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Quantum Kinetic Theory of Condensate Growth: Comparison of Experiment and Theory
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In a major extension of our previous model [Phys. Rev. Lett.79, 1793 (1997)] of condensate growth,
we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein
formula for the occupations of higher trap levels. We find good agreement with experiment, especially
at higher temperatures. We also confirm the picture of the “kinetic” region of evolution, introduced
by Kagan et al., for the time up to the initiation of the condensate. The behavior after initiation
essentially follows our original growth equation, but with a substantially increased rate coefficientW1.
[S0031-9007(98)07849-1]
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Although the first Bose condensed atomic vapor wa
produced in a magnetic trap only in 1995 [1–3], th
kinetics of condensate formation has long been a subje
of theoretical study [4,5]. There is now intense theoretic
work on Bose-Einstein condensation, which is excellent
summarized in [6]. Most theoretical studies of condensa
growth either have not treated trapping or have consider
only traps which are so broad that the behavior of th
vapor is not essentially different from the untrappe
situation. Furthermore, they have given onlyqualitative
estimates of condensate growth. Our previous pap
[7] introduced a simplified formula for the growth of a
Bose-Einstein condensate, in which growth resulted fro
stimulated collisions of atoms in a thermal reservoi
where one of the atoms enters the lowest trap eigensta
whose occupation thus grows to form a condensate. W
thus included the trap eigenfunctions as an essential p
of our description, and gave the firstquantitativeformula
for the growth of a condensate. The growth rate was
the order of magnitude of that estimated from experimen
current at that time.

This direct stimulated effect must be very importan
once a significant amount of condensate has forme
but in the initial stages there will also be a significan
number of transitions to other low lying trap levels whos
populations will then also grow. As well as this, there wil
be interactions between the condensate, the atoms in th
low lying levels, and the atomic vapor from which the
condensate forms. This paper will extend the descriptio
of the condensate growth to include these factors, and w
compare the results with experimental data on condens
growth obtained at MIT [8].

As in our previous work, we divide the states in the
potential into thecondensate band,RC, which consists of
the energy levels significantly affected by the presence
a condensate in the ground state, and thenoncondensate
band,RNC, which contains all the remaining energy lev
els above the condensate band. The division between
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two bands is taken to be at the value,emax. The situation
is illustrated in Fig. 1. The picture we shall use assum
that RNC consists of a large “bath” of atomic vapor, in
thermal equilibrium, whose distribution function is given
by a time-independent equilibrium Bose-Einstein distribu
tion hexpfsE 2 mdykBT g 2 1j21 with positive chemical
potential m. The value ofemax will be assumed to be
small enough for the majority of atoms to have energie
higher thanemax, so that this part of the bath can be treate
as being undepleted by the process of condensate grow

In the following we will use the notation ofm as the
mass of an atom withs-wave scattering lengtha, andn0
for the number of condensate atoms.

The trap levels inRC must have time-dependent en
ergies due to the effects of the interaction with th
growing condensate. The energy of the lowest tra
level in RC is the minimum energy increase when
one particle is added to the system; i.e., it is th
chemical potentialmsn0d, for which we use a modified
Thomas-Fermi approachmsn0d ­ asn0 1 nd2y5 where
a ­ s15avxvyvzm1y2h̄2y4

p
2d2y5 and n is a constant

chosen so thatms0d ­ h̄svx 1 vy 1 vzdy2. As msn0d
rises with an increase inn0, the energies of higher en-
ergy trap levels must also rise. The exact nature of th

emax
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FIG. 1. (a) Representation of the change in the energy spe
trum due to the growth of the condensate. (b) Occupations
the levels considered: leftmost is the condensate level, follow
by several discrete energy bands, with the constantly occup
RNC at higher energies.
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rise does not affect the results greatly. An approxima
treatment arises by leaving the levels with energies abo
2msn0d unchanged (including all levels inRNC), and com-
pressing the spacing of the levels under2msn0d, so that
the energies are given by

em ­ e0
m 1 uf2msn0d 2 e0

mg f2msn0d 2 e0
m 2 ms0dgy2 ,

(1)

where e0
m are the noninteracting harmonic potential en

ergy levels, andusxd is the step function. Note that
e0

0 ­ ms0d, and thuse0 ­ msn0d. The levels used in this
model are represented graphically in Fig. 1. To simplif
the equations we also group the levels in narrow ban
of mean energyek , gk levels per group, andnk parti-
cles per group—thek ­ 0 group contains only one level,
the condensate, so thatg0 ­ 1, andn0 is the number of
atoms in the condensate. This corresponds to theergodic
assumption used in [5,9,10]. As a result of this proc
dure there are two different kinds of dynamics,scattering
andgrowth, as illustrated in Fig. 2. The evolution for the
population of themth level inRC is then

≠nm

≠t
­ Ùnm ­ Ùnmjgrowth 1 Ùnmjscatt . (2)

Equations of motion then follow from quantum kinetic
theory [11], and full derivation will be given elsewhere
Heuristically the result amounts to modifying the quantum
Boltzmann (QBE) equation as follows.

