Problem of Bitsadze–Samarskii Type for Second-Order Elliptic Systems in the Plane¹

A. P. Soldatov

Presented by Academician E.I. Moiseev January 23, 2006

FORMULATION OF THE PROBLEM

Let $D \subseteq \mathbb{C}$ be a bounded domain with a piecewise smooth boundary $\Gamma = \partial D$ without cuspidal points. Suppose that the set $F = \{\tau_1, \tau_2, ..., \tau_m\} \subseteq \Gamma$ contains all the angular points of the curve. A function $\varphi \in C(\Gamma F)$ is piecewise continuous on Γ if there exist one-sided limits $\varphi(\tau \pm 0)$ at the points $\tau \in F$. A continuously differentiable mapping $\alpha: \Gamma V F \rightarrow \overline{D}$ is called a shift if α' and its derivative α' (with respect to the arc length parameter measured in a fixed direction) are piecewise continuous on Γ , $\alpha(\tau \pm 0) \in F$, and $\alpha'(\tau \pm 0) \neq 0$ for all $\alpha(\Gamma V F) \subseteq \Gamma$. In what follows, we consider only boundary shifts when $\alpha(\Gamma V F) \subseteq \Gamma$ and inner shifts for which this curve lies in *D* and is not tangent to Γ at the points $\tau \in F$. For example, the identity mapping e(t) = t is a boundary shift.

We consider the second-order elliptic system

.

$$\frac{\partial^2 u}{\partial y^2} - A_1 \frac{\partial^2 u}{\partial x \, \partial y} - A_0 \frac{\partial^2 u}{\partial x^2} = 0 \tag{1}$$

with constant coefficients $A_0, A_1 \in \mathbb{R}^{l \times l}$ for an unknown vector-valued function $u = (u_1, u_2, ..., u_l) \in C^2(D)$.

The problem of the Bitsadze–Samarskii type is formulated as follows: Find a solution $u \in C(\overline{D})$ to system (1) that satisfies the boundary condition

$$\left(u + \sum_{s=1}^{n} b_{s} u \circ \beta_{s}\right)\Big|_{\Gamma} = f, \qquad (2)$$

where the $l \times l$ matrix-valued functions $b_s(t)$ and the right-hand-side f(t) are piecewise continuous on Γ and β_s are inner shifts.

Belgorod State University, ul. Pobedy 85, Belgorod, 308015 Russia e-mail: soldatov@bsu.edu.ru We can also consider the case when the coefficients b_s are defined only on a part Γ' of Γ . In this case, (2) is transformed into the following form:

$$u|_{\Gamma \setminus \Gamma'} = f_0, \quad \left(u + \sum_{s=1}^n b_s u \circ \beta_s \right) \bigg|_{\Gamma'} = f_1. \qquad (2')$$

This problem can always be reduced to form (2) by extending β_s to the whole Γ and setting $b_s = 0$ on $\Gamma \setminus \Gamma'$.

In the case of a single shift, problem (1), (2') was first posed by Bitsadze and Samarskii [1] for the Laplace equation. For general elliptic systems and equations, it was investigated by many authors [2–7]. In this paper, a new approach to investigating this problem is developed. It is based on the reduction of the Bitsadze–Samarskii problem to a system of singular integral equations of the nonclassical type; the corresponding theory was developed in [8].

Note that, for the solvability of problem (1), (2), we need compatibility conditions imposed on the right side *f* at the points $\tau \in F$. They can be described as follows. There exists a function $\tilde{u} \in C(\overline{D})$ such that the piecewise continuous function

$$\tilde{f} = \left(\tilde{u} + \sum_{s=1}^{n} b_s \tilde{u} \circ \beta_s\right)\Big|_{\Gamma}$$

coincides with *f* at the points $\tau \in F$; i.e. $f(\tau_j \pm 0) = f(\tau_j \pm 0)$, $1 \le j \le m$. Obviously, the number of these linearly independent conditions is no less than *ml*. For example, for the Dirichlet problem, which corresponds to $b_s = 0$, these conditions are reduced to $f(\tau_i + 0) = f(\tau_i - 0)$ and their number is equal to *ml*. Let us consider a more general situation of this type.

