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Acceptance-probability-controlled simulated annealing:
A method for modeling the optical constants of solids
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A simulated annealing procedure with acceptance-probability control instead of the usual tem-
perature control is proposed. The algorithm presented here has proved to be fully insensitive to
initial parameters values, free of local-minima trapping problems, and shows superior convergence
compared to adaptive-step classical simulated annealing with exponential cooling schedule. Experi-
ments on computer generated synthetic data (with noise), closely resembling the optical constants of
a metal, were performed to verify the effectiveness of the algorithm. The algorithm is then applied
to parameter estimation of the model of optical constants of aluminum.

PACS number(s): 02.70.—c, 78.20.Ci, 78.66.—w

I. INTRODUCTION

Fitting the optical constants of solids to a specified
model is a task that is frequently performed. A model pa-
rameter estimation is performed. by minimizing the merit
or cost function, which is usually a y function. When
the cost function has a single mininum, the conventional
downhill methods can locate it. However, when the cost
function has multiple minima, a nonconvex optimization
technique that allows hill climbing for escaping from local
minima is required. When using conventional algorithms
for such problems, it is necessary to provide good initial
estimates of the parameter values to locate the valley
containing the global minimum. It is sometimes very dif-
icult to supply such initial guesses.

The simulated annealing [1] (SA), having its origins in
the work of Metropolis et al. [2], is a powerful combi-
natorial optimization technique that overcomes the ini-
tial state estimation problem. Starting &om an arbi-
trary initial state, the algorithm generates a sequence
of changes of mod. el parameters or "moves" in param-
eter state space. The success of this approach lies in
the probabilistic hill climbing capability of a SA algo-
rithm. The search process of the simulated annealing
is usually controlled by an externally specified parame-
ter, called temperature T, with the same units as the
cost function. The plan for changing the temperature
with time is termed the cooling schedule. If the ini-
tial temperature T'"' is high enough, according to the
cooling theorem of Geman and Geman [3], the global
minimum is obtained asymptotically if the cooling is not
faster than T(t) = T'"' /ln(1 + t). The standard, or ex-
ponential, cooling schedule by Kirkpatrick, Gelatt, and
Vecchi [1] is widely accepted [4—8]. A variation of the
exponential sched. ule is the adaptive temperature scale-
factor schedule given by Catthoor et al. [9,10]. Szu
and Hartley [11,12] have proposed the annealing schedule
T(t) = T'"'~/(1 + t), called fast simulated annealing.

All of the above algorithms have two major problems.
First, these schedules imply only the reduction of the
temperature with time. In metallurgical annealing it is

not unusual to inspect the structure of the system during
the cooling process in order to detect the polycrystalline
state and to increase the temperature to remelt it. This
concept was applied by Matsuba [13] to simulated anneal-
ing. He varied temperature according to the decrement
in cost function E. Thus, when the system has to climb
hills, the schedule increases the temperature, allowing oc-
casional hill climbing. The solution suggested in Ref. [13]
requires substantial analytical eKort even for the simplest
one-dimensional problem. It is obvious that this method
could be of no use for real-size problems.

The second problem is related. to the traditional choice
of the temperature as a control parameter. The tempera-
ture is varied in one way or another during the simulation
in order to reduce the acceptance probability (AP) and
conGne the system in the vicinity of the already located
global minimum. However, it is evident that the really
important parameter is not the temperature itself but the
acceptance probability. Therefore, we suggest that the AP
be used as a control parameter instead of temperature.

In this paper we present an eKcient simulated an-
nealing algorithm. This algorithm uses acceptance-
probability control for the cooling schedule rather than
temperature. The main feature of our annealing sched-
ule is that the AP is varied in a prescribed manner in
time while the temperature is adaptively changed in ac-
cordance with the average change in cost function. This
schedule also performs the occasional heating of the sys-
tem, solving both problems observed with temperature-
controlled algorithms simultaneously.

In the following section we describe the acceptance-
probability controlled simulated annealing (APCSA)
technique. Section III is devoted to the evaluation of
the APCSA schedule performance and the comparison
with the classical SA schedules. In Sec. IV the algorithm
is used to estimate the parameters of the model of the
optical constants of aluminum.

