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Abstract. A theory of coherent X-ray radiation of a relativistic electron crossing the artificial 
periodic medium in the Laue scattering geometry is constructed. The expressions describing 
the spectral and angular characteristics of radiation in the direction of Bragg scattering are 
obtained and investigated. By analogy with the radiation emission in a crystalline medium this 
radiation is considered as the result of coherent summation of the contributions of two 
radiation mechanisms: parametric (PXR) and diffracted transition (DTR). It is shown that the 
yield of DTR from layered target can be more than one order higher than the yield in single 
crystal radiator, under similar conditions. The manifestations of the Borrmann effect for DTR 
in the artificial multilayer environment are demonstrated for a Laue scattering geometry.

1. Introduction
When a charged particle crosses the entrance surface o f the crystal plate the transition radiation arises 
(TR) [1], which then is diffracted by a system o f parallel atomic planes of the crystal, forming the 
diffracted transition radiation DTR [2-4]. At the same time a charged particle Coulomb field is 
scattered by a system of parallel atomic planes o f the crystal, creating a parametric X-ray radiation 
(PXR) [5-7]. In the scheme of the symmetric reflection when the system of diffracting atomic planes 
is perpendicular (in the case of Laue scattering geometry) or parallel (in the case of Bragg scattering) 
to the surface of the crystal plate, the radiation mechanisms in the two-wave approximation of 
dynamic diffraction theory were considered in [8-11].

In the general case of asymmetric reflection of the radiation from the plate when the diffracted 
atomic planes make an arbitrary angle with the surface of the plate, the dynamic effects of PXR and 
DTR are considered in [12-15], where it was shown that by changing the asymmetry of reflection, we 
can significantly increase the radiation yield. Traditionally, the radiation of a relativistic particle in a 
periodically layered structure was considered in the Bragg scattering geometry for the case where the 
reflecting layers are parallel to the entrance surface, i.e. for the case of symmetric reflection. The 
radiation in a periodic layered structure is usually viewed as resonant transition radiation [5, 16]. In the 
works [17], the radiation from an artificial periodic structure was represented as the sum of diffracted 
transition radiation (DTR) and parametric X-ray radiation (PXR).

In the cited works the radiation o f relativistic particles in an artificial periodic structure was 
considered only in the Bragg scattering geometry for the special case of symmetric reflection o f the 
particle field with respect to the target surface, when the diffracted layers are parallel to the target 
surface.
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In the present paper we consider the coherent X-ray radiation scattering in the Bragg direction 
generated by relativistic electron crossing the artificial periodic structure in the Laue scattering 
geometry. By analogy with the crystalline environment the coherent radiation is considered as the sum 
of PXR and DTR contributions. On the basis o f two-wave approximation of dynamic diffraction 
theory [18] the expressions describing the spectral and angular characteristics o f radiation are derived.

2. Amplitude of the radiation
We analyze the radiation emitted by a relativistic electron passing through a multilayer structure 
(Figure 1) consisting of periodically arranged amorphous layer with thickness a  and b respectively 
( T  = a  + b is the structure period) with the dielectric susceptibility x a an<̂  Xb respectively.

Figure 1. Geometry of the radiation process and the 
system of the using parameters notations, 6  and 6 '  are 
the radiation angles, 9 B is Bragg angle, k  and k are 

wave vectors of incident and diffracted photons.

We consider the equation for the Fourier transform of the electromagnetic field
E(k, co) = |  dt d^r  E(r, t) exp(icot -  ;'kr). (1)

We use the two-wave approximation of dynamic diffraction theory, in which the incident and 
diffracted wave are considered on equal grounds. Since the electromagnetic field associated with a 
relativistic particle can accurately be considered as transverse both incident E0(k,®) and diffracted

E g (k , co) electromagnetic waves are determined by pairs of transverse polarization amplitudes:

E 0 (k,®) = E™ (k. aOe® + E<2) (k. ®)e[,2).

E g (k, co) = (k, co )e|1) + E <2) (k, co )e j2),

where the vector ande[,2)are perpendicular to the vector k and the vectors e ^ a n d  c\2> arc

perpendicular to the vector k g = k + g . Vectors e[,2) and c\2> lie in the plane of the vectors k and k g

( n  -polarization), and vectors and c,1' are perpendicular to this plane ( a  -polarization). The vector 
g is defined similarly to the reciprocal lattice vector in the crystal - it is perpendicular to the layers of

2 71protection, and its length is equal to g =— n,  n = 0.+1.+2,...

