Problem of Bitsadze-Samarskii Type for Second-Order Elliptic Systems in the Plane ${ }^{1}$

A. P. Soldatov
Presented by Academician E.I. Moiseev January 23, 2006

FORMULATION OF THE PROBLEM

Let $D \subseteq \mathbb{C}$ be a bounded domain with a piecewise smooth boundary $\Gamma=\partial D$ without cuspidal points. Suppose that the set $F=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\} \subseteq \Gamma$ contains all the angular points of the curve. A function $\varphi \in C(\Gamma F)$ is piecewise continuous on Γ if there exist one-sided limits $\varphi(\tau \pm 0)$ at the points $\tau \in F$. A continuously differentiable mapping $\alpha: \Gamma F \rightarrow \bar{D}$ is called a shift if α^{\prime} and its derivative α^{\prime} (with respect to the arc length parameter measured in a fixed direction) are piecewise continuous on $\Gamma, \alpha(\tau \pm 0) \in F$, and $\alpha^{\prime}(\tau \pm 0) \neq 0$ for all $\alpha(\Gamma F) \subseteq \Gamma$. In what follows, we consider only boundary shifts when $\alpha(\Gamma F) \subseteq \Gamma$ and inner shifts for which this curve lies in D and is not tangent to Γ at the points $\tau \in F$. For example, the identity mapping $e(t)=t$ is a boundary shift.

We consider the second-order elliptic system

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial y^{2}}-A_{1} \frac{\partial^{2} u}{\partial x \partial y}-A_{0} \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

with constant coefficients $A_{0}, A_{1} \in \mathbb{R}^{l \times l}$ for an unknown vector-valued function $u=\left(u_{1}, u_{2}, \ldots, u_{l}\right) \in C^{2}(D)$.

The problem of the Bitsadze-Samarskii type is formulated as follows: Find a solution $u \in C(\bar{D})$ to system (1) that satisfies the boundary condition

$$
\begin{equation*}
\left.\left(u+\sum_{s=1}^{n} b_{s} u \circ \beta_{s}\right)\right|_{\Gamma}=f, \tag{2}
\end{equation*}
$$

where the $l \times l$ matrix-valued functions $b_{s}(t)$ and the right-hand-side $f(t)$ are piecewise continuous on Γ and β_{s} are inner shifts.

[^0]Belgorod State University, ul. Pobedy 85,
Belgorod, 308015 Russia
e-mail: soldatov@bsu.edu.ru

We can also consider the case when the coefficients b_{s} are defined only on a part Γ^{\prime} of Γ. In this case, (2) is transformed into the following form:

$$
\begin{equation*}
\left.u\right|_{\Gamma \backslash \Gamma}=f_{0},\left.\quad\left(u+\sum_{s=1}^{n} b_{s} u \circ \beta_{s}\right)\right|_{\Gamma^{\prime}}=f_{1} . \tag{2'}
\end{equation*}
$$

This problem can always be reduced to form (2) by extending β_{s} to the whole Γ and setting $b_{s}=0$ on $\Gamma \Gamma^{\prime}$.

In the case of a single shift, problem (1), (2') was first posed by Bitsadze and Samarskii [1] for the Laplace equation. For general elliptic systems and equations, it was investigated by many authors [2-7]. In this paper, a new approach to investigating this problem is developed. It is based on the reduction of the Bit-sadze-Samarskii problem to a system of singular integral equations of the nonclassical type; the corresponding theory was developed in [8].

Note that, for the solvability of problem (1), (2), we need compatibility conditions imposed on the right side f at the points $\tau \in F$. They can be described as follows. There exists a function $\tilde{u} \in C(\bar{D})$ such that the piecewise continuous function

$$
\tilde{f}=\left.\left(\tilde{u}+\sum_{s=1}^{n} b_{s} \tilde{u} \circ \beta_{s}\right)\right|_{\Gamma}
$$

coincides with f at the points $\tau \in F$; i.e. $\tilde{f}\left(\tau_{j} \pm 0\right)=f\left(\tau_{j}\right.$ $\pm 0), 1 \leq j \leq m$. Obviously, the number of these linearly independent conditions is no less than ml . For example, for the Dirichlet problem, which corresponds to $b_{s}=0$, these conditions are reduced to $f\left(\tau_{i}+0\right)=f\left(\tau_{i}-0\right)$ and their number is equal to $m \mathrm{l}$. Let us consider a more general situation of this type.

