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Bichromatic beam splitter for three-level atoms
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We investigate schemes for the clean splitting of beams of three-level atoms using two standing-
wave laser fields within an optical cavity. The proposed beam splitter is shown to work for atoms
in the A, ladder, and V configurations. For appropriate values of Rabi frequencies and detunings,
we obtain a triangular type of potential for the atomic states of interest. As well as modeling the
coherent evolution of the systems, we have used quantum Monte Carlo wave-function methods to
model the effects of spontaneous emission on the resulting diffraction pattern, finding significant
differences between the three configurations. We also investigate the limits of the Raman-Nath
approximation for our systems, using the symmetric split-operator technique to include the effects
of the kinetic term in the Hamiltonian. We also present the results of calculations in which the
split output beams are recombined, demonstrating the expected interference for differently prepared
input beams. In comparison with two-level beam splitters using a single standing wave, we obtain a
superior splitting, while, in comparison with magneto-optical beam splitters, our system possesses
the worthwhile practical advantages of experimental simplicity.

PACS number(s): 03.75.Be, 42.50.Vk

I. INTRODUCTION

The mechanical manipulation of atoms by light is a
field of active interest, including such processes as laser
cooling, atomic focusing, and beam splitting [1,2]. Al-
though interference experiments were first performed for
electrons and neutrons, there are advantages inherent in
the interferometry of neutral atoms, notably the fact that
the atoms have extra internal degrees of &eedom which
can be probed to make extra information available. The
greater mass of atoms means that they are also more sen-
sitive to gravitational efFects, but also has the effect of
shortening the de Broglie wavelength. Interference ex-
periments with neutral atoxns have recently been demon-
strated [3—6].

Beam splitters are of importance for atomic interfer-
ometry, which requires the coherent splitting of an atomic
beam. A beam of neutral atoms may be split into
different momentum components by interaction with a
standing-wave light Geld. Depending on the spatial ex-
tent of the atomic wave packet in comparison with the
optical wavelength, this proceeds through either sym-
metrical diffraction or the optical Stern-Gerlach efFect.
Diffraction from a single standing-wave light field does
not result in the splitting of a single beam into two out-
put beams, but spreads the input atomic beam into sev-
eral momentum components. The diffracted momentum
peaks are further smeared out by spontaneous emission
processes [7,8]. Although the optical Stern-Gerlach effect
can perform a relatively clean splitting into two compo-
nents, each of these corresponds to a difFerent internal
state [9], making it unsuitable for interferometry.

The principal requirement of an atomic interferome-
ter is that an atomic beam be split into two components
with a momentum separation much larger than the mo-

mentum spread of each component. Such a system is
given by the magneto-optical beam splitter suggested by
Pfau et aL [10] and Ovchinnikov et al. [11],which passes
the atomic beam through a potential which is closely tri-
angular in form. It has been successfully experimentally
demonstrated by Pfau et al. [12]. The magneto-optical
beam splitter requires a combination of magnetic and
optical fields to produce the desired potentials. Mag-
netic fields, however, are not always desirable in interfer-
ornetric applications, so we have sought a system which
can produce similar potentials using only optical fields.
Grimm et aL [13] have proposed a coherent beam split-
ter for two-level atoms, based on a bichromatic standing
light wave, which gives clean, large-angle splitting with-
out being restricted to the Raman-Nath regime.

Our analysis in this paper is based on a proposal uti-
lizing a bichromatic optical standing wave as a beam
splitter for three-level atoms in the A-configuration [14].
We present a comparative analysis of this system for the
A, ladder, and V atomic configurations, extending the
analysis presented in Ref. [14] to include the effects of
spontaneous emission, the Gaussian profile of the laser
fields, and the finite spatial extent of the input atomic
wave packet. We also investigate the effects of transverse
atomic motion within the optical potentials, so that this
work is not confined to the Raman-Nath regime.

The bichromatic optical beam splitter has many fea-
tures in common with the magneto-optical beam split-
ter, the important feature of both systems being the fact
that the atoms experience an almost triangular potential
rather than the sinusoidal shape given by a single stand-
ing wave. This triangular potential splits the atomic
beam into two widely separated momentum components,
which, although composed of a number of diffraction or-
ders, are much less wide in momentum space than the dis-
tance which separates them. Janicke and Wilkens have
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recently presented an analysis of the magneto-optical
beam splitter which includes the effects of long interac-
tion times outside the Raman-Nath regime and the effects
of spontaneous emission after the atom has left the in-
teraction region [15]. While the band structure method
used by Janicke and Wilkens is a more exact treat-
ment for long interaction times than the split-operator
method [16] used in our treatment, we have included the
effects of spontaneous emission within the interaction re-
gion, which becomes important when the interaction time
is comparable to the spontaneous emission lifetime.

