently,
^ai ,hu%uaM , f &50. Since uh& is arbitrary, we have eithe
statement~i! or %uaM , f &5uaM ,g& for some ug&Þ0. The
second case needs further analysis. In a similar way we
0-2
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OPERATIONAL CRITERION AND CONSTRUCTIVE . . . PHYSICAL REVIEW A 62 032310
prove that either%TAuaM* , f &50 @which is still equivalent to
statement~i!# or %TAuaM* , f &5uaM* ,g8& for someug8&Þ0.
It remains to prove that ug8&5ug&. Indeed, ug8&
5^aM* u%TAuaM* , f &5^aMu%uaM , f &5ug&. The second
lemma below is also a generalization of the results from R
@20#.

Lemma 2.If % satisfies the assumptions of lemma 1, a
the possibility~ii ! of lemma 1 holds, then

%15%2luaM ,g&^aM ,gu, ~3!

where l21[^aM ,gu%21uaM ,g& and ~i! %1 is a PPT state
with r (%1)5r (%)21 and r (%1

TA)5r (%TA)21; ~ii ! %1 is
supported either on a (M21)3(N21) or on a M3(N
21); and~iii ! %1 is separable iff% is separable.

Proof.Following corollary 1 and lemma 2 from Ref.@20#,
we observe that

%15%2
uaM ,g&^aM ,gu

^aM ,gu%21uaM ,g&
~4!

is positive, and thatr (%1)5r (%)21. Then~i! follows from
taking into account that, since

l215^aM ,gu%21uaM ,g&5^gu f &

5^aM* ,gu%TA21uaM* ,g&, ~5!

we have that

%1
TA5%TA2

uaM* ,g&^aM* ,gu

^aM* ,gu%TA21uaM* ,g&
, ~6!

so that also%1
TA is positive andr (%1

TA)5r (%TA)21. From
assumptions on the kernel of% it follows that all vectors
$uai , f &% i 51

M belong to the kernel of%1; hence%1 can be
embedded into aM3(N21) space. On the other hand, sin
%1,A5%A2l^gug&uaM&^aMu, r (%1,A) must be eitherM
5r (%A) or M21, which finishes the proof of~ii !. In order to
prove ~iii ! let us assume that% is separable, and let us als
show that%1 is also~if %1 is separable, then obviously% is
also separable!. Since%uai , f &50 (i 51, . . . ,M21), we can
always write

%5( uei , f i&^ei , f i u1uaM&^aMu ^ h, ~7!

where^ f u f i&50, andh is a positive operator acting onC N. If
we impose uaM ,g&5%uaM , f & we obtain ug&5hu f &, and
thereforeug&PR(h). We can write

%15( uei , f i&^ei , f i u1uaM&^aMu ^ ~h2lug&^gu!, ~8!

so that if we show that the operator (h2lug&^gu)>0 then
we have thatr1 is separable. Using Eq.~5!, we have that
such an operator is
03231
f.

d

h2
1

^gu f &
ug&^gu5h2

1

^guh21ug&
ug&^gu, ~9!

and that therefore it is positive~cf. lemma 1 in Ref.@20#!.

III. ALL RANK- N PPT STATES SUPPORTED ON
AN MÃN SYSTEM „MÏN… ARE SEPARABLE

In this section we generalize the following theore
proved in Ref.@20#.

Theorem.~Theorem 1 of Ref.@20#!. Let % be a PPT state
of rank N supported on a 23N space. Then% is separable,
and can be written as

%5(
i 51

N

uei , f i&^ei , f i u, ~10!

with all $u f i&% linearly independent.
We will express a density matrix in terms of its reduc

operators^ i Au%u j A& acting on HB . For instance, we will
write Eq. ~10! as

%5F Ã B̃†

B̃ C̃
G , ~11!

where Ã[^1uru1&>0, C̃[^2uru2&>0, and B̃[^2uru1&.
More generally, anM3N density matrix will be expressed
as

%5F E11 E12 . . . E1M

E12
† E22 . . . . . .

