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Abstract
The resistivity, ρ, of ceramic La1−x Bax MnO3 with x = 0.02–0.10
corresponding to the concentrations of holes c ≈ 0.15–0.17 displays an
activated behaviour both above and below the paramagnetic to ferromagnetic
transition temperature TC = 175–209 K, obtained from measurements of
the magnetization. Above T ∼ 310–390 K ρ(T, x) is determined by
nearest-neighbour hopping of small polarons with activation energy Ea =
0.20–0.22 eV. Below the onset temperature Tv = 250–280 K, depending on
x , a Shklovskii–Efros-like variable-range hopping conductivity mechanism,
governed by a soft temperature independent Coulomb gap,� ≈ 0.44–0.46 eV,
and a rigid gap, δ(T ), is found. For the range T ∼ 50–120 K, δ(T ) is connected
to the formation of small lattice polarons in conditions of strong electron–
phonon interaction and lattice disorder. The rigid gap obeys a law δ(T ) ∼ T 1/2

within two temperature intervals above and below TC, exhibits an inflection at
TC and reaches at Tv a value of δv ≈ 0.14–0.18 eV. Such behaviour suggests
a spin dependent contribution to δ(T ). The localization radius of the charge
carriers, a, has different constant values within the temperature intervals where
δ(T ) ∼ T 1/2. With further decrease of T , a increases according to the law
expected for small lattice polarons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

La1−x Bax MnO3 (LBMO) is a hole doped mixed valence manganite perovskite compound
exhibiting colossal magnetoresistance (CMR) near the paramagnetic (PM) to ferromagnetic
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(FM) transition temperature, TC [1, 2]. The hole doping by substitution of a divalent alkaline
element for La3+ or by formation of cation vacancies induces mixed valence Mn3+,4+ ions and
pairs of Mn3+–Mn4+ coupled with FM double-exchange (DE) interaction. Due to competition
with Mn3+–Mn3+ pairs coupled with the superexchange (SE) interaction, different kinds of
spin orderings are realized in different intervals of the temperature, T , the magnetic field,
B , and the relative hole concentration c equal to the Mn4+/Mn3+ ratio [2, 3]. This leads in
conditions of lattice disorder to frustration of the magnetic ground state [4] and appearance of
a spin-glass phase [5, 6], or due to phase separation [7, 8] to cluster-glass formation [6, 9].

Electronic properties of weakly doped (c < 0.15–0.20) manganite perovskites are
governed by electron localization, presumably due to strong electron–phonon interaction and
the local Jahn–Teller distortions [10], leading to the formation of a small polaron state [11].
The resistivity, ρ(T ), displays an activated (or semiconductor-like) behaviour, decreasing
exponentially with T (dρ/dT < 0) both above and below TC, and having an inflection
around TC [12]. At higher doping levels delocalization of the electrons near TC leads to
a metal–insulator transition (MIT), which corresponds to transformation of ρ(T ) from the
activated behaviour at T > TC to the metallic (dρ/dT > 0) behaviour at T < TC [2, 12].
Nearest-neighbour hopping (NNH) conductivity of small polarons satisfying the Arrhenius
law is observed above the room temperature in various perovskite materials [2, 12], persisting
in La1−x Cax MnO3 up to T ∼ 700 K [13] and 1200 K [14]. However, on lowering the
temperature deviations from the NNH conductivity are observed, suggesting a transition to
variable-range hopping (VRH) conductivity [15] similar to that in disordered systems like
doped semiconductors [16], where the hopping conductivity is strongly influenced by details
of the one-electron density g(ε) of the localized states (DOS) near the Fermi level, µ [16].

In manganite perovskites the structure of DOS is complex aroundµ, including a parabolic
interval with width � ∼ 0.5 eV (soft gap) and a region of g(ε) = 0 with width δ(T ) up to
∼0.11 eV (rigid gap), as determined by scanning tunnelling spectroscopy of a La0.8Ca0.2MnO3

film [17]. The soft or the Coulomb [16] gap is attributed to Coulomb interactions between
localized charge carriers, and is much wider in the manganites than in the doped semiconductors
having � ∼ 1–10 meV [18]. This can be explained by the much higher (by ∼4–6 orders of
the magnitude) concentrations of charge carriers in the manganites, enhancing considerably
the Coulomb correlation effects. On the other hand, the rigid gap δ(T ) can be ascribed in
the perovskite oxide compounds to polaron formation. Indeed, to hop from a site below µ to
another site aboveµ the carrier should annihilate the polarization on the initial site and create
it on the final site. This requires a minimum hopping energy, which may lead to a rigid gap
around µ, if the polarization of the surrounding ions is the main reason for the localization of
the charge carriers, whereas that from the lattice disorder is much smaller. This situation is
expected to be realized in the manganite perovskites.

