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Quantum Kinetic Theory of Condensate Growth: Comparison of Experiment and Theory
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In a major extension of our previous model [Phys. Rev. L#3t.1793 (1997)] of condensate growth,
we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein
formula for the occupations of higher trap levels. We find good agreement with experiment, especially
at higher temperatures. We also confirm the picture of the “kinetic” region of evolution, introduced
by Kaganet al., for the time up to the initiation of the condensate. The behavior after initiation
essentially follows our original growth equation, but with a substantially increased rate coefficient
[S0031-9007(98)07849-1]

PACS numbers: 03.75.Fi, 31.15.Lc

Although the first Bose condensed atomic vapor waswo bands is taken to be at the valug,,. The situation
produced in a magnetic trap only in 1995 [1-3], theis illustrated in Fig. 1. The picture we shall use assumes
kinetics of condensate formation has long been a subjethat Ryc consists of a large “bath” of atomic vapor, in
of theoretical study [4,5]. There is now intense theoreticathermal equilibrium, whose distribution function is given
work on Bose-Einstein condensation, which is excellentlyby a time-independent equilibrium Bose-Einstein distribu-
summarized in [6]. Most theoretical studies of condensatéion {exd(E — u)/kzT] — 1}~ with positive chemical
growth either have not treated trapping or have considerepotential w. The value ofen,, will be assumed to be
only traps which are so broad that the behavior of thesmall enough for the majority of atoms to have energies
vapor is not essentially different from the untrappedhigher thare,., So that this part of the bath can be treated
situation. Furthermore, they have given onjyalitative  as being undepleted by the process of condensate growth.
estimates of condensate growth. Our previous paper In the following we will use the notation ofz as the
[7] introduced a simplified formula for the growth of a mass of an atom witls-wave scattering length, andng
Bose-Einstein condensate, in which growth resulted fronfor the number of condensate atoms.
stimulated collisions of atoms in a thermal reservoir, The trap levels inRc must have time-dependent en-
where one of the atoms enters the lowest trap eigenstatetgies due to the effects of the interaction with the
whose occupation thus grows to form a condensate. Wgrowing condensate. The energy of the lowest trap
thus included the trap eigenfunctions as an essential paevel in Rc is the minimum energy increase when
of our description, and gave the firsjuantitativeformula  one particle is added to the system; i.e., it is the
for the growth of a condensate. The growth rate was othemical potentialu(ng), for which we use a modified
the order of magnitude of that estimated from experiment§homas-Fermi approachi(ng) = a(ny + v)?/5 where
current at that time. a = (15a0,w,0,m"?1*/44/2)>° and v is a constant

This direct stimulated effect must be very importantchosen so thai(0) = fi(w, + w, + w;)/2. As u(ng)
once a significant amount of condensate has formedjses with an increase iny, the energies of higher en-
but in the initial stages there will also be a significantergy trap levels must also rise. The exact nature of this
number of transitions to other low lying trap levels whose

populations will then also grow. As well as this, there will

be interactions between the condensate, the atoms in these

low lying levels, and the atomic vapor from which the

condensate forms. This paper will extend the description

of the condensate growth to include these factors, and will

compare the results with experimental data on condensate

growth obtained at MIT [8]. s
As in our previous work, we divide the states in the Distance ~ —» MN) Emax  Energym

potential into thecondensate band ¢, which consists of _ )

the energy levels significantly affected by the presence df!/C: 1. (&) Representation of the change in the energy spec-

d te in th d stat drib d i trum due to the growth of the condensate. (b) Occupations of
a condensate In the ground state, an Bcondensate  iq evels considered: leftmost is the condensate level, followed

band, Rxc, which contains all the remai_ni_n_g energy lev- py several discrete energy bands, with the constantly occupied
els above the condensate band. The division between thgc at higher energies.

b)

Energy —»

Number per energy interval
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rise does nqt affect the_results greatly._ An app_roximate Bath of higher energy atom Bath of higher energy atoms
treatment arises by _Ieavmg the levels Wlth energies above N . F\i N
2 u(ng) unchanged (including all levels iRyc), and com- emal _— emal _—
pressing the spacing of the levels un@er(n,), so that V'\m\ Nl
the energies are given by
en = ey + 0[2u(no) — ep1l2p(ng) — €, — p(0)1/2, - | emax

1) ¥
where ¢ are the noninteracting harmonic potential en- .