monoenergetic atomic b

output atomic distribution

II. THE SYSTEM

Our proposal for a beam splitter utilizes two standing-
wave optical fields with a relative phase shift of vr/2,
which, for the appropriate detunings and Rabi &equen-
cies, causes the atomic beam, when prepared in the cor-
rect eigenstate, to experience a triangular potential. A
phase shift beween the two fields other than ~/2 causes
asymmetric splitting, with different amounts of added
momentum and different proportions of the input beam
in each of the split components. We do not investigate
this situation further in this paper. We examine the per-
formance of our system using three-level atoms in the lad-
der, A, and V con6gurations. As expected, we show that
the coherent parts of the atomic evolution are very simi-
lar, but the different spontaneous decay channels open to
each con6guration might be expected to affect the noise
properties of the three con6gurations differently. We in-
vestigate this hypothesis using quantum Monte Carlo
wave-function simulation techniques. We also investi-
gate the extent of the interaction time over which the
Raman-Nath approximation retains its validity, using the
symmetrized fast Fourier transform split-operator tech-
nique [16]. As well as the splitting of the input atomic
beam, it is important for practical atomic interferometry
that some degree of coherence be preserved between the
two split components. We have therefore investigated the
interference &inges created when the two split compo-
nents are recombined, 6nding that there are limitations
placed on the transverse momentum spread of the input
beam if significant interference is to be observed.

The systems of the atoms and fields are as diagram-
matically represented in Fig. 1, with the polarization
of each standing-wave field chosen so that it can affect
only the one transition. The input atomic beam and
the standing-wave light 6eld are both treated as having
Gaussian pro6les. We have assumed the atomic beam
to be monoenergetic, neglecting the differing interaction
times for individual atoms which would result &om a 6-
nite longitudinal b,v/v. We would expect to see a sxnall
broadening of the two split peaks if this effect were in-
cluded. Our analysis is two dimensional, with the atomic
beam travelling in the x direction and the two standing
waves being formed in the z direction. We have assumed
that the detection apparatus is sufBciently far &om the
light field that we can treat it as being at in6nity, so that
the momentum distribution upon leaving the Geld has
the same form as the atomic position distribution at the

two standing wave fields

FIG. 1. Simpli6ed schematic of the proposed experimental
apparatus for the bichromatic beam splitter.

detector. This also means that all atoms will arrive at
the detector in their ground states.

The three different atomic con6gurations are as shown
in Fig. 2. Since we forbid two-photon transitions, it can
be seen that the different con6gurations are topologically
identical. The &equencies of the laser fields applied to the
atoms are represented by u~, the detuning of these 6elds
from resonance by Lz, the effective Rabi &equencies by
O~, and the respective spontaneous emission rates by pz,
in all of which j = 1,2. The three basis states used to rep-
resent the combined system of atom and 6elds are slightly

.L.

l2)

I2)

l2)

l3)

(c)
FIG. 2. The three different atomic systems. The Rabi fre-

quencies imposed on each transition are labeled A~, A~ repre-
sent the detunings from each transition, and p~ represent the
spontaneous emission rates from each level.
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difFerent for the three configurations. If we use l2, m, n)
for all three configurations, we find that ll, m+ I, n) can
be used for the ladder and A systems and l3, m, n —1)
for the ladder and V systems. For the remaining states,
we use ll, m —1, n) for the V system and l3, m, n+ 1) for
the A system. In all these, m represents the number of
photons in the laser Geld with &equency uI and n refers
to uq. We assume that m and n are large enough so that
m m —1 and n —n —1. We will refer to these states
via the shorthand notation ll), l2), and l3).

2AI
O*, s»kz

2 p

OI sinkz 0
0 02 sin(kz + P)

02 sin(kz + P) 2A2

and

In a similar manner we develop the effective semiclas-
sical Hamiltonians for the other two systems:

III. COHERENT EVOLUTION

h
Hv ———

2

2LI O~ sin kz 0
Ai sin kz 0 02 sin(kz + p)

0 02 sin(kz + P) 2A2

The coherent part of the systems' evolution can be
analyzed via the time dependent Schrodinger equation,
using the electric dipole and rotating-wave approxima-
tions. Since we are working in the Raman-Nath regime
at this stage, we neglect the kinetic term in the atomic
Hamiltonian. Since the process for all three configura-
tions is almost identical, we will outline the derivation
of the Hamiltonian for the ladder system only. Using a
and at as the boson operators for the laser field asso-
ciated with cuI, and b and bt for ~2, we can write the
Hamiltonian as

R = Rf + R~ + Ri~t,

where the Hamiltonian for the free fields is

RJ = a(~, ata + ~2btt)

The atomic Hamiltonian is

Ru ~((~1 + +1) a 22 + (~l + ld2 + +1 + +2) 033) (3)

and the interaction Hamiltonian is

'R;„, = —((02ig, a+ o„g,a ) sinkz
2

+ (~r32g2b + ir23g2b ) sin(kz + 4'))i

The effective position dependent Hamiltonian can now
be used to calculate the time development of the atomic
wave function in the position representation as it crosses
the standing-wave Geld with transit time t. Since
['R(t), 'R(t')] = OVt, t', we can write

t
4(z, t) = @(z,o) exp 'Rdt

&om which the momentum probability distribution at
time t, equivalent to the far-Geld position distribution, is
obtained via the absolute square of the Fourier transform,