Although the Coulomb correlations and formation of small polaron states are multi-
electron effects, the analysis of the VRH conductivity in the manganites using the one-electron
DOS containing the gaps� and δ yields reasonable results. The localization radii of the charge
carriers, a ≈ 2.5–2.9 Å in La0.7Ca0.3Mn1−yFeyO3 [15] and 1.2–1.7 Å in LaMnO3+η [19],
satisfy the condition of small polaron radius [20]. The values of � ≈ 0.40–0.44 eV for
La0.7Ca0.3Mn1−yFeyO3 [15] and 0.43–0.48 eV in LaMnO3+η [19] are similar to the Coulomb
interaction energy at an average distance between the carriers and close to the experimental
values of� obtained by scanning tunnelling spectroscopy in La0.8Ca0.2MnO3 [17]. In addition,
at T well above TC the rigid gap follows for both compounds the law δ(T ) ≈ δv(T/Tv)

1/2,
where Tv is the onset temperature of the VRH conductivity, δv ≈ 0.16–0.12 eV for
La0.7Ca0.3Mn1−yFeyO3, decreasing with y [15] and δv ≈ 0.14–0.17 eV for LaMnO3+η,
increasing with η [19]. The values of δv are similar to those found in [17] and the dependences
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of δv on y and η are consistent with increasing lattice disorder in La0.7Ca0.3Mn1−yFeyO3

when y is increased [15] and with progressive lattice distortions in LaMnO3+η when η is
increased [19]. The properties of� and δ(T ) have been utilized for quantitative interpretation
of the thermopower in La0.7Ca0.3Mn1−yFeyO3 under a magnetic field [21].

Up to now the manganite perovskites doped with Ca or Sr have been investigated most
extensively [2, 12]. LBMO demonstrates a series of electronic and magnetic properties as
well as CMR typical of Ca or Sr doped manganites [22–24], stimulating general interest in
this compound. In the present paper we investigate the resistivity of weakly doped LBMO,
expected to exhibit activated conductivity well below the room temperature due to absence of
the MIT, as is common in the CMR materials with low doping levels. This allows us to obtain
detailed information about the mechanisms of the hopping charge transfer in wide temperature
intervals above and below TC.

2. Experimental results

LBMO samples with x = 0.02, 0.04, 0.08 and 0.10 marked below as No 2, No 4, No 8
and No 10, respectively, were synthesized with the conventional solid state reaction method
from La2O3, Mn3O4 and BaCO3. The raw materials were pre-calcined to remove possible
adsorbates, weighed in stoichiometric proportions and mixed with addition of ethanol. The
mixtures were pressed into pellets and fired at 900–1300 ◦C in air, crushed into powder
and pressed and fired several times with gradually increasing temperature until single-phase
material was obtained. The phase purity and the lattice structure were determined with
room temperature x-ray powder diffraction investigations (λ = 1.541 78 Å), establishing the
rhombohedral R3̄c space group. The values of the lattice parameters a = b = 5.521–5.535 Å
and c = 13.348–13.444 Å (increasing with x) agree closely with those in [25].

Investigations of ρ(T ) were made for T = 25–450 K using the conventional four-probe
technique in a transverse magnetic field configuration (B ⊥ j) for B = 0–10 T, increasing and
decreasing the temperature and the magnetic field. Magnetization M(T ) was measured with
an RF-SQUID magnetometer after cooling the sample from the room temperature down to 5 K
in zero dc field (MZFC or zero-field cooled magnetization) or in a field of B = 10 G (MFC or
field cooled magnetization).

The plots of the susceptibilities χZFC(T ) = MZFC(T )/B and χFC(T ) = MFC(T )/B
shown in the inset to figure 1 exhibit in all LBMO samples a steep PM–FM transition with TC

increasing with increasing x . The values of TC are collected in table 1 (for No 8, TC = 200 K).
In addition, magnetic irreversibility or deviation of χZFC(T ) from χFC(T ) is observed below
the PM–FM transition (an example is shown for No 2), indicating frustration of the magnetic
ground state in LBMO to be common in the manganite perovskites with low x [5, 6, 26, 27].

The plots of ρ(T ) shown in figure 1 display for all the samples No 2–No 10 an activated
behaviour above and below TC with no signs of the MIT, as can be expected for weakly doped
manganites. Near TC the ρ(T ) curve has an inflection, which is more pronounced when x is
increased. As can be seen from figure 2, the magnetoresistance of LBMO decreases strongly
in the magnetic field, with the maximum variation being near TC.