Lemma 1. Suppose that there are sets

$$
\begin{gathered}
F=F_{0} \supset F_{1} \supset \ldots \supset F_{n+1}=\phi, \\
F_{p} \backslash F_{p+1} \neq \varnothing, \quad 0 \leq p \leq n,
\end{gathered}
$$

such that $\beta_{s}(\tau \pm 0) \in F_{p+1}$ for $\tau \in F_{p}, b_{s}(\tau \pm 0) \neq 0,0 \leq p$ $\leq n$ (in particular, $b(\tau+0)=b(\tau-0)=0$ for $\tau \in F_{n}$).

Then the number of linearly independent compatibility conditions is equal to ml

We may also consider problem (1), (2) in the class $C(\bar{D} \backslash F)$ with a right side $f \in C(\Gamma F)$. In this case, no compatibility conditions are imposed.

The condition of ellipticity for (1) means that the determinant of the characteristic polynomial $P(w)=w^{2}$ $-A_{1} w-A_{0}$ has no real roots. This system is closely connected with the first-order elliptic system

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}-J \frac{\partial \phi}{\partial x}=0 \tag{3}
\end{equation*}
$$

where $J \in \mathbb{C}^{l \times l}$ is a Jordan matrix and the eigenvalues of its blocks lie in the upper half-plane. This system was first considered by Douglis [9], so its solutions are called analytic functions in the Douglis sense or, briefly, J-analytic functions. If the solution of the original system (1) is sought in the form

$$
\begin{equation*}
u=\operatorname{Re} B \phi \tag{4}
\end{equation*}
$$

with some matrix $B \in \mathbb{C}^{l \times l}$, then, by virtue of (3), we have the matrix relation $B J^{2}-A_{1} B J-A_{0} B=0$ for the pair B, J. It was shown in [10] that, on this pair, we can impose the supplementary condition

$$
\operatorname{det}\left(\begin{array}{cc}
B & \bar{B} \\
B J & \overline{B J}
\end{array}\right) \neq 0
$$

In this case, formula (4) describes the general solution of (1). In the upper half-plane $\operatorname{Re} w>0$, the zeroes of $\operatorname{det} P(w)$ coincide with the eigenvalues $v \in \sigma(J)$, including their multiplicities. The degrees of the poles of the matrix-valued functions $P^{-1}(w)$ and $(w-J)^{-1}$ coincide as well. The condition $\operatorname{det} B \neq 0$ defines so-called weakly connected elliptic systems (according to Bitsadze's nomenclature [11]). This condition is necessary for the Dirichlet problem to be Fredholm, so we assume that it is fulfilled for boundary condition (2).

The function ϕ in (4) is defined up to a constant vector $\eta \in \mathbb{C}^{l}, \operatorname{Re} B \eta=0$. In general, it is a multivalued function in a multiply connected domain D. To be more precise, its derivative $\phi^{\prime}=\frac{\partial \phi}{\partial x}$ is a univalent function in D. Thus, multivaluedness is of a logarithmic nature.

Representation (4) can be modified so that multivalued functions do not appear. Specifically, any solution to system (1) can be uniquely represented as

$$
\begin{equation*}
u=\operatorname{Re} B \phi+\sum_{j=1}^{k} u_{j} \xi_{j}, \quad \xi_{j} \in \mathbb{R}^{l}, \quad \phi\left(z_{0}\right)=0 \tag{5}
\end{equation*}
$$

where $u_{j} \in C^{\infty}(\bar{D})$ are completely defined $l \times l$ matrixvalued functions whose columns satisfy (1), z_{0} is a fixed
point of D, and k is the number of connected components of $\Gamma=\partial D$

With the help of (5), problem (1), (2) reduces to the equivalent problem

$$
\begin{gather*}
\left.\operatorname{Re}\left(B \phi+\sum_{s=1}^{n} b_{s} B \phi \circ \beta_{s}\right)\right|_{\Gamma}+\sum_{j=1}^{k} c_{j} \xi_{j}=f, \tag{6}\\
\phi\left(z_{0}\right)=0
\end{gather*}
$$

for a J-analytic function ϕ and a vector $\xi \in \mathbb{R}^{k l}$, where c_{j} are piecewise continuous matrix-valued functions defined by u_{j}. It is obvious that (6) is a finite-dimensional perturbation of the problem

$$
\begin{equation*}
\left.\operatorname{Re}\left(G \phi+\sum_{s=1}^{n} G_{s} \phi \circ \beta_{s}\right)\right|_{\Gamma}=f \tag{7}
\end{equation*}
$$

with piecewise continuous $l \times l$ matrix-valued functions $G=B$ and $G_{s}=b_{s} B$ on Γ.