Lemma 1. Suppose that there are sets

$$\begin{split} F &= F_0 \supset F_1 \supset \ldots \supset F_{n+1} = \phi, \\ F_p \backslash F_{p+1} \neq \phi, \quad 0 \leq p \leq n, \end{split}$$

¹ The article was translated by the author.

such that $\beta_s(\tau \pm 0) \in F_{p+1}$ for $\tau \in F_p$, $b_s(\tau \pm 0) \neq 0$, $0 \leq p \leq n$ (in particular, $b(\tau + 0) = b(\tau - 0) = 0$ for $\tau \in F_n$).

Then the number of linearly independent compatibility conditions is equal to ml

We may also consider problem (1), (2) in the class $C(\overline{D} \setminus F)$ with a right side $f \in C(\Gamma \setminus F)$. In this case, no compatibility conditions are imposed.

The condition of ellipticity for (1) means that the determinant of the characteristic polynomial $P(w) = w^2 - A_1w - A_0$ has no real roots. This system is closely connected with the first-order elliptic system

$$\frac{\partial \phi}{\partial y} - J \frac{\partial \phi}{\partial x} = 0, \qquad (3)$$

where $J \in \mathbb{C}^{l \times l}$ is a Jordan matrix and the eigenvalues of its blocks lie in the upper half-plane. This system was first considered by Douglis [9], so its solutions are called analytic functions in the Douglis sense or, briefly, *J*-analytic functions. If the solution of the original system (1) is sought in the form

$$u = \operatorname{Re}B\phi \tag{4}$$

with some matrix $B \in \mathbb{C}^{l \times l}$, then, by virtue of (3), we have the matrix relation $BJ^2 - A_1BJ - A_0B = 0$ for the pair *B*, *J*. It was shown in [10] that, on this pair, we can impose the supplementary condition

$$\det \left(\begin{array}{cc} B & \overline{B} \\ BJ & \overline{BJ} \end{array} \right) \neq 0$$

In this case, formula (4) describes the general solution of (1). In the upper half-plane Rew > 0, the zeroes of det P(w) coincide with the eigenvalues $v \in \sigma(J)$, including their multiplicities. The degrees of the poles of the matrix-valued functions $P^{-1}(w)$ and $(w - J)^{-1}$ coincide as well. The condition det $B \neq 0$ defines so-called weakly connected elliptic systems (according to Bitsadze's nomenclature [11]). This condition is necessary for the Dirichlet problem to be Fredholm, so we assume that it is fulfilled for boundary condition (2).

The function ϕ in (4) is defined up to a constant vector $\eta \in \mathbb{C}^l$, $\operatorname{Re}B\eta = 0$. In general, it is a multivalued function in a multiply connected domain *D*. To be more precise, its derivative $\phi' = \frac{\partial \phi}{\partial x}$ is a univalent function in *D*. Thus, multivaluedness is of a logarithmic nature.

Representation (4) can be modified so that multivalued functions do not appear. Specifically, any solution to system (1) can be uniquely represented as

$$u = \operatorname{Re} B\phi + \sum_{j=1}^{k} u_j \xi_j, \quad \xi_j \in \mathbb{R}^l, \quad \phi(z_0) = 0, \quad (5)$$

where $u_j \in C^{\infty}(\overline{D})$ are completely defined $l \times l$ matrixvalued functions whose columns satisfy (1), z_0 is a fixed point of *D*, and *k* is the number of connected components of $\Gamma = \partial D$