IC(» t)l' = l~(+(z, t))I2

Since we are investigating three-level systems, we Gnd
that the Hamiltonian has three eigenpotentials, corre-
sponding to three different atomic eigenstates. For the
correct choice of Rabi &equencies and detunings, we find
that the three potentials come together via avoided cross-
ings at certain points and the middle potential has a
shape which is very close to triangular, Fig. 3. The bot-
tom eigenvalue can be seen to approximate a series of

in which the o.;~ are the atomic population and coher-
ence operators, g~ are the coupling constants for the ap-
propriate fields and transitions, P is the phase difference
between the two standing waves, and k can be taken as
the average wave number for the two fields. A condi-
tion which must be satisfied here is that k kI k2
so that the correct phase relationship is preserved across
the interaction region. This would put experimental con-
straints on the choice of atoms.

We can now develop an effective semiclassical Hamil-
tonian which, after discarding a constant diagonal term,
can be written in matrix form as

0 OI sin kz 0
Oi sin kz 2b, i 02 sin(kz + P)

0 02 sin(kz+ P) 2(Ai + A2)

3
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in which gIa and g2b have been changed to their respec-
tive semiclassical equivalents, OI and O2.

FIG. 3. The eigenpotentials for the ladder Hamiltonian,
plotted as a function of the longitudinal distance across the
light 6eld, in units of the laser wavelength. The important
parameters are lAzl = 2~2lb, ~ l, with b,~

= 1 for the ladder
system. The two detunings have the same magnitude, but
must be chosen with opposite sign for the other two systems.
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FIG. 4. DifFraction pattern from coherent evolution only,
which is the same for all three systems. The atomic wave
packet has a standard deviation of two laser wavelengths,
while the atomic crossing time across the 1/e half-width is

harmonic oscillator potentials, a property which has also
been used by the authors in an investigation of techniques
for atom lithography [17]. For all three configurations,
the optimum choice of Rabi frequency, A~, is 2~2~A~~.
For all three systems, the size of the two detunings must
be equal, but, while the ladder system requires the two
to have the same sign, they must be opposite in sign for
the other two configurations.

The atoms will, of course, only experience the trian-
gular potential if they are in the correct eigenstate. For
all three configurations we find that the eigenstate of the
triangular potential, as the Rabi &equencies go to zero,
becomes ~2). We can therefore take advantage of the
fact that, if the atoms are not traveling too fast, those
that enter the field in ~2) will tend to adiabatically follow
the potential as it varies over the Gaussian profile of the
standing wave. In numerical investigations of the coher-
ent evolution we found that, for atoms prepared in ~2),
over 90'%%uo would exit the field in the same state, indicat-
ing a high level of adiabaticity. The Gaussian profile of
real standing waves also means that the atoms will only
experience the proper triangular potential over a small
part of their transit time. By comparison with theoreti-
cal fields with a to@hat profile, this reduces the predicted
amount of splitting for the same interaction time.

Our numerical investigations use Gaussian profiles for
both the atomic wave packet and the light field. In the re-
sults reproduced in Fig. 4, the atomic wave packet has an
amplitude distribution spatial standard. deviation of two
laser wavelengths. In the &arne which follows the longitu-
dinal motion of the atom across the light field, the Gaus-
sian intensity variation of the standing-wave Beld gives
rise to an effective temporal variation. This variation
is also of Gaussian form and has a standard deviation of
18~2~A~, with the field extending over +4.25 standard
deviations. The value of 18~K~ i corresponds closely to
the atomic crossing time over the 1/e half-width which is
often. used to characterize a laser beam experimentally.
The Rabi &equencies at the peak of the Gaussian are set

at 1.1 times the optimal value in an attempt to have the
atoms experience the desired potential for a worthwhile
time interval. We have found by integration of the po-
tential across the Beld that the accumulated phase shift
is still reasonably close to the optimum triangular shape
for our Gaussian field. Although Fig. 4 is specifically for
ladder atoms, the momentum distributions for the other
two configurations are identical until we look at the ef-
fects of spontaneous emission. The atoms are introduced
to the field in ~2), and most of the resultant distribu-
tion is due to atoms exiting the field in this state, with
small contributions &om the other two states. It can be
seen that two clean diffraction peaks are produced, with
a spread between the maxima of more than 80hk. Atoms
entering the field in ~1) or ~3) experience much less clean
splitting, with a spread between the maxima of the order
0f = 505'k.

Considering the coherent evolution only, the only dif-
ferences between the three schemes would seem to be the
experimental di%culty of choosing atoms which can give
the desired. configurations, and the difhculty of prepar-
ing the lad.der and. A atoms in the appropriate excited
state. Apart &om these possible differences, the three
are identical, as is to be expected &om the similarity of
the Hamiltonians. We might expect that the different
decay paths open to each configuration would have dif-
ferent effects when spontaneous emission is considered,
and this is investigated below, in Sec. V.