The Fredholm solvability of problem (3), (7) was studied in [12] for the case of a single shift. Let us consider its particular case

$$
\left.\operatorname{Re}(G \phi)\right|_{\Gamma \backslash \Gamma^{\prime}}=f_{0},\left.\quad \operatorname{Re}\left(G \phi+G^{0} \phi \circ \beta\right)\right|_{\Gamma}=f_{1},
$$

where Γ^{\prime} is a smooth arc and $\beta\left(\Gamma^{\prime}\right)$ divides D into two subdomains. As was indicated in [13], this problem can be reduced to the so-called generalized Riemann-Hilbert problem for J-analytic functions. In this context, we can also note $[14,15]$, where this problem was considered for solutions of the linearized Stokes system and for usual analytic functions, respectively.

MAIN RESULTS

We consider the problem in the weighted Hölder space $C_{\lambda}^{\mu}(\bar{D} ; F)$ where $0<\mu<1$ and $\lambda<0$, and in the modified weighted class $C_{(\lambda)}^{\mu}(\bar{D} ; F)$, where $0<\lambda<1$. Let us recall their definitions [8]. Let C_{λ}^{μ} with $\lambda \in \mathbb{R}$ be the space of all functions $\varphi \in C(\bar{D} \backslash F)$ that belong to $C^{\mu}(K)$ for every compact subset $K \subseteq \bar{D} \backslash F$ and $O(1) \mid z-$ $\left.\tau\right|^{\lambda}$ as $z \rightarrow \tau \in F$. To be more precise, in the curvilinear sectors $D_{i}=D \cap\left\{\left|z-\tau_{i}\right|<\delta\right\}, i=1,2, \ldots, m$, where δ >0 is sufficiently small, we have $\varphi_{i}(z)=\varphi(z)\left|z-\tau_{i}\right|^{\mu-\lambda}$ $\in C^{\mu}\left(\bar{D}_{i}\right), \varphi_{i}\left(\tau_{i}\right)=0$. The space $C_{(\lambda)}^{\mu}$ with $0<\lambda<1$ is a finite-dimensional expansion of C_{λ}^{μ} by smooth functions that are constant in a neighborhood on D_{j}. This space is embedded in $C^{\min (\mu, \lambda)}(\bar{D})$, and the embedding becomes an exact equality when $\lambda=\mu$.

We will also use these spaces for piecewise continuous functions defined on ΓF. The boundary of the sector D_{i} consists of two smooth arcs $\Gamma_{i k}(k=1,2)$ with a
common endpoint τ_{i}, which are called its lateral sides, and of an arc of the circle $\left|z-\tau_{i}\right|=\delta$. It is convenient to denote the one-sided limits $\varphi(\tau \pm 0)$ at the point τ_{i} by $\varphi\left(\tau_{i k}\right)=\lim \varphi(t)$ as $t \rightarrow \tau_{i}, t \in \Gamma_{i k}$. For definiteness, we numerate the lateral sides $\Gamma_{i k}$ so that $\tau_{i 1}=\tau_{i}+0$ and $\tau_{i 2}$ $=\tau_{i}-0$. Now the space $C_{(\lambda)}^{\mu}(\Gamma, F)$ can be defined as above by replacing \bar{D}_{i} with $\Gamma_{i k}$.

We consider problem (1), (2) in the classes $C_{\lambda}^{\mu}, \lambda<$ 0 and $C_{(\lambda)}^{\mu}, 0<l<1$, with respect to solutions ϕ to (3), (5). It is assumed that the data $e^{\prime}, \beta^{\prime}, G$, and b of the problem belong to the class $C_{(+0)}^{\mu+0}(\Gamma, F)=\bigcup_{\epsilon>0} C_{(\epsilon)}^{\mu+\epsilon}$ in the former case and to the class $C_{(\lambda+0)}^{\mu+0}(\Gamma, F)$ in the latter case. Here, the derivatives on $\Gamma \vee$ are meant with respect to the parameter of length arc measured in the positive direction (so that D is on the left). Under these assumptions, the operators of the problems are bounded from the space $C_{(\lambda)}^{\mu}(\bar{D}, F)$ of solutions to system (1) to the space $C_{(\lambda)}^{\mu}(\bar{\Gamma}, F), 0<\lambda<1$, and the same is true for $C_{\lambda}^{\mu}, \lambda<0$. The Fredholm solvability and the index of the problems are meant with respect to these operators.