II. DESCRIPTION OF THE ALGORITHM

Simulated annealing is a procedure that iteratively
changes a state of the optimization problem. Moves are
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chosen using a state generation procedure . The decision
of whether or not to actually make a move is made by
an acceptance criterion. Usually, the acceptance crite-
rion is a function of the change in cost function (AE)
and temperature T. The most frequent ly used AP is the
Bolt zmann distribution, where the probability of accept-
ing the uphill move producing the change in cost function
EE at temperature T is m = exp( —AE/T) [2].

The algorithm presented in this paper (APCSA) has
two nested loops. In the outer loop, the decrease of the
AP is performed directly. The inner loop keeps the tem-
perature constant while exploring the parameter space.
A more detailed description of the algorithm is given in
Secs. II A and IIB.

A. The generation procedure
and the acceptance criterion

The domain P containing the parameter vector p =
(p(1),p(2), . . . , p(N)) is a subset of N-dimensional real
space . It is determined by setting the lower and upper
boundaries for each parameter p~ (k) and p (k) . We dis-
cret iz e the solution state space by dividing the interval
p„(k) —

p& (k) by N~ in order to determine the initial
value of the vector A (move-step vector) containing the
initial step for changing the parameter vector p. Thus A
is given by A(k) = Q„(k) —

p~ (k)]/N~ for k = 1, . . . , N.
Reducing the number of parameters to be altered in

one iteration contributes to the stability of the solution
and was employed by Hsu et al. [8] and Wu et al. [14].
We use the state generation procedure of Hsu et aL [8]
with a randomly reduced number of parameters to be
changed in one move . This procedure is of a local nature,
allowing only the transitions from the current state g; to
the neighboring state g . ,

p, (k):=p; (k) + r A(k),

where r is an integer chosen randomly in the set (—1,1).
The impact of the step size on the quality of the so-

lution has been addressed before [9,11,12, 15] . A com-
paratively large step is needed in the initial stage of the
procedure to provide sufhcient mobility of the algorithm
to cover the entire parameter space . At the same time, it
is important to perform some kind of move-range reduc-
tion with time in order to reduce the fluctuations during
the final stages of annealing. Here we adopt the sugges-
tion of Catthoor et al. [9] and reduce the step in "nearly
inverse quadratic" manner. When the ratio 6 (k) /p (k)
is less than 0.005 further reduction of the move step for
that parameter is stopped.

The initial temperature is determined by employing
the procedure of Rees and Ball [16]. Making many ran-
dom changes to the cost function E, we flnd the aver-
age cost function (E) and the average of the absolute
change (Ib.EI) . This would be equivalent to the av-
erage change of E at an infinite temperature when all
moves would be accepted. Then the initial tempera-
ture T'"' is assigned based on the acceptance probability

0 90
& giving

(IEl) 1o (I~El)in (~'"")
(2)

The inner-loop stopping criterion is connected with the
convergence of the entity D de6ned by [9]

n

D = —„).exp[((E) —E(p;"))/TM ]

where the summation is performed over the states ~,"
accepted at temperature T". (E) is the average cost
function at the preceding temperature TM 1 deflned by

&acc):E(p.- ),
RCC

where % „is the number of moves accepted at T~
while E(p, ") is the cost function, which corresponds
to the accepted states p, ". Equilibrium is considered
to be achieved when the absolute value of the rela-
tive difference between the current and the preceding
value of D is less than a sp eci6 ed criterion b, i.e ., when
ID. —D.-il/D. -i & '.

For outer loop termination we accept the slightly mo d-
ified solidification condition of Doria et al. [7]. At each
temperature we record the lowest value of the cost func-
tion obtained. When the absolute values of the relative
difference between this value and the minimal values of
the cost function at three preceding consecutive temper-
atures were within c of each other, the simulation was
stopped. The value of e was initially set to 10

B. Role of the acceptance probability

After the inner loop termination the average of the ab-
solute change in the cost function (IAEI „)is evaluated.
This value provides a valid estimation for the change in
the cost function at the next temperature . At this point
the classical SA algorithm reduces the temperature to
some extent, checks the so lidific at ion criterion, and starts
the new inner loop cycle .