IV. INTR%FEB.ENCE AND VISIBILITY

One of the proposed uses of an atomic beam splitter
is to prepare two components of widely differing momen-
tum which can be recombined in an atomic interferom-
eter to produce interference fringes. The sensitivity of
an interferometer is generally proportional to the area
enclosed by the two paths, so that the widest possible
splitting angle is advantageous. While our proposal ful-
Bls this requirement well, another important requirement
is that some degree of coherence be preserved between the
two split components so that they can be recombined to
produce interference fringes. We have analyzed the per-
formance of our scheme in this regard, for the case of
coherent Raman-Nath splitting only, demonstrating the
criteria which need be observed if reasonable &inge visi-
bility is to be achieved.

We model a generalized atom interferometer by con-
sidering that the two largest momentum peaks on each
side of the output momentum distribution can be selected
with high resolution by some species of collimator. These
then undergo &ee propagation to a region where they are
allowed to interfere at a detection apparatus. The inten-
sity of the atomic wave packet is then measured as a
function of the difference in path length, giving the de-
sired interference &inges. The different diffraction orders
will contribute some smearing of the resultant fringes be-
cause the input atomic beam will have some inevitable
spread in transverse momentum. If the collimator reso-
lution is high enough, we need only consider the effect of
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those parts of the input beam with transverse momentum
components of +2nhk.

The input atomic beam is treated as having a Gaussian
envelope in transverse momentum,

0.9—

0.8—

0.7—

where

c"-(p* p. ) = @'-(p*)G(p.) (1O)
0.6—

1(p, —p i
G(p, ) = exp

2 ( o., j
where p, is taken as zero, which results in the output
momentum distribution becoming a weighted Gaussian
sum of shifted copies of 4'(p, t); see Eq. (9). Labeling
the largest momentum distribution peak on each side of
4(p, t) as p+ and p, with G+(p, ) as the Gaussian enve-
lope functions,

0.4—

0.3—

0.1—

0
0

ratio

2

G+( )= 2( cr,

The &inge visibility is defined in the canonical manner,

IXIlB3C IZIllD

Imax + Imin
(14)

with a value of 1 representing perfect visibility.
We have performed the above calculation, Eq. (13),

for the case of a three-level atom transiting an optical
field with a Gaussian profile and the same parameters
as in Fig. 4. Although this treats the coherent evolution
only and is confined to the Raman-Nath regim, the re-
sults should be reasonably accurate for the interaction
time used. Figure 5 shows the results of our analysis,
demonstrating clearly that the Binge visibility is strongly
dependent on the collimation in transverse momentum
of the input. This input atomic beam will need to be
carefully prepared, perhaps via optical molasses, if good
&inge visibility is to be achieved in a practical interfer-
ometer. Also of interest for practical interferometry is
the ratio of total atomic Aux over the detector plane to
atomic Aux in the input beam. We have also plotted this
ratio as a function of the transverse momentum width
in Fig. 5. It can be seen that this ratio decreases as
the input transverse momentum spread increases, but is
large enough for the small momentum spreads which give
good visibility so that our scheme is not too wasteful of
the input atomic Bux.

V. SPONTANEOUS EMISSION

It is conventional for analyses of beam splitters to in-
clude the proviso that the interaction time is shorter than

with n taking on all integer values, and p as the phase
difFerence between the two interferometer paths, the in-
terference &inges can be represented as

I(p) = ) i4(p + nhk)G„-(p, )
n

+4 (p~ + nhk) G+ (p, ) exp( —ip)
~

.

FIG. 5. Fringe visibility and atomic Qux ratio, plotted
against standard deviation of the transverse momentum dis-
tribution of the input atomic beam, in units of hk. These
results are for an idealized interferometer, described in the
main text. The optical and atomic parameters are the same
as in Fig. 4. It can be seen that the system performs best
with regard to both these parameters for an input beam with
a small spread in transverse momentum.

the spontaneous lifetime, so that spontaneous emission
may be ignored. Although the eKects will be small for
short interaction times, they will still be present; there-
fore it is of interest to quantify these in our calculations.
There are two ways in which spontaneous emission pro-
cesses may degrade the performance of our beam splitter,
both dependent on the interaction time.

The first is that each spontaneous photon will give the
atom which emits it a momentum kick whose direction,
and hence projection on the z axis, will depend on the
dipole distribution

g 2

ghky

where p' = 5k cos0, with 8 the angle made by the pho-
ton direction and the z axis [18]. These events will tend
to smear out the diffraction pattern so that, instead of
Gnding peaks only at +2nhk, for integer values of n, we
will also find peaks with intermediate momentum shifts.
This process will also occur for atoms which leave the
field in an excited state, since they will decay en route to
the detector. The extent of the degradation due to this
efFect will depend both on the interaction time with the
field and the atomic configuration used. Even without
any spontaneous emissions within the field, ladder and A

atoms which adiabatically follow the potential will exit
the field in one of their excited states, and hence must
undergo a momentum kick after leaving the field. This
will not happen as much for V atoms, which will tend to
leave the field in their ground state.

