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To the theory of anisotropic plane elasticity

Alexandre Soldatov

Dedicated to Professor Heinrich Begehr on the occasion of his 70th birthday

Summary: The Lame system of general anisotropic plane elasticity is considered. A representa-
tion of a general solution or the system through a so-called Douglis analytic functions is given. The
cases of orthotropic and isotropic media are also considered.

1 Lame system

The stress tensor
<01 03)
g =
g3 02

of plane elasticity medium is connected with a displacement vector v =] (w1, us9) by the

Hook law [1]
ou ou ou du
(Z;) :a11%+a12@7 <03> 1021%+a228—y~ (LD

The coefficients a;; € R?*? are defined by
a1 Gg Qg Oy
ajy = , a12 = ;
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where modulus elasticity o; form the positively defined matrix

(1.2)
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By the Silvester criterium we have
a; >0, 5=1,23, ajon > aj, (1.3a)
aiagas + 2auas06 > alag + aga% + agai. (1.3b)
The elastic medium is orthotropic if as = ag = 0, and is isotropic if
as =ag =0, a1 =ay =203+ ay. (1.4)

The stress tensor satisfies the equilibrium equation

8 0'1 8 0'3
- —_- -0
ax(ag)*%(az)

Together with (1.1) it yields the T.ame system

9%y 9y 9y
a11w+(a12+a21)8—y2+a228—y2 =0 (1.5)

for the displacement vector v = (uy, uo). Besides there exists a so-called conjugate
function v(z, y) determined by the following relations:

o1\ _ v (o3 _ v (1.6)
03 dy o) ox
According to (1.1) this function is connected with « by relations

Ov ( du 8u> 7 Ov du Ju 17

%:— a21%+a22@ a—y—an%JrCHQ@.

From (1.2) it follows that the matrix
A= [ 911012 Cpaxa
a1 a2
is symmetric and nonnegatively defined i.e. (A&, €) > 0 for all £ € R*. Moreover

(A, 8) =0 AL =0 ¢ =(0,1,—1,0),t € R.

Hence
(p(t)&o0, &o) = (a11éo + ai2téo, &o) + (azi&o + aatéo, t&) > 0

forallt € R and &y € R?, where p(z) = aq1 + (a12 + ao1)z + azo2>. In particular the
Lame system is strongly elliptic [2] and its characteristic equation x(z) = det p(z) has
no real roots. Thus for the set o of these roots in the upper half- plane we have only the
following two possibilities

(i) oy ={vi, v}, 11 #rve, (i) op = {v}. (1.8)



In the explicit form we have

1 M3
p<pp

s Do po(2) = ag + 2052 + anz?, x=pip2 —p3. (1.9

2

> p1(2) = a1 + 2062 + a3z,
p3(2) = ag + (a3 + aq)z + asz?,

The roots of the characteristic equation can be calculated explicitly in the orthotropic
case. In this case

2
4 9 9 4 aq oy — oy — 2ai30y
— 2 = & — m = .
x(2) = agas(p” +2mp*2" +2%), p= ¢ " Sas /o,

It is obvious
mi m2

1 e ——2 (Ao, — dan —
2osyaron’ 2a3\/m( e — 203 — aa),

where my = (‘/alag — a4)(‘/a1a2 + oy + 2(13) and Mo — /g + Qy. By virtue of
(1.3a) these numbers are positive. From this equation it follows that

m+1=

vy =ipe? vy =ipe ¥ Jaqam < 2034 oy, 20 = arccos r, (1.10a)
v =ipel, vg = ipe ', Joqom > 203 +ay, 2t = arcchr, (1.10b)
Vi =19 =1p, oran =203+ oy, (1.10¢)

Very simple expressions we have in the case
as =ag =0, ag+ayg=0. (1.11)

Then Lame system is diagonal and

V1 =y —, Vo =i, —. (1.12)
a3 a2
This corresponds to (1.10b) with
— ooy + a%
- 2a3,/a1a2'

The second possibility (ii) of multiple roots is corresponds to (1.10¢). The equality
p = 1 is valid if and only if the orthotropic medium is isotropic.

