Function theoretical approach to anisotropic plane elasticity

A. Soldatov

${ }^{1}$ Belgorod State University

The representation of general solutions of Lame system of plane elasticity is given with the help of so-called Douglis analytic functions. Using integral representation of these functions the basic boundary value problems for Lame system are reduced to equivalent singular integral equations on the boundary.

The plane elastic medium is characterized by the displacement vector $u=\left(u_{1}, u_{2}\right)$ and by stress and deformation tensors

$$
\sigma=\left(\begin{array}{ll}
\sigma_{1} & \sigma_{3} \\
\sigma_{3} & \sigma_{2}
\end{array}\right), \quad \varepsilon=\left(\begin{array}{ll}
\varepsilon_{1} & \varepsilon_{3} \\
\varepsilon_{3} & \varepsilon_{2}
\end{array}\right)
$$

where

$$
\varepsilon_{1}=\frac{\partial u_{1}}{\partial x_{1}}, \quad \varepsilon_{2}=\frac{\partial u_{2}}{\partial x_{2}}, \quad 2 \varepsilon_{3}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{2}}
$$

They are connected by Hooke law i.e. by linear relation

$$
\tilde{\sigma}=\alpha \tilde{\varepsilon}, \quad \alpha=\left(\begin{array}{lll}
\alpha_{1} & \alpha_{4} & \alpha_{6} \\
\alpha_{4} & \alpha_{2} & \alpha_{5} \\
\alpha_{6} & \alpha_{5} & \alpha_{3}
\end{array}\right)>0
$$

where $\tilde{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right), \tilde{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}, 2 \varepsilon_{3}\right)$. If the external forces are absent then from the equilibrium equations and the Hooke law we reduce the Lame system for the displacement vector $u=\left(u_{1}, u_{2}\right)$. This is the second order elliptic system

$$
\begin{equation*}
a_{11} \frac{\partial^{2} u}{\partial x_{1}^{2}}+\left(a_{12}+a_{21}\right) \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+a_{22} \frac{\partial^{2} u}{\partial x_{2}^{2}}=0 \tag{1}
\end{equation*}
$$

with the coefficients

$$
a_{11}=\left(\begin{array}{cc}
\alpha_{1} & \alpha_{6} \\
\alpha_{6} & \alpha_{3}
\end{array}\right), \quad a_{12}=\left(\begin{array}{cc}
\alpha_{6} & \alpha_{4} \\
\alpha_{3} & \alpha_{5}
\end{array}\right), \quad a_{21}=\left(\begin{array}{cc}
\alpha_{6} & \alpha_{3} \\
\alpha_{4} & \alpha_{5}
\end{array}\right), \quad a_{22}=\left(\begin{array}{cc}
\alpha_{3} & \alpha_{5} \\
\alpha_{5} & \alpha_{2}
\end{array}\right)
$$

For the roots ν_{1}, ν_{2} in upper half-plane of the forth order characteristical polynomial $\chi(z)=\operatorname{det}\left[a_{11}+\left(a_{12}+a_{21}\right) z+a_{22} z^{2}\right]$ we have two cases (i) $\nu_{1} \neq \nu_{2}$ and (ii) $\nu_{1}=\nu_{2}=\nu$. Accordingly to these cases let us consider the first order elliptic system

$$
\frac{\partial \phi}{\partial x_{2}}-J \frac{\partial \phi}{\partial x_{1}}=0, \quad \text { where } \quad \text { (i) } J=\left(\begin{array}{cc}
\nu_{1} & 0 \tag{2}\\
0 & \nu_{2}
\end{array}\right), \quad \text { (ii) } J=\left(\begin{array}{cc}
\nu & 1 \\
0 & \nu
\end{array}\right)
$$

The main elements of function theory hold for the solutions ϕ of this system. For Hanke1 matrixes J it is studied by Douglis [2] in terms of supercomplex numbers. A general solution of (2) can be described throw analytic vector $\psi=\left(\psi_{1}, \psi_{2}\right)$ by the formula

$$
\begin{align*}
& \text { (i) } \quad \phi_{1}(x)=\psi_{1}\left(x_{1}+\nu_{1} x_{2}\right), \phi_{2}(x)=\psi_{2}\left(x_{1}+\nu_{2} x_{2}\right) ; \tag{3}\\
& \text { (ii) } \phi_{1}(x)=\psi_{1}\left(x_{1}+\nu x_{2}\right)+x_{2} \psi_{2}^{\prime}\left(x_{1}+\nu x_{2}\right), \phi_{2}(x)=\psi_{2}\left(x_{1}+\nu x_{2}\right) .
\end{align*}
$$