ergy levels, andd(x) is the step function. Note that
68 = 1(0), and thusey = u(ng). The levels used in this FIG. 2. The transitions being considered: Left, scattering;
model are represented graphically in Fig. 1. To simplify"ight. growth.
the equations we also group the levels in narrow pandauantum kinetic theory as in [11], and some reasonable
of mean energyy, g, levels per group, ana, parti- approximations '
cles per group—thé = 0 group contains only one level, The individua{I terms are as follows.
ggnﬁg?r??:i[gﬁ;gng% :Tlﬁisggﬁ‘ésls g?}isntLéer?g:(rjigf Scattering—A collision between an atom initially in

. X ' P : an energy level below,,,x and a bath atom transfers the
assumption used |n.[5,9,10].' As a result .Of this ProCe% <t atom to another energy level belowy, This is
dure there are two different kinds of dynamissattering described b axe
andgrowth, as illustrated in Fig. 2. The evolution for the y

opulation of thenth level inRc is then .
pop ¢ nmlscatt = e'u/kRTF(T)

an,,

aT 1 [ — R /ksT
. . o — [i(gm + nm)e” "0 — ny(gr + ni)]
Equations of motion then follow from quantum kinetic kgm gm e "

theory [11], and full derivation will be given elsewhere. |
Heuristically the result amounts to modifying the quantum + Z — [ni(gm + nm) — nm(ge + ng)e” om/kTL
Boltzmann (QBE) equation as follows. k>m 8k

(i) We use the QBE in an approximated ergodic form, (4)
whereemin = min(e,,, e,, ey, e4) [9],

= ’:lm = ’;lmlgrowth + ’;lmlscatt- (2)

) where wy, = ex — e,. The value of I'(T) =
af (en > e~e/sT depends on the energy spectrum.
S - S(em + en — ep — ; en> e ; on e en :
or emezp’eq (e ¢ ¢p ~ €q)8(emin) We use the value for aisotropic 3-dimensional harmonic
oscillator with frequency w = (w,w,,)"/3.  Thus
X {flep)fle)[1 + flen)][1 + flen)] en = (n + 3/2)hiw, so that we find

7emz|x/klf
— flew)f(en[1 + flep][1 + fle)]. ) =

T e hallt ®)
(3) However, this value is not critical; similar results are
obtained for any’(T") greater than about 10% of (5).
Growth—A collision between a pair of atoms initially
in the bath of atomic vapor results ne of the atoms
" having a final energy less thag..x. This gives

n

wheren, = g, f(ex) is the number of particles with en-
ergy ex, andr = (8ma’w?/mwh) X t. Here we take the
form for anisotropic 3-dimensional harmonic oscillator
with frequencyw = (w,w,w,)">.

(ii) We use the modified energy levels as given above, 7, lgown = 2[(n, + 1)W,i (n9) — n,W,, (n9)1,  (6)
but otherwise do not change the QBE.

(i) We sum out over all levels inRnc which is where
assumed time independent. " N “ *

(iv) We omit any scattering between atoms which both W, (o) = 2 Jo de - de; - desf(e1)f(e2)
have energies less thaf,.,, which is reasonable if the
number of atoms in the bath is almost 100% of the total X [1+ fle3)]d(er + ex — ez — ew), (7)

number of atoms.

(v) The wave function of the condensate satisfiesy —(,,) = ljw delfx dezfx des[1 + fle1)]
the Gross-Pitaevskii equation with chemical potential " 2 J e e e

max max

w(ng). _ _
We emphasize, however, that these are not simply X1+ flea)lf(es)dler + e2 = e3 = em).
ad hoc modifications, but can all be derived using (8)
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Because we assume the noncondensate band is in thernsgleed up the initial period of growth (dominated by spon-
equilibrium, with temperaturd” and chemical potential taneous growth) and shortens the time before the stimu-

M, we have lated term becomes significant. This gives a much sharper
B (em — 1) initial growth curve as compared to the smoother S-bend
W, (ng) = ex T W, (n9) (9)  curves of [7]. In Fig. 3 we present an example of the re-

sults obtained for the growth of all the bandsRa, in
The value ofW, (henceforthw *) differs significantly  which a number of features may be seen.
from that used previously [7] in that the integrals in (7) (i) The effect of the initial conditions used can be
are performed only over energy levels higher than.  seen from the front corner. In this example the initial
(previously over all levels), and the Bose-Einstein distri-populations for all but the top ten bands were set at zero,
bution function is used over all the range of integrationwhile the top ten bands had populations determined by the
(previously approximated by the Maxwell-Boltzmann dis- same Bose-Einstein distribution function as fc. The

tribution). With these changes we find that figure shows that this initial condition is rapidly smoothed
kT out by scattering processes. Different initial conditions
W*t(ny) = ( ) [[Iog(l - 2P merely generate a small change in timitiation time
2\ fiw defined below.

