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Abstract. The parametric X-radiation of relativistic electron crossing a single crystal 
plate is considered on the basis of dynamic diffraction theory in Laue geometry both in Bragg 
(PXR) and forward (FPXR) directions. Analytical expressions for spectral-angular density of 
these radiations in indicated directions are derived in general case of electron coulomb field 
asymmetric reflection from the target surface. The ratio of contributions of these radiation 
mechanisms into the total yield of the radiation is investigated. It is shown that the ratio of 
contributions of these radiation mechanisms can change sharply depending on the value of the 
reflection asymmetry.

1. Introduction
When a fast charged particle crosses a single crystal, its coulomb field scatters on the system of 
parallel atomic planes generating parametric X-radiation (PXR) [1-3]. The theory o f PXR of 
relativistic particle in a crystal forecasts the radiation not only in Bragg scattering direction, but also in 
the direction of radiating particle velocity (FPXR) [4-6], which represents an appearance o f dynamical 
diffraction in PXR. It is known that some attempts o f the FPXR experimental research were made [7 - 
11], but the first report about its experimental discovery has appeared recently in ref. [10], where the 
method o f TR background suppression was used in vicinity o f Bragg frequency based on destructive 
interference o f TR generated on the entrance and on the escape surfaces of the crystal plate (as target) 
accordingly. But a spectrally narrow peak arisen near Bragg frequency due to dynamical diffraction
[12], which could take place in the FPXR experiment was not analyzed in the work [10]. In the 
experiment [11] the relativistic electron X-radiation was registered from a thick single non-absorptive 
crystal target in the condition o f FPXR generation, nevertheless the sought-for peak became weakly 
apparent on the background of the radiation generated by scattered electrons in the structural material 
o f the experimental setup. Thus the theoretical investigations of FPXR properties and the optimization 
o f viewing conditions for experimental observation o f this dynamical effect remain topical up to date.

The detailed theoretical description of dynamical effect o f FPXR and its accompanying transition 
radiation (TR), as a background, was done for the case o f symmetrical reflection in the works [13-15]. 
Under condition o f asymmetrical reflection o f the relativistic electron coulomb field the PXR and TR 
were theoretically investigated in ref.-s [16-18] and FPXR in Bragg geometry in ref. [19]. The above- 
mentioned works showed that the spectral-angular density o f these radiation mechanisms depends 
essentially on the reflection asymmetry and revealed the effects associated with it.
In the present work the analytical expressions for spectral-angular density o f FPXR is derived in the 
framework o f two-wave approximation of dynamic diffraction theory [20] in general case of 
asymmetrical field reflection. An expression for spectra-angular density o f PXR was derived recently
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in the work [17] describing the dependence o f the radiation parameters on reflection asymmetry. In the 
present work on the basis o f the expressions obtained the ratio o f FPXR and PXR yield was 
investigated depending on the angle between the reflecting atomic planes and crystal plate surface, i.e. 
on the reflection asymmetry.

2. FPXR amplitude
Let us consider the radiation o f a fast charged particle crossing a single crystal plate with a constant 
velocity V (look in figure l.).We will use the same table o f symbols as in the work [17].

Figure 1. Radiation process geometry. O' is the 
angle o f radiation of a photon, 0B is Bragg angle 
(angle between velocity V of the electron and 
diffracting atomic planes), 8  is the angle between 
the plate surface and diffracting atomic planes of 
the crystal, k and k g = k + g are wave vectors

o f incident and diffracted photons.

While solving the problem, let us consider an equation for a Fourier image o f an electromagnetic field

E(k, co) = j’ dt  d^r  E (r, t ) exp(icot -  /k r) (1)

Since the field o f a relativistic particle could, to a good accuracy, be taken as being transverse, the 
incident E0 (k, co) and diffracted Eg (k, co) electromagnetic waves are determined by two amplitudes

with different values o f transverse polarization
E0 (k, ©) = E™ (k, cd) ^  + E  <2) (k, ̂ )e[,2),

E g (k, a>) = E™ (k, + E <2) (k, o)e<2).