The system (2) is closely connected with Lame system [1].
Theorem 0.1 A general solution $u=\left(u_{1}, u_{2}\right)$ of (1) and columns $\sigma_{(1)}=\left(\sigma_{1}, \sigma_{3}\right), \sigma_{(2)}=\left(\sigma_{3}, \sigma_{2}\right)$ of the corresponding stress tensor σ can be described throw solution ϕ of (2) by the following formulas:

$$
\begin{equation*}
u=\operatorname{Re} B \phi, \quad \sigma_{(1)}=\operatorname{Re} C J \frac{\partial \phi}{\partial x_{1}}, \quad \sigma_{(2)}=-\operatorname{Re} C \frac{\partial \phi}{\partial x_{1}} \tag{4}
\end{equation*}
$$

where the matrixes B, C are invertible and defined from relations $a_{11} B+\left(a_{12}+a_{21}\right) B J+a_{22} B J^{2}=0, \quad C=-\left(a_{21} B+\right.$ $\left.a_{22} B J\right)$.

The substitution (3) into (4) gives the known representation [3,4] of a general solution of Lame system throw analytic functions. The another closed approaches were developed in [5] - [7].

Theorem 1 permits a direct study of Dirichlet problem for Lame system. Let us introduce the matrix-valued function $x_{1}+x_{2} J$ on the plane, where x_{1} denotes the scalar matrix. This matrix is invertible for $x \neq 0$ and $\left[2 \pi i\left(x_{1}+x_{2} J\right)\right]^{-1}$ is the fundamental solution of the Douglis system (2).

Let D be finite domain bounded by Lyapunov contour Γ and let $n(y)=\left[n_{1}(y), n_{2}(y)\right]$ denote the external unit normal at the point $y \in \Gamma$. It follows from theorem 1 that the function

$$
\begin{equation*}
(I \varphi)(x)=\frac{1}{\pi} \int_{\Gamma} Q[y-x, n(y)] \varphi(y) d s_{y}, \quad Q(\xi, n)=\operatorname{Im}\left[B\left(\xi_{1}+\xi_{2} J\right)^{-1}\left(-n_{2}+n_{1} J\right) B^{-1}\right] \tag{5}
\end{equation*}
$$

satisfies (1) in the domain D for each real vector - valued function $\varphi \in C(\Gamma)$. The matrix- valued kernel $Q(\xi, n)$ of this integral operator is odd and homogeneous of degree -1 . In the explicite form

$$
Q(\xi, n)=Q_{0}(\xi, n) H(\xi), \quad Q_{0}(\xi, n)=\frac{\xi_{1} n_{1}+\xi_{2} n_{2}}{|\xi|^{2}}
$$

where accordingly two cases (i) and (ii)

$$
\begin{gathered}
H(\xi)=\left(\begin{array}{cc}
\left(\operatorname{Im} \nu_{1}\right)\left|\zeta_{1}\right|^{2} & 0 \\
0 & \left(\operatorname{Im} \nu_{2}\right)\left|\zeta_{2}\right|^{2}
\end{array}\right)+\operatorname{Im}\left[\frac{\zeta_{1} \zeta_{2}\left(\nu_{1}-\nu_{2}\right)}{\operatorname{det} B}\left(\begin{array}{cc}
B_{12} B_{21} & -B_{11} B_{12} \\
B_{22} B_{21} & -B_{12} B_{21}
\end{array}\right)\right], \quad \zeta_{j}=\frac{|\xi|}{\xi_{1}+\nu_{j} \xi_{2}} \\
H(\xi)=(\operatorname{Im} \nu)|\zeta|^{2}+\operatorname{Im}\left[\frac{\zeta^{2}}{\operatorname{det} B}\left(\begin{array}{cc}
-B_{11} B_{21} & B_{11}^{2} \\
-B_{21}^{2} & B_{11} B_{21}
\end{array}\right)\right], \quad \zeta=\frac{|\xi|}{\xi_{1}+\nu \xi_{2}}
\end{gathered}
$$

Let $(K \varphi)(x)$ be defined by (5) for $x \in \Gamma$. In this case there exists a number $0<\alpha<1$ such that $|y-x|^{\alpha} Q[y-x, n(y)] \in$ $C(\Gamma \times \Gamma)$. So the operator K is compact in the space $C(\Gamma)$.

Theorem 0.2 (a) The operator I is bounded $C(\Gamma) \rightarrow C(\bar{D})$ and $\left.(I \varphi)\right|_{\Gamma}=\varphi+K \varphi$.
(b) The Fredholm equation $\varphi+K \varphi=f$ is one-to -one solvable in the class $C(\Gamma)$.
(c) The Dirichlet problem $\left.u\right|_{\Gamma}=f$ for Lame system is one-to -one solvable in the class $C(\bar{D})$ and its solution $u=$ $I(1+K)^{-1} f$.