Recall that the eigenvalues of the matrix J of system (3) lie in the upper half-plane and coincide with the roots of the characteristic equation of the original system (1). For every nonzero complex number q, we introduce the invertible matrix $q_{J}=\operatorname{Re} q+J \operatorname{Im} q$. It will be used below for the derivatives $q=\alpha^{\prime}\left(\tau_{i k}\right)$ of shifts at the points $\tau_{i} \pm 0$. These derivatives are meant with respect to the length arc parameter on $\Gamma_{i k}$ measured from the point τ_{i}. In particular, for the identity shift $e(t)$ $=t$, the number $e^{\prime}\left(\tau_{i k}\right)$ is a unique tangent vector on $\Gamma_{i k}$ at the point τ_{i}. By assumption, the arcs $\Gamma_{i 1}$ and $\Gamma_{i 2}$ are not tangent to each other at the point τ_{i}, so $e^{\prime}\left(\tau_{i 1}\right) \neq$ $e^{\prime}\left(\tau_{i 2}\right)$. From the same considerations, the limit values $\beta\left(\tau_{i k}\right)$ of an inner shift $\beta=\beta_{s}$ belong to F, and if $\beta\left(\tau_{i k}\right)=$ τ_{j}, then the $\operatorname{arc} \beta\left(\Gamma_{i k}\right)$ is not tangent to the lateral sides of D_{j} at the point τ_{j}. Hence, the vector $\beta^{\prime}\left(\tau_{i k}\right)$ lies between the tangent vectors on $\Gamma_{j k}$ at the point τ_{j}.

In this notation, for each shift $\alpha: \Gamma F \rightarrow \bar{D}$, we can introduce the matrices $Q_{i k}(\alpha)$

$$
Q_{i k}(\alpha)=\left[\alpha^{\prime}\left(\tau_{i k}\right)\right]_{j}\left[e^{\prime}\left(\tau_{j 1}\right)\right]_{J}^{-1}, \quad \alpha\left(\tau_{i k}\right)=\tau_{j},
$$

whose eigenvalues do not lie on the positive half-axis. Therefore, we can define the matrices $\ln Q$ as the values of the analytic functions $\ln w(0<\arg \arg w<2 \pi)$ of Q, and we can define the complex degrees $Q_{i k}^{\zeta}(a)=$ $\exp \left[\zeta \ln Q_{i k}(\alpha)\right]$ and $\bar{Q}_{i k}^{\zeta}(\alpha)=\exp \left[\zeta \overline{\ln Q_{i k}(\alpha)}\right]$.

On the basis of these degrees and a piecewise continuous matrix-valued function G on Γ, we introduce the following $m \times m$ block matrices:

$$
\begin{align*}
&(G ; \alpha)_{i j}=\left\{(G ; \alpha)_{i j k r}\right\}_{1}^{2} \\
&(G ; \alpha)_{i j k r}=\left\{\begin{array}{lll}
G\left(\tau_{i k}\right) Q_{i k}^{\zeta}(\alpha), & \alpha\left(\tau_{i k}\right)=\tau_{j}, & r=1, \\
\bar{G}\left(\tau_{i k}\right) \bar{Q}_{i k}^{\zeta}(\alpha), & \alpha\left(\tau_{i k}\right)=\tau_{j}, & r=2, \\
0, & \alpha\left(\tau_{i k}\right) \neq \tau_{j} .
\end{array}\right. \tag{8}
\end{align*}
$$

In the accepted notation, problem (1), (2) is associated with two matrices:

$$
X=(B ; e) \hat{+}+\sum_{s=1}^{n}\left(b_{s} B ; \beta_{s}\right) \hat{,} \quad Y=(1 ; e \hat{)},
$$

