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Abstract. It is described the integral equations (IEs) approach to building the discrete
mathematical model ol the diffraction problem ol TE wave on slits in the impedance plane. These IEs
are connected with the boundary-value problem ol stationary wave equation. Such a type ol problems
leads to systems ol the boundary IEs with logarithmic singularities in kernels which are solved by
an efficient discrete singularities method (DSM). It is demonstrated that discrete mathematical
models ol the wave diffraction problem on slits and subsequent numerical experiment are efficient
way lor solving the problem under consideration. It is performed the extensive numerical analysis
ol the TE mode diffraction on slits and it has shown some main characteristics ol electromagnetic
fields at different values ol parameters. Numerical results cover radiation and diffraction patterns
ol the scattered fields from different orders ol pre-Cantor grating, and the electric and magnetic
components ol scattered electromagnetic fields in the near zone lor various impedances ol gratings:
Ag, Cu, Al, Mg, Ni and constantan.

Keywords: diffraction problem, boundary integral equations, numerical analysis, discrete sin-
gularities method.

1. Introduction

the numerical analysis of the TE mode diffraction on slits in the impedance plane is
described in the paper. The overall aim of the work is to perform numerical experiments
based on the developed discrete mathematical model of boundary integral equations with
help of the efficient discrete singularities method.

Reduction of boundary-value problems connected with the stationary wave equation to
integral equations arise in the problem of diffraction on plane-parallel structures from the
theory of electromagnetic waves.

Main publications in this area are [1] (in Russian) and [2] where boundary value problems
in diffraction theory are solved by mathematical methods which reduce them to boundary
singular and hypersingular IEs.

One of classical problems which open wide opportunities for application to calculation of
antennas, open resonators and other microwave devices, is the scattering of electromagnetic
waves by a thin strip. The pioneer work representing the application of DSM to solve a
scattering problem of plane wave by superconducting strips was introduced in [3]. For more
complex problems with DSM applications see [4], [5], [6]

The model which is under consideration in this paper, is the approximation of real
fractal antenna [7] in 2D. Fractal antennas are used in a variety of modern mobile devices
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due to their compact size and broadband properties which have made them essential in
wireless communication, Bluetooth, Wi-Fi andGSM standards. Their theoretical research is
important, both interms of developing mathematical toolsfor solvingcomplicated boundary
value problems of electrodynamics, and a more accurate approximation to real physical
models. Therefore, numerical analysis of diffraction problems of TE modes by slits in a
Cantor set on the [}, ] interval in the impedance plane is a challenging task and an actual
problem.

We have calculated total and scattered fields, diffraction and radiation patterns as functions
of metal properties, orders of pre-Cantor gratings, angles and frequencies of incident TE
waves. Analysis of diffraction patterns is important as they describe main characteristics
and features of diffraction phenomenon in the problem under consideration. This paper
highlights the performance and efficiency of the developed numerical DSM.

2. Formulation of the diffraction problem of TE mode

To solve a 2D diffraction problem we calculate the total field which satisfies Maxwell’s
equations:

rotE'(y, n) — z) =0,
rotS{y, z) + z2) =0, (1)

divE{y, z) = 0, divH{y, z) = 0;

supplemented with Shchukin-Leontovich’'s impedance boundary condition:
[n.E] = -Zc[n, [n,H]] | )

where Zc= — — ./— - is the resistivity of metal and n is a unitary surface normal vector
V2 V ac
to the impedance plane. Besides, the total field must also satisfy the Sommerfeld radiation

conditions and the Meixner edges condition.
We consider the case of the E-polarization: (Ex,0,0), (0 Hy,Hz). Propagation direction
of plane wave is given by direction of the wave vector . (Fig. 2).

The only non-zero component of electric field satisfy all the aforementioned conditions
and also the two-dimensional Helmholtz equation without of metallic strips:

d2Ex d2Ex N 9.9
I’,Sl)—i— 1—b ex=0  ou = «

The non-zero magnetic field components are expressed by Maxwell’s equations (1):

[ u
3)

1 pEx 1 dEx

H y = H.y = 4

lojp. az rwop, ay

Cartesian coordinate system is chosen so that the set of slits is located in the XY plane
and the X axis is parallel to the strips’ edges.
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Fig. 1. Schematic of the considered diffraction structure.