With the help of (5), problem (1), (2) reduces to the equivalent problem

$$\operatorname{Re}\left(B\phi + \sum_{s=1}^{n} b_{s}B\phi \circ \beta_{s}\right)\bigg|_{\Gamma} + \sum_{j=1}^{k} c_{j}\xi_{j} = f, \quad (6)$$
$$\phi(z_{0}) = 0,$$

for a *J*-analytic function ϕ and a vector $\xi \in \mathbb{R}^{kl}$, where c_j are piecewise continuous matrix-valued functions defined by u_j . It is obvious that (6) is a finite-dimensional perturbation of the problem

$$\operatorname{Re}\left(G\phi + \sum_{s=1}^{n} G_{s}\phi \circ \beta_{s}\right)\Big|_{\Gamma} = f$$
(7)

with piecewise continuous $l \times l$ matrix-valued functions G = B and $G_s = b_s B$ on Γ .

The Fredholm solvability of problem (3), (7) was studied in [12] for the case of a single shift. Let us consider its particular case

$$\operatorname{Re}(G\phi)|_{\Gamma\setminus\Gamma} = f_0, \quad \operatorname{Re}(G\phi + G^0\phi \circ \beta)|_{\Gamma} = f_1,$$

where Γ' is a smooth arc and $\beta(\Gamma')$ divides *D* into two subdomains. As was indicated in [13], this problem can be reduced to the so-called generalized Riemann–Hilbert problem for *J*-analytic functions. In this context, we can also note [14, 15], where this problem was considered for solutions of the linearized Stokes system and for usual analytic functions, respectively.

MAIN RESULTS

We consider the problem in the weighted Hölder space $C^{\mu}_{\lambda}(\overline{D}; F)$ where $0 < \mu < 1$ and $\lambda < 0$, and in the modified weighted class $C^{\mu}_{(\lambda)}(\overline{D}; F)$, where $0 < \lambda < 1$. Let us recall their definitions [8]. Let C^{μ}_{λ} with $\lambda \in \mathbb{R}$ be the space of all functions $\varphi \in C(\overline{D}\setminus F)$ that belong to $C^{\mu}(K)$ for every compact subset $K \subseteq \overline{D}\setminus F$ and $O(1)|z - \tau|^{\lambda}$ as $z \to \tau \in F$. To be more precise, in the curvilinear sectors $D_i = D \cap \{|z - \tau_i| < \delta\}, i = 1, 2, ..., m$, where δ > 0 is sufficiently small, we have $\varphi_i(z) = \varphi(z)|z - \tau_i|^{\mu - \lambda}$ $\in C^{\mu}(\overline{D}_i), \varphi_i(\tau_i) = 0$. The space $C^{\mu}_{(\lambda)}$ with $0 < \lambda < 1$ is a finite-dimensional expansion of C^{μ}_{λ} by smooth functions that are constant in a neighborhood on D_j . This space is embedded in $C^{\min(\mu, \lambda)}(\overline{D})$, and the embedding becomes an exact equality when $\lambda = \mu$.

We will also use these spaces for piecewise continuous functions defined on ΓVF . The boundary of the sector D_i consists of two smooth arcs Γ_{ik} (k = 1, 2) with a (

common endpoint τ_i , which are called its lateral sides, and of an arc of the circle $|z - \tau_i| = \delta$. It is convenient to denote the one-sided limits $\varphi(\tau \pm 0)$ at the point τ_i by $\varphi(\tau_{ik}) = \lim \varphi(t)$ as $t \to \tau_i$, $t \in \Gamma_{ik}$. For definiteness, we numerate the lateral sides Γ_{ik} so that $\tau_{i1} = \tau_i + 0$ and τ_{i2} $= \tau_i - 0$. Now the space $C^{\mu}_{(\lambda)}(\Gamma, F)$ can be defined as above by replacing \overline{D}_i with Γ_{ik} .