For general anisotropic Lame system let us consider a case when three elements of
the matrix p(v) are equal to zero.

Lemma 1.1 (a) The equalities ps(v) = p3(v) = 0, v € o, hold ifand only if
of < aqaq, Jas| < s, asas = asas,  as(as +ag) =203 (1.13a)

(b) The equalities p1(v) = p3(v) = 0,v € o, hold if and only if

2
ol <aqay, |ag| < as, ajas = asag, ailas+oag) =20k (1.13b)



(c) The both conditions (1.13) are equivalent to (1.11).

(d) The equalities p1(v) = p2(v) = ps(v) = 0 are impossible for all v. The equalities
pa(v) = pa(v) = 00rpi(v) = p3(v) = 0 are only possible in the case (i).

Proof:

(a) The equalities p2(v) = ps(v) = 0 are equivalent to the relation ps = Aps for some
AeR, ie.

ag = Aas, a5 = Aag  asz+ g =2 a5 = 2)\2a2. (1.14)
By virtue of (1.3)

Qg — \/1an < 2)\2(12 < g+ y/ayan (1.15)
and
2 2 2 2742 2 2
ajasas +2(2X ag — az) X\ asas > (ayas + asaz) A" + a3(2A%as — a3)”.

The last inequality can be written in the form (\2ag — a3)(a2 — ajas) > 0. The
inequalities \2cvo—a3 > 0 and o — i > 0 contradict to (1.15), s0 A% —ag < 0
and o — ajas < 0. In this case (1.15) hold automatically and we receive (1.13a)
after illuminating the parameter A from (1.14).

(b) The proof is analogously to (a).

(¢) Suppose that (1.13a) and (1.13b) hold but as + a4 # 0. Then asag # 0 and from
the system asas — asag = 0, ajas — asag = 0 it follows that ayag = a%. But
this equality contradicts to (1.13).

(d) The first assertion follows from (c). Suppose further that for example po(v) =
p3(v) = 0 for the multiple root v. Then x(v) = x'(v) = 0. As X’ = pips +
p1ph — 2psph and pl(v) #£ 0,4 = 1,2, forall v, Imv # 0. So we receive pa(v) =0
and p1(v) = pa(v) = p3(v) = 0, that is impossible. O

2 Function theoretic approach

The classic approach to plane elasticity is based [3] on representation of general solu-
tion of the L.ame system through two analytic functions. In the isotropic case this repre-
sentation is known as Kolosov—Muskhelishvili formula [4]. Later there were developed
various function theoretic methods [3, 6, 7], where the role of analytic functions play
solutions of first order elliptic systems. Our approach to plane elasticity is based [8, 9] on
the so called Douglis analytic functions which satisfy by definition the following system

0¢ Ja¢ B

——J=—==0.
dy dx



At this point the spectrum o(J) of the matrix J € C?*? here coincides with o, and
there exists the matrix b € C?*? such that

b b
a11b+(a12+a21)bJ+agng2 =0, det (bJW) #£0. 2.1)

In this terms a general solution v of the Lame system and its conjugate function v
can be represented by formulas

u=Rebp, v=Recod+¢,

where £ € R? and ¢ = —(ag1b + agnblJ).

The matrix b can be chosen in a Jordan form. In the case (ii) by virtue of Lemma
1.1(d) the matrix J doesn’t have to be equal to scalar matrix . So according to (1.8)
there are two possibilitics

(i)J(’B1 32>7 (n’)J(’ai). 2.2)

The matrix b is not uniquely defined by (2.1). If b satisfies the same conditions and
¢ = —(ag1b + agbJ), then we have [10]
b= bd, ¢=cd, (2.3)

where an invertible matrix d according two cases (i) and (ii) has a form

(i) d — (%1 i)? (i) d — (%1 lej).