3. Theoretical consideration and formulation of the model

For the subsequent analysis of the data we consider electrons, localized by polarization of the
medium, Ep = EpL + EpS, and by microscopic lattice disorder creating a distribution of the
electron potential energy with width 2Ed = 2(EdL + EdS). Here EpL and EpS are contributions
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Figure 1. Temperature dependence of the resistivity
in zero field. Inset: temperature dependence of χFC
(solid and dashed lines) and χZFC (dotted line) in the
field B = 10 G.
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Figure 2. Temperature dependence of the
resistivity of No 10 in fields of B = 0, 2, 4, 6 and
10 T (from top to bottom). Inset: temperature
dependence of the resistivity of No 4 in fields of
B = 0, 6 and 10 T (from top to bottom).

Table 1. The values the PM–FM transition temperature TC, the prefactor coefficients of the NNH
conductivity A1 and A3/2, the activation energies of the NNH conductivity E(1)a and E(3/2)a , the
transfer integral J , the lower border of the NNH conductivity Tn and the crossover temperature
Tcr .

A1 A3/2

Sample TC (10−7 � cm (10−8 � cm E(1)a E(3/2)a J Tn Tcr

Nos (K) K−1) K−3/2) (eV) (eV) (meV) (K) (K)

2 175 6.16 1.82 0.205 0.223 18 395 374
4 178 7.41 2.25 0.191 0.208 17 385 346

10 209 6.88 2.14 0.183 0.200 16 310 305

to the polaron potential well shown in figure 3(a) from local lattice distortions and from
polarization of the surrounding spins, respectively. EdL and EdS are the contributions to Ed
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Figure 3. The polaron potential well with the depth Ep, the width of the distribution of the disorder
energy 2Ed and the width of the rigid gap 2δ (a). The one-electron DOS g(ε) with the soft gap �,
the rigid gap δ, the maximum hopping energy εmax and the DOS value outside the gap g0 (b).

from the lattice disorder caused by random distribution of divalent ions and cation vacancies
and from spin disorder, respectively. As can be seen from figure 3(a), the width of the rigid
gap satisfies the equation

δ = Ep/2 − Ed/2. (1)

The one-electron DOS g(ε), shown in figure 3(b), is supposed to be symmetric with
respect to µ, equal to zero within the interval (µ− δ, µ+ δ), parabolic in the intervals (µ−�,
µ − δ), (µ + δ, µ + �) and constant, g0, for ε < µ− � and ε > µ + � [15], neglecting the
small asymmetry which is important for analysis of the thermopower but does not influence
the resistivity [21].

The NNH conductivity of the small lattice polarons is given by the expres-
sion [11, 20, 28, 29]

ρ = Am T m exp[E (m)
a /(kT )], (2)

where the product Am T m is a prefactor and E (m)
a is the activation energy. Let us define the

energy of an intermediate state [20],

E0 = e2/(4κp)(r
−1
p − R−1

0 ), (3)

where thermal fluctuations have decreased the depth of the potential well and produced an
empty potential well on a neighbouring site so that the electron can resonate between these
wells. Here κp = κ−1∞ − κ−1

0 with κ∞ and κ0 being the high frequency and the static dielectric
constants, respectively, rp is the small polaron radius and R0 is the distance between the sites.
If the electron can go backwards and forwards several times during the period when the two
wells have the same depths, the hopping can be treated adiabatically [20, 28] yielding, for
m = 1,

A1 = αk R0/[c(1 − c)e2ω0] and E (1)
a = E0 − J + Ed, (4)

where ω0 is the optical phonon frequency and J is the electron transfer integral. Otherwise,
the non-adiabatic hopping regime with m = 3/2,

A3/2 = α′h̄k R0

c(1 − c)e2 J 2

(
4E0k

π

)1/2

and E (3/2)
a = E0 + Ed (5)
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would set in. The parameters α and α′ in equations (4) and (5), respectively, do not depend on
T but may be sensitive to microscopic lattice disorder [20] and to macroscopic inhomogeneity
of the material as well [30]. The condition of non-adiabatic hopping can be written in the
form [20, 28, 29]

J 2[π/(4E0kT )]1/2 � h̄ω0. (6)

Generally, the activation energy of small polaron hopping depends on T via the energy E0 [28].
If

2γ csch[h̄ω0/(2kT )] � 1, (7)

where γ is the (dimensionless) electron–phonon coupling constant, the temperature
dependence of E0 obeys the law [28]

E0 = 2γ kT tanh[h̄ω0/(4kT )]. (8)

Hence, at temperatures T > TD/4 (where TD = h̄ω0/k is the Debye temperature), E0 is
independent of T , so that the activation energies in the two small polaron NNH regimes
defined by m = 1 or 3/2 are constants differing by the value of J .