(i) We use the QBE in an approximated ergodic form
whereemin ­ minsem, en, ep , eqd [9],

gn
≠fsend

≠t
­

X
em ,ep ,eq

dsem 1 en 2 ep 2 eqdgsemind

3 h fsepdfseqd f1 1 fsemdg f1 1 fsendg

2 fsemdfsend f1 1 fsepdg f1 1 fseqdgj ,

(3)

wherenk ­ gk fsekd is the number of particles with en-
ergy ek , andt ­ s8ma2v2yp h̄d 3 t. Here we take the
form for an isotropic 3-dimensional harmonic oscillator,
with frequencyv ­ svxvyvzd1y3.

(ii) We use the modified energy levels as given abov
but otherwise do not change the QBE.

(iii) We sum out over all levels inRNC which is
assumed time independent.

(iv) We omit any scattering between atoms which bot
have energies less thanemax, which is reasonable if the
number of atoms in the bath is almost 100% of the tot
number of atoms.

(v) The wave function of the condensate satisfie
the Gross-Pitaevskii equation with chemical potenti
msn0d.

We emphasize, however, that these are not simp
ad hoc modifications, but can all be derived using
te
ve
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FIG. 2. The transitions being considered: Left, scattering
right, growth.

quantum kinetic theory as in [11], and some reasonab
approximations.

The individual terms are as follows.
Scattering.—A collision between an atom initially in

an energy level belowemax and a bath atom transfers the
first atom to another energy level belowemax. This is
described by

Ùnmjscatt ­ emykBT GsT d

3

( X
k,m

1
gm

fnksgm 1 nmde2 h̄vmkykBT 2 nmsgk 1 nkdg

1
X

k.m

1
gk

fnksgm 1 nmd 2 nmsgk 1 nkde2 h̄vkmykBT g

)
,

(4)

where vkm ­ ek 2 em. The value of GsT d ;P
em.emax

e2emykBT depends on the energy spectrum
We use the value for anisotropic3-dimensional harmonic
oscillator with frequency v ­ svxvyvzd1y3. Thus
en ­ sn 1 3y2dh̄v, so that we find

GsT d ­
e2emaxykBT

1 2 e2 h̄vykBT
. (5)

However, this value is not critical; similar results are
obtained for anyGsT d greater than about 10% of (5).

Growth.—A collision between a pair of atoms initially
in the bath of atomic vapor results inone of the atoms
having a final energy less thanemax. This gives

Ùnmjgrowth ­ 2fsnm 1 1dW1
m sn0d 2 nmW2

m sn0dg , (6)

where

W1
m sn0d ­

1
2

Z `

emax

de1

Z `

emax

de2

Z `

emax

de3fse1dfse2d

3 f1 1 fse3dgdse1 1 e2 2 e3 2 emd , (7)

W2
m sn0d ­

1
2

Z `

emax

de1

Z `

emax

de2

Z `

emax

de3f1 1 fse1dg

3 f1 1 fse2dgfse3ddse1 1 e2 2 e3 2 emd .

(8)
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Because we assume the noncondensate band is in ther
equilibrium, with temperatureT and chemical potential
m, we have

W2
m sn0d ­ exp

√
sem 2 md

kBT

!
W1

m sn0d . (9)

The value ofW1
0 (henceforthW1) differs significantly

from that used previously [7] in that the integrals in (7
are performed only over energy levels higher thanemax
(previously over all levels), and the Bose-Einstein distr
bution function is used over all the range of integratio
(previously approximated by the Maxwell-Boltzmann dis
tribution). With these changes we find that

W1sn0d ­
1
2

√
kBT
h̄v

!2(
flogs1 2 zdg2

1 z2
X̀
r­1

fz zsn0dgr fFsz, 1, r 1 1dg2

)
, (10)

wherez ­ exps m2emax

kBT d andzsn0d ­ exps msn0d2emax

kBT d. The
function F is the Lerch transcendent[12], defined by
Fsx, s, ad ­

P`
k­0 xkysa 1 kds. These changes result

in a significant correction, increasingW1 by about a
factor greater than 3 (dependent onT , m, and the trap
parameters) compared to that used previously in [7], a
producing correspondingly faster growth.

By making a further approximation, thatW1
m sn0d ø

W1sn0d, the calculations required are significantly sim
plified. We can do this because theW1

m sn0d are an av-
erage over all the levels contained in themth group, and
hence are expected to be of the same order of magnitu
as W1sn0d. As a validity check, it was found that the
effect on the condensate growth rate was small when t
W1

m sn0d were altered by a factor in the range0.5 2. We
now have for the growth terms

Ùnmjgrowth ­2W1sn0d hf1 2 esem2mdykBT gnm 1 gmj , (11)

Ùn0jgrowth ­2W1sn0d hf1 2 efmsn0d2mgykBT gn0 1 1j . (12)