- . (ii) The initiation time (here60 ms) is defined by the
+ 2 Z[ZZ(”O)] [®(.1.r + DFf. (10) critical line C-C. Up to this point the population of the
condensate level is relatively small. The behavior up to
wherez = exp(“z7) andz(ng) = EXD(M) The  the initiation time is similar to that found by Svistunov
function @ is the Lerch transcendenf12], defined by [10] and Kagaret al. [5]. In particular, the populations
®(x,s,a) = X;_ox*/(a + k)*. These changes result of the levels increase to approach a limiting dependence
in a significant correction, increasing ™ by about a on the energy off(E) « E~'6! on the critical line C-C,
factor greater than 3 (dependent @h «, and the trap  which is in good agreement with their predictionof>/3
parameters) compared to that used previously in [7], angl1 3] for the case of a harmonic trap.
producing correspondingly faster growth. (iii) After the initiation time the condensate grows enor-
By making a further approximation, tha¥,(no) =  mously. However, the occupations of the other trap levels
W™ (ng), the calculations required are significantly sim-actually decrease quite rapidly to their equilibrium values,
plified. We can do this because th&, (no) are an av- and then remain nearly constant while the condensate con-
erage over all the levels contained in ti¢h group, and  tinues to grow—Dby a factor of about 10 in this case. At
hence are expected to be of the same order of magnitudee same time the energy spectrum of the trap levels in
as W' (no). As a validity check, it was found that the R changes according to (1). This accounts for the small
effect on the condensate growth rate was small when theariation in occupations of these levels which is still evi-
W, (no) were altered by a factor in the rang&-2. We  dent in Fig. 3.
now have for the growth terms Figure 4 compares with the experimental data of
Fomlgrowin =2W  (no) {[1 — e'» Wkl 4 ¢} (11) Ref.[8], for two different temperatures. The MIT
. P  latno)—pl/keT group fitted their data to an uncorrected growth equation
nOIgrowth =2W ™ (no){[1 ettt K’ Jno + 1}. (12)

The overall evolution of the system can now be found
from the numerical solutions to the set of Egs. (2).
The parameters used atg = w, = 27 X 82.3 Hz and
w, =27 X 18 Hz, as in [8], anda = 2.75 nM, eyax =
2.2u(no(eq)), whereng(eq) is the final equilibrium value
of ng, which is defined byu(ng(eq)) = u, the chemical
potential of the vapor. The number of energy bands was
set as large as possible, but it was required that there were
at least four levels in the first group above the condensate,
in order to represent the fact that the levels are discrete.
The improvements to this model over that used in [7]
speed up the condensate growth by up to an order of mag-
nitude, depending on the exact parameters, as anticipated
in [7]. The major cause of this is the correctionWo™  FIG. 3. f(e,) vs energye, as a function of time. Note
arising from the use of the correct Bose-Einstein distri- that the lines almost parallel to the time axis are not lines of

onstant energy, but rather lines g¢fe,,) for constant level
bution. The inclusion of the scattering terms does no umber whose energies change with condensate growth. The

change the overall rate of growth substantially (which issolid curve in the plane at the top of the axes represents the
dominated by the bosonic stimulated growth), but doesurve log,[eo] = log,[x(n)] as a function of time.

0

loglo((m -29 Time (ms)
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107 3100 very much slower growth of the condensate to its final
a) b) occupation.

We believe the future development of the theory for this
problem will involve mainly refinements of our picture,
such as including depletion of our fixed bath of vapor.
0 055 s % s But for quantitative comparison with experiment, it will