In disordered materials the probability of finding an empty nearest site with a proper
energy level decreases with lowering temperature. Therefore, the conductivity is determined
by competition of hoppings between the nearest sites with larger energy difference and between
the sites beyond the nearest neighbours with smaller energy difference. In these conditions
the hopping is possible inside an optimum energy strip (εmax −µ, εmax +µ), depending on T ,
which leads to a deviation from the NNH conductivity law [20]. For εmax > �, the Mott VRH
mechanism will set in [16, 20]; otherwise the conductivity is governed by the Shklovskii–Efros
(SE) VRH mechanism [16] (this case is shown in figure 3(b)). In both cases the resistivity can
be expressed in a general form,

ρ(T ) = ρ0(T ) exp[(T0/T )p], (9)

where the prefactor ρ0(T ) and the characteristic temperature T0 depend on the VRH
mechanism. If a condition � ≡ [kT (T0/T )pa/(2h̄s)]2 � 1 is satisfied, the prefactor is
given by the equation

ρ0(T ) = AT m (10)

where

A = Ca11T (7+q)p
0 , (11)

s is the sound velocity and C is a constant [15]. For the SE-VRH mechanism we have m = 9/2
and for the Mott VRH conductivity m = 25/4, if the wavefunctionψ of the localized carriers
has the conventional hydrogen-like form ψ1(r) ∼ exp(−r/a) corresponding to q = 0 in
equation (11). Another form of ψ , ψ2(r) ∼ r−1 exp(−r/a), may set in when the fluctuating
short range potential connected to the lattice disorder is important to localization [16]. In this
case q = 4 in equation (11) and m = 5/2 for the SE-VRH mechanism and m = 21/4 for the
Mott VRH conductivity in equation (10). The VRH conductivity governed by the Mott [20]
and the SE [16] mechanisms is characterized by p = 1/4, T0 = T0M or p = 1/2, T0 = T0SE,
respectively, where

T0M = βM/[kg0a3] and T0SE = βSEe2/(κka). (12)

Here βM = 21, βSE = 2.8 and κ is the dielectric permittivity [16]. The presence of the rigid
gap δ < �modifies the SE-VRH mechanism by changing the characteristic temperature from
T0SE to T0 [15] given by the equation

T0 =
(

δ

2k
√

T
+

√
δ2

4k2T
+ T0SE

)2

. (13)
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A VRH characteristic temperature may depend on T , too [15, 19]. For further
consideration it is important to specify the conditions when T0 attains a constant value. As
can be seen from equations (12), T0SE and T0M are independent of T for constant a or g0a3,
respectively. From equation (13) it follows that T0 does not depend on T if, additionally, one
of the following conditions is satisfied: (i) δ = 0, (ii) δ/(2kT ) � (T0SE/T )1/2 and δ ∼ T and
(iii) δ ∼ T 1/2. For (ii) we have T0 = T0SE because (T0/T )1/2 ≈ (T0SE/T )1/2 + δ/(2kT ), and
if δ ∼ T , the second term is constant and can be included in the prefactor, while for (iii) one
gets T0 �= T0SE.

Equation (2) for the NNH conductivity can be reduced to the form of equation (9) by
putting Am T m ≡ ρ0(T ), E (m)

a ≡ kT0 and p = 1. Therefore, the analysis of the local activation
energy Eloc(T ) = d ln ρ(T )/d(kT )−1 [16] may be useful for identification of the hopping
regime with constant T0, as well as the temperature interval where it persists. As follows from
equation (9), if T0 is independent of T , Eloc(T ) can be expressed in the form

ln[Eloc/(kT ) + m] = ln p + p ln T0 + p ln(1/T ). (14)

Within the temperature interval corresponding to a certain hopping regime, the left-hand side
of equation (14) represents a linear function of ln(1/T ) for a single value of m. Then p can
be found from the slope of this plot.