Here our algorithm departs from the classical SA tech-
nique. The main idea of our approach is to control the
AP directly instead of controlling it via the control pa-
rameter T. The initial temperature is determined at the
beginning of the annealing procedure, employing Eq. (2) .
In this way the initial temperature is related to the aver-
age change in the cost function and the desired AP. What
really matters is not the temperature itself, nor the aver-
age change in cost function, but the AP. It is also widely
accepted that at the end of the annealing process the
temperature should be "suKcient ly low, " meaning noth-
ing else but that the AP should be low. At all times the
AP was the entity of importance for the schedule. There-
fore, it is not surprising that the entire cooling process
could be efI1cient ly controlled by properly controlling the
AP instead of the temperature T .

What is the crucial difference between the classical SA
approach and our approach? If the annealing process
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flows smoothly and if the cost function has no disconti-
nuities or deep pits, it all works well even with the usual
temperature control. But in regions where the cost func-
tion has valleys with steep walls, memory of the connec-
tion between the T and LE established correctly at the
beginning could be easily lost. It is therefore essential
to update the correlation between the T and the average
change in the cost function adaptively during the an-
nealing process in the same manner we did at the initial
moment while determining the initial temperature, only
with the lower acceptance ratio. This leads to the con-
cept of the acceptance-probability controlled simulated
annealing.

The acceptance probability is lowered. in each outer
loop cycle. One of the well known annealing schedules,
such as, the exponential [1,6,5], linear [17],or inverse log-
arithmic schedule [3], can be used to lower the AP. Here
we use the Gaussian function to generate the sequence
of acceptance probabilities depending on the outer loop
counter M:

mM = ~'""exp(—M /2cr ).

The temperature TM is then determined by employing
the average of the absolute change in the cost function
at the preceding temperature (~AE~ „)and the desired
acceptance probability AM

In(AM)
(6)

III. TEST OF THE APCSA TECHNIQUE

To investigate the performance of the APCSA algo-
rithm we performed two experiments on synthetic data,
with and without noise. We shall briefly discuss the ap-
plied model, which was employed for parametrization of
the optical constants of metals [18]. It was shown [19—22]
that e„(ur) could be expressed in a form that separates ex-

The monotonically decreasing function [
—1/ 1n(vrM)] pro-

vides the needed average reduction of the temperature.
It was already correctly noted by Catthoor et al. [9] that
in the regions where the cost function had sharp edges
or deep valleys it was suitable to minimize the reduction
of the temperature in order to enable the algorithm to
cope with discontinuities. Clearly, in such regions the
(~AE~ „) values are significant. Here we proceed one
step further and allow the algorithm not only to keep the
temperature constant, but to occasionally increase the
temperature in the situations when the AP is not suK-
cient to overcome the increase in (~AE~ „).The ability
of the APCSA schedule to raise the temperature in the
instants when the system needs remelting makes it very
eKcient in escaping &om local minima. As it will be
shown in the following section, the APCSA is more eK-
cient in escaping local minima than the usual, tempera-
ture controlled, SA algorithms. In the following sections
three numerical experiments will be performed on syn-
thetic and real data sets to evaluate the performance of
the APCSA technique.

plicitly the intraband efFects (usually referred to as free
electron efFects) &om the interband effects (usually asso-
ciated with bound electrons). In this paper the following
model is used:

The intraband part e„(u) of the dielectric constant is
a well known &ee electron or Drude model [23]

0„"(f)
Ld(ld + xTo)

(8)

and the interband part of the dielectric constant e (~)
is a simple semiquantum model resembling the Lorentz
result for insulators

where uz is the plasma frequency; A: is the number of in-
terband transitions with &equency u~, oscillator strength
fz, and lifetime 1/I ~, 0„= ~flu„ is the plasma &e-
quency associated with intraband transitions; fo is the
oscillator strength for electrons contributing in intraband
processes; and I'0 is the intraband damping constant.

We use this model to evaluate the performance of the
APCSA technique. Two sets of synthetic data resembling
the optical constants of a metal were generated to test
the algorithm.