The second way in which spontaneous emission de-
grades the performance is that atoms which emit will no
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longer be in an eigenstate of the triangular potential. The
potential which they experience after an emission wil1
lead to a different diffraction pattern, which will not be
expected to show the same clean splitting as is achieved
&om the triangular potential. This process will tend to
degrade the performance by much more than the &action
of hk smearing out contributed by the spontaneous mo-
mentum kicks. This process will also be less likely for V

I

atoms, which will be in a state approaching their ground
state as they transit the wings of the Gaussian Geld.

We have modeled these effects for the three atomic con-
figurations via the techniques of quantum Monte Carlo
wave-function simulation [19]. To perform this analysis,
we add imaginary decay terms to the Hamiltonians so
that they are no longer Hermitian. This results in the
following Hamiltonian for the V configuration:

2(Ai —ip, )
H~ —— Og sin kzMC

2 0

n; sinkz 0
0 02 sin(kz + P)

n; sin(A:z+ y) 2(a, —t~, )
(16)

with similar changes necessary for the other two systems.
In the above, pq represents the spontaneous decay rate
from Il) to 12) with p2 representing that &om 13) to 12).
Use of a non-Hermitian Hamiltonian to govern the time
development of the wave function means that 1412 is now
time dependent. In our case this means that the norm
will decay, at a rate governed by the size of the spon-
taneous emission rates and the populations of the ex-
cited states. We compare the squared. norm to randomly
generated numbers between 0 and 1 to decide when a
spontaneous emission takes place. Comparisons of the
expectation values of the level populations with other
random numbers are used to decide which level decays
and the transverse component of the momentum kick is
generated using random numbers in accordance with the
distribution given above, Eq. (15). After a spontaneous
emission, the wave function is renormalized and the pro-
cess begins again. The repetition and summing of a large
number of trajectories is required so that the statistics
produced will approach those predicted by the requisite
master equation. In our case this large number was 200,
which was sufhcient for the averaged diffraction pattern
to closely approach the steady state.

The usual condition that the interaction time be less
than the spontaneous emission lifetime means, for the
parameters used for our standing waves, that p-
1081AI i. We have chosen the two decay rates to be
equal in each atomic con6guration, and have carried out
Monte Carlo simulations for three different sizes of these
decay rates, demonstrating that the relationship between
the interaction time and the decay rates is crucial to the
performance of our proposals.

Our first trial uses a decay rate of IOjl/10OO, for
which the spontaneous emission lifetime is approximately
35016,l, so that the interaction time is less than a third
of this. The results for the three atomic configurations
are shown in Fig. 6. Comparing these with the patterns
shown above in Fig. 4, where spontaneous emission was
ignored, demonstrates that, while we still obtain good
splitting of the input beam, there are noticeable differ-
ences even with such a lew emission rate. Our prediction
that the V system should give the best performance has
been verified, with considerably less noise affecting the
pattern than for the two other con6gurations. We find
that, over the 200 trajectories, the V system experiences
29 spontaneous emissions within the field and 22 during
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FIG. 6. Diffraction patterns for the same parameters as
in Fig. 4, but including the efFects of spontaneous emission,
with p~ = 0/1000 on both transitions. The V system result
is shown in (a), (b) is for the A, and (c) represents the ladder
system.
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the Hight to the detector, meaning that nearly 90%%up of the
atoms still managed to exit the field in the ground state.
Of the other configurations, the ladder system had 90
spontaneous emissions within the field and 114 en route
to the screen, while the A system experienced 134 within
the Geld and 73 en route to the detector. While these
numbers cannot be translated directly into probabilities,
the near symmetry of the diKraction patterns shows that
they should be close to the mean values expected.

The results of the second trial, with 7 = ~Az ~/100, are
shown in Fig 7. For this choice of the decay rate the inter-
action time is approxixnately three times the spontaneous
lifetime, and we see a marked difference in the diffraction

patterns. With detection noise considered, it is obvious
that only the V system could be considered to be use-
ful in this regime. The 200 V trajectories experienced
319 intra6eld emissions, with 10 en route to the screen,
with 379 and 10, respectively, for the ladder atoms. The
200 A trajectories experienced 429 intra6eld spontaneous
emissions, with only two en route to the detector.

The low number of emissions after transiting the field
shows that nearly all the atoms decay to the ground state
within the field.

Our third trial is for a decay rate of ~Az~/10 and, as
demonstrated by Fig. 8 for the V system, has been totally
degraded by spontaneous emission. The 200 trajectories
experienced 1874 spontaneous emissions within the field
and all left in their ground state. The other two systems
produce similar results. While there is still a momentuxn
spread of 100hk, there are no peaks at all, with the
pattern being totally smeared out.