4. Analysis of the experimental results and discussion

4.1. NNH conductivity

As can be seen from the top panel of figure 4, at T > Tn (the values of Tn are collected in
table 1) the left-hand side of equation (14) can be fitted with a linear function of ln(1/T ) with
m = 1 and 3/2, yielding values of p = 1 with the same fitting quality for the two values of m, as
expected in the small polaron NNH regime. This confirms the NNH conductivity mechanism
in LBMO above a temperature limit Tn , however, without the possibility of distinguishing
between the adiabatic and non-adiabatic hopping processes. The same fitting quality in any
significant temperature interval is a characteristic of the plots of ln(ρ/T m) versus 1/T for
both m = 1 and 3/2, shown in figure 5. Such behaviour may be connected to a crossover
of the adiabatic and non-adiabatic NNH regimes around Tcr, where Tcr > Tn and satisfies the
equation

A1/A3/2 ≈ T 1/2
cr exp[J/(kTcr)], (15)

obtained with equations (2), (4) and (5). To verify this conjecture, we fit the plots in figure 5
within the same temperature intervals, yielding the values of Am , E (m)

a (m = 1, 3/2) and
J = E (3/2)

a − E (1)
a collected in table 1. However, it can be seen from table 1 that the values

of Tcr, evaluated with equation (15), are definitely lower than Tn. On the other hand, because
J � E (m)

a , Ed is expected to be much smaller than E (m)
a , too, and assuming that α ∼ α′,

we can estimate ω0 with the expression ω0 ∼ (A3/2/A1)[π/(4E (m)
a k)]1/2 J 2/h̄, following

from equations (4) and (5). We obtain ω0 ∼ 3 × 1012 Hz, which is much smaller than
ω0 ≈ kTD/h̄ ≈ 5 × 1013 Hz for TD ≈ 400 K found from the low temperature specific heat
of La0.67Ba0.33MnO3 [31]. In addition, above Tn the right-hand side of the inequality (6),
h̄ω0 ≈ kTD ≈ 30 meV considerably exceeds the left-hand side ∼J 2[π/(4E (m)

a kT )]1/2 <

4 meV. These relations suggest that the NNH conductivity regime in LBMO is non-adiabatic,
assuming that at T > Tn the spin dependent effects are small.
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4.2. VRH conductivity

The plots in figure 5 deviate from linearity below Tn , which is well above TC (table 1).
Because TC > TD/4, this deviation cannot be connected to the temperature dependence of
the NNH activation energy due to equation (8), but should be ascribed to a transition to the
VRH conductivity. The analysis of the local activation energy with equation (14) reveals
two intervals of linearity of the plots ln(Eloc/kT + m) versus ln(1/T ), above and below TC,
yielding m = 9/2 and p = 1/2 on each interval, with no evidence for any other possible
pairs of m and p in the VRH conductivity regime (figure 4, bottom panel). Such behaviour
of the resistivity corresponds to the SE-like VRH conductivity mechanism, with at least one
type of gap, �, of g(ε) (section 3). The plots of ln(ρ/T 9/2) versus T −1/2 in figure 6 support
this conclusion, containing the intervals of the linear behaviour both above TC (marked by
the open triangles in the upper panel) and below it. From the linear parts of the plots in
figures 4 and 6 we obtain the values of the VRH onset temperature, Tv, and those of A and T0

in equations (9) and (10) for T > TC (denoted as Aht and T0ht) and T < TC (denoted as Alt

and T0lt), as collected in table 2. The width of the Coulomb gap, shown in table 2, is evaluated
using the expression � ≈ k(TvT0ht)

1/2 [15]. With the equation � ≈ U , where U ≈ e2/(κR)
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Table 2. The values of the high temperature, Aht , and the low temperature, Alt , prefactor
coefficients of the VRH conductivity, the high temperature,T0ht , and the low temperature, T0lt ,
characteristic temperatures of the VRH conductivity, and the width of the Coulomb gap, �.

Sample Aht Alt T0ht T0lt �

Nos (10−20 � cm K−9/2) (10−20 � cm K−9/2) (104 K) (104 K) (eV)

2 2.81 12.5 10.3 8.6 0.44
4 1.73 7.14 10.4 8.8 0.46
8 3.48 2.94 9.5 7.1 0.44

10 3.35 4.48 9.5 6.9 0.44

is the Coulomb interaction energy, R = 2(4πN0c/3)−1/3 is the mean distance between the
holes, N0 = 1.3 × 1022 cm−3 is the concentration of the Mn ions and c ≈ 0.16–0.17 is the
relative concentration of the holes in the samples (a slow variation of c is connected to a strong
influence of the cation vacancies to the hole doping of LBMO between x = 0.02 and 0.10 [9]),
we obtain κ ≈ 3.2 for No 4 and κ ≈ 3.4 for No 2, No 8 and No 10.