Time (s) Time (s)’ be necessary to have more extensive data on spatial

, . distributions at a range of temperatures.
FIG. 4. Comparison of theoretical rowth  curves . .
(black) with pexperimentally fitted curve% (gray) from We thank Wolfgang Ketterle and Hans-Joachim Mies-
[8]. (@) Theory T =830nK, ngleq) =7.6 X 10° ex- her for discussions on sodium experiments; Eric Cornell,
periment T = 810—-890 nK, no(eq) = (7.5-7.85) X 10°; Carl Wieman, Deborah Jin, and Jason Ensher for discus-
(b) theory T =590 nK, ng(eq) = 2.3 X 61063 experiment  sjons regarding rubidium experiments; and Yuri Kagan
T = 580-610 nK, noleq) = (2.1-2.5) X 10°. and Boris Svistunov for discussions regarding their kinetic
approach. This work was supported by the Marsden Fund

no = ynofl — [no/no(eq)]**}, and reported only values under Contract No. PVT-603, and by the Osterreichische
of the parametery. To represent that the experimental Fonds zur Férderung der wissenschaftlichen Forschung.
curve is a fitted curve rather than the raw data, the curvét was finalized during the program BEC-98, at the Insti-
has been plotted as a broad band. The MIT group usedite for Theoretical Physics at Santa Barbara (supported
the initial population for their curves as free parameters irby the NSF Grant No. PHY94-07194). We thank all in-
their fit. We have set the initial populations for the MIT volved in this program for the provision of a most stimu-
curves so as to give the best agreement with the initiatiofating environment.
time of our growth.

IntheT = 830 nK case, Fig. 4a, the growth speed pre-
dicted agrees with that experimentally found. The=
590 nK case in Fig. 4b sh_ows a theoretical gr(_)wth rate 1] M. Andersonet al., Science269, 198 (1995).
some 3 times slower than is measured. The discrepancy,] k. B. Davis et al., Phys. Rev. Lett75, 3969 (1995).
between theory and experiment at lower temperatures i§3] c.C. Bradley, C.A. Sackett, J.J. Tollet, and R. Hulet,
hard to evaluate using the data in the form presented in  Phys. Rev. Lett75, 1687 (1995).

[8], which do not allow for direct comparison between the [4] E. Levich and V. Yakhot, Phys. Rev. B5, 243 (1977);
actual projected spatial distributions as given by phase- J. Phys. All, 2237 (1978); D.W. Snoke and J. P. Wolfe,
contrast microscopy, and theoretical spatial distributions. ~ Phys. Rev. B39, 4030 (1989); H.T.C. Stoof, Phys. Rev.
These are not difficult to calculate from our many-level ~ Lett. 66, 3148 (1991); D.V. Semikoz and I.I. Tkachev,
growth curves—the methodology will be published else- ~ Phys. Rev. Lett74, 3093 (1995); H.T.C. Stoof, Phys.
where. The MIT method fits to a zero chemical potential ~ R€V- A49, 3824 (1994); Phys. Rev. Lefl8, 768 (1997);

. . K. Damle, S.N. Majumdar, and S. Sachdev, Phys. Rev. A
vapor plus a nonzero chemical potential condensate—a 54, 5037 (1996).
rea.so.nable estimate in the gbsgnce of any theoretical de[5] Yu.M. Kagan, B.V. Svistunov, and G.V. Shlyapnikov,
scription of the spatial distribution of the vapor. But a Sov. Phys JETH'S, 387 (1992).
detailed description might give quite different results for [6] F. Dalfovo et al., cond-mat 9806038 [Rev. Mod. Phys. (to
temperature, and for condensate and vapor numbers. be published)].

In summary, we have given a description of condensate[7] C.W. Gardiner, P. Zoller, R.J. Ballagh, and M. J. Davis,
growth covering the full range of behaviors, both before  Phys. Rev. Lett79, 1793 (1997).
and after initiation of the condensate. Itdsiantitative  [8] H.-J. Miesneret al., Science279, 1005-1007 (1998).
and agrees quite well with experiment. The behavior [9] M. Holland, J. Williams, and J. Cooper, Phys. Rev58,
before initiation is essentially as given by the quanturg 3670 (1997).

Condensate Number

—

- . : 0] B. Svistunov, J. Mosc. Phys. Sat;. 373 (1991).
Boltzmann equation, and agrees with computations bas 1] C.W. Gardiner and P. Zoller, Phys. Rev. 88, 536
on this equation [5,10,14]. We are able to give a valu (1998)
for the initiation time which appears to be consistén{i A Erdelyi etal., Higher Transcendental Functions
with experiment. After the initiation of the condensate, (McGraw-Hill, New York, 1955), Vol. 1.
the occupations of the npncondensa’Fe Ie_v_el§ are clampeg] B. Svistunov and Yu. Kagan (private communication).
by their fast relaxation time to quasiequilibrium values,[14] Yu. Kagan and B. V. Svistunov, Phys. Rev. L&t§, 3331

which change with the rise in trap levels induced by the (1997).
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