We consider problem (1), (2) in the classes C_{λ}^{μ} , $\lambda < 0$ and $C_{(\lambda)}^{\mu}$, 0 < l < 1, with respect to solutions ϕ to (3), (5). It is assumed that the data *e*', β ', *G*, and *b* of the problem belong to the class $C_{(+0)}^{\mu+0}(\Gamma, F) = \bigcup_{\epsilon>0} C_{(\epsilon)}^{\mu+\epsilon}$ in

the former case and to the class $C_{(\lambda+0)}^{\mu+0}(\Gamma, F)$ in the latter case. Here, the derivatives on ΓVF are meant with respect to the parameter of length arc measured in the positive direction (so that *D* is on the left). Under these assumptions, the operators of the problems are bounded from the space $C_{(\lambda)}^{\mu}(\overline{D}, F)$ of solutions to system (1) to the space $C_{(\lambda)}^{\mu}(\overline{\Gamma}, F)$, $0 < \lambda < 1$, and the same is true for C_{λ}^{μ} , $\lambda < 0$. The Fredholm solvability and the index of the problems are meant with respect to these operators.

Recall that the eigenvalues of the matrix J of system (3) lie in the upper half-plane and coincide with the roots of the characteristic equation of the original system (1). For every nonzero complex number q, we introduce the invertible matrix $q_I = \operatorname{Re} q + J \operatorname{Im} q$. It will be used below for the derivatives $q = \alpha'(\tau_{ik})$ of shifts at the points $\tau_i \pm 0$. These derivatives are meant with respect to the length arc parameter on Γ_{ik} measured from the point τ_i . In particular, for the identity shift e(t)= t, the number $e'(\tau_{ik})$ is a unique tangent vector on Γ_{ik} at the point τ_i . By assumption, the arcs Γ_{i1} and Γ_{i2} are not tangent to each other at the point τ_i , so $e'(\tau_{i1}) \neq$ $e'(\tau_{i2})$. From the same considerations, the limit values $\beta(\tau_{ik})$ of an inner shift $\beta = \beta_s$ belong to *F*, and if $\beta(\tau_{ik}) =$ τ_i , then the arc $\beta(\Gamma_{ik})$ is not tangent to the lateral sides of D_j at the point τ_j . Hence, the vector $\beta'(\tau_{ik})$ lies between the tangent vectors on Γ_{jk} at the point τ_{j} .

In this notation, for each shift α : $\Gamma V F \rightarrow \overline{D}$, we can introduce the matrices $Q_{ik}(\alpha)$

$$Q_{ik}(\alpha) = [\alpha'(\tau_{ik})]_J [e'(\tau_{j1})]_J^{-1}, \quad \alpha(\tau_{ik}) = \tau_j,$$

whose eigenvalues do not lie on the positive half-axis. Therefore, we can define the matrices $\ln Q$ as the values of the analytic functions $\ln w (0 < \arg \arg w < 2\pi)$ of Q, and we can define the complex degrees $Q_{ik}^{\zeta}(a) = \exp[\zeta \ln Q_{ik}(\alpha)]$ and $\overline{Q}_{ik}^{\zeta}(\alpha) = \exp[\zeta \overline{\ln Q_{ik}(\alpha)}]$.

On the basis of these degrees and a piecewise continuous matrix-valued function G on Γ , we introduce the following $m \times m$ block matrices:

$$(G; \alpha)_{ij}^{\zeta} = \{(G; \alpha)_{ijkr}^{\zeta}\}_{1}^{\zeta},$$

$$G; \alpha)_{ijkr}^{\zeta} = \begin{cases} G(\tau_{ik})Q_{ik}^{\zeta}(\alpha), & \alpha(\tau_{ik}) = \tau_{j}, & r = 1, \\ \overline{G}(\tau_{ik})\overline{Q}_{ik}^{\zeta}(\alpha), & \alpha(\tau_{ik}) = \tau_{j}, & r = 2, \\ 0, & \alpha(\tau_{ik}) \neq \tau_{j}. \end{cases}$$
(8)

In the accepted notation, problem (1), (2) is associated with two matrices:

$$X = (B; e)^{'} + \sum_{s=1}^{n} (b_s B; \beta_s)^{'}, \quad Y = (1; e)^{'},$$

The former is called the end symbol of this problem.