. . . . . . . . . . . .

E1M
† . . . . . . EMM

G , ~12!

where nowEi j [^ i Au%u j A&. We start by using the previou
theorem to prove the following.

Lemma 3.Let % be a rank-N PPT state supported on
23N space. Then after a reversible local filtering operatio1

the state is proportional to the matrix~hereafter called the
23N canonical form!:

S[FB†B B†

B I G5@B I#†@B I#, ~13!

with B normal, i.e.,@B,B†#50.
Proof . We write density matrix~10! in the form of Eq.

~11!. Because there is only a finite number ofuei& ’s in Eq.
~10!, we can always find a vectorua& such that̂ auei&Þ0 for
all i. Let this ua& be the second element of the orthonorm
basis in Alice’s space, i.e.,u2&5ua&. The matrix

1A reversible transformation is a transformation that can be
versed with nonzero probability. A local filtering in Bob’s sideI
^ V is then reversible if the operatorV can be inverted, i.e., ifV21

exists.
0-3
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C̃5^au%ua&5(
i 51

N

^auei&u2u f i&^ f i u

then has the maximal rankN, sinceu f i& are linearly indepen-

dent. Taking the local filterV5(AC̃)21 on Bob’s side~this
corresponds to sandwiching the state betweenI ^ V and I
^ V†), we obtain

%̃5FA B†

B I G , ~14!

which is still positive and a PPT~because any local operatio
preserves the PPT property@6#!. We can write

%̃5S1diag@D,0#, ~15!

where the positive matrixS from expression~13! has rank
r (S)5N as its kernelK(S) has at least dimensionN con-
taining all vectors of the type

uf f&5u1&u f &1u2&u2B f&, ~16!

while its range has at least dimensionN due to the identity
entry on the diagonal. Note that diag@D,0# is also positive,
because the positivity of%̃ implies that D5A2B†B>0
@27#. Now, since in additionr ( r̃)5r (S), we also have tha
R( r̃)5R(S)$R(diag@D,0#), that isK(diag@D,0#)$K(S).
But K(S) is spanned by the states of Eq.~16!, for which then
^f f udiag@D,0#uf f&50, which finally impliesDu f &50 ;u f &.
This ends the proof of the fact thatD50, or in other words
that A5B†B. This therefore proves the canonical form
Eq. ~13!, but not yet the normality ofB. The latter property
can be simply proven from the positivity of%̃TA, which im-
plies thatBB†2B†B>0 @27#. The latter~positive! operator
has at the same time, a null trace, and therefore it must
ish. ThusB is normal, as stated. Let us now prove the ge
eralization of lemma 3 to the case of 33N systems (N
>3), and then to theM3N case, whereM<N from now
on.

Lemma 4.Let % be a PPT state of rankN in a 33N space.
Let the reduced state%B and the entryE33 in some local
basis also have the same rankN. Then% can be transformed
using some reversible local transformation to the canon
form

%;@C,B,I #†@C,B,I #, ~17!

whereC andB are normal, and@B,C†#5@B,C#50.
Note that in lemma 4, in contrast to lemma 3, we assu

that on some basisr (E33)5N. Later on, in theorem 1, we
will prove that this assumption is always satisfied.

Proof. In order to obtain the identity matrixI at the diag-
onal, we use an analogous reversible local filter to the
used in the proof of lemma 3. After this, we readily obta
the form
03231
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%;%̃5FC†C D† C†

D B†B B†

C B I
G . ~18!

with both B and C normal and some unknownD. Indeed,
expression~18!, as well as the normality ofB andC, follow
from the fact that after a local projection by projectorsPk
^ I[(uk&^ku1u3&^3u) ^ I , k51,2 we obtain a 23N state
satisfying the assumptions of lemma 3.

