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Abstract—For an elliptic 2/th-order equation with constant (and only leading) real coefficients,
we consider the boundary value problem in which the (kj —I)st normal derivatives, j = 1

are specified, where 1 < ki < mmm< ki. If kj = j, then it becomes the Dirichlet problem; and
if kf = j + 1, then it becomes the Neumann problem. We obtain a sufficient condition for this
problem to be Fredholm and present a formula for the index of the problem.

In the generalized Neumann problem for an elliptic equation of even order 21, the successive
normal derivatives (d/dn)j,j = 1 are given on the boundary of the domain. This problem
was studied in [1] for the polyharmonic equation with the use of the Almansi representation.
Another version of the Neumann problem based on a variational principle was earlier suggested

in [2].
In the present paper, for an elliptic equation with constant (and only leading) real coefficients,
we consider the more general problem in which the (kj —I)st. normal derivatives, j = 1,..., |, are

specified, where 1 < k\ < mmm< kt. It becomes the Dirichlet problem for kj = j and the above-
mentioned Neumann problem for kj = j + 1. Therefore, it is natural to refer to this problem as a
generalized Dirichlet-Neumann problem.

Consider the elliptic equation

d2lu d2u
dy2 =  dx2+l~idyi

in a domain D bounded by a simple smooth contour T on the plane. The ellipt.icity condition
means that the roots of the characteristic polynomial

x(j)=j2-V
3=1

do not lie on the real axis. For this polynomial, we also use the representation

)(Z):El Q_Vi)ﬁ‘irgl -

where the roots 7z, are pairwise distinct and lie in the upper half-plane. Clearly, their total multi-
plicity h + =mm+ Im is equal to I
Consider the matrices

B = (Bu..., Bm) G Clxi, J = diag (Ju Clxl (2)
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with block entries Bj G Clxii and J,, GC liXli of the form

//\ 1
Bi=(,0. 0, 3= °V 0
Vo 0 0

The matrix J defines the first-order canonical elliptic system

d+ _ =0
dy = dx ®

and its solutions <fi(z) treated as functions of the complex variable z = x + iy are referred to as
Douglis analytic functions [3]. These functions are real-analytic, and in a neighborhood of each
point r G D, they can be expanded in uniformly and absolutely convergent generalized Taylor
series

k=0

here and throughout the following, we use the notation

o dk
(x +1iy)j = xI +yJ, dx?<)' (4)

By [4], the general solution of Eq. (f) can be represented in the form
u = ReBcf); (5)

moreover, the relation u = 0 is possible only if <iis a polynomial of degree <1 —2. More precisely,
the function < is uniquely determined under the 1(21 —f) conditions

ReBJr® k)(0) = 0, O<k<r<2- 1, (6)

where, to be definite, we assume that 0 e D.

The generalized Dirichlet-Neumann problem is the problem of finding the solution u(x,y) of
Eqg. (f) in the domain D with the boundary conditions

dk u

dnki-i 9j, (7)
where n = ni + m2is the unit outward normal. Here the fcth normal derivative is treated as the
boundary differential operator

d 9V _v- K\ r dku
ni— +noO—J\ u=y , rj)nlnlﬁ( rdx_rd7k~_r (8)

Let z = z(s) = x(s) + iy(s), 0 < s < sr, be a natural parametrization of the contour T.
The parameter s is the arc length counted counterclockwise from a fixed point 2(0) e T. Ac-
cordingly, e(t) = z'(s), t = z(s), is the unit tangent vector related to the normal by the formula
ei+ie2=1i(a + in2).

Throughout the following, we assume that T belongs to the class (7fdM+0, 0 < n < 1; that is, the
periodic function z(s) belongs to the class CklI* +E with some t > 0. In particular, the functions
and 72 and hence the coefficients of the differential operator (8) belong to the class C'fc!_1M+O(r).
We seek a solution of Eq. (I) in the class of functions u G C2I(D) such that 4G (i)) in
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the representation (5). It is convenient to denote this function class by C (£)); obviously it is
a Banach space with respect to the norm |« = 101~-1,0bviously for functions u in this class,
the right-hand sides gj in (7) should lie in CkI~kj,*(r).

Let be the fcth derivative of the function g e Cf(L) with respect to the arc length parame-
ter s; i.e.,

9{K[z(s)} = — glz(s)}-
Lemma 1. For each function f G C'(r), the equation

9K + Aj g(t)dst =1/,
r

where A> 0, is uniquely solvable in the class Ck(T).

Proof. Let us identify g with the function g[z(s)\. Then the considered equation can be reduced

to the equation
sr

Tkxg =/, (Tkx) (0) = g{k)(s) + AJ g(s)ds
0

in the class Ck of sr-periodic functions. (The periodicity condition also holds for the derivatives.)
By virtue of the obvious relation

Ne ,a)k= TM, A= aksk-\

we arrive at the case k = 1. A simple verification shows that the operator Tla : Cr —=Cr_1 is
invertible for any positive integer r and for any a > 0.