The former is called the end symbol of this problem.
The determinant of Y can be explicitly calculated. It expression shows that the function $\operatorname{det} Y(\zeta)$ has the unique zero $\zeta=0$ in the strip $|\operatorname{Re} \zeta|<\frac{1}{2}$ and its degree is equal to $m l$. For fixed $\operatorname{Re} \zeta=\lambda$, the function $\operatorname{det}\left(X Y^{-1}\right)(\zeta)$ has a finite limit as $\operatorname{Im} \zeta \rightarrow \infty$, which, by virtue of the assumption $\operatorname{det} B \neq 0$ is not equal to zero. Then, in the strips $\lambda<\operatorname{Re} \zeta<0$ and $0 \leq \operatorname{Re} \zeta<\lambda$, the function $\operatorname{det} X(\zeta)$ has a finite number of zeroes. We denote this number, counting multiplicities, by $-\Delta(\lambda)$ and $\Delta(\lambda)$, respectively. Thus, the piecewise constant function $\Delta(\lambda)$ is monotone nondecreasing and, for $\lambda_{1}<$ λ_{2}, the difference $\Delta\left(\lambda_{2}\right)-\Delta\left(\lambda_{1}\right)$ is equal to the number of zeroes of $\operatorname{det} X(\zeta)$ counting multiplicities in the strip $\lambda_{1} \leq \operatorname{Re} \zeta<\lambda_{2}$.

Nevertheless, if

$$
\begin{equation*}
\operatorname{det} X(\zeta) \neq 0, \quad \operatorname{Re} \zeta=\lambda, \tag{9}
\end{equation*}
$$

then we can introduce the increment $\arg \operatorname{det}\left(X Y^{-1}\right)(\lambda+$ $i \infty)-\arg \operatorname{det}\left(X Y^{-1}\right)(\lambda-i \infty)$ of a continuous branch of the argument, which is divisible by 2π. Regarded as a function of λ, this increment is piecewise constant and, by Rouche's theorem, $\left.\arg \operatorname{det}\left(X Y^{-1}\right)\right|_{\lambda_{2}}-\arg \operatorname{det}\left(X Y^{-}\right.$ $\left.{ }^{1}\right)\left.\right|_{\lambda_{1}}=2 \pi\left[\Delta\left(\lambda_{2}\right)-\Delta\left(\lambda_{1}\right)\right]$. In particular, we can set $\left.\operatorname{limarg} \operatorname{det}\left(X Y^{-1}\right)\right|_{\varepsilon}$ as $\varepsilon \rightarrow 0, \varepsilon>0$.

Theorem 1. Problem (1), (2) is Fredholm in the classes $C_{\lambda}^{\mu}, \lambda<0$, and $C_{(\lambda)}^{\mu}, 0<\lambda<1$, if and only if it is of the normal type and condition (9) holds. In this case, its index κ is given by the formula $\kappa=-$ $\left.\frac{1}{2 \pi} \arg \operatorname{det}\left(X Y^{-1}\right)\right|_{0}-\Delta(\lambda)$.

Let us consider the problem in the classes $C_{-0}^{\mu}=$ $\bigcap_{\varepsilon>0} C_{-\varepsilon}^{\mu}$ and $C_{+0}^{\mu}=\bigcup_{\varepsilon>0} C_{\varepsilon}^{\mu}$. It may happen that the function f in (2) belongs to $C_{+0}^{\mu}(\Gamma, F)$ for some solution of
(1) in the class $C_{-0}^{\mu}(\bar{D}, F)$. The question arises about the asymptotics of this solution at the vertex τ_{i} of the sector D_{i}. To formulate the corresponding result, we introduce the analytic functions $\ln \left(z-\tau_{i}\right)$ in these sectors. As above, they define the matrix-valued functions $\ln \left(z-\tau_{i}\right)_{J}$ and $\left(z-\tau_{i}\right)_{J}^{\zeta}$. Note that $\left.z-\tau_{i}\right)_{J}^{\zeta}\left[\ln \left(z-\tau_{i}\right)_{J}\right]^{k} \in$ $C_{-0}^{\mu}\left(\bar{D}_{i}, \tau_{i}\right), \operatorname{Re} \zeta=0, k=0,1, \ldots$

Let us introduce nonnegative integer-valued functions $k(\zeta)$ and $r(\zeta)$ that characterize the degrees of zeroes and poles of the functions $\operatorname{det} X(\zeta)$ and $X^{-1}(\zeta)$, respectively. If $\operatorname{det} X(\zeta) \neq 0$, we set $k(\zeta)=r(\zeta)=0$. Obviously, $r(\zeta) \leq k(\zeta)$ for all ζ and, in the above notations, $\Delta(0)$ is equal to the sum of $k(\zeta)$ over $\operatorname{Re} \zeta=0$.

