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Abstract. We present the analysis of the genetic model of autocatalytic chemical reactions 
proposed by Arnold et al. This model, when subjected to multiplicative white noise modelling 
environmental fluctuations, can undergo a sudden change from a unimodal state to a bimodal 
one, while no such transition occurs if the noise is absent. Here, this noise-induced transition 
is studied analytically by investigating the so-called critical surface in the three-dimensional 
parameter space.

1. In trodu ction
Noise-induced phenomena have become a subject of widespread interest in recent decades, 
because of their observations in various nonlinear systems in physics, chemistry and biology 
[1,2]. In particular, autocatalytic reaction occurring in a random environment

is one of the most studied models in chemistry. The reaction dynamics is governed by the 
following stochastic differential equation (SDE) for the concentration x(t),

where a  e  [0,1], A e R, а >  0. This SDE is interpreted in the Stratonovirch sense according to 
the well-known results of Van Kampen [3], Wong-Zakai [4] and Blankenship [5]. Such chemical 
interpretation was proposed by Arnold, Horsthemke and Lefever in [6].

It was shown in [1] that this equation also describes the time dependence of gene frequency 
in a haploid population where there are only two possible alleles with corresponding frequencies 
x and 1 — x. For this reason, the model was named ’’genetic model” .

The solutions of Eq.(1) form the Markovian diffusion process x(t) e  [0,1] at any initial 
condition x(0) e  [0,1]. In thermodynamic equilibrium states, this process has the stationary 
probability density

A +  X  +  Y  ^  2Y +  A * , B  +  X  +  Y  ^  2X  +  B *,

dx(t) =  [a — x(t) +  Ax(t)(1 — x(t))] dt +  ax(t)(1 — x ( t ) )dw(t ) , x(t) e  [0,1] (1)

a  — 1 a
1 — x x

(2)
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C  =
e2/a2

2K - e  (4а - 2 л/ а ( Г — а ) )
1 — а

а

в/2

в =
2(2а  +  Л -  1)

а2

here К - в (.) is the modified Bessel function of the second kind with index (—в ) defined as

К - в  (z) =  1 /  e-ZCh U+l3'Udu, Re z >  0.

2. T h e analysis o f  critical surface
In our system coupled to a fluctuating environment, a phase transition can occur whenever 
the density function p(x) qualitatively changes. In fact, this function may have different mode 
numbers, depending on the value of parameters Л, а2, a. Therefore, the three-dimensional 
parameter space is divided into domains in such a way that there is a certain mode number in 
each of them. This partition, on the analogy of thermodynamics, is called the phase diagram, 
while the surface £  dividing these domains is called the critical surface. Our paper is devoted 
to the surface investigation.

Since any changes in the mode number of p(x) corresponds to changes in the solution number 
of the equation dp(x)/dx =  0 which can be written as

а
S (x) =  a — x  +  Лx(1 — x) — — x(1 — x)(1 — 2x) =  0, x e (0 ,1), (3)

we find the degeneracy condition of solutions. This is equivalent to the existence of such a 
multiple root xo that S (x0) =  S' (x0) =  0. Then apply the Euclid algorithm for polynomials 
S(x) and S '(x). As a result, we obtain the equation of the critical surface:

P (Л, a2 , e) =  Л4 +  Л2  ̂1 — 5а2 — а4/2^ — Ле(9а4 +  18а2 — 4Л2) — 4а2  ̂1 — а2/4 )  — 27а4е2 =  0 , (4)

where е =  а  — 1/2. At this time, the root x0 is given by

1 2Л(1 +  2а2) +  18еа2
xo =  2 — A

A  =  4Л2 +  3а4 — 12а2 .

In order that x0 be the bifurcation point of p(x), it is necessary and sufficient that 0 <  x0 <  1 
which is equivalent to the following inequality

С +(Л ,а2,е )С _ (Л ,а 2,е) >  0,

by introducing the hyperbolas

С±(Л, а 2, е) =  A  ±  4[Л(2а2 +  1) +  9еа2] =  0.

(5)

(6)

The inequality (5) defines the allowable domain for the location of the points of the critical 
surface, whose boundaries are the hyperbolas С ±(Л ,а2,е) =  0. It is crucial as the surface (4) is 
not connected.

Let £ e be the intersection of the surface defined by Eq.(4) with the plane e =  const and 
(Л*, а^) be the coordinates of the contacting points between the curve £ e and the ellipse A  =  0. 
Then

_  9еа;
Л* — —

1 +  2а2 • (7)
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If exclude A* from this relation by using A  =  0, the single-valued function al(e)  is derived from 
the equation

4(а* -  1) 3 =  27а2(1 -  4e2) ,  а ,2 >  1 (8 )

due to the convexity of the left-hand side function.
Now, we represent the polynomial P(A, a 2, e) as Taylor’s power series of (A -A *) and (а 2 - а 2), 

which, after introducing the variable substitution

A =  A* +  p cos f ,  a =  a* +  p sin f ,  (9)

has the form

P(A , a 2 ,e) =  - 3 ( a 2 -  1 ) 2 (p s in f ) 2 Q 2 (z) +  ^ (p s in f ) 3 Q 3 (z) +  -^ (p s in f ) 4 Q 4 ( z ) ,
6  16

where z =  c tg f, z* =  ctgf* =  A*/3a2, Q 2 (z) =  (z -  z*)2, Q 4 (z) =  (4z2 -  1) 2 and

3

Q3(z) =  8 z * ( 7 a 2  -  1 ) z 3  -  6 ( a 2  +  5 ) z 2  +  1 8 z * ( 1  +  a2)z +  2 ( a 2  -  3) •