The determinant of *Y* can be explicitly calculated. It expression shows that the function det $Y(\zeta)$ has the unique zero $\zeta = 0$ in the strip $|\text{Re}\zeta| < \frac{1}{2}$ and its degree is equal to *ml*. For fixed $\text{Re}\zeta = \lambda$, the function det(XY^{-1})(ζ) has a finite limit as $\text{Im}\zeta \to \infty$, which, by virtue of the assumption det $B \neq 0$ is not equal to zero. Then, in the strips $\lambda < \text{Re}\zeta < 0$ and $0 \leq \text{Re}\zeta < \lambda$, the function det $X(\zeta)$ has a finite number of zeroes. We denote this number, counting multiplicities, by $-\Delta(\lambda)$ and $\Delta(\lambda)$, respectively. Thus, the piecewise constant function $\Delta(\lambda)$ is monotone nondecreasing and, for $\lambda_1 < \lambda_2$, the difference $\Delta(\lambda_2) - \Delta(\lambda_1)$ is equal to the number of zeroes of det $X(\zeta)$ counting multiplicities in the strip $\lambda_1 \leq \text{Re}\zeta < \lambda_2$.

Nevertheless, if

$$\operatorname{let} X(\zeta) \neq 0, \quad \operatorname{Re} \zeta = \lambda, \tag{9}$$

then we can introduce the increment $\arg \det(XY^{-1})(\lambda + i\infty) - \arg \det(XY^{-1})(\lambda - i\infty)$ of a continuous branch of the argument, which is divisible by 2π . Regarded as a function of λ , this increment is piecewise constant and, by Rouche's theorem, $\arg \det(XY^{-1})|_{\lambda_2} - \arg \det(XY^{-1})|_{\lambda_1} = 2\pi[\Delta(\lambda_2) - \Delta(\lambda_1)]$. In particular, we can set $\limsup \det(XY^{-1})|_{\varepsilon}$ as $\varepsilon \to 0$, $\varepsilon > 0$.

Theorem 1. Problem (1), (2) is Fredholm in the classes C^{μ}_{λ} , $\lambda < 0$, and $C^{\mu}_{(\lambda)}$, $0 < \lambda < 1$, if and only if it is of the normal type and condition (9) holds. In this case, its index κ is given by the formula $\kappa = -\frac{1}{2\pi} \arg \det(XY^{-1})|_{-0} - \Delta(\lambda)$.

Let us consider the problem in the classes $C_{-0}^{\mu} = \bigcap_{\epsilon>0} C_{-\epsilon}^{\mu}$ and $C_{+0}^{\mu} = \bigcup_{\epsilon>0} C_{\epsilon}^{\mu}$. It may happen that the function *f* in (2) belongs to $C_{+0}^{\mu}(\Gamma, F)$ for some solution of

(1) in the class $C_{-0}^{\mu}(\overline{D}, F)$. The question arises about the asymptotics of this solution at the vertex τ_i of the sector D_i . To formulate the corresponding result, we introduce the analytic functions $\ln(z - \tau_i)$ in these sectors. As above, they define the matrix-valued functions $\ln(z - \tau_i)_J$ and $(z - \tau_i)_J^{\zeta}$. Note that $z - \tau_i)_J^{\zeta} [\ln(z - \tau_i)_J]^k \in$ $C_{-0}^{\mu}(\overline{D}_i, \tau_i)$, Re $\zeta = 0, k = 0, 1, ...$

Let us introduce nonnegative integer-valued functions $k(\zeta)$ and $r(\zeta)$ that characterize the degrees of zeroes and poles of the functions det $X(\zeta)$ and $X^{-1}(\zeta)$, respectively. If det $X(\zeta) \neq 0$, we set $k(\zeta) = r(\zeta) = 0$. Obviously, $r(\zeta) \leq k(\zeta)$ for all ζ and, in the above notations, $\Delta(0)$ is equal to the sum of $k(\zeta)$ over Re $\zeta = 0$.