Now, note that ^C f u%̃uC f&50 for uC f&[u2&u f &
2u3&uB f&. Since%̃>0, we have that

05%̃uC f&5u1&uD†f 2C†B f&, ~19!

which, asf is arbitrary, leads toD†5C†B. Thus formula~17!
holds. Finally we shall use the latter, as well as the norma
of B andC, to prove that@B,C†#5@B,C#50. We have

%TA;%̃TA5FC†C B†C C

C†B B†B B

C† B† I
G , ~20!

and we can check that for anyu f &PC N and for uF f&
[u2&u f &2u3&uB†f &, ^F f u%̃TAuF f&50. As % is the PPT, this
implies that

%TAuF f&5u1&u@B†,C# f & ~21!

must vanish. Since the above equation holds for arbitraryu f &,
we have immediately that@B,C†#5@C,B†#†50. The nor-
mality of B and of C† implies that these operators can b
decomposed as a complex linear combination of projec
into eigenvectors. That they commute means that they a
ally have the same eigenvectors, and thus so doB andC, i.e.
@B,C#50.

Lemma 5.Any PPT state supported on anM3N space
(M<N) satisfying that~i! r (%)5N, ~ii ! in some product
basisr (Eii )5N for some i, can be transformed after a re
versible local transformation to the canonical form

%;Z†Z5@C1 , . . . ,CM21 ,I #†@C1 , . . . ,CM21 ,I #,
~22!

with @Ci ,Cj
†#5@Ci ,Cj #50, i , j 51, . . . ,M21.

Proof . This follows easily from the application of lem
mas 3 and 4. In particular one has to use the local project
P^ I 5(uk&^ku1uM &^M u) ^ I , 1<k,M , P8^ I 5(um&^mu
1um8&^m8u1uM &^M u) ^ I , 1<m,m8,M . As an immedi-
ate consequence we have the following lemma.

Lemma 6.Any PPT state supported on anM3N space
(M<N) satisfying that~i! r (%)5N, ~ii ! in some product
basis r (Eii )5N for some i, is separable, and can be e
pressed as

%̃5(
i 51

N

uei , f i&^ei , f i u, ~23!
0-4
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where $uei&% are possibly unnormalized, and$u f i&% are lin-
early independent.

Proof. We make use of lemma 5. It is easy to see that
matrix Z†Z has nonzero eigenvectors of the formuei ,bi&.
Hereubi& is thei th common eigenvector of all operatorsCj ,
Ck

† while uei&
†5@ci

(1) , . . . ,ci
(M21) ,1# is a row of all i th ei-

genvalues of matricesC1 , . . . ,CM21 ,I . Thus, after some
reversible local transformation, stater becomes

%̃5(
i 51

N

uei ,bi&^ei ,bi u, ~24!

where$ubi&% are orthonormal. Reversing the previous loc
filtering, we obtain Eq.~23!.

Remark.The above procedure gives a constructive al
rithm to decompose any state which satisfies the assump
of the lemma.

The main disadvantage of the above results is that al
them contain assumptions aboutr (Eii )5N for some i and
for some product basis, which as we have mentioned, are
necessary. Our main theorem is free of that assumption~i.e.,
it shows that such anEii always exists!. To prove this we
have to use induction with respect toM1N5K, and use the
previous lemmas. We consider onlyr (%)5N, as a PPT state
supported onM3N cannot have smaller rank. Indeed, sin
r (%B)5N, if r (%),N then % is distillable, which implies
that %TA is not positive@26#.

Theorem 1.All rank-N PPT states% supported onM
3N are separable.

Proof. We will prove that in some product basis we ha
r (Eii )5N for somei. The separability of% will follow from
the previous lemmas. Let us observe that the theorem an
latter fact are true forM52 and arbitraryN>2. In particular
they are true forM1N5K54 and 5. Let us assume tha
they hold forM1N<K. We shall now demonstrate that the
also hold forM1N5K11.