The equations for the Fourier transform of the electromagnetic field in a two-wave approximation 
of dynamical diffraction theory have the form [19]:



\ ( o 2Q- + X o ) - k 2)Ei0s) +CQ2x ^ C ('s)E (f  = ^ n 2iecodVP(s>8(co -kV ),

\co2x p s'>E^ + {co2 {\ + Xo) - k l ) E (f  = 0, (3)

where / „ .  are coefficients of the Fourier expansion of the periodic structure dielectric

susceptibility over the reciprocal vectors g :

X(co, r) = Y , X g (®) exp(/gr) =Z t g  (®) + 'Xg (®))exp(/gr). (4)
g g

The values C w and P (s) in the system (3) are defined as follows

, C ® = 1 , =cos20B , P (s) = (fi / ju), P ^ = sm c p ,  P ^  = coscp, (5)

where p  = k -  co V / V 2 is the component o f the virtual photon momentum perpendicular to the particle 
velocity V , ^  = cod I V , 0 « 1  is the angle between vectors k and V . 0h: is Bragg angle, cp is the 
radiation azimuth angle measured from the plane formed by the velocity vector V and g .

The vector g length can be also expressed through the Bragg angle 9B and the Bragg

frequency coB : g  = 2 coB sin 6B I V . The angle between the vector and the wave vector k of the
V

incident wave is marked 0  and the angle between the vector + g and the diffracted wave vector
V

k g is indicated as 6 ’ . The system (3) under 5 = 1 describes the fields of <r - polarization, and under

5 = 2 the fields of n -polarization.
The values / 0 and / „  are defined as follows:

. . a b exp(- iga) -1  / x , a , b , „ a „ b „
— X  a "̂ 7 X b  5 ^ g ( ® ) — . rp \ Xb  X a )  ■> X o ~ ~ X a ~ ' r ~ ^ X b - ’ X o ~ ~ X a ~ ' r ~ ^ X b - ’T T  igT T T T T

2sinf— 1 2sinf. 2  I   I 2 j
Re^jxgX -g = ---- — ---- (X b - X ’a) ,  Im^/zgZ-g = -----— ---- (Xb ~ x"a) (6)

By solving the dispersion equation following from the system (3)

(®2a  + X o ) - k 2)(co2a  + X o ) - k 2g ) -co4X-gXgC(s)2 = 0 (7)

with the use of standard methods of dynamical theory[18], we find the expression for k  and k„ :

k = m^\  + x  0 + V  k g =(OtJ i + X 0 +A g . (8)

(9)j a 2) -SL 
g “ 4

P ±  \ p 2 + 4 X g X - g C ^ 2 
11 Yo

V

f  I------------------------------>\

° 4rs
- p ± l p l +4 x gX-gC(s)21̂

J

r o
where/? = a ~ X o  1—  > cc = — {k„ - k  ) ,  ^0 =cosi//0 , /„ = c o s i//„ , i//0 ~~ ^ e  angle between the

/ co2
wave vector o f the incident wave k and vector normal to the surface of the plate n , i//g is the angle 

between the wave vector k g and the vector n (see figure 1). Dynamic additions /.0 and /.„ for X-ray 

wave vectors are related by formula
coB T g

X g =  h/lg ----- (10)
2 To

Since the dynamic additions are small: A,J «  co . A «  co . one can show that 6  «  O’ (see figure 1),



therefore further we will use the notation 6  for both o f these angles.
We represent the solution o f the system of equations (3) for the diffracted field in a periodic 

structure in such a form:

P (s)med,um & Z2ie V 8p W ,s(Ag - A ') + 4 ' |0,t>(As -A™) + B«’|i:,i;(As - 4 21), <l l a )

where An =co( y 2 +62 ~Xo , l * = ^ -  + — , ;/ = 1 / V1 — f ’2 -  Lorentz factor of the particle,
2 yo

,(D

and 1C„ ! are free diffracted fields in the multilayer target.

For the field in vacuum in front of the radiator the solution of (3) has the form:
, 8 , W < * ____ 1____ SL . )  s A r a p w  _______ 1__________ , _ .1 ( llb )

U /;•> 9 ' ' ~ \ \ 6 6 /
~Xo----co

Yo_
rs

-v 2 r° 3 -u ft 70 + P —
® re 7a

k - 4 ) = H - 4 'where we use the relation 8 Un -  An ) = —
ro

The diffracted field behind the radiator in vacuum is as follows:
j^ (s)v a c  _  j j ( s ) R a d ^  | 0 ( 12)

\ ~ Z J

where E g )Rad is the field of coherent radiation in the direction close to the Bragg direction.