Theorem 2. Suppose that the function f in (2) belongs to $C^{\mu}_{+0}(\Gamma, F)$ for some solution $u(z) \in C^{\mu}_{-0}(\overline{D}, F)$ of (1).

Then, for any sector D_i , there exist $c_k(\zeta) \in \mathbb{C}^l$, $0 \le k \le r(\zeta) - 1$ such that

$$u(z) - \operatorname{Re} B\phi_i(z) \in C^{\mu}_{+0}(D_i, \tau_i),$$

$$_i(z) = \sum_{\operatorname{Re} \zeta = 0} \sum_{k=0}^{r(\zeta) - 1} (z - \tau_i)_J^{\zeta} [\ln(z - \tau_i)_J]^k c_k(\zeta)$$

φ

Of course, the inner sum in the expression for ϕ_i is equal to zero for $r(\zeta) = 0$; therefore, the outer sum is finite.

Corollary. If $r(0) \le 1$, $r(\zeta) = 0$ for $\zeta \ne 0$, and $\operatorname{Re} \zeta = 0$, then, under the assumptions of Theorem 2, $u \in C^{\mu}_{(+0)}(\overline{D}_i, \tau_i)$.

This corollary shows that if $u \in C_{(-0)}^{\mu}(\overline{D}_i, F)$ and the function *f* does not satisfy the compatibility conditions, then the solution *u* permits logarithmic singularities at the points $\tau \in F$.

Note that the linear independent solvability conditions in the definition of the index of the problem include the compatibility conditions for $0 < \lambda < 1$. Let us denote by κ^+ and κ^- the indices of problem (1), (2) in the classes C^{μ}_{-0} and $C^{\mu}_{(+0)}$, respectively. According to Theorem 1, they are connected by the relation $\kappa^- - \kappa^+ = \Delta(0)$. If the conditions of the corollary are fulfilled, then $\Delta(0) = k(0)$ and the number of compatibility conditions is equal to k(0).

In the scalar case l = 1, Eq. (1) reduces to the Laplace equation by a change of variables. In particular, the maximum principle holds for this equation. This fact allows us to completely study the solvability of the problem.

Theorem 3. Suppose that l = 1, the inequality $\sum_{s=1}^{n} |b_s| \le 1$ holds, and the conditions of Lemma 1 are fulfilled. Then, under the compatibility conditions,

problem (1), (2) is uniquely solved in the class C^{μ}_{λ} ,

$$-\frac{1}{2} < \lambda < 1/2.$$

Note that, in this theorem, the condition on $r(\zeta)$ imposed in the corollary is satisfied and k(0) = m.

We can complete Theorems 1 and 2 by adding the corresponding result on the smoothness of the solution.

Theorem 4. Under the assumptions of Theorem 1, let the solution u be such that f in (2) is continuously differentiable on ΓVF and $f \in C_{\lambda-1}^{\mu}(\Gamma, F)$. Then the partial derivatives u_x and u_y of the solution u belong to $C_{\lambda-1}^{\mu}(\overline{D}, F)$. Analogously, if $f \in C_{-1+0}^{\mu}(\Gamma, F)$ in Theorem 2, then the partial derivatives of the difference $u(z) - \operatorname{ReB}\phi_i(z)$ belong to $C_{-1+0}^{\mu}(\overline{D}_i, \tau_i)$ in the sector D_i .