In the erst step, we generated the values of the dielec-
tric constants in the range &om 6.3meV to 15eV. The
initial values for the parameter vector components and
the target values used to generate the e, (~) are presented
in Table I. In common situations, at least some of the fre-
quencies of the interband transitions are known &om the

Parameter
fo
r.
fl
r,

f2
I'2
Cd 2

f3
I'3
M3

f4
r.
(d4

Initial
0.500
0.050
0.500
0.500
0.500
0.500
0.500
1.600
0.500
0.500
2.200
0.500
0.500
4.000

Target
0.700
0.060
0.200
0.300
0.400
0.300
0.300
1.500
0.200
1.000
2.000
0.050
3.000
4.500

Obtained
0.696
0.060
0.203
0.309
0.398
0.296
0.295
1.499
0.199
0.971
1.983
0.052
2.916
4.389

0.008
0.003
0.007
0.009
0.006
0.005
0.003
0.001
0.009
0.030
0.017
0.004
0.090
0.082

TABLE I. Values of the semiquantum model parameters:
initial values, target values employed for generation of the
synthetic data sets with and without noise, and values ob-
tained by the APCSA algorithm by 6tting the model to data
with noise. I' and u are in eV and f is dimensionless. Column
0 shows the standard uncertainties of the estimated parame-
ters.



52 ACCEPTANCE-PROBABILITY-CONTROLLED SIMULATED. . . 6865

band structure calculations or can be anticipated &om
the visible structure in optical constants. Therefore, it is
possible to make valid assumptions for the initial values
of u~. No attempt was made to con6ne other parame-
ters even by an order of magnitude. The following cost
function was used:

expt

3.0x10'

0
2.0x10'—

0

~ 1.0x10

schedu

2

r 2 ~i 6~2 Mi
expt (10)

0.0
000 001 002 003 004 005 006

Inner loop criterion 6

We tried to fit the synthetic data generated &om the
model, employing the 6tting routine based on the mod-
ifIed Levenberg-Marquardt algorithm with and without
the strict descent option. In both cases the algorithm
produced a rather low value of the cost function and "ac-
ceptable looking" plots of the optical constants, but failed
to obtain the target parameter values. This behavior in-
dicates the termination in the local minimum diKering
slightly in cost &om the global one, but in a different
location in parameter state space. This is where the pa-
rameter estimation problem appears to be more demand-
ing compared to other optimization problems such as the
circuit placement one, where the quality of the solution
is measured exclusively by the final cost function value.
The algorithm for the parameter estimation is required
to And the global minimum, i.e., to locate correctly all
the model parameters, especially if they are expected to
have some physical meaning.

In the next step we used the synthetic data for e (w)
with Monte Carlo generated additive Gaussian noise
with &equency-dependent variance, determined in such
a manner to give uncertainties of 0.5% in the reflectance
calculated &om the e" " (u) values. As expected, it
was impossible to fit the data with noise to the model
and obtain the target parameter values employing the
Levenberg-Marquardt algorithm.

Both problems were successfully solved with the
APCSA technique. Annealing was performed starting
from the same initial configuration, far &om the global
minimum. We examined the impact of the inner-loop
stopping criterion b on the convergence rate. Figure 1
shows the number of iterations the APCSA algorithm
needed to find the solution as a function of h. For b

above the 0.05 the convergence fails; there is not enough
time spent at each temperature for the system to reach
the equilibrium. For b below 0.01, the number of it-
erations needed for completing the simulation is rapidly
increased. Similar behavior is observed for classical simu-
lated annealing (CSA), but with significantly longer com-
puter CPU time. Values of b providing the rapid conver-
gence of the APCSA schedule lie between 0.01 and 0.05,
while the values of b needed to ensure the convergence of
the CSA algorithm are significantly lower (0.001—0.0025),
consequently requiring a longer time to be spent at each
temperature.

The annealing parameters for both algorithms were de-
termined to provide the fastest convergence. Tempera-

FIG. 1. Number of iterations the APCSA algorithm needs
to 6nd the solution as a function of the inner loop criterion b
(dimensionless). For h above 0.05 the convergence fails.
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FIG. 2. Temperature (in same relative units as the cost
function) vs number of iterations for APCSA (solid line) and
CSA (broken line) algorithms. Results are for synthetic data
with noise.

ture vs number of iterations for both APCSA and CSA
schedules for synthetic data with noise, using optimal b
for both algorithms, are presented in Fig. 2. It is evident
that, in spite of the occasional increase of temperature,
the APCSA algorithm provides faster cooling. Figure 3
shows the cost function for the same data. The CSA
cost function curve shows a typical transition &om the
high cost plateau to the low cost region. The adaptive
change of the temperature in the APCSA results in the
absence of the plateau and apparently superior conver-
gence. Figures 4 and 5 emphasize the time evolution of
the &ee electron parameters of the semiquantum model.
Figure 4 (APCSA) shows steady convergence of the pa-
rameters towards the target values. The classical algo-
rithm (Fig. 5) obviously had problems with the local
minimum while attempting to locate the I o at 0.5eV
instead. of the required 0.060 eV. Figures 6 and 7 show
the evolution of the values of the third oscillator param-
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FIG. 3. Cost function (dimensionless) vs number of iter-
ations for APCSA (solid line) and CSA (broken line) algo-
rithxns. Results are for synthetic data with noise.