To this end let us consider the case of% supported on an
(M11)3N space, withM11<N, r (%A)5M11, r (%B)
5N, andM1N5K. In an orthonormal, product basis repr
sentation, state% has the form of an (M11)3(M11) ma-
trix with N3N entries:

%5F E11 E12 . . . E1,M11

E12
† E22 . . . . . .

. . . . . . . . . . . .

E1,M11
† . . . . . . EM11,M11

G . ~25!

Let us consider the followingM3M submatrix of%:

W~% ![W5F E22 E23 . . . E2,M11

E23
† E22 . . . . . .

. . . . . . . . . . . .

E2,M11
† . . . . . . EM11,M11

G ,

~26!

resulting after removing the first row and the first colum
from representation~25!. As the latter action can be achieve
03231
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by a local projection on Alice’s side,W is an unnormalized
PPT state acting inM3N. For Bob’s reduced matrixWB
5TrB(W), we shall consider two alternative possibilities:~i!
r (WB)5N, and~ii ! r (WB),N.

In case ~i! we must haver (W)5N, as otherwise we
would have the fact that the global rank is less than one
the local ranks, resulting in the distillability of%, andergo in
violation of the PPT condition@6,26#. But this means thatW
is a PPT state supported onM3N with global and local rank
equal toN. According to the induction assumption, it is thu
separable, and for some product basis has an entryEii for
somei 52, . . . ,M11 with rankN. But then% has an entry
Eii with rankN in the same product basis, and from lemm
5 and 6 it follows immediately that it is separable.

Now consider case~ii !. If W has r (WB),N, then obvi-
ously there exist a sequence of product vectorsuai , f &
PK(W), i 52, . . . ,M11. We immediately check that the
must belong to kernel of%. That means that the assumptio
of the lemma 1 are fulfilled. The possibility~i! of this lemma
cannot hold, because otherwise one could embed% into
(M11)3(N21) space, andr (%B) would beN21 instead
of N. Possibility~ii ! of Lemma 1 means that% can be written
in the form ~cf. lemma 2!

%5%81lu1,g&^1,gu, ~27!

where%8 is a rankN21 PPT state supported either on a
(M11)3(N21) subspace or on anM3(N21) subspace,
l21[^1,gur21u1,g&, andu1,g&^1,gu is an unnormalized pro-
jector onto a product state such that%21u1,g& is orthogonal
to R(%8).

At the same time it must hold thatr (%B8 )5N21, since~i!
Bob’s space has now onlyN21 dimensions, and~ii ! r (%B8 )
cannot be smaller thanN21, sinceN5r (%B5%B81ug&^gu)
and ug&^gu can increase at most in one unit the rank of%B8 .
All this means that the matrix%8 fulfills the induction as-
sumption as (M11)1(N21)5K ~or M1(N21)5K21)
andr (%8)5r (%B8 ), andergo it is separable and has in som
product basisuai ,bj& the entryEii8 5^ai u%8uai& with rank N
21. Lemma 6 implies then that% (5%81lu1,g&^1,gu) can
be decomposed into

(
i 51

N21

uei , f i&^ei , f i u1lu1,g&^1,gu, ~28!

where ug& is linearly independent from the set of~also lin-
early independent! vectorsubi&. Since there is only a finite
number of projectors in the decomposition above, we c
always find a vectorua& in Alice’s space such that̂ei ua&
Þ0Þ^1ue&. Including such a vector in a product basis
express%, we will obtain the wished-for rank-N element
^au%ua&. This completes the proof of the induction step, a
by induction thus completes the proof of the theorem.