From the second equation of the system (3) we can derive the expression relating the incident and 
diffracted fields in the medium:

j?(s)m edium  _  
J-̂ r\ —  ‘

2coA„ g (s)m ed iu m (13)

To determine the amplitude of the field E g )Rad, we use the boundary conditions at the entrance 

and exit surfaces o f the multilayer plate:

j E (Qs)vacI d l o = ^ E ^ )medmmdXo , ^ E ^ )medlumdX0 = 0 ,

s)medium exp| i —  L
y*

d Zg = 1 4 ^  exp
( ) 
i —  L  

Te.
dX„ ■

We will present the radiation field in the form of two terms:
T?(s)Rad _  T ? ( s )  , T ? ( s )

”  ^P X R  i " ^ D T R  ’

(14)

(15a)

F(s) = -PXR

8 7i2ieVdP(s) 2 ■■ C(s)

,r  0 p2 +4xgx-gc(s)' 
r s \  h

 1_

r e K
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( f  i*
1-exp -/ s s I.
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The expression (15b) and (15c) represent the amplitudes o f the radiation fields, similar to the 
amplitudes of PXR and DTR in a crystal. The DTR is the result o f diffraction by a periodically layered 
artificial structure of the transition radiation, which is generated on the front surface of the target.
For further analysis o f the radiation, the dynamic addition (9) can be represented as follows:

4 î-2) =
m\x. eCs) /p W ( l - s )  ± 

’ 2
(sy

where 

g^(o>)=TJ^(a>)+- 1 - e
’ r s)(a>)--

:_2
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An important parameter in (17) is the parameter s  that determines the degree o f the field reflection 
asymmetry relative to the target surface, which can be represented as

e = 5 5(«± £a ) j (lg)
sin(<5 -  QB)

where 9B is the angle between the electron velocity and reflective layers, 8  -  the angle between the 
target surface and reflective layers. Note that the angle of electron incidence on the target surface 
increases when the parameter s  decreases, and vice versa (see figure 2). But in the approach used in

this work the calculations will be correct only when the condition 2)( s ) « C 0 y l  1 + Xo (see (8)) is

provided, i.e. the parameter s  must be limited in accordance with this condition and with formula 
( 16).

£ < 1 £ = 1 £ > 1

Figure 2. Schema of the 
asymmetric ( s  > 1 and 
s  < 1 cases) reflection of the 
radiation from the 
multilayered plate. The case 
( s  = 1 ) corresponds to the 
symmetric reflection.



3. Spectral-angular radiation density
Substituting (16) for X';'2) into (15b) and (15c), then substituting (15b) for IC^’R and (15c) for E i

in the well-known [19] expression for the spectral-angular density of X-rays
2

«
DTR

a = (27T)- 6 y  E U)Rad
dadQ. ^  g

5=1

(19)

we will obtain the expression for summands, describing the contributions to the spectral-angular 
density of the radiation o f the mechanisms PXR, DTR and of the summand, which is the result of the 
interference of these radiation mechanisms.

2 ir(s)d ^ N PXR _ e p (s f
dcodQ. 4 

2 1 + exp

-R0 )
(■o2 + y~2 -x 'o )2 PXR’
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PXR 1-
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The expressions (20)-(21) constitute the main result o f this work. They are obtained in two-wave 
approximation of dynamic diffraction theory, taking into account the absorption o f radiation in the 
layered plate substances and the orientation of the diffracting layers relative to the surface of the plate. 
These expressions allow us to investigate the spectral and angular characteristics o f radiation 
depending on the energy of relativistic electrons and on the parameters o f the artificial periodic 
structure of the target

4. Bormann effect in DTR
Since two X-ray waves determine the DTR yield, for the analysis o f their contributions to the radiation 
spectral density it is convenient to represent the expression (21b) in such a form:

R (s> =-DTR

-i<Vs) 1+E +2sK

+ e

1+s +2sk^

- 2 e • c o s
2 b (s,y [ f + s (23)

When consider the expression (23), one can see that the terms in brackets successively describe the 
waves belonging to the first and second fields, and their interference. 
Next we write the expression (23) in a more demonstrable form of
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DTR -

(s)
y“ l = MO

Ç(cù) +£
~LfW0)

+ e -Lf t$M
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2 2 ^ 2+s

-2 -e
1+s

•C O S №
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V exf
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2 2^
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(24)

(25)