The existence of temperature intervals where T0 is constant, as evident from figures 4
and 6, suggests that one of the cases, mentioned in the comments on equation (13) of section 3,
takes place. To find which case is realized, we analyse the temperature dependence of the
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resistivity in the magnetic field. The localization radius of small polarons in the PM phase was
predicted to vary in the field according to the law [32]

a(B) = a(0)(1 + b1 B2), (16)

where b1 ∼ χ(T ). If b1 B2 � 1, it follows from equations (12), (13) and (16) that

T0(B) = T0(0)(1 − b2 B2), (17)

where b2 = b1T0SE(0){T0(0)− [T0(0)/T ]1/2δ/(2k)}−1 until δ is independent of B . This gives

δ(T ) = 2
b1/b2 − 1

2b1/b2 − 1
k
√

T0(0)T . (18)

Near Tv well above TC, the temperature dependence of χ can be neglected (figure 1, inset).
Therefore, at temperatures in the vicinity to Tv the dependences of T0 and A on B can be
found from linear fits of the plots of ln(ρ/T 9/2) versus T −1/2 in the field. The dependence of
a(B)/a(0) can be evaluated with equation (11). From the linear fits of the plots of a(B)/a(0)
versus B2 and T0(B)/T0(0) shown in figure 7 we obtain b1 = (1.6 ± 0.2) × 10−3 T−2,
b2 ≈ (1.3 ± 0.2)× 10−3 T−2 and b1 = (6.0 ± 0.3)× 10−3 T−2, b2 = (4.5 ± 0.2)× 10−3 T−2

for No 4 and No 10, respectively. The difference between b1 and b2 exceeds the error, which
means due to equation (18) the existence of a non-zero rigid gap, depending on T close to the
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function δ(T ) ≈ δv(T/Tv)
1/2, where δv ≡ δ(Tv) ≈ 0.14 eV and 0.18 eV for No 4 and No 10,

respectively, are evaluated with equation (18) at T = Tv and T0(0) = T0ht (table 2). Using
the values of δv, T0ht (table 2) and κ found above, we get with equations (12) and (13) in the
temperature interval corresponding to T0 = T0ht and δ(T ) ≈ δv(T/Tv)

1/2 the localization radii
aht ≈ 2.0 Å for No 4 and aht ≈ 2.4 Å for No 10.

To find the behaviour of a, T0 and δ in an extended temperature interval, we present
equation (9) with equations (10) and (11) in the form

ln

[
ρ(T )

ρ(Tv)

(
Tv

T

)9/2
]

= 11 ln

(
a

aht

)
+

7

2
ln

(
T0

T0ht

)
+

(
T0

T

)1/2

−
(

T0ht

Tv

)1/2

, (19)

containing two parameters, T0/T0ht and a/aht, the relation of which can be obtained by
excluding B from the magnetic field dependences of T0(B)/T0(0) and a(B)/a(0) in figure 7.
As is evident from the inset to figure 7, this relation is close to linear. Hence, equation (19) can
be solved numerically with respect to a/aht by excluding T0/T0ht with a linear function obtained
by fitting the plots of T0(B)/T0(0)versus a(B)/a(0) in the inset to figure 7. As can be seen from
the upper panel of figure 8, the functions a(T )/aht and T0(T )/T0ht obtained as described above
exhibit intervals of constancy above and below TC, over the same intervals of the constant slopes
in figure 4 (lower panel) and figure 6, separated by the intervals of steep variation around TC.
The ratio of the values of T0 on the intervals of constancy coincides with T0ht/T0lt. In addition,
a(T )/aht increases and T0(T )/T0ht decreases with decreasing temperature below Tq ∼ 100 K.
Finally, the dependence of δ(T ) is evaluated with equation (13) and shown in figure 9 for No
4 and in figure 10 for No 10. It can be seen that δ(T ) ≈ δv(T/Tv)

1/2 and δ(T ) ≈ δ′
v(T/Tv)

1/2,
where δ′

v ≈ 0.132 eV for No 4 and 0.155 eV for No 10 (dotted lines in figures 9 and 10) in the
intervals of constancy of a(T ), T0(T ) below and above TC, respectively. Additionally, δ(T )
exhibits an inflection around TC and deviates from the square-root dependence at T < Tq .

As mentioned in the introduction, the rigid gap originates in the manganite perovskites
from the small polaron nature of the charge carriers. Well below TC, due to a strong FM
interaction between the Mn ions, the contribution to Ep from polarization of the Mn ion
spins may be expected to be small, and Ep ≈ EpL. Hence, taking into account the relation
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E0 ≈ EpL/2 [20, 28] and equation (1), we obtain

δ(T ) ≈ E0(T )− Ed/2, (20)

up to T ∼ Tq . To use equation (8), we must specify its lower limit of applicability given by the
condition in equation (7). Below Tq it can be rewritten as T > Tt , where Tt ≈ TD/[2 ln(4γ )].
The electron–phonon interaction is strong enough in weakly doped manganite perovskites to
cause the persistence of the electron localization and the activation behaviour of the resistivity
down to T � TC. Then, putting e.g. γ ∼ 10, with TD ≈ 400 K [31], we obtain Tt ∼ 50 K.
The interval of applicability of the expression