FIG. 5. Time evolution of the free electron parameters of
the semiquantum model for the CSA algorithm.

eters fs, 1 s, and ~s. The APCSA algorithm needed only
30 000 iterations to find the solution, while the CSA be-
came stuck in a local minimum, with no chance of get-
ting out, even after 80000 iterations. The parameters
obtained &om the APCSA for the data set without noise
have 3—5 correct digits, while the parameters obtained
&om data with noise are well within the uncertainty bor-
ders estimated &om the covariance matrix and the initial
estimate of the uncertainties in the reflectance spectrum.

IV. APPLICATION TO ALUMINUM

Finally, we applied the APCSA technique to the esti-
mation of the parameters of the model of the optical con-
stants of aluminum. There has been considerable theo-
retical and experimental interest in the optical properties
of aluminum (for review see Ref. [18]).

The semiquantum model, as a simple phenomenolog-
ical model, was employed for parametrization of optical

constants of aluminum several times [18,24,25]. Here we
intend to reperform this task, but in a diferent manner.
Aluminum is chosen as a well-known material, ensuring
that results could be anticipated in advance. Again we
located intentionally the initial guess for the parameter
vector in the region of the parameter space far from the
expected solution. It was not possible to solve this prob-
lem by employing the Levenberg-Marquardt algorithm,
while the APCSA technique finds the solution efhciently.
In the final stage of the optimization procedure, when
the location of the global minimum is approximately re-
vealed, the process could be significantly accelerated by
switching to the Levenberg-Marquardt algorithm to ob-
tain more accurate parameter estimates. Final parame-
ters values are presented in Table II.

V. CONCLUSION

Our principal aim was to determine whether the sim-
ulated annealing approach is appropriate for fitting the

0.8

fo —target value 2.5 APCSA schedule

0.6 nsionless) (eV)

0
APCSA schedule 1.5

O'A

~" 1.0 PI ~

I
3 (eV)

l o
—target value

0.5
f, (dimensionless)

2ObOO 40boo 60boo
Number of iterations

80000 20()00 40600 60boo
'

goooo
Number of iterations

FIG. 4. Time evolution of the free electron parameters of
the semiquantum model for the APCSA algorithm.

FIG. 6. Time evolution of the third oscillator parameters
fs, I's, and ~s for the APCSA algorithm.
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TABLE II. Semiquantum model (oscillator model) param-
eters values employed for the calculation of the optical con-
stants of aluminum.

2.S CSA schedule

2
0
1
2

3
4

f~
0.610
0.142
0.105
0.130
0.009

I, (eV)
0.057
0.436
0.512
1.917
4.701

(eV)
0

0.306
1.581
2.092
5.336

2.0

1.5

C,P
, I ", r

\

I
& (eV)

optical constants of metals. We believe we have demon-
strated that it is. Our second objective was to introduce
the more efIicient simulated annealing algorithm with
acceptance-probability control instead of the usual tem-
perature control. The algorithm presented has proved to
be fully insensitive to initial parameters values, extremely
efIicient in escaping local minima, and shows faster con-
vergence compared to adaptive-step classical simulated
annealing with exponential cooling schedule.

Accordingly, we conclude that the acceptance-
probability controlled simulated annealing algorithm is
superior to classical simulated annealing in situations
when the location of the global optimum cannot be an-
ticipated even approximately. In such cases, when no
valid initial guess for some of the parameters could be
made, the APCSA algorithm showed its superiority ex-
actly where it was expected —in the complete indepen-
dence on the initial parameters values. This makes the
APCSA a powerful tool not only for the parametrization

0.5
I'

P

0.0
0 20boo

f, (dimensionless)

4oboo
'

50boo
Number of iterations

80000

FIG. 7. Time evolution of the third oscillator parameters
fs, I's, and us for the CSA algorithm.

of the optical constants of solids but also for a computer-
aided design of the optical thin film coatings and filters.
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