Theorem 2. Suppose that the function f in (2) belongs to $C_{+0}^{\mu}(\Gamma, F)$ for some solution $u(z) \in C_{-0}^{\mu}(\bar{D}$, $F)$ of (1).

Then, for any sector D_{i}, there exist $c_{k}(\zeta) \in \mathbb{C}^{l}, 0 \leq$ $k \leq r(\zeta)-1$ such that

$$
\begin{gathered}
u(z)-\operatorname{Re} B \phi_{i}(z) \in C_{+0}^{\mu}\left(\bar{D}_{i}, \tau_{i}\right), \\
\phi_{i}(z)=\sum_{\operatorname{Re} \zeta=0} \sum_{k=0}^{r(\zeta)-1}\left(z-\tau_{i}\right)_{j}^{\zeta}\left[\ln \left(z-\tau_{i}\right)_{J}\right]^{k} c_{k}(\zeta) .
\end{gathered}
$$

Of course, the inner sum in the expression for ϕ_{i} is equal to zero for $r(\zeta)=0$; therefore, the outer sum is finite.

Corollary. If $r(0) \leq 1, r(\zeta)=0$ for $\zeta \neq 0$, and $\operatorname{Re} \zeta=$ 0 , then, under the assumptions of Theorem $2, u \in$ $C_{(+0)}^{\mu}\left(\bar{D}_{i}, \tau_{i}\right)$.

This corollary shows that if $u \in C_{(-0)}^{\mu}\left(\bar{D}_{i}, F\right)$ and the function f does not satisfy the compatibility conditions, then the solution u permits logarithmic singularities at the points $\tau \in F$.

Note that the linear independent solvability conditions in the definition of the index of the problem include the compatibility conditions for $0<\lambda<1$. Let us denote by κ^{+}and κ^{-}the indices of problem (1), (2) in the classes C_{-0}^{μ} and $C_{(+0)}^{\mu}$, respectively. According to Theorem 1 , they are connected by the relation $\kappa^{-}-\kappa^{+}=$ $\Delta(0)$. If the conditions of the corollary are fulfilled, then $\Delta(0)=k(0)$ and the number of compatibility conditions is equal to $k(0)$.

In the scalar case $l=1$, Eq. (1) reduces to the Laplace equation by a change of variables. In particular, the maximum principle holds for this equation. This fact allows us to completely study the solvability of the problem.

Theorem 3. Suppose that $l=1$, the inequality $\sum_{s=1}^{n}\left|b_{s}\right| \leq 1$ holds, and the conditions of Lemma 1 are fulfilled. Then, under the compatibility conditions,
problem (1), (2) is uniquely solved in the class C_{λ}^{μ},
$-\frac{1}{2}<\lambda<1 / 2$.
Note that, in this theorem, the condition on $r(\zeta)$ imposed in the corollary is satisfied and $k(0)=m$.

We can complete Theorems 1 and 2 by adding the corresponding result on the smoothness of the solution.

Theorem 4. Under the assumptions of Theorem 1, let the solution u be such that f in (2) is continuously differentiable on ΓF and $f^{\prime} \in C_{\lambda-1}^{\mu}(\Gamma, F)$. Then the partial derivatives u_{x} and u_{y} of the solution u belong to $C_{\lambda-1}^{\mu}(\bar{D}, F)$. Analogously, iff $f^{\prime} \in C_{-1+0}^{\mu}(\Gamma, F)$ in Theorem 2 , then the partial derivatives of the difference $u(z)-\operatorname{Re} B \phi_{i}(z)$ belong to $C_{-1+0}^{\mu}\left(\bar{D}_{i}, \tau_{i}\right)$ in the sector D_{i}.