The matrixes B, C in (4) can be explicitly described. Let us write

$$
a_{11}+\left(a_{12}+a_{21}\right) z+a_{22} z^{2}=\left(\begin{array}{cc}
p_{1}(z) & p_{3}(z) \\
p_{3}(z) & p_{2}(z)
\end{array}\right), \quad\left(a_{21}+a_{22} z\right)\left(\begin{array}{cc}
-p_{2}(z) & p_{3}(z) \\
p_{3}(z) & -p_{1}(z)
\end{array}\right)=\left(\begin{array}{cc}
q_{1}(z) & q_{3}(z) \\
q_{2}(z) & q_{4}(z)
\end{array}\right) .
$$

In particular the characteristical polynomial $\chi(z)=p_{1}(z) p_{2}(z)-p_{3}^{2}(z)$. In the case (i) let us put
$B_{1}=\left(\begin{array}{cc}p_{2}\left(\nu_{1}\right) & p_{2}\left(\nu_{2}\right) \\ -p_{3}\left(\nu_{1}\right) & -p_{3}\left(\nu_{2}\right)\end{array}\right), B_{2}=\left(\begin{array}{cc}-p_{3}\left(\nu_{1}\right) & -p_{3}\left(\nu_{2}\right) \\ p_{1}\left(\nu_{1}\right) & p_{1}\left(\nu_{2}\right)\end{array}\right), C_{1}=\left(\begin{array}{cc}q_{1}\left(\nu_{1}\right) & q_{1}\left(\nu_{2}\right) \\ q_{2}\left(\nu_{1}\right) & q_{2}\left(\nu_{2}\right)\end{array}\right), C_{2}=\left(\begin{array}{ll}q_{3}\left(\nu_{1}\right) & q_{3}\left(\nu_{2}\right) \\ q_{4}\left(\nu_{1}\right) & q_{4}\left(\nu_{2}\right)\end{array}\right)$.
If the polynomial $p_{3} \neq 0$, then $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|>0, \lambda_{j}=\operatorname{det}\left(B_{j} C_{j}\right)$, and we write $B=B_{j}, C=C_{j}$ for $\lambda_{j} \neq 0$. If $p_{3}(z)=\alpha_{6}+\left(\alpha_{3}+\alpha_{4}\right) z+\alpha_{5} z^{2} \equiv 0$, then we put $B=1, C=-a_{21}-a_{22} J$. In the case (ii) we can put

$$
B=\left(\begin{array}{cc}
p_{2}(\nu) & p_{2}^{\prime}(\nu) \\
-p_{3}(\nu) & -p_{3}^{\prime}(\nu)
\end{array}\right), \quad C=\left(\begin{array}{cc}
q_{1}(\nu) & q_{1}^{\prime}(\nu) \\
q_{2}(\nu) & q_{2}^{\prime}(\nu)
\end{array}\right)
$$

In the orthotropic case $\alpha_{5}=\alpha_{6}=0$ the characteristical polynomial χ is biquadratic and the matrixes B, C can be explicitly expressed throw the modulus α_{j}. In particular for the isotropic medium, when $\alpha_{5}=\alpha_{6}=0, \alpha_{1}=\alpha_{2}=$ $\lambda+2 \mu, \alpha_{3}=\mu, \alpha_{4}=\lambda$, we have the case (ii) with $\nu=i$ and

$$
B=\left(\begin{array}{cc}
1 & 0 \\
i & -æ
\end{array}\right), \quad C=\mu\left(\begin{array}{cc}
2 i & æ-1 \\
2 & i(æ+1)
\end{array}\right), \quad æ=\frac{\lambda+3 \mu}{\lambda+\mu} .
$$

Acknowledgements The work was supported by RFBR (project No. 070100299)

References

[1] A.P. Soldatov, On representation of solutions of second order elliptic systems on the plane, Proceedings of the 5th Intern. ISAAC Congress, Editors H.Begehr and oth., World Scientific, 2, (2007).
[2] Douglis, A., A function-theoretical approach to elliptic systems of equations in two variables. Comm. Pure Appl. Math., 6 (1953), p. 259-289.
[3] O. Rand, V.Rovenski, Analytical methods in anisotropic elasticity:with simbolic computational tool. Boston, Basel, Berlin: Birchauser, 2005.
[4] N. I. Mushelishvili, Some basic problems of the mathematical theory of elasticity. Groningen, The Netherland: P.Noordhoff, 1953.
[5] H.Begehr, Lin Wei, A mixed-contact problem in orthotropic elasticity, in Partial differential equations with Real Analysis, (H. Begerhand, A.Jeffrey, eds.), Longman Scientific \& Technical, 1992, ;p.219-239.
[6] R. P.Gilbert, Plane ellipticity and related problems, Amer. Math. Soc., Providence, R1, 1981.
[7] R.P.Gilbert, Lin Wei, Function theoretical solutions to problems of orthotropic elasticity, J. Elasticity, 15, 143-154 (1985).