IV. SEPARABILITY CRITERIA FOR
RANK „%…¿RANK „%TA

…Ï2MNÀMÀN¿2

In this section we generalize the results obtained for 23N
systems in Ref.@20#. The idea is that a PPT densit
0-5
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operator % with r (%)1r (%TA)<2MN2M2N12 may
have a finite number of product vectorsuei , f i& in its range,
such thatuei* , f i&PR(%TA). These product vectors are th
only possible candidates to appear in decomposition@Eq. ~1!#
@8#. Finding them requires solving a system of polynom
equations. First we show how to solve these equations
generic case~namely, when the coefficients of such equ
tions do not happen to satisfy a large series of conditio
which amounts to having only a finite number of solution!;
once all the product states$uei , f i&% i 50

L,` have been obtained
we present an algorithmic method to check whetherr is
separable. This is done in a finite number of computatio
steps, and thus operationally solves the problem of sep
bility for states withr (%)1r (%TA)<2MN2M2N12 and
finite L.

A. Eligible product vectors

Let the linearly independent vectorsuKi& anduK̃ i& form a
basis in the kernel of% and in the kernel of%TA, respec-
tively:

K~% !5span$uKi&,i 51, . . . ,k~% !%, ~29!

K~%TA!5span$uK̃ i&,i 51, . . . ,k~%TA!%. ~30!

Here we consider the case whenk(%)1k(%TA)>M1N22.
We can always expanduKi& anduK̃ i& in an orthonormal basis
in Alice’s space:

uKi&5 (
m50

M

um,ki
m&, ~31!

uK̃ i&5 (
m50

M

um,k̃i
m&. ~32!

A product vectorue, f & belonging to the rangeR(%) must be
orthogonal to alluKi&; simultaneously, if its partial complex
conjugation belongs toR(%TA), ue* , f & must be orthogona
to all uK̃ i&. Thus the eligible product vectors are the solutio
of k(%)1k(%TA) equations, namely,

^Ki ue, f &50, i 51, . . . ,k~% !,

~33!

^K̃ i ue* , f &50, i 51, . . . ,k~%TA!.

Let us now expandue& in the above formula as

ue&5F a1

A

aM

G . ~34!

We restrict ourselves toa151. The reason for this is tha
we expect to find only afinite number L of inequivalent
vectorsuei , f i& that fulfill the requirements. A generic choic
03231
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of an orthonormal basis$uai&% in Alice’s space will imply
that ^1uai&Þ0 for all i 51, . . . ,L. In this basisa1 can be set
equal to 1.

Equations~33! can be rewritten as

A~a1 , . . . ,aM ;a1* , . . . ,aM* !u f &50, ~35!

where the@k(%)1k(%TB)#3N matrix A is defined as fol-
lows:

A~a1 , . . . ,aM ;a1* , . . . ,aM* ![3
(

m51

M

am^k1
mu

. . .

(
i 51

M

am^kk(%)
m u

(
i 51

M

am* ^k̃1
mu

. . .

(
i 51

M

am* ^k̃k(%TA)
m u

4
[F Dk(%)3N~a!

D̃k(%TB)3N~a* !
G . ~36!

If Eq. ~35! holds for someu f &Þ0 andue&Þ0, this means
that for the corresponding set ofa ’s the rank ofA is smaller
thanN. Therefore, in order to identify eligible product vec
tors we have to require that at mostN21 rows of A be
linearly independent vectors. In what follows we restrict ou
selves to the limiting casek(%)1k(%TA)5M1N22, the
others containing more restrictions and consequently less
lutions than this.

Let us then takeN21 rows ofA, say the first ones, and le
us require that each of the remainingM21 rows be linearly
dependent on them. Recall that we can use theM21 vari-
ablesa2 , . . . ,aM in order to achieve this. Then paramet
counting strongly suggests that we need to fix all theM21
a ’s in order to makeA have a rank smaller thanN, this
corresponding to a zero measure set of points in thea-space
@a151,a2 , . . . ,aM#. We will, in addition, relate the numbe
of solutions to the roots of complex polynomials, which u
der generic conditions have only a finite number of root
Numerical experience acquired for the 23N case further
supports the expectation that the number of solutionsis typi-
cally finite.

B. Generic polynomials

Let us discuss further sufficient conditions for the ex
tence of a finite set of solutions, while presenting a syste
atic method to find them once the conditions are fulfille
This method also works fork(%)1k(%TA),M1N22, sim-
ply by adding more equations.