δ(T ) ≈ 2γ kT tanh[h̄ω0/(4kT )] − Ed/2, (21)

following from equation (8) and the equation for δ(T ) above, can be found more accurately,
along with an estimate of γ , by using the linear approximation tanh[h̄ω0/(4kT )] ≈
tanh[TD/(4T )] = α0 − α1T with α0 = 1.179 and α1 = 4.150 × 10−4 K−1, valid between
T = 50 and 100 K. Then, neglecting a weak temperature dependence of Ed (which could
stem only from the spin disorder, exhibiting no strong dependence on T well above TC),
and differentiating equation (20) over T , we have δ′(T ) ≈ 2α0γ k − 4α1γ kT , where
δ′(T ) ≡ dδ(T )/dT . The linear approximation of the functions δ′(T ) in the insets to figures 9
and 10 yields Tt ≈ 55 K for No 10, Tt < 68 K for No 4 and γ ∼ 7–9 for both samples. The fit
of δ(T )with equation (20) (the dashed line in figures 9 and 10) within the interval of linearity of
δ′(T ) by the variation of γ between 7 and 9 and ω0 around kTD/h̄ = 5.2 ×1013 Hz gives more
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accurate values of γ ≈ 8.5 and ω0 ≈ 4.5×1013 Hz for No 4, γ ≈ 7.1 and ω0 ≈ 6.1×1013 Hz
for No 10, and Ed ≈ 0.043 eV and 0.015 eV for No 4 and No 10, respectively.

To analyse the temperature dependence of the localization radius below Tq , with
equation (3) at rp = a and equation (20), we obtain

1

a(T )
= 1

R0
+

4κp

e2

[
δ(T ) +

Ed

2

]
, (22)

suggesting a linear dependence of a−1 on δ between Tq and Tt . As can be seen from the bottom
panel of figure 8, the plot of aht/a versus δ for No 10 contains a linear part, corresponding
approximately to the interval (Tt , Tq), whereas for No 4 the deviation from linearity takes place
at T > Tt . This is connected with a limited applicability of the linear dependence of T0/T0ht

on a/aht, used above, which breaks for No 10 below Tt and for No 4 already above Tt . From
the linear part of the plots in the bottom panel of figure 8, with R0 = 2(4πN0/3)−1/3 ≈ 5.3 Å,
we obtain κp ≈ 5.3 and Ed ≈ 0.050 eV for No 4, and κp ≈ 3.3 and Ed ≈ 0.017 eV for No 10.

4.3. Discussion

The values of the localization radius, obtained above for the samples No 4 and No 10, are
smaller than the mean distance between the Mn sites, R0 ≈ 5.3 Å, satisfying the requirement
for small polaron formation [20]. It can be shown also that the condition of � � 1 is satisfied
over the whole temperature interval investigated. The values of κp are comparable with those
evaluated with the values of κ0 and κ∞ given in the limits of κ0 = 16–21 and κ∞ = 3.4–3.9 [33],
yielding κp ≈ 4.1–5.2. Values of κ ≈ 3.4 and 3.5, close to those in LBMO (this work), have
been found earlier for La0.7Ca0.3Mn1−yFeyO3 [15] and for LaMnO3+η [19]. They are much
smaller than κ0, whereas for the doped semiconductors κ = κ0 [18]. On the other hand, the
values of κ are much closer to κp, than to κ0. As mentioned in the introduction, in the manganite
perovskites the concentration of the charge carriers (equal to the concentration of holes) is much
higher than in doped semiconductors. In addition, the carriers in the manganite perovskites are
small polarons, whereas in conventional (non-magnetic) semiconductors the polaron effects
are negligible [16]. High concentration of the polarons leads to an average mutual distance
comparable with the lattice parameters. On the other hand, the main contribution to � is
connected to the interaction between the nearest carriers. However, the field around the polaron
is characterized not by κ0, but by κp [20]. Therefore, the electrostatic interaction between the
polarons at the distance R deviates from the conventional Coulomb law and is described by
the expression U ≈ e2/(κp R). However, in the case of small polarons the situation is even
more complicated, because then the dielectric permittivity generally depends not only on the
frequency but also on the wavevector [28], which does not permit macroscopic averaging even
at a low polaron concentration [28]. Therefore, utilization of macroscopic parameters such as
κ0 and κ∞ has only a limited applicability, leading in particular to different values of κp for the
samples No 4 and No 10.