L f  is the path of a photon in a crystal, n 0 = a%Q -  the linear coefficient of X-waves absorption in the

averaged amorphous medium, L ^ t = -
c

-  the length of the X-waves extinction in a

periodic medium.
The formula (24) clearly demonstrates the dynamic Borrmann effect arising during the passage of 

x-rays DTR through a periodic medium. Namely, in the X-ray scattering in a periodical medium the
abnormal weak absorption is observed for the first wave field /n\ s> « /u0 (i.e. anomalous transmission

of the first field X-rays) and abnormal strong absorption for the second one / u ^  > ju(l. By this reason,
for the sufficiently large photon path in the substance o f the plate the DTR only by one o f the fields in

a periodic structure will be formed, namely, by the field with effective absorption coefficient /n\ s>.
Physics of the Borrmann effect [20] consists in the formation of the standing waves from the 

incident and scattered waves, whose antinodes are localized in the regions of space with a lower 
electron density for one o f the waves (first term in (23) and (24)) and in the regions of space with a
higher electron density for second wave (second term in (23) and (24)). Parameter /v'l ,v;i appearing in 
(25) determines the degree of manifestation o f the Borrmann effect in the anomalous X-ray waves 
passing through a periodic structure. As in the case of free X-ray waves in crystals, a prerequisite for
manifestation o f the effect of DTR in layered medium is the condition ; 1, that corresponds to the
minimal value of the linear absorption coefficient /n\ s >.

Next, we will carry out a numerical analysis for each of the waves and of their interference term 
separately. For this purpose the expression (23) we write in the following form

RDTR=Ril S)+R2 ) + R M ’ (26a)
1+e (l-£)Z(s>+2 £K(s>

r (s) = -
Ç((ù) +£

R i s) = -

l+£+ (l-£)Ç(s>+2 ek!»

= —in t

£(a>) +s  

22 s ‘ - b (s)p (s)
1 + S

• C O S
2b ( s ) + s

(26b)

(26c)

(26c)
<H(a>) +s \ y

We will carry out the calculations for o  -  polarized waves, i.e. for s = 1. In order to get demonstrable 
results, we will consider the case when the layers are o f equal thickness a = b = ^  . We will consider

2  71the reflections, that correspond to g = — . In this case, the parameters in the expressions (26) will take 

the following values:



2 n  sin(5 -  9 B  )

For a thin target ( bm = 5 ), the curves drawn by (26), are shown in figure 3 describing the spectral 
density of the DTR (for coB = 8 K e V )  in the artificial periodic structure consisting of amorphous 
layers o f beryllium (Be) and tungsten (W). We see in this case, that the DTR is formed by the fields of 
two waves in a periodic structure, whose contributions in the spectral distribution are of comparable 
magnitude which will cause a strong interference o f these waves. The interference term brings 
oscillations in the spectral density.

Figure 3. The contributions of the two fields, 

and R n J. and o f their interference term

R wit
?(!) a. p (D  a. p (D

iint into the total spectral density o f DTR
n (l)  _  m i ;  , m i ;  , m<

D TR  ~  ^ 1  +  +  - ^ i n t

Figure 4. The same as figure 3 for bigger 
target thickness.

With increase of the target thickness one of the waves decays rapidly (figure 4 and figure 5), while 
the other one traverses the target without a significant decrease in amplitude. Under these conditions 
the contribution of the interference term markedly decreases and the spurious peaks in the spectrum 
are attenuated and then completely disappear (figure 6).

Figure 5. The same as in figure 4 for bigger 
target thickness.

Figure 6. The spectral density of the 
relativistic electron DTR for different values of
the target thickness.



It should be noted that the spectral curves in figure 5 and Figure 6 are constructed for a large target 
thickness, when the photon path length is longer than the average photo-absorption in an amorphous

medium l abs= —  , which corresponds to the conditions of the Borrmann effect manifestation in an 

artificial periodic structure.

5. Conclusion
A theory for the coherent radiation of the relativistic electron crossing an artificial periodic structure is 
constructed for the case of Laue scattering geometry. The expressions for spectral-angular 
characteristics o f the radiation in Bragg direction are derived and investigated.

The contributions to the DTR yield o f two X-ray waves, which are responsible for DTR formation, 
are studied. It is shown that with increase of the target thickness, one of the waves is absorbed 
anomalously strongly and the other wave abnormally weakly, i.e. the Borrmann effect is manifested in 
DTR in an artificial periodic structure in the Laue geometry.

Based on these expressions it is shown that the angular density of diffracted transition radiation in 
layered target is more than one order higher than the density for a single crystal radiator under similar 
conditions.
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