Matrix A will have at most rankN21 after requiring that
all its rank-N minors vanish. At the risk of finally finding
more solutions than just those of Eqs.~35!, we can impose
0-6
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that onlyM21 of these minors vanish. The reason for doi
so is that this will already allow us to prove that only a fin
number of product vectors fulfill Eq.~33! under somege-
neric circumstances. Thus we consider the determinan
N3N submatrices ofA formed by taking its firstN21 rows
and then also one of theM21 remaining ones. We sha
denote these minors byFi(z1 , . . . ,z2M), i 51, . . . ,M21,
wherezj[a j andzj 1M[a j* ( i 51, . . . ,M ) will be taken as
2(M21) independent variables (z15zM11[1). Again, this
will only imply that when we now set

Fi~z1 , . . . ,z2M !50 ~37!

for i 51, . . . ,M21, some of the solutions we find do no
correspond to product vectors, although all theuei , f i& we
look for are among the solutions of Eq.~37!.

We have 2(M21) variableszi and the same numbe
2(M21) of polynomial equations for them,M21 coming
from the minorsFi(z1 ,z2M)50 and the remainingM21
from its complex conjugation, which are inequivalent to t
first ones as the variables are mapped according
zi↔zi 1M , i 51, . . . , M, under complex conjugation.

No theorem exists for complex polynomialsP(aW ,aW * )
which allows us to know the number of roots they hav
However, in agenericcase, namely whenP(aW ,aW * ) is not
proportional to its complex conjugate, we can prove t
only a finite number of solutions exist. In Ref.@20#, a method
to find such roots was developed for polynomials depend
on one a and its complex conjugate. Accordingly, from
P(a,a* ) another polynomialQ(a) containing all the roots
of P was obtained. Such a method admits a generalizatio
the present case, which we shall discuss later by means o
example when analyzing states of a 333 system. As already
mentioned, we were not able to determine when a den
matrix % will lead to a set ofnongenericpolynomials. How-
ever, we expect this to be rarely the case. In what follows
will assume that the polynomials derived from% aregeneric,
and that therefore there is only a finite number of prod
vectors that can appear in Eq.~1!.

C. Separability criterion

When the number of solutions of Eq.~33! is finite, we can
formulate a necessary and sufficient separability condi
which follows from the following general theorem.

Theorem 2~also see Ref.@8#!. A state% of rank r (%) is
separable if it can be written as a convex combination o
most min$r(%)2,r(%TA)2% linearly independentprojectors
uei , f i&^ei , f i u onto product vectors.

Proof. The inverse implication is obvious. For the dire
implication we will assume, without loss of generality, th
r (%)<r (%TA). Caratheodoris’ theorem then tells us that%
can be expressed as a convex combination ofr (%)2 product
projectors,

%5 (
i 51

r (%)2

pi uei , f i&^ei , f i u. ~38!
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Suppose these projectors are not linearly independent.
means we can find( ici uei , f i&^ei , f i u50 with at least some
nonvanishingciPR. Setl[min$pi /ci%. Then the decompo-
sition

%5 (
i 51

r (%)2

~pi2lci !uei , f i&^ei , f i u, ~39!

also corresponds to a convex combination of the previ
projectorsuei , f i&^ei , f i u, but with at least one of the term
having vanishing weight. Now, if the remaining projecto
do not yet form a linearly independent set, we can repeat
same procedure and dispose of another product proje
This can be iterated until we express% as a convex combi-
nation of linearly independent product projectors.

Consequently, once we obtain all product vectorsuei , f i&
PR(%) such thatuei* , f i&PR(%TA), i 51, . . . ,L,`, we can
find out whether% is separable by proceeding as follows.

~i! We build all possible maximal subsets of linearly i
dependent projectorsuei , f i&^ei , f i u @with at least L0
[max$r(%),r(%TA)% elements#. Note that there is only a finite
number of subsets.