2"
Slits™* = | (x,y,z) GH3: x GIy GIW\z —o0j , SI™» — }I (an,b™) .
9=1
It is convenient to switch to dimensionless coordinates:
‘N b" 2 4
s=y, *=f, C=y. < =7~. ~ =T ' Kk=b' SI™= -
9=1

The E-polarized plane wave falls from infinity at the angle a:

6)
Here, a is the angle between the positive direction of the axis £ and the propagation direction
of a plane monochromatic wave, and K is the absolute value of wave vector (see Fig. 2).

Fig. 2. Cross-section of the diffraction structure in the ££ plane.

The total field is considered to have the form:

r<(£,0 +<(e,o, £>o0,
n{N\" () ={ (6)
[ w_(£,C), £<o,
where Uq (£,£) is a known solution to the Helmholtz equation. It represents the sum of
incident and reflected waves in the half-space £ > 0 when slits are closed. The functions
w+(£j O> u- (£) C) are considered as Fourier series in the integral form:
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+00

UN«,<)= / £>0.
- 00
+00

N-(£,<)= 7/ C'5(A)er+70)4 N1, £<0.

These series satisfy the Helmholtz equation (3), the boundary conditions which follow
from (2), the Sommerfeld and Meixner conditions, and the conditions of conjugation in the
slits. The radiation condition will be satisfied if 7 (A) is given by Re 7 (A) > 0, 11117(A) < 0.

3. Boundary Integral Equations

As shown in the monograph [1] and the paper [3 the boundary-value problem (1)
considering all mentioned conditions is reduced to two systems of coupled integral equations:
4D
[Cf(A) - C"(A] (7(A) + A)ed A=0, f GCSIAR = UNSKN

— 00

+00

[CT(A)- C"(A)] e*d\ = -u$ K, +0), ce Slim

e)
[C(A) + C*(A)] (7(A) + A)eid\ = 0, f G CSI,

—D
+00

(C"(A) + CI(A)] 7(A)eMA = ‘AD. +0), Ce SIm

where A = in"P- determines the impedance of material, Zq = is the free space

impedance, and uo, £0 are magnetic and dielectric constants.
Let us introduce two new unknown functions:

D

« '0=- 1 [C2(A)-C"(A)(T(A) + NKAYA, 11)
_too

Atin = - | [cf (A + C*A] (7(A) + A)eid\ |, »,Go. i2)
“®

From coupled equations (9), (10) we obtain properties of the functions (11), (12):
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PTK) =0, ) =0 eelsilt

Therefore by applying inverse Fourier transform on functions A™(?/), A~™(?/) we have the
following relation between the unknown coefficients:

C?AB- O =- +Aln 2 . 13

CW+C-m=-2b(l)+Aj n()enyu (14)

As shown in [8]the coupled equations (9), (10) are reduced to boundary integral equations
of the 11 and2ndkinds with logarithmic singularities in kernels:

\J inlC-4 KW 4y +11J K?I(ii,0KWn =/i"(0. C6Si",

Slw SIN
(15)
I'I-K)+-]_J/|nk-'~l I N (l-l)fl(+-TJ[K"(r|.OA-LIJn: CeSIN,
SN SWN
where (?1,£), IN(C), are smooth known functions.

To reduce the equation (15) on SIN to equations on a set of intervals SI™ = (@™ ,(3") ,
g= 1,2N —1, we introduce restrictive conditions to functions:

AUt =TT T[4 Y =nes, n(0]{ed, = n«.0,
6
/£ K)[{es» = fu,K) « FfK)Kesl? = fS,,K)

The Meixner condition will be satisfied if the unknown functions (11), (12) are represented
in the form:

, KM - - 4
(pg ~ V) (v - () ' nrato- V) (v~ )
'17)

A"K)= ,  1-*@-—-= tesSl, 46 Si"
"(#-{)(E -a™*)

By choosing a normalized interval (-1,1) the variables transform accordingly:
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oN ., N nN , N
« (-1, > (<n") 1t -» tf\t)=* 2 n + 0" + a»,

v=oVTt), Cc=91 (to), \tJ&'1 o i<, 1G99, AGHPL g=1,2N-1.
(18)

Considering (16)-(18) and excluding logarithmic singularity at p = q from equations
(9)-(10), we obtain a system of boundary integral equations of the 1it* and 2nd kind with
logarithmic singularities on a normalized interval for p = 1,2N—1:

I
%_/in It- to Ivi(gpN](t))-~==+

-1
2T1 1
j:-L X > I \ nr 117 /Inn/. 4y /I (ATV /. N\ AT | (AT / .44 ISjI
J WRA( *))’ (t0))) V+a(%aN (1) ) =1 (gpN) (*°))
:19)
(o («)  +Af Ny (m())
where M~ ((gq (1)), @> (to))j , f*p@> (to)), i= 1,2, are smooth known functions.