The overall evolution of the system can now be foun
from the numerical solutions to the set of Eqs. (2
The parameters used arevx ­ vy ­ 2p 3 82.3 Hz and
vz ­ 2p 3 18 Hz, as in [8], anda ­ 2.75 nm, emax ø
2.2msssn0seqdddd, wheren0seqd is the final equilibrium value
of n0, which is defined bymsssn0seqdddd ­ m, the chemical
potential of the vapor. The number of energy bands w
set as large as possible, but it was required that there w
at least four levels in the first group above the condensa
in order to represent the fact that the levels are discrete

The improvements to this model over that used in [7
speed up the condensate growth by up to an order of m
nitude, depending on the exact parameters, as anticipa
in [7]. The major cause of this is the correction toW1

arising from the use of the correct Bose-Einstein distr
bution. The inclusion of the scattering terms does n
change the overall rate of growth substantially (which
dominated by the bosonic stimulated growth), but do
5268
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speed up the initial period of growth (dominated by spon
taneous growth) and shortens the time before the stimu
lated term becomes significant. This gives a much sharp
initial growth curve as compared to the smoother S-ben
curves of [7]. In Fig. 3 we present an example of the re
sults obtained for the growth of all the bands inRC, in
which a number of features may be seen.

(i) The effect of the initial conditions used can be
seen from the front corner. In this example the initial
populations for all but the top ten bands were set at zero
while the top ten bands had populations determined by th
same Bose-Einstein distribution function as forRNC. The
figure shows that this initial condition is rapidly smoothed
out by scattering processes. Different initial conditions
merely generate a small change in theinitiation time
defined below.

(ii) The initiation time (here60 ms) is defined by the
critical line C-C. Up to this point the population of the
condensate level is relatively small. The behavior up to
the initiation time is similar to that found by Svistunov
[10] and Kaganet al. [5]. In particular, the populations
of the levels increase to approach a limiting dependenc
on the energy offsEd ~ E21.61 on the critical line C-C,
which is in good agreement with their prediction ofE25y3

[13] for the case of a harmonic trap.
(iii) After the initiation time the condensate grows enor-

mously. However, the occupations of the other trap level
actually decrease quite rapidly to their equilibrium values
and then remain nearly constant while the condensate co
tinues to grow—by a factor of about 10 in this case. At
the same time the energy spectrum of the trap levels i
RC changes according to (1). This accounts for the sma
variation in occupations of these levels which is still evi-
dent in Fig. 3.

Figure 4 compares with the experimental data o
Ref. [8], for two different temperatures. The MIT
group fitted their data to an uncorrected growth equatio

FIG. 3. fsemd vs energyem as a function of time. Note
that the lines almost parallel to the time axis are not lines o
constant energy, but rather lines offsemd for constant level
number whose energies change with condensate growth. T
solid curve in the plane at the top of the axes represents th
curve log10fe0g ; log10fmsn0dg as a function of time.
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FIG. 4. Comparison of theoretical growth curves
(black) with experimentally fitted curves (gray) from
[8]. (a) Theory T ­ 830 nK, n0seqd ­ 7.6 3 106; ex-
periment T ­ 810 890 nK, n0seqd ­ s7.5 7.85d 3 106;
(b) theory T ­ 590 nK, n0seqd ­ 2.3 3 106; experiment
T ­ 580 610 nK, n0seqd ­ s2.1 2.5d 3 106.

Ùn0 ­ gn0h1 2 fn0yn0seqdg2y5j, and reported only values
of the parameterg. To represent that the experimenta
curve is a fitted curve rather than the raw data, the cur
has been plotted as a broad band. The MIT group us
the initial population for their curves as free parameters
their fit. We have set the initial populations for the MIT
curves so as to give the best agreement with the initiati
time of our growth.

In theT ­ 830 nK case, Fig. 4a, the growth speed pre
dicted agrees with that experimentally found. TheT ­
590 nK case in Fig. 4b shows a theoretical growth ra
some 3 times slower than is measured. The discrepan
between theory and experiment at lower temperatures
hard to evaluate using the data in the form presented
[8], which do not allow for direct comparison between th
actual projected spatial distributions as given by phas
contrast microscopy, and theoretical spatial distribution
These are not difficult to calculate from our many-leve
growth curves—the methodology will be published else
where. The MIT method fits to a zero chemical potenti
vapor plus a nonzero chemical potential condensate—
reasonable estimate in the absence of any theoretical
scription of the spatial distribution of the vapor. But a
detailed description might give quite different results fo
temperature, and for condensate and vapor numbers.

In summary, we have given a description of condensa
growth covering the full range of behaviors, both befor
and after initiation of the condensate. It isquantitative
and agrees quite well with experiment. The behavi
before initiation is essentially as given by the quantu
Boltzmann equation, and agrees with computations bas
on this equation [5,10,14]. We are able to give a valu
for the initiation time which appears to be consisten
with experiment. After the initiation of the condensate
the occupations of the noncondensate levels are clam
by their fast relaxation time to quasiequilibrium values
which change with the rise in trap levels induced by th
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very much slower growth of the condensate to its fina
occupation.

We believe the future development of the theory for th
problem will involve mainly refinements of our picture,
such as including depletion of our fixed bath of vapo
But for quantitative comparison with experiment, it will
be necessary to have more extensive data on spa
distributions at a range of temperatures.
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