The matrixes b and ¢ were described in [8, 9]. In this paper we give another more
exact expressions for these matrixes. Let us introduce the matrixes

7= (f;s _p]j3> , 7(2) = —(a21 + anz)q(z). 2.4)

In the explicit form

q1(z) = Bo — Bs2 + B2,
> . qo(2) = Bs — B3z + Bs2, 2.5
q3(z) = B1 — Pez + P12,

where

_ 9 _ 2 _ 2
Bi=wmaz—af, [r=woiaz—of, [z=oaron — o,
B4 = asag — sy, Ps = auog — aias, [ = oo — anoe.

Note that 3; coincide with elements of 3 x 3-matrix 3, which is adjoint to the matrix «,

ie.
B1 Ba B
B=(deta)at = B4 B2 35 | . (2.6)
Bs Bs B3



Theorem 2.1 (i) Let o = {v1, 19 }. If the condition (1.13a) doesn’t valid then

- ( p2(v1)  p2(v2) >7 . <—V1(J3(V1) —V2(J3(V2)> . 2.72)

—pa(v1) —ps(va) g(vi)  @3(e)

If these conditions hold and s + «y #£ 0, then

_ { —p3(v1) pa(1a) —q1(v1) —q1(v2)

— ( p1(v1) p1(1/2)>7 c= <q2(y1) —v1g3(v1) qo(1) _qug(yz)>. (2.7b)

At last in the case (1.11) we can put

b=1, c=—(ag + and) = (‘ag”l Tas ) (2.7¢)

a3 —0nl

(ii) Let o = {v}. Then we can put

b(mv) Ph(v) ) C(—u%(u) —q3<u>/—qu<u>>. 08

—p3(v) —p3(v) 23(v) (V)

Proof:

(i) From (2.1) it follows that the columns by, k = 1, 2, satisfy the equation p(v )bz
= 0. Taking into account (2.4) we have p(2)q(2) = x(2) and hence p(v ) gy (vi) =
0,7 = 1,2. So we can put by = dpq(;y (i), de 7 0, under assumption qg;) (Vi) 7
0. If the conditions (1.13a) have no place then then according to Lemma 1.1 this
assumption is fulfilled for s = 1.

Let the conditions (1.13a) hold. Then the unit matrix b = 1 satisfies (2.1) in the
case (1.11). If a3 + aq # 0, then by lemma 1 we have b(yy = drqy(vr), di # 0
for all kK = 1, 2. By virtue of (2.3) we can put here dy = dy = 1.

Let turn to the matrix ¢ = —(ag1b+ agybJ). It is obviously that c(yy = —as1b(zy —
v ag2b(yy and therefore

cry = —(ag1 + aovi)py(ve), by = pay(vr).
Taking into account (2.3) we complete the proof.
(ii) It follows from (2.1) that
)by =0,  pW)beay +p'(¥)by = 0.

Since the root v is multiple we have p(v)q'(v)p'(v)q(v) = 0. By virtue of Lemma
1.1 the column ¢(1)(v) # 0 and therefore we can write

by = digy(v), by = dig(yy(v) + dagy(v)

with d; # 0. Taking into account (2.3) we complete the proof for the matrix b.



As (bJ)1y = vbyy, (b)) = by + vboy, we can write
c(1y = —aa21by —vasbqy, ¢y = —a21bay — vasnbe) — axnbq).

Putting b(1y = p1)(v), b2y = p{y(v) wereceive

ey =ry(W), @) = —(az1 + vas)piy(v) — asapy(v) = r(y(v),

that complete the proof. O

Due to [10] the matrix b is invertible for all strong elliptic system and in particular
for Lame system. The matrix ¢ has the same property.

Theorem 2.2 Under assumptions of the Theorem 2.1 the matrix c is invertible.