The difFerences between the three systems are also
demonstrated when we investigate the decay of the
squared norm as the atoms transit the standing wave.
Figure 9, plotted for p = ~Oz ~/1000, shows that ~4(~ for
V atoms hardly decays at all until the atoms are almost
at the center of the field. This is because they enter the
field in the ground state and population must be Rabi
cycled into the other two levels before decay is possible.
As the atoms exit the field, there is still 0.87 proba-
bility that there has been no decay. By way of contrast,
~4~2 for ladder and h atoms begins to decay imxnediately
since these enter the field in one of their excited states.
On exiting the 6eld, there is a much greater probability
that they will have undergone spontaneous emission.

VI. LIMITS OF THE RAMAN-NATH REGIME

The Raman-Nath approximation, which we have used
so far in this paper, is analogous to the thin lens approxi-
mation in geometrical optics. In physical terms, it means
that the atoms undergo a negligible transverse position
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FIG. 7. Digraction patterns for the same parameters as in
Fig. 4, but including the efFects of spontaneous emission, with
p~ = 0/100 on both transitions.

FIG. 8. Diffraction pattern for the V system for ps = 0/10,
with all other parameters as in Fig. 4. This, the best perfor-
mance expected from the three systems, is obviously totally
useless as a beam splitter.
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PIG. 9. The fraction of the atoms which have not under-
gone spontaneous decay as a function of interaction time for
all three systems, with a decay rate p~ = 0/1000.

shift during their transit of the light field, so that the ki-
netic term in the full Hamiltonian remains much smaller
than the light-induced potential term. Formally, if the
full Hamiltonian is written

'R = p .p/2m + V, (17)

where p is the atomic momentum and m the atomic mass,
the Raman-Nath approximation means

(p p/2m) « (V).

In a practical experimental situation, whether or not
the transverse displacement of the atoms can be regarded
as negligible will depend on the interaction time of the
atoms with the field. For our purposes, this requirement
can be expressed as

where u„„(= hkL2/2m) is the atomic recoil frequency
and 0, which can be either of the Rabi frequencies, is
usually the larger of these. For times of the order of t, z

the atoms are likely to have undergone transverse mo-
tion past one of the turning points of the potential, so
that they will experience a force of opposite sign to that
which has caused the splitting. The effect of this is that
the split components of the beam will tend to collapse
inward and lose their definition, thus imposing practi-
cal limitations on our beam splitter. As the achievable
degree of splitting depends on both the Rabi frequen-
cies and the interaction time, we can see that the effects
of the kinetic term, as well as the effects of spontaneous
emission, will be the factors which limit the practical per-
formance of our system. We have therefore performed a
numerical investigation of the effects of the kinetic term
on the evolution of the V system to find an estimate of
the magnitude of t;„q over which we can expect clean
splitting of the atomic beam.

The time evolution of the atomic wave packet across
the field is governed by the Schrodinger equation

d4ih = (p p/2m+V)%,
dt

(2o)

wherein we have suppressed the time and position de-
pendence of p and V. Since the two terms in the full
Hamiltonian, Eq. (17), do not commute, we have used
an incremental symmetrized split-operator method [16],
accurate to third order in the time increment used, to
develop numerical solutions for this equation. For each
time increment Lt, the atomic wave function, written as
4'(p, t) in momentum representation and 4(z, t) in po-
sition representation, so that 4(p, t) = X(@(z,t) j, is
evolved via

@(t+ At) = exp( —iKZt/2)X(exp( —iVAt)
xX ' [exp( —iK&t/2)@(p, t)]), (21)
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FIG. 10. Contour plot of the time development of the
far-6eld difFraction pattern for a plane wave of V atoms
traversing a light 6eld with a tophat profile. The atomic mass
is 1400.

in which It = p p/2mh and V = V/h.
The amount by which the calculated diffraction pat-

tern with the kinetic term included differs from that ob-
tained using the Raman-Nath approximation will obvi-
ously depend on the actual species of atom chosen, with
heavier atoms showing a smaller perturbation, all else
being equal. When we consider the coherent evolution
only, as in Sec. III, none of the parameters used are de-
pendent on any particular choice of atom, as long as the
appropriate configuration can be realized. The physical
parameters which cannot be changed experimentally are
the recoil frequency v = hk12/2m and the decay rates p~.
We have chosen a somewhat arbitrary atomic mass of
1400, in units such that h = kl, ——L = 1, which means
that m = 1/2v. This gives the recoil frequency a value of
1/2800, and the condition for the Raman-Nath approx-
imation to hold becomes t;„t, & (1400/v2) ~ = 31.5.
Figure 10, which is plotted for the appropriate eigenfunc-
tion of the V atom traversing a light field with a tophat
profile, shows that that it is indeed at around this value
of the interaction time that the cleanliness of the splitting
begins to deteriorate.

We have also calculated the coherent time development
of the far-field diffraction pattern for the more realistic
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FIG. 11. Contour plot of the time development of the
far-field diffraction pat tern for a Gaussian atomic wave
packet, with standard deviation two laser wavelengths, tran-
siting a light field with a Gaussian profile. The horizontal axis
is the scaled interaction time, corresponding to 1/~2 times
the time for the atoms to cross the 1/e intensity points of the
Gaussian light profile. The atomic mass is 1400.