~ii ! For each of these subsets we express% as a linear
combination of projectors in the subset.

~iii ! If this is possible, then we have to see whether
coefficients of the linear combination are all positive.

We immediately have the separability criterion that% is
separable if all coefficients are non-negative in~at least! one
of the linear combinations described above.

D. Numerical methods

We note that for a% with just a finite, but large numberL
of eligible product vectors, it may be impractical to constru
all possible subsets of linearly independent product pro
tors as described above. In this case linear programm
theory @28# has developed various methods to try to find
solution to whether% can be expressed as a linear combin
tion, with positive weights, of the over complete but finite s
of projectorsuei , f i&^ei , f i u. However, for this aim, we pro-
pose to use the best separable approximation~BSA! method,
developed by us in Ref.@16#. It also has nice physical analo
gies for nonseparable states, providing the expansion

%5%s1~12l!d%,

where%s5( iL i Pi is a separable state,l5( iL i is maximal,
and finally d% is a state that does not have any produ
vector in its range. Reference@16# described an efficient al
gorithm for finding such expansion, by optimizing each
the L i ’s individually, and each of the pairsL i andL j with
respect toL i1L j . For the purpose of checking if a give
matrix is separable, the BSA method of Ref.@16# is suffi-
cient; in the context of the present paper it is interesting
introduce a generalization of the results of Ref.@16# to PPT
states@29#.

Lemma 7.Let % be a PPT state. For a given set ofPi
5uei , f i&^ei , f i u, such that the product vectorsuei , f i&
0-7
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PR(d%), such thatuei* , f i&PR(d%TA), there exists the bes
separable approximation of%, in the form

%5%s1~12l!d%,

where%s5( iL i Pi is a separable state,l5( iL i is maximal,
and finally d%>0, andd%TA>0. Moreover, there does no
exist a product vectorue, f &PR(d%), such that ue* , f &
PR(d%TA).

The proof of the above lemma is the same as the proo
Ref. @16#. Similarly, one can find an efficient algorithm fo
finding the BSA, by requiring that allL i should be maximal,
i.e.,

L i5minS ^ei , f i uS r2(
j Þ i

L j Pj D 21

uei , f i&
21,

^ei* , f i uS rTA2(
j Þ i

L j Pj
TAD 21

uei* , f i&
21D , ~40!

and all pairs ofL i andL j should be maximized with respec
to L i1L j . This requirement can also be expressed in
analytical form forL ’s, which will be presented elsewher
@31#.

E. Example: 3Ã3 system

We end this section by describing with an example in
333 system how to estimate the numberL of eligible prod-
uct vectors. This example illustrates how to generalize
several independenta ’s the method developed in Ref.@20#.

Suppose r (%)<4 and r (%TA)<9. For r (%)54 and
r (%TA)59 ~the least favorable case!, matrix A reads

A5F ^k1
1u1a2^k1

2u1a3^k1
3u

^k2
1u1a2^k2

2u1a3^k2
3u

^k3
1u1a2^k3

2u1a3^k3
3u

^k4
1u1a2^k4

2u1a3^k4
3u

^k5
1u1a2^k5

2u1a3^k5
3u

G , ~41!

so that after constructing the 333 submatricesA1,2,3 by tak-
ing the first two rows ofA and one of the remaining rows a
a time, we obtain three third-order equations fora1 anda2:

F15detM1[(
k50

3

a2
kP3

k~a3!50, ~42!

F25detM2[(
k50

3

a2
kQ3

k~a3!50, ~43!

F35detM350, ~44!

wherePs(x) denotes ansth-order polynomial inx. By only
using Eqs.~42! and ~43! we can obtain two quadratic equa
tions ina2 as follows: on the one hand we multiply Eq.~42!
by Q3

3(a3), and Eq.~43! by P3
3(a3), and then subtract them

leading to
03231
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a

o

(
k50

2

a2
kR6

k~a3!50; ~45!

on the other hand we multiply Eq.~42! by Q3
0(a3) and Eq.