Proof: Within notations (2.6) the characteristic polynomial x = p1p2 —p3 can be written
in the form

x(2) = q1(2) — 2qo(2) + 22 q5(2). (2.9)

The expressions (2.5) for ¢; yield the relation £ = (35 with respect to the vectors { =
(g3,q1,q2) and ) = (27,1, —2). Taking into account (2.6) we conclude that (det o) =
o or
(det )z? = aqqy + asgo + a1gs,
det o = anqi + asqo + auqs, 2.10)
—(det @)z = asqs + a3g2 + aega.

In particular the common equalities ¢1 (v) = ¢2(v) = g3(v) = 0 are impossible for all .
From this and (2.9) it follows than only one of numbers ¢;(v), ¢ = 1,2,3, where v € o1,
may be equal to zero.

The following implications

gs(v) =0 &  po(v) =ps(v) =0, (2.11a)
a()=0 = ps(v)=0. (2.11b)

for every v € o hold.

In fact let x(v) = ¢3(v) = 0. Then by virtue of (2.9) we can write g1 (v) = \v,
@ () =X #0, 3(v) = 0. Putting 2 = v in (2.10) we conclude that a3 +2asv+aav? =
0. Accordingly (1.9) this expression coincides with pa(v) = 0. Since pq(v)p2(v) —
p3(v) = 0 we have also p3(v) = 0. Conversely if p2(v) = pa(v) = 0, then by virtue of
(2.4), (2.5) g3(v) = 0.

The second implication (2.11b) is proved analogously. If x(v) = ¢1(v) = 0, then
g1 =0, g2 = A\, g3 = X and we derive from (2.10) that ps(v) = 0.

Let the conditions (1.13a) be broken. Then by virtue of (2.11a) we have ¢o(v) £ 0
for v € o and it is easily verified that det ¢ # 0 in the cases (2.7a) and (2.8). Let
the conditions (1.13a) hold and therefor po(v) = p3(v) = 0 for some v € o,. For
definiteness let v = vy. Then by virtue of (2.11a) ¢a(v1) = 0 and therefor g4 (1) # 0.



Let us prove that also ¢1(rv2) # 0 out of the exceptional case (1.11). Really if
q1(v1) = 0 then according to (2.11b) we will have p3(v2) = 0. As pa(v2) # 0 it follows
from the equality p;(v)p2(v) — p3(v) = 0 that p1(1n) = 0. So po(v) = p3(v) = 0,
v = vy and py(v) = p3(v) = 0, v = vy and by virtue of Lemma 1.1(a), (b) the both
conditions (1.13) hold which is equivalent to (1.11).

Thus the numbers ¢;(v;) in (2.7b) are not equal to zero. It follows from (2.9) that
p(v;) —vigs(vy) = V{lql(yj) and so det ¢ #£ 0.

According to (22¢) in the exceptional case (1.11) we have det ¢ = o + asasvivs.
Taking into account (1.12) we also receive det ¢ £ 0.

The expressions of the Theorem 2.1 are simplified in the orthotropic case. In this case
(1.9) and (2.5) have the form

p1(2) = o + azz?, p2(2) = ag + a2’
p3(z) = (a3 + a4)z, q3(2) = —as(oy — a222)~

If g + oy # 0 then we can use the formulas (2.7a) and (2.8). So we have the expressions

N as + aori asz + a3 N vilag — asv?) vo(ay — anvd)
b* 5 C = (g 2 2 5
—(as + ag)rvy —(as + ag) —(ay — agry) —(aq — agvs)

where v; are defined by (1.10a) or (1.10b), and

b [ 3 orp p? Zicgp _ ip(ay + aop?) oy + 3anp?
= K , C=a3 2 :
—i(as + aa)p —(as + o) —(aa+anp®)  2iamp

in the case (ii).
The last formulas permit further simplification in the isotropic case. In this case p = 1
and a1 > as by virtue of (1.3a), (1.4). So

3 — Qq 2a1i (a1 — ag)i 2(11 — Q3
b= X , c¢=2a3 X .
(as —aq)i as —ay o3 — g ot
According to (2.3) we can multiply these matrices by

—as) i
d=(as—ay)? (é 2001 1 as) Z).