FIG. 13. The far-field diffraction pattern with the effects
of both the kinetic term and spontaneous emission included,
with m = 1400, the scaled interaction time equal to 60~&~
and p~ = 0/1000. The 200 trajectories experienced 157 in-
trafield spontaneous emissions, with another 79 during their
fIight to the detector.

situation of a Gaussian atomic wave packet traversing a
Gaussian profile standing wave. We can see &om Fig. 11
that the collapse is no longer as regular as for the tophat
field. The vertical axis is a scaled interaction time, corre-
sponding to 1/i/2 times the time for the atom to cross the
1/e intensity points of the Gaussian light profile. From
this plot we can see that there exists an obvious max-
imum for the amount of clean splitting which can be
achieved, even in the absence of spontaneous emission.

We have also considered the combined e8ects of the
kinetic term and spontaneous emission on the diffraction
pattern of the V atoms. We find that these two eÃects will
tend to increase together with the interaction time since

0.035

0.03—

C4
0.025-

0.02—

increasing the time within the field not only will cause the
Raman-Nath approximation to lose its validity, but also
means that the atoms undergo a greater number of spon-
taneous emissions. When we include the kinetic term for
the same interaction time and decay rates as in Sec. V,
the resulting difFraction pattern is virtually indistinguish-
able &om that shown for the V atom in Fig 6. Increasing
the width of the light field so that crhshq ——36/i/2, as
in Fig. 12, gives us a diHraction pattern which is notice-
ably wider, but is no longer cleanly split into two dis-
tinct peaks. The number of spontaneous emissions has
increased in comparison to Fig. 7 and the kinetic term
has caused a broadening of the peaks centered at about
+605k, as well as the appearance of a broad peak cen-
tered on the zero of momentum. Figure 13 shows that an
increase of the interaction time so that ra~;spy ——60/i/2,
while giving a momentum spread of = 200hk, has added
so much noise that our system is now almost useless as a
practical beam splitter.

VII. ESTIMATES OF ACHIEVABLE
PARAMETERS
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FIG. 12. The far-field diffraction pattern with the effects
of both the kinetic term and spontaneous emission included,
with m = 1400, the scaled interaction time equal to 36~A,

~

and p~ = 0/1000. The 200 trajectories experienced 85 in-
trafield spontaneous emissions, with another 88 during their
flight to the detector.

A practical demonstration of our proposed beam split-
ter will have inescapable constraints imposed on it by the
actual atoms and atomic configurations which nature has
made available. The actual values of spontaneous decay
rates, atomic masses, and recoil &equencies are the phys-
ical parameters which decide the ixnportance of contribu-
tions from spontaneous emission and the kinetic terxn in
the Hamiltonian. Ideally we require an atom with a small
decay rate but large mass and recoil &equency, which can
be experimentally massaged into the V configuration. We
have performed preliminary estimates using some of the
tabulated decay rates and recoil &equencies for sodium,
helium, and calcium atoms, although it must be noted
that the decay rates used are for single transitions only.
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Our atoms are still theoretical idealizations in that we
assume there are two adjacent transitions, in the V con-
6guration, which both have the same decay rates. Two
parameters which can be used to determine the utility of
a particular system are the upper bound on the Raman-
Nath interaction time, which we de6ne as the critical
time

0.1

0.09—

0.08-

& 0.07—

0.06-

0.05—

t, := (u)„„O) (22)
0.04-

0.03—

and the magnitude of the Rabi &equency in relation to
the spontaneous emission rate.

For calcium, the decay rate for the 3 So —+ 3 Pq tran-
sition is small, but so is the recoil frequency, so that the
critical time for a Rabi &equency of 1000' is approxi-
mately 5~6,~, which is too small to allow a reasonable
degree of splitting. The use of sodium in the regime
where spontaneous emission noise is negligible, consid-
ering the decay rate for the 3Sg)2 —+ 3P3)2 transition,
would require Rabi &equencies of the order of 10 s
which is possibly a little high to be practicable.

An analysis using the helium parameters for the
2 S m 2 P transition is, however, very encouraging.
A Rabi &equency of 500', high enough that sponta-
neous emission efFects are negligible for the V con6gu-
ration, becomes equivalent to 5.1 GHz. Using the ratio
0 = 2~2~6,

~
allows us to express the recoil frequency,

42.3 kHz, as u„, = 2.35 x 10 in our normalized sys-
tem of units. This results in a critical time [20] t, 122,
which is large enough to allow an appreciable degree of
splitting before the Raman-Nath approximation begins
to break down. The formula for the recoil frequency,

hk&~/2m, in our units where h = kL, = 1, al-
lows us to find the normalized atomic mass for helium as
m = I/2u„„= 2 x 10 . This atomic mass, unlike the
coxnmonly used atomic mass, is not a constant, but, due
to our choice of units, is dependent on the Rabi &equency
used.