~43! by P3
0(a3), again subtract them, and after dividing b

a2 we obtain

(
k50

2

a2
kS6

k~a3!50. ~46!

Finally, applying the same trick but now to Eqs.~45! and
~46!, we obtain two linear equations fora2, from which a
unique 18th-order equation fora3 follows. Therefore, there
are at most 18 different values ofa3 which in principle could
lead to an eligible product vector. For each such values
should now still solve the three third-order equations~42!–
~44! for a2, and see which solutions survive, if any.2 Finally,
for those triads@1,a2 ,a3# which indeed fulfill Eqs.~42!–
~44!, we can diagonalizeA and find Bob’s corresponding
local vectoru f & in the kernel ofA. We have thus obtained
L<18.

Before going into the conclusions we shall briefly discu
the question of the relative size ofr (%) and r (%TA). It is
natural to expect that this difference is not too large. Ho
ever some naive intuitions must be abandoned~see Ref.
@30#!. Here we shall make the simple observation.

Observation.Let % be a PPT state. If kernel of% contains
the range of some PPT states, then the kernel of%TA con-
tains the range ofsTA, so thatr (%TA)<MN2r (sTA).

The above observation about rank of% follows easily
from the fact that Tr(AB)5Tr(ATABTA). Note thats can be
a separable state@31#. In particular, if the kernel of% con-
tains any system ofn orthogonal product vectors~in particu-
lar UPB set@17#! then r (%TA) cannot exceed the value o
MN2n. The same holds ifs from our observation is a PPT
bound entangled state defined as a UPB complement@17#.
The rank of the latter does not change under partial tra
pose, so againr (%TA) cannot exceed the value ofMN
2r (s). It can be also extended in other direction: takings
as a nontrivial PPT invariant state. Apart from alls ’s being
complements of real UPB’s, there is an other nontrivial cla
~provided in Ref.@32#! of N3N states of that kind all having
r (s)5@N(N21)/2#11. From the above discussion and th
theorem 1, we immediately know, for example, that for
the 333 PPT entangled states with the kernel contain
UPB complements both ranksr (%T2) and r (%T2) must
amount to either 4 or 5, so they cannot differ much fro
each other@33#.

V. CONCLUSIONS

In this paper we have presented a relatively complete
of separability criteria for density matrices of low ran

2Note that, for a givena3, in principle we could find zero, one
two, or three valid values ofa2. For simplicity in the final estima-
tion of the numberL of eligible product vectors we assume that
each solutiona3 there corresponds at most one valida2.
0-8
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There are two problems, however, which remain open
are worth further studies.

~i! In our analysis of the kernels of% and %TA we have
essentially used only those of their properties that are co
quences of the dimensionality. On the other hand, it is
pectable that both kernels are structurally related through
partial transpose operation. It would be important to inve
gate such relations, since it would probably automatica
place much more stringent restrictions on the existence
separable matrices of low rank.

~ii ! All of the results of this paper can be generalized
the case of multipartite systems, and in particular thr
partite systems. We have already obtained several results
we leave a detailed and complete discussion of this prob
to a separate publication. Let us just mention here that
cording to our studies we made the following conclusions.~i!
There are no rank-N PPT entangled states forN3N3N sys-
tems.~ii ! In 23232 spaces PPT states of rank 4 are se
rable with respect to the 234 space of Alice and the join
space of Bob and Charles, and posses, a unique decom
tion into a sum of four projectors onto product vectors in
34 space; they are fully separable if those four product v
.
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tors are at the same time product vectors in the sense
3232. ~iii ! In 23232 spaces generic PPT stat
with r (%)1r (%TA)1r (%TB)1r (%TC)<438223211
529 have a finite number of product vectors in their ran
such that the partial conjugates of those product vectors
in the corresponding ranges of partial transposes.
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