4. Discrete Mathematical Model

Discrete mathematical model has been developed with the help of an efficient numerical
method DSM [1]. The unknown functions

, V-M (f))>
and smooth ones

K, «»Iw).« ’'(«o»). fZutirme *=1j.2.

are interpolated by a Lagrange polynomial of (n —I)-th degree in the nodes which are the
nulls of Chebyshev’s polynomials of the L Kind:

2k-1
tk=cosl 9 * b k=1,n.
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From the mathematical model in (19) we have obtained the system of approximate solutions.
At the next step, using the quadrature formulas [9] for integrals with logarithmic singularity
and integrals of the smooth functions, we derive the system of the linear algebraic equations
(SLAE) for the values of unknown functions in the node points:

N,(n-1) 7 N
v <Al (<*))»

At collocated points we chose another set of Chebychev’s nodes:

t'5= COS&_Zn T j =1,n.

Therefore, we have obtained a SLAE forp= 1,2N—1, j = 1, n:

I n—i
In2 + 22T r(i?)
fcai r=1
2”1 n
k=i :20)
N- aN
n—1
A Tn(%)
~T,y~ir'"4 NK))
k=1 r=1
2N —1 n
where M7 y(ggN\t”)), (GpN\t))j ,  ApPOPM\~)), i = 1,2 are smooth known functions.

By solving this SLAE we find the values of unknown functions in the node points and
calculate the coefficients (13), (14) for the total and scattered fields (7), (8).
Using the asymptotic representation of Hankel’s functions, and (6), (7):

w*(r,p)~ [ cf (Ae"KAcosN + A M simMA, w*(r,p)~ [ cM(A)eMAo™ -N N SiddA

ay,(Kr )~ ./ X e{—n, r=x¢é » ,
V TKr
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we derive the expressions for the far field radiation patterns of the scattered and diffracted
fields:

DEM= Im 4 ;Y> - (21)

mrKr €

Using results of [1], [8], [11] we can estimate the rate of convergence of approximate
solutions to the exact metric in Hilbert's space, and the uniform metric for physical quantities.

Using these formulas for radiation patterns, unknown coefficients and also the total,
scattered and diffracted fields, we have performed the extensive numerical analysis of the
TE mode diffraction problem.

5. Numerical Results

Figs. 3 and 4 shows the total and scattered E-fields as functions of different metals:
argentum (Ag), cuprum (Cu), aluminum (Al), magnesium (Mg), nickel (Ni). It can be
concluded that with Ni strips the largest amplitude of electric field is observed; the Ag
and Cu strips show similar results and have the lowest E-field amplitudes.

)

Fig. 3. Near field of the total field for different metals, where
N =3 a=20° I=0.02m, / = 11.2GHz.

Fig. 5 shows radiation patterns (RPs) of E-field as functions of orders of pre-Cantor
gratings. The left one shows the RP (not normalized) and demonstrates the change in length
of the antenna lobe. The normalized RP is shown on the right and demonstrates visible
changes in the shape of antenna lobes. It can be concluded that the amount of lobes and
their length grow with the gratings order N.

Fig. 6 shows the near field of the scattered field for the absolute value of magnetic
components.
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Fig. 4. Near field of the scattered field for different metals, where
N =3 a=20° I=0.02m, / = 11.2GHz.

Fig. 5. Far field radiation patterns for Mg and various orders of gratings: N = 4, 5,6, where
a = 20° I=001m, / = 15GHz.

Fig. 6. Near field of the scattered field for the absolute value of magnetic components for Cu,
where a = 20°, 1= 0.0lm, / = 15GHz.
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Fig. 7 shows the near field diffraction patterns (DPs) of scattered fields depending on the
order of pre-Cantor gratings: N = 2, 3, 4.

Fig. 7. Near field diffraction patterns of scattered field for various orders of gratings N = 2,3,4 for
Cu, where a = 20°, 1 = 0.01lm, / = 15GHz.

Figs. 8 and 9 show the near field of the total and scattered fields, and near field DPs
for the strips from constantan where 0° and 20° are angles of incident TE wave. The main
attractive feature of constantan alloy is its resistivity which is constant over a wide range of

temperatures.