We have 6rst calculated the time development of the
difFraction pattern for helium in the absence of sponta-
neous emission, using the above parameters. Figure 14
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FIG. 15. The far-field diffraction pattern for helium, with
no spontaneous emission and a scaled interaction time of
80~4~ . It can be seen that the kinetic term has had a neg-
ligible effect on the pattern.

shows the development of the difFraction pattern for the
coherent evolution only, as the interaction time is in-
creased. This demonstrates that a relatively clean mo-
mentum splitting of +200hk is available before the kinetic
term in the Hamiltonian begins to have any marked ef-
fect. Figure 15 shows the coherent difFraction pattern
expected for e~;spy

——80/y 2, showing that the Raman-
Nath approximation retains its validity for this interac-
tion time. Figure 16 shows that, with an increase in inter-
action time so that ahs p, t ——100/y 2, the kinetic term has
caused some collapse of the split components back into
the middle of the pattern. This demonstrates clearly the
regime where the Raman-Nath approximation begins to
lose its validity.

We must also consider that, as the interaction time is
increased, not only will the kinetic term have a greater
efFect, but the number of spontaneous ernissions will also
tend to increase. We have therefore performed Monte
Carlo wave-function simulations for helium, using the
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FIG. 14. Contour plot of the time development of the
far-field diffraction pattern for helium, with m = 20000 and
no spontaneous emission. The horizontal axis is the scaled
interaction time, as in Fig. 11.
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FIG. 16. The far-field diffraction pattern for helium, with
no spontaneous emission and a scaled interaction time of
100~9,

~

. The kinetic term is beginning to have a marked
effect, with the collapse of a significant portion of the distri-
bution to form a lump peaked about the zero of momentum.
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FIG. 17. The far-field diffraction pattern for helium, with a
scaled interaction time of 40!b, ! and a spontaneous emission
rate of 0/500. The resulting pattern shows a large splitting
and is possibly clean enough to be useful in a practical beam
splitter. The 20G trajectories experienced 143 intrafield spon-
taneous emissions, with another 13 during the Qight to the
detector.

FIG. 18. The diffraction pattern for the same parameters
as in Fig. 17, but with a scaled. interaction time of 80!A!
There is enough noise contributed to this pattern by both the
kinetic term and spontaneous emission that it is probably at
the limit as far as performance as a practical beam splitter is
concerned.

above parameters, but including the spontaneous emis-
sion rate, p = !Oz!/500. We can see &om Fig. 17 that,
for o~;gqq ——40/~2, where the kinetic effects are totally
negligible, spontaneous emission is already beginning to
have some efFect. The small peak in the center of the
pattern is not present for the coherent evolution, but
is a result of some of the atoms leaving the appropri-
ate eigenstate during their traverse of the field. When
we double the interaction time so that o.~;s~q ——80/~2,
as in Fig. 18, we see that our device is approaching the
limit as far as the amount of clean splitting available is
concerned. As well as the effects of the kinetic term be-
ginning to appear, as shown by the increased amount
of pattern around the center, the extra time available
means that spontaneous emission is beginning to spread
the difFraction pattern. The 200 trajectories contributing
to this difFraction pattern experience a total of 325 spon-
taneous emissions within the field, as well as another 14
on their path to the detector. We can see that the two
components of the split beam have a momentum spread
of almost 4005k, which is appreciably larger than has so
far been realized experimentally.

VIII. CONCLUSIONS

We have shown that our proposal for a bichromatic
beam splitter can in principle deliver a very cleanly split
atomic beam, with a large momentum splitting between
the two resulting components. Our analyses taking into
account the effects of spontaneous emission and the ki-
netic term in the Hamiltonian show that, for atoms in
which the correct atomic configuration can be realized, a
very large amount of momentum spread can be achieved
between the split components of the input beam.

We have demonstrated the extent of the interaction
times for which we can reliably use both the Raman-Nath

approximation and the approximation that the efFects of
spontaneous emission are negligible. Another possible
source of noise, the longitudinal velocity distribution of
the incoming atomic beam, has been assumed to have
only a small effect on the width of the difFraction peaks.
We have found that the noise properties of our device
are sensitively dependent on the actual con6guration of
the three atomic levels, with the V configuration promis-
ing the best performance. The achievable limits to the
splitting depend crucially on the ratio between the decay
rates and the Rabi &equencies, as well as on the recoil

frequency and the mass of the atomic species used in an
actual experiment.

We have demonstrated that our device has clear ad-
vantages in principle over beam splitters utilizing two-
level atoms. It will also have practical advantages over
magneto-optical beam splitters with three-level atoms,
both in the experimental ease of setting up the required
fields and in the fact that magnetic fields are not always
desirable in a real experiment. We have also investi-
gated the fringe visibilities and amplitudes expected &om
our scheme, demonstrating that these will place some re-
quirements on its practical utilization for atomic interfer-
ometry. These requirements, however, do not seem unre-
alistic, so that the bichromatic beam splitter using three-
level atoms should be able to satisfy the requirements for
a practical interferometer. The main advantages are that
the split components have a relatively smaU internal mo-
mentum spread, and the input atomic state, being the
ground state for V atoms, is easy to prepare.
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