If a shift α satisfies the condition $\alpha\left(\tau_{i}+0\right)=\alpha\left(\tau_{i}-\right.$ $0)=\tau_{i}, 1 \leq i \leq m$, then matrix (8) has the block diagonal structure $(G ; \alpha)_{i j}=(G ; \alpha)_{i} \delta_{i j}$, where the diagonals blocks

$$
\begin{gathered}
(G ; \alpha)_{i}=\left(\begin{array}{ll}
G\left(\tau_{i 1}\right) Q_{i 1}^{\zeta}(\alpha) & \bar{G}\left(\tau_{i 1}\right) \bar{Q}_{i 1}^{\zeta}(\alpha) \\
G\left(\tau_{i 2}\right) Q_{i 2}^{\zeta}(\alpha) & \bar{G}\left(\tau_{i 2}\right) \bar{Q}_{i 2}^{\zeta}(\alpha)
\end{array}\right) \\
Q_{i k}=\left[\alpha^{\prime}\left(\tau_{i k}\right)\right]_{J}\left[e^{\prime}\left(\tau_{i 1}\right)\right]_{J}^{-1}
\end{gathered}
$$

are associated with the corresponding sectors D_{i}.
Let all the shifts β_{s} satisfy this condition. Then the end symbol X of the problem has the same block diagonal structure $\left(X_{i} \delta_{i j}\right)_{m}^{1}$ with diagonals blocks $X_{i}=(B ; e)_{i}=$ $\sum_{s}\left(b_{s} B ; \beta_{s}\right)_{i}$. Moreover, Y has the same structure with $Y_{i}=(1 ; e)_{i}$. In this case, we can regard the weighted order λ as a vector whose coordinates λ_{i} are associated with the corresponding space $C_{\lambda_{i}}^{\mu}\left(\bar{D}_{i}, \tau_{i}\right)$.

Theorem 1 also holds in this case. It is only necessary to replace (9) by the condition $\operatorname{det} X_{i}(\zeta) \neq 0, \operatorname{Re} \zeta=$ $\lambda_{i}, 1 \leq i \leq m$. The index formula in this case has the form

$$
\begin{gathered}
\kappa=\sum \kappa_{i} \\
\kappa_{i}=-\left.\frac{1}{2 \pi} \sum_{1}^{m} \operatorname{argdet}\left(X_{i} Y_{i}^{-1}\right)\right|_{-0}-\sum_{i=1}^{m} \Delta_{i}\left(l_{i}\right)
\end{gathered}
$$

where Δ_{i} is defined with respect to X_{i} as above. In the same way, Theorem 2 is valid when the characteristic $r(\zeta)$ of poles is meant with respect to $X_{i}(\zeta)$.

ACKNOWLEDGMENTS

This work was supported by the program "Universities of Russia," project no. UR 04.01.486.

SOLDATOV

REFERENCES

1. A. V. Bitsadze and A. A. Samarskii, Dokl. Akad. Nauk SSSR 185, 739-740 (1969).
2. A. V. Bitsadze, Dokl. Akad. Nauk SSSR 277, 17-19 (1984).
3. A. L. Skubachevskii, Mat. Sb. 129 (171), 279-302 (1986).
4. A. L. Skubachevskii, Russ. J. Math. Phys. 8, 365-374 (2001).
5. K. Yu. Kishkis, Differ. Uravn. 24, 105-110 (1988).
6. P. L. Gurevich, Funct. Differ. Equations 10 (1/2), 175214 (2003).
7. P. L. Gurevich, Izv. Ross. Akad. Nauk, Ser. Mat. 67 (6), 71-110 (2003).
8. A. P. Soldatov, One-Dimensional Singular Operators and Boundary Value Problems in Function Theory (Vysshaya Shkola, Moscow, 1991) [in Russian].
9. A. A. Douglis, Commun. Pure Appl. Math. 6, 259-289 (1953).
10. A. P. Soldatov, Differ. Equations 39, 712-725 (2003) [Differ. Uravn. 39, 674-686 (2003)].
11. A. V. Bitsadze, Boundary Value Problems for SecondOrder Elliptic Equations (Moscow, 1966) [in Russian].
12. A. P. Soldatov, Differ. Equations 41, 416-428 (2002) [Differ. Uravn. 41, 396-407 (2005)].
13. A. P. Soldatov, Dokl. Akad. Nauk SSSR 299, 825-828 (1988).
14. N. A. Zhura, Dokl. Akad. Nauk 331, 668-671 (1993).
15. I. V. Sidorova, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 50-56 (1995).

[^0]: ${ }^{1}$ The article was translated by the author.