The Eq.(4) now becomes

- 1  p2 Q 4 (z) sin2 f  +  1  pQ3 (z) sin f  -  3(a 2 -  1 ) 2 Q 2 (z) =  0  , ( 1 0 )
16 6

and its solutions read

p±( f  =  3 q ( z/) sin f  (  -  Q3(z) ±  \JQ3(z) +  2 7 ( a 2  -  1)2Q4(z)Q 2(z) )  • (11)

These two functions describe the curve at such f  that p ± ( f )  >  0. This means that is 
defined by p + (f)  for f  e  [0, n] and by p _ ( f )  for f  e  [ - n ,0] . From Eq.(11), it is not difficult 
to show that

, , v/5|Q3(±1/2)| ^ ^  u , ,1
p+(^ ) =  1 2 ( z 2 -  1 / 4 ) 2  ( 1 +  ° (1)) when z 2  •

L em m a 1. is a biconnected curve consisting of two components X+ and £ _  where 
£+  =  p + ( f ) at f  e  [ф, n -  ф], ф =  arcctg (1 / 2 ), while X_ is the glue of simple curves

p+(f ^  f  £ [0 ,ф ); p _ (f ^  f  £ [ - n 0]; p+(f ^  f  £ (п -  ф ,п].

□  This statement follows from the fact that connected curve component must be defined as a 
continuous function and both p ± ( f )  tend to the same finite limit at f  ^  0 ,n. ■

T h eorem  1. X+ is composed of two branches stitched at the contacting point (A*,a^).
□  In the neighborhood of the point (A*, a2), the asymptotic formula of £+ , in terms of local 
Cartesian coordinates u and v, has the form

u =  const | v |2 / 3  when v ^  0 . ( 1 2 )

In fact, from Eq.(11), we find

\ 2 I „ Л 3Л ___________ _  „ _ 81а4(1+  z 2 ) 1 / 2p + ( f ) =  k (z  -  z*)2 +  O ((z -  z*)3) when z ^  z* , к  =
4(а2 -  1)
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Hence p+(^>) is presented by u2 +  v2 =  к 2 arctan4(v/u ) where ф — ф* =  arctan(v/u) and 
consequently it follows Eq.(12). ■

In order to establish which component of £ e corresponds to the critical curve, we find the 
following expressions of G±(A, a2, e) =  0 in the polar coordinates (p, ф)

p(±) [4(1 ±  sin2^>) — sin2 ф] + 2  [2 cos ^>(2(A* ±  a2) ±  1) +  sin ф(3а* ±  4A* — 6 ±  18e)] = 0 .

Then such angles that p(±)(^ (±)) =  0 are given by

z(±) =  6z* T 3(a2 — 2) d 3 )
2(2a2 +  1) ±  12a2z* ( )

where z (± ) =  ctg ф(± ) . Note that the denominator is greater than zero due to a* >  1.

T h eorem  2. £+  is the intersection of the critical surface £  and the plane e =  const.
□  It can be seen from Eq.(4) and Eq.(6) that (0,0) and (A*, a2) are two common points of £  
and the hyperbolas G±  =  0. Furthermore, the former is the intersection of £ -  and G±  =  0 (as 
p -(^ o) =  A* +  a4 where ctg^o =  A*/al), while the latter is the intersection of £+  and G± =  0 
(Р+(Ф*) =  0 ).

We now prove that the component £ -  is contained inside the domain G+G_ <  0. In fact, 
the derivative (da2/dA) of the implicit function a2(A) defined by Eq.(4) vanishes at (0,0) while 
those derivatives of functions a 2 (A) described by G± =  0 are

da2

~d~A± '  = [3 (1  T 3e)]-1 =  0.
(0,0)

This means that for the points of £ - , being close enough to (0,0), G +G -  <  0 since 
G±(A, 0,e) =  ±4A +  O (A2) when A ^  0. Moreover, because (0,0) is the unique common point 
of £ -  and G± =  0, if the inequality G +G_ <  0 is satisfied in the neighborhood of (0,0), it 
definitely holds for all others points (A, a2) of £ _ . Consequently, £ _  is confined in this domain.

In contrast, the half-plane (A, a2 >  0) is divided by the component £+  into two separate parts. 
Whenever one of the hyperbolas G± =  0 crosses this component, it must go from one part to 
another part when ф continuously changes, passing through the contacting point (p(+)(^ (+)) =  0 
and p( - ) (^ ( - ) ) =  0 respectively). However, this is impossible because of the existence of the 
cusp point (0, ф*). Since tangent of £+  at this point is a ray radiating from it, for the proof of 
this fact it is sufficient that ф(-) >  ф* >  ф(+) i.e. z (+) <  z* <  z (-) which follows from Eq. (13). 
Therefore, only £+  fulfills the condition (5) and represents the critical curve. ■

As an illustration for the obtained result, we demonstrate here the critical curve in the case 
of a  =  1/2, which is defined as

A2= 2
Ly  +  5a2 — 1 — (2a2 +  1)3/2

The inverse function a 2 (A) is depicted in Pic. 1.
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Pic. 1. Phase diagram in the symmetrical case а  =  1/2. The components £ +  and £ -  are presented by
the solid lines, while the hyperbolas G± =  0 and the ellipse A  =  0 are drawn by dotted lines.

3. C onclu sion
In contrast to the previous work of Horsthhemke et al., the complete analysis of the critical 
surface £  of the model is obtained. This surface divides the parameter space into two 
domains where qualitatively different stationary dynamical regimes of the system are observed. 
From the physical point of view, for sufficiently slow variations of the parameters, the switch 
between these regimes represents a transition between two ” phases” : the unimodal one and 
the bimodal one. The dynamical regime in the bimodal phase consists of temporal intervals 
consequentially replacing each other and having random lengths. In these intervals reactant 
relative concentrations fluctuate nearby the two maxima of the density function p(x).
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