The unit vectors of polarization e[jL), e:'2' . e ,1* and ei2) are chosen in the following way. Vectors 

eo* and e:'2' are perpendicular to vector k , and vectors ef* and ej2)are perpendicular to 

vector k = k + g  .Vectors e„2), e ,2■" are situated on the plane o f vectors k h k , ( ;r-polarization) and

eo*, e ,1* are perpendicular to this plane ( a  -polarization); g  is vector of the reciprocal lattice, defining 
a set o f reflecting atomic planes. The system o f equation for the Fourier transform images of 
electromagnetic field in two-wave approximation o f dynamic theory o f diffraction has the following 
view [21]:

(co2( 1 + x 0) - k 2) E (0s) +ffl22 _gC(s’r)£ f  =87T2ieco0PT(s)S(cD-k V ),  

co2Z g C ^ E ^  +(co2(\ + Z o ) - k 2g ) E ^  =0, (3)

where Xo =  X'o + i/to ' s the average dielectric susceptibility, , /  R are the coefficients of the 

Fourier expansion o f the dielectric susceptibility o f a crystal over the reciprocal lattice vectors g .

The values C (s) and P (s) are defined in the system (3) as

C w = e ^ e ^ ,  C(1) = 1 , C (2) = cos26»B, P w =e£’)0 i / / / ) ,  P (1) =sin<p, P (2) = c o s<p. (4)



H = k - « V / F 2 is the virtual photon momentum vector component perpendicular to particle velocity 

vector V  ( ju = a > e /V , where 0 « 1 is the angle between vectors к  and V  ). в в  is the angle 

between electron velocity and a set o f atomic planes in the crystal (Bragg angle), ф is the azimuth 

angle, counted off from the plane formed by vectors V  and g , the value o f the reciprocal lattice 

vector is shown by expression g  = 2(OgSm0g / V , coB is Bragg’s frequency. The angle between 
c o \

vector
V

g and diffracted wave vector k  is defined as 6 . The equation system (3) under 5 =  1

describes the fields o f O - polarization, and under 5 = 2 the fields of n  -polarization.
Let us solve the dispersion equation for x-waves in crystal following from the system (3) :

(q 2(1 + Xo) - ^ 2 )(®2(1 + Xo) - ^ ) - ® 4X - ^ C (‘s)2 = 0 ,  (5)

using standard methods o f dynamic theory [20].
Let us search for the wave vectors projection k  and k g to the axis X, aligned with the vector n 

(see figure 1.) as:

k x = cocos y/0 + ■ Лп к  = со cos if/
A,

(6)
2 cos i//0 cos i//0 2 cosi^g cosing

For this purpose we will use the well-known relation, connecting dynamic addition agents /.0 and 

Xg for X-waves [20] :

cop
A, =■ h .

Го
(7)

where ß  = a  -  %0
(  у Л 
1 - ^  

7o
a  = —j ( k g - k 2) ,  y0 = c o s y/0 , yg = cosi//g , \)/ois the angle between

CD

incident wave vector k  and vector normal to the plate surface n . )//g is the angle between wave vector 

k g and the vector n (see figure 1). The modules o f vectors k  and k g are:

k  = coyjl + z 0 + ^ 0, k g = 0)^1 + z 0 + Ag . (8)

Assumed that k = co sin i//0 and k  , = co sin ///„, we will obtain

№ =<d1<l  
4 Гг

- ß ± ^ J ß 2 + 4 z gZ - gC (s) ^

g\ ^  g -

 '\

/
(9)

ß ± J ß 2 + 4 z gZ-gC<s)2̂ L ( 10)

As | ^ |  «  co and Ugl « c o , we can show that 0  » O '  (see in figure 1), and hereinafter will use 0

in the all occasions.



The solution o f the combined equations (3) gives us the relativistic particle field in the vacuum in 
front o f the crystal as

8 7r2ieV0P(s) 1
Eo

(s )v a c l    1
e IE - — ,--------------1------------------------- i 4 w ; ) .  d o
® (To / r g ) (-  Xo ~ 2 \ r 0 / + PYo / r g )

the same field inside the crystal as

, (,)er 8n 2ieV6P{s) -co p - 2 c o ^ y J y a _

^ j Y o A K - W i K - W )  ° ° (12)

+ E f n S(A0 -  ) + E ^ <2> S(A0 -  A02))
and the field in the vacuum behind the crystal as

E (s)vacII J n 2ieV6Pw  1 5 ( K _ ^ ) + E u )Rad5^  +a)Zo/2), (13)
® - X o - Z ^ o / o  

where A’(<lv)/'‘yt/ is the coherent radiation amplitude in the electron velocity direction.