The Dirichlet-Neumann problem (1), (7) belongs to the type of the Poincare problem considered
in [3]. AIll results in [3] remain valid for problem (1), (7). The novelty is that, in our case, the
condition for the problem to be Fredholm can be written out in closed form in terms of generalized

Vandermonde determinants. Let us briefly describe related constructions in [3] as applied to our
problem.

Let hj(z) be functions analytic in a neighborhood of each of the points i=1,..., m, forming
the spectrum of the matrix J in (2). Consider the upper-triangular matrices hj (J.,,) = (hps)¥s=1
with entries hps = hs~p) (Vi)/{s —p)I, p < s.

Given the vector function h = (/?i,...,/?.;), by Wh(ui) e Clxli, following [4], we denote the
matrix whose jth row coincides with the 1 x It matrix B.Jij (J;). Its entries wps (z;) have the form
WpS(z;) = hp~D Vi) {s—DL, p=1,....,1, s =1,..., li. By analogy with (2), we form the block
matrix Wh{v) = [Wh(z"),..., Wh (zZm)].

In this notation, we set

G(t) = Wh{v), hj(z) = [e-i(t) + e2(t)2}h~K3[e2(t) - e ~z p A1, tGT, (9)

where, recall, e(t) = e-i(t) + %2(t) is the unit tangent vector to L at a point t.

Theorem 1. Let D be a finite domain bounded by a smooth contour T of the class Ck,fJ+0,
0 < n <1, and let the condition
det.G'(t) /0, teT, (10)

be satisfied in notation (9). Then problem (1), (7) is Fredholm in the class Ckl~1tl (D), and its
index x is given by the formula

k = argdetGr+21(ki—I). (11)

B
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Proof. If g is the boundary value of a function v e Ck (D), k < hi —1, then the derivative g *
can be obtained by an application of the boundary operator

I'"m={&* +e§) r+Myv 12

to v, where Mk is a linear differential operator of order k — 1 with coefficients that belong to the
class CMH(L) and can be expressed via the functions ei and e2 and their derivatives. Therefore,
by Lemma 1, we can rewrite the boundary condition (7) in the equivalent form

[ Qki~ly\ @*“kj) f Qki~iy,
(sATt) +S bAT-T*t=/" j= 13>
r

where we have set

f,=9{" ]+Jg”dsteC"T).

By setting k = kj in (8) and by applying the operator (12) to the partial derivatives of v on the
right-hand side in (8), we can rewrite the boundary condition (13) in the form

e"Si+elSy) \"hSi+n!Sy) , + =N (7))
r
where Lj is a linear differential operator of order h —2 with coefficients in the class CMH(L).

By using relation (3) and the notation accepted in (4), for the differentiation of the right-hand
side of (5), we have the formula

d d "k
&i— ha-;— ) (Re Bd>) = Re Ba, T4 a = a&t+ iao.
oy

Consequently, for J-analyt.ic functions () [solutions of the Douglis system (3)], the set of I bound-
ary conditions (14) can be represented in the matrix form

fci-2
ReGA AT+ Re”™ GU. - \] Grf)ds = f, (15)
r=0

where / = (/i,...,/]), the jth row of the matrix G coincides with the 1 x | matrix Bel kjnk 1,
j = 1,...,/, and the matrix coefficients Gr and Gj., whose specific form is inessential for our
considerations, belong to the class CM+O(L).

Therefore, problem (1), (7) is equivalent to problem (6), (15) considered in the class (7fd~1M(£))
of Douglis analytic vector functions.
Set = -0; then

d=c0+ Z4CI+ """+ Zj* "Ck-2+ 01 h'\z), cr GC, (16)

where, for a positive integer n, we have set

z

Ao\ Z) = J(t-zy~rdtjm -
(]
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In notation (4), we introduce the generalized Cauchy integral

Itp)(2) = j(t- 2)Mdtj<p(t), z £1\
r

If ¢ G CMr), then Itp G C~(D), and the boundary values of the latter function satisfy the

Sokhotskii-Plemelj formula [3]
2(I<p)+ = ip + Kip, a7

where K is the singular Cauchy integral

(Kip) (10) = — [ (t- to)}idtjip(t), ~ tOGL. (18)
r

As was shown in [3], if J is a triangular matrix, then every J-analytic function ip G (D) can
be uniquely represented in the form

ip= I<pt i, £gR’, (19)
with a real function ip G CML).
If J =i, then the integral (18) becomes the classical singular operator
mJ t-to

r

For each linear operator N, we introduce the operation of complex conjugation by the formula
Nip = Nip. In particular, it follows from (18) that

(Kip) (to) = — [ (t~ to)}1dijip(t),  to GL.

If k (to,t) GCMHO(L x L) and k(t, t) = 0, then one canreadily show that the integral operator

(Mip) (to) = J toG L,

r

is compact in the space CML). The class of such operatorswill be denotedby 7/(r).
Let us use the following assertion (see [3]).
Let L G C'L,Mt0. Then each of the operators

(Miip) (to) = (I<p){- n) (to) , tOer, M2=K-§S, M3 =K + K

belongs to the class "o(T).
By substituting the representation (19) into the expression (16), we obtain

m=v(z) + (I<p)(- k)(2), p(z) = Y "z kCk,
k=0
where crgC !l r =0,... ,kt—2, and G R*.