The large value of the coupling constant γ indicates a strong electron–phonon interaction,
supporting the leading role of local Jahn–Teller distortions [10] in the localization of the charge
carriers and formation of the small polaron state. The values of γ = 7.1–8.5 found for LBMO
in this work are comparable with those, up to γ ≈ 9.3, for LaMnO3+η [34]. The values of Ed,
obtained from analysis of a, are close to those determined from the temperature dependence
of δ(T ), in the same intervals of low T between Tt and Tq . It can be seen also that the value
of Ed for No 4 exceeds that for No 10. This correlates well with the enhanced lattice disorder
in No 4, as may be concluded from the dependence of TC on x , and the role of the cation
vacancies in the hole doping [9]. On the high temperature part of the temperature interval
investigated, Ed is close to (2/3) (E (3/2)

a − δv) ≈ 0.045 eV for No 4 and 0.013 eV for No 10,



Mechanisms of hopping conductivity in weakly doped LBMO 3443

which suggests that the spin dependent contributions to Ep and Ed are small in the limits of
high and low temperatures. At high temperatures, corresponding to the NNH conductivity,
the spin polarization of the Mn ions is suppressed by rapid spin relaxation processes, whereas
at temperatures well below TC it is hindered by the strong FM DE interaction. The phase
separation effect responsible for the spin disorder in the manganite perovskites is also most
pronounced as T → TC [9, 35]. This explains the similarity of Ed in the limits of high and low
temperatures due to the smallness of spin dependent contributions to Ep and Ed. However,
this may not be so around TC, which may lead to inflection of δ(T ). On the other hand, the
inflection and the rapid variation of δ(T ) near TC cannot be explained just by the spin effects,
leading to a too large contribution of the spin polarization on the NNH conductivity interval,
EpS ≈ 2δv − γ h̄ω0 + Ed ≈ 0.08 eV and 0.09 eV, comparable with the high temperature lattice
contribution EpL ≈ γ h̄ω0 ≈ 0.25 eV and 0.28 eV for No 4 and No 10, respectively. Therefore,
the lattice contribution to Ep should also have a rapid variation near TC, which can explain the
steep increase of a around TC with lowering T (top panel of figure 8). In turn, the square-root
dependence of δ(T) is evidently not connected to the lattice polarization and disorder,deviating
from the dependence given by equation (21), and is attributable to the spin effects. It persists
down to Tq , excluding an interval around TC, and may be due to both the spin polarization and
the spin disorder, which cannot be distinguished in our study, or some interplay between them.
It is possible to suppose that the spin dependent effects may be sensitive to the mean hopping
length, Rh ∼ T −1/2 on the SE-like VRH interval, and Rh ≈ R0 on the NNH interval [16].
Indeed, if the hopping electron were responsible also for the spin correlations between the
Mn ions, the correlation radius would be determined by the mean hopping length. On the
other hand, since Rh increases with lowering T , the hopping electron becomes more sensitive
to spin disorder due to the phase separation, having a nanometre scale [7, 8]. Therefore, the
square-root dependence of δ may be connected to a transition to the VRH regime and vanishes
in the NNH conductivity interval, providing a constant NNH activation energy.

5. Conclusions

We have investigated the resistivity of ceramic low doped La1−x Bax MnO3 with x � 0.1
within the broad temperature interval between T = 25 and 450 K, both above and below the
PM–FM transition temperature. At high temperatures ρ is determined by the small polaron
NNH conductivity mechanism, satisfying the conditions of non-adiabatic hopping. With
lowering temperature the SE-like VRH conductivity sets in, corresponding to the Coulomb gap
superimposed by the rigid gap in the one-electron density of the localized states. The width
of the rigid gap depends on T similarly to the square-root law, deviating from this behaviour
in the vicinity to TC and with lowering temperature well below TC. At low temperatures,
δ(T ) is determined by formation of small lattice polarons under the conditions of strong
electron–phonon interaction and lattice disorder. The localization radius exhibits two intervals
of constancy, the same as those of the dependence of δ(T ) ∼ T −1/2, characterized by different
values of a, and an interval of steep variation with T around TC. With lowering temperature
a(T ) increases in a way characteristic of small polarons. Also the values of a satisfy the
condition for small polaron formation.

Generally, the one-electron model gives a satisfactory description of the hopping
mechanisms and their variation in the different temperature intervals with reasonable numerical
values of a and δ < �. However, the model provides only an approximative description of
the electrostatic interaction of the polarons, which is renormalized strongly by multi-electron
effects (κ0 is changed to κp in the interaction energy law) and has, additionally, a limited
applicability with respect to the macroscopic dielectric permittivity parameters (κ0 and κ∞).
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