If a shift α satisfies the condition $\alpha(\tau_i + 0) = \alpha(\tau_i - 0) = \tau_i$, $1 \le i \le m$, then matrix (8) has the block diagonal structure $(G; \alpha)_{ij} = (G; \alpha)_i \delta_{ij}$, where the diagonals blocks

$$(G; \alpha)_{i}^{\widehat{}} = \begin{pmatrix} G(\tau_{i1})Q_{i1}^{\zeta}(\alpha) & \overline{G}(\tau_{i1})\overline{Q}_{i1}^{\zeta}(\alpha) \\ G(\tau_{i2})Q_{i2}^{\zeta}(\alpha) & \overline{G}(\tau_{i2})\overline{Q}_{i2}^{\zeta}(\alpha) \end{pmatrix},$$
$$Q_{ik} = [\alpha'(\tau_{ik})]_{J}[e'(\tau_{i1})]_{J}^{-1}$$

are associated with the corresponding sectors D_i .

Let all the shifts β_s satisfy this condition. Then the end symbol X of the problem has the same block diagonal structure $(X_i \delta_{ij})_m^1$ with diagonals blocks $X_i = (B; e)_i^2 = \sum_s (b_s B; \beta_s)_i^2$. Moreover, Y has the same structure with

 $Y_i = (1; e)_i^{-}$. In this case, we can regard the weighted order λ as a vector whose coordinates λ_i are associated with the corresponding space C_{λ}^{μ} (\overline{D}_i, τ_i).

Theorem 1 also holds in this case. It is only necessary to replace (9) by the condition det $X_i(\zeta) \neq 0$, Re $\zeta = \lambda_i$, $1 \le i \le m$. The index formula in this case has the form

$$\kappa = \sum \kappa_i,$$

$$\kappa_i = -\frac{1}{2\pi} \sum_{1}^{m} \arg \det(X_i Y_i^{-1}) \Big|_{-0} - \sum_{i=1}^{m} \Delta_i(l_i),$$

where Δ_i is defined with respect to X_i as above. In the same way, Theorem 2 is valid when the characteristic $r(\zeta)$ of poles is meant with respect to $X_i(\zeta)$.

ACKNOWLEDGMENTS

This work was supported by the program "Universities of Russia," project no. UR 04.01.486.

REFERENCES

- 1. A. V. Bitsadze and A. A. Samarskii, Dokl. Akad. Nauk SSSR **185**, 739–740 (1969).
- A. V. Bitsadze, Dokl. Akad. Nauk SSSR 277, 17–19 (1984).
- 3. A. L. Skubachevskii, Mat. Sb. **129** (171), 279–302 (1986).
- A. L. Skubachevskii, Russ. J. Math. Phys. 8, 365–374 (2001).
- 5. K. Yu. Kishkis, Differ. Uravn. 24, 105–110 (1988).
- 6. P. L. Gurevich, Funct. Differ. Equations 10 (1/2), 175–214 (2003).
- P. L. Gurevich, Izv. Ross. Akad. Nauk, Ser. Mat. 67 (6), 71–110 (2003).

- 8. A. P. Soldatov, One-Dimensional Singular Operators and Boundary Value Problems in Function Theory (Vysshaya Shkola, Moscow, 1991) [in Russian].
- 9. A. A. Douglis, Commun. Pure Appl. Math. 6, 259–289 (1953).
- 10. A. P. Soldatov, Differ. Equations **39**, 712–725 (2003) [Differ. Uravn. **39**, 674–686 (2003)].
- 11. A. V. Bitsadze, Boundary Value Problems for Second-Order Elliptic Equations (Moscow, 1966) [in Russian].
- 12. A. P. Soldatov, Differ. Equations **41**, 416–428 (2002) [Differ. Uravn. **41**, 396–407 (2005)].
- 13. A. P. Soldatov, Dokl. Akad. Nauk SSSR **299**, 825–828 (1988).
- 14. N. A. Zhura, Dokl. Akad. Nauk 331, 668–671 (1993).
- 15. I. V. Sidorova, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 50–56 (1995).