Fig. 8. Near field of the total and scattered E-field and its diffraction patterns for constantan,
where N = 3, a = 0° I=0.0lm, / = 30GHz.

Fig. 10 shows the near field RPs for different frequencies: 15GHz and 30GHz. It can be
seen that the amount of lobes grows with the increase of frequency.
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1J

11 1 1

Fig. 9. Near field of the total and scattered E-field and its diffraction patterns for constantan,
where N = 3, a = 20°, 1= 0.0lm, / = 30GHz.
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Fig. 10. Far field radiation patterns for constantan, where
N=3 a=0°1=00Im, / = IbGHz and/ = 30GHz.

6. Conclusions

The goal of this work was to perform numerical analysis of the diffraction problem of
TE mode on slits in the impedance plane using DSM and to improve the approach of
solving such problems with discrete numerical methods. Handling this problem with the
mathematical theory of diffraction is a complicated task due to the involved integrals with
logarithmic singularities in the kernels. This has raised an objective for us to develop a
discrete mathematical model which would resolve these difficulties. We have successfully
solved the boundary IEs with the help of a numerical DSM and special quadrature formulas
with the nodes in nulls of Chebyshev’s polynomials. In this study we have developed an
efficient discrete mathematical model, performed a wide range of numerical experiments of
wave diffraction on slits, and highlighted the efficiency and performance of applied DSM.
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E I'IO]'IFlPI/ISOBAHHOVIVBOfIHbI
HA WWENAX B MMIMNEOAHCHOW MNJIOCKOCTU
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AHHOTaumMs. B cTaTbe ONMCbIBAETCA MOAXO0A, K MOCTPOEHMIO AVUCKPETHOM MaTeMaTUYecKoi Mo-
AeNn 3apa4un andpakummn E nonsipu3oBaHHOW BOHbI Ha LLENSIX B MMMEAAHCHOW MI0CKOCTU Ha 6ase
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rpaHNYHbIX UHTerpasibHbIX ypaBHeHU (1Y) COOTBETCTBYHOLLEN KpaeBoW 3ajaun AN crauyoHapHo-
ro BO/THOBOIO ypaBHeHUS. Takuve 3afaun NpUBOAAT K cUcTeMaM FpaHUYHbIX Y ¢ norapmugmunyecku-
MW 0CO6EHHOCTSIMM B iipe, KOTOpbIe peLlatnTcst 3hPeKTMBHLIM METOI0M AVNCKPETHbLIX 0CO6EHHOCTEN
(MO0). lMNMokasaHo, YTO AUCKPETHbIE MaTeMaTUYecKMe MOZeNn 3agad gudpakumm BOSIH Ha LIensix
1 nocneayoLLmini YACNEHHbIA 3KCMEPUMEHT SABMSOTCA 3W(PEKTUBHBLIM CMOCOOG0M pELLEHUS paccMmart-
prBaemoit 3agaun. B paboTe MpoBefeH HMCIEHHbIM aHan3 3agaun Audpakumn E nonsiprsosaHHoiA
BOJTHbI Ha LUE/SIX M MOKa3aHbl OCHOBHbIE XapaKTEPUCTUKU 3/1EKTPOMArHUTHBLIX Mosei Npu pasnuu-
HbIX 3HAYeHUSIX NMapaMeTpoB. YUC/IEHHbIE pe3yNbTaTbl NPUBEAEHBI A/1s1 AMarpaMM HampaB/eHHOCTH

N ONGPaAKUMOHHBIX KapTUH PacCesiHHOro Mosis 0T MNPeAKaHTOPOBbIX PELUETOK pas/IMyHbIX Mopsia-
KOB, @ TaK >Xe 3/IEKTPUYECKNE M MarHUTHbIE COCTaBNSOLLME PaCcCesTHHOrO 3/1eKTPOMAarHUTHOrO Mosis

B O/IVDKHEN 30He 47151 pa3INYHbIX 3HaYeHUIA umnegaHca pewetku: Ag, Cu, Al, Mg, Ni n KoHcTaHTaHa.

KntwoueBble crfioBa: 3agaya gndpakumm, rpaHnYHble MHTErpasibHble YPaBHEHWUS, YUC/EHHbIN
aHa/ M3 MeToga ANCKPETHbIX 0CO6EHHOCTEN.