By using the Sokhotskii-Plemelj formula (17) and the last relation, from the boundary value

problem (15), we arrive at the equivalent singular equation

X
Re [G(l + K)ip\ + Rip+ ]T a& = 2/, (20)

=1
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where R G%(r) and the | x | matrix functions aj belong to the class CMH)(L). The unknowns in
this equation are a real /-vector function ip GCMT) and a set (£°), * GR*
From condition (6), we obtain the relations

, X+
[ c(t)ip(t)dst + ~2 bj£j = 0, c(t) G (21)
r J=1

with some (1(21 —1) x I) matrix functions bj of the class C MH(L).
By the preceding, Eq. (20) can be rewritten in the form

da—
G(1+ S)ip+ G(1—S)ip+ Rlip+2 'y’ =4/ (22)
j=i
with an operator Ri in the class 7*(T) and the matrix function G given by relation (9). Here we

have used the fact that the tangent vector e = ei + ?¢2 and the normal vector n = +in2 are
related by the formula e = in.

The classical theory of singular integral equations [6, p. 315] can be applied to system (21), (22).

This theory implies that, under assumption (10), the system belongs to the normal type and its
index k is given by the formula

x = Ind (G~1G) + I (2kt- 1) - 1(2L- 1).

By virtue of the equivalence, the same result is valid for the original problem. Elementary
transformations reduce this formula to (11), which completes the proof of the theorem.

In some cases, condition (10) and formula (11) can be described in closed form.

Theorem 2. Let one of the following two conditions be satisfied:

(a) the characteristic polynomial of Eq. (1) has a unique root in the upper half-plane;
(b) kji+1 - kj =1, 1<j <.

Then problem (1), (7) has the Fredholm property, and its index x is zero.

Proof. We write hj(z) = (ei + e2z)kl~1gj[w], where

w = u(z), u(z) = 62 6l*, j(w)=wk*~1, j=1,...,1
(@, u@ =@ o g(w) j
As was shown in [4], the matrix Wh has the following properties.

1. If a GClIxl, then aWh = Wah.
2. If ip(z) is a scalar analytic function, then W~h = WhA, where A G CIxl is a block diagonal ma-

trix and the Ar GCIrXlr,r = 1,..., m, are the triangular matrices with entries [Ar]ie= [ (j—)I
for all i <j.
3. If w(z) is a scalar analytic function and «/ (z;)/ 0, i =1,..., m, then

Wgow(v) = Wg[w(u)\H,

where w(v) stands for the set (w (vi),..., w (vm)), H GCIxl is a block diagonal matrix, and

Hr = diag "1, w’ (vr),...,[w’@r)fr 1Je C IrXlr, r=1,...,m.
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Then, by virtue of properties 2 and 3, we have

m
deteGit) = [ [e-i(t) + e2(t)z/}fIfd~i3)detG O(t),
i=1
where we have set
r< I\ e2(t2 - e-i(tH)n
=W, {w), w, =ceAl)+eMVj-

Since Ind(e-i + e2Vj)\r = 1 for Im~ > 0, it follows that
m
IndG =~ |jiki —Ij) + Ind Go- (23)
j=i

As t goes around the contour L, the point e(t) of the unit circle makes a complete revolution;
therefore, the condition det Go(t) / O is equivalent to the condition

det Ws[w(e)] / 0, le| = 1, (24)

where
W = iwi,..., wm), Wjie) = (e2- e )/ (ei +e2n).
In view of (23), this condition is equivalent to (10).
It was shown in [4] that if one of assumptions (a) or (b) of the theorem is satisfied, then

condition (24) always holds. Therefore, it only remains to show that the index of problem (1), (7)
is zero.

Let assumption (a) of the theorem be true; i.e., let m = 1. Then, by [4], the determinant of the
matrix Wg has the form

det Wg (wi,.. -,wm) = (K._ kj"jwpf8 3).
spa\ N J

Therefore, the index of the matrix function Go is given by the relation

Ind Go = ~ ikj —j) Ind uhit).

i=1

The Cauchy index of the functions m;(t) is the difference of the indices of the functions e2(t) —ei(t)z/;

and ei(t) + e2(t)z/; and hence is zero. Consequently, Ind Go = 0, and this, together with (23), implies
that k = 0.

Let assumption (b) of the theorem be true. Then the determinant Wg is called a generalized
Vandermonde determinant and, as was shown in [4], can be represented in the closed form

det, Wgiwi,..., wm) = wW\i{kl BY[ iuh - Wj)hU
i i>j
From this, for the index of the matrix function GO, we obtain

m
Ind GO= ~ i (fei —1) Ind Wiit) + ~ 1jlj Ind iuk —Wj) it).

i=1 i~>j

Ifi/ j, then for the difference {wt —Wj) it) occurring in the second sum, we obtain the expression
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and consequently, the Cauchy index of this function is equal to —2. Hence we obtain

IndGo = -2~ Kklj = It ~ 12,
i>j i

which, together with (23), implies that k = 0.
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