,_ (10 (2 a-—1
“li—e ) T B\ 28@+1) )

where & = (a1+a3)/(a1 —ag). 0O

As aresult we have

3 Conjugate function
Let us consider a second order elliptic system

R R u
a1z + 12) 57 + angT = 0, agi2y = aia + asn, G.D



with coefficients a;; € R’. We can introduce the notion of conjugate function v t©
solution v = (uy,...,w;) of this equation as above by (1.7). Of course this definition
depends on the partition a(19y = a2 + az;. There is a question which second order

system defines the function v? Let us put

ai = ajlap, as = an as (3.2)
and define matrixes d1, dy € R*! such that
d1a22(1 — CLQCLl) - d2a11(1 — alag). (33)
Lemma 3.1 The conjugate function v satisfies the system
% 1 1, 0% 0%
d1w + (dyagiayy + daaraag, )m + dzw =0. (3.4)
Proof: With respect to the vectors
g (P ) (00 o
dzx’ dy dzx’ dy
(1.7) takes a form
V= <_a21 _‘m> U. (3.5)
arp  an
Hence (3.1) and the analogous equation
&u &u &u
di1=—= +d(19y == + doo=—= =0 3.6
st (12) G2 + da 7 (3.6)
for the function v can be rewritten as
W S ke V(DY v
gy \ oy a1 —apagzy ) 9’ \0dyn ) dy  \ —du —duy ) da
Together with (3.5) it follows that
10 —dag1 —agg 0 1
0 doy air a9 —ay5 ar —a521G(12)
(0 1 —ag; —az \ | OU
—dy1 —d(12) ay;  ap oz
for all U. This is equivalent to system
di1an1 —dgiayary = —dpo(arnan, ar1),  dirass —dgayars = doo(ais — a12as5 ag1a))

with respect to unknown coefficients di1, das € d(lz). This system we can rewrite as

following:

1 1 1 1
doa(ai1 — ainagy azi) = dii(an — azragy a12),  dgoy = diiasiaiy + dazaraag, .



The first equation coincides with (3.3) with respect to d; = d;;, but a substitution of
second one to (3.6) gives (3.4).
Let us apply this result to Lame system. According to (2) the matrices (3.2) have the

form
ay — 1 0 gy —asap |\ 0 —ﬁ4/ﬁ2
oo — a2 \ 1o — o onas — o 1 —B5/B2 )’

1 <a2a6 — o anog — o > _ ( —Bs/B1 1 >

agaz — o \ asoy — asag 0 —fB4/P1 0

where 3; figure in (2.5), (2.6). Analogously

et = (gipps g ) oot = (AP TP),

1 ( BrBa — B 0) 1 — asay — 1 <0ﬁ1ﬁ5—ﬁ4ﬁ6>
3182 \ P2fs — Psfs 0 )7 B \ O B1B2 — 37

and (3.3) reduces to conditions (dy)2) = (dz2)1) with respect to columns of the matrixes

d;. So we can take
- 810 - 082
o(ia) ()

with some s;,%; € R and (3.4) reduces to

s; 0\ 9% sy 81\ 0% 0 85\ 6%
ot B 7Y 0
t1 0 ) 02 ty 11 ) Ox0y 0t ) ox

This system is equivalent to equations

0 (Do 00 D (Du du)
ox aeray 7 9y \ Oz dy )

But they are consequence of the equation (1.6) from which it follows

as —

Hence

1—a1a2 -

! %fo
ox dy

Therefor the result of Lemma 3.1 for the Lame system is reduced to the last equation. O
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