The following expression bounding the diffracted and incident fields inside o f the crystal results 
from second equation o f system (3):

E ^)cr = (2coAg lcD2x gC {s))E^ cr. (14)

For definition of amplitude EQŜRad we will use the ordinary boundary conditions on the inlet and 

outlet surfaces of the crystal plate:
J  E ^ ad dA0 = J  E ^ crdA0 , J  = 0 ,

\ E ^  exP(/(A0 l Y o W K  = \E o )VaCl1 exp(/(A0 I Y o W K  ■ (15)

Hence we will obtain the expression for the field of the radiation:

%7r 2ieV 8P< ;) exp / 2 + X  ) l  / y g ]
Eo

(.s)R ad  _

® 2^ J r o \ ^ o  ~ W )

(-a}2p - 2 a } ^ )y g / y o j ^ - a x 0 ~ 2K )  1 + (2( 4  - 4 2))) ^ ( e x p ^ ( 4 2) - ^ o ) / / o ) - 1 ) ‘

\ - co2P -  2e o$)y g / Yo)[(- ®Xo ~ 2 4 ) 1 + (2( 4  ~ 4 1})) 1 Jexp^ZC/l® -  X0) /  y 0 ) - 1) (16)

The terms in square brackets in (16) correspond to two branches o f solution for X-ray waves 
excited in the crystal.

To make the FPXR reflex appear, at least one of the following inequalities must be hold:

R e ( ^ - 4 1}) = 0 5 R e ( 4 - 4 2 ,) = 0 .  (17)
i.e., in (16) the real part o f denominator o f at least one o f the terms in square bracket must be 
vanishing. For the further analyses we will represent the dynamic addition (9) in the following view:

4 U) = ( ® № w /2  s i - z (s) + i p (s)a - s ) / 2 ±

± ^ (s)2 + e -  2 i p (s) ((1 -  s ) g (s)/ 2  + K(s)s ) - p (s)2 ((1 -  s f  /4  + jcw2e ) j , (18)

where



P (s) = X l  I \ x'g \ C (s\  e = cosi//g /cosi//0, k {s) = X g C {s) I x l , ^  =  r]{s\ co )  + (1 + s ) / 2 v {s\

?){s\ c o ) =  ( 2 sin 2 0B /  | x'g I C (5)) ( r ^ ( l  + 0coscpco t0B )/co - l ) .

The asymmetry parameter s  can be represented as s  = sin(c) + 6 B ) / sin(c) —6B ) ,  where 0B is 
the angle between electron velocity and diffracting atomic plane. Hence we can see that parameter 
e  increases when the angle of electron incidence 8  - 6 B decreases and vice versa (see figure 2).

Since in the region o f X-ray frequencies the inequality 2 sin2 0B / V 2 \ %' \ C (s) » 1  is satisfied, 

then i f s) (co) is a fast function o f the frequency co , so for further analysis o f the properties of the PXR 

spectra it is convenient to treat ?/w  (co) as a spectral variable characterizing the frequency co .

Figure 2. Circuitry of 
asymmetric { s  > 1, s  < 1 ) 
reflection of the radiation from 
single crystal plate. The case of 
s  = 1 correspond with symmetric 
reflection

Using (18) let us represent the expression for field amplitude of radiation along the electron 
velocity vector as two summands:

 ..........................  (19a)j j{ s )R a d  _  t j{s ) , t? ( s ) 
^ 0  —  FPXR “ r  TR  ?

E U) -FPXR —
An ieV 6P U) 1

CO y  2 + 6 2 - X q ^ M 2

r i - e x p f - / ô w 2 (2)- ô w p WA(2)l l - e x p I - ^ Z ^ - ^ V ^ 1̂
PYT1  ̂ -1- \  / 9 l/ 1

[  2 (2)- / > w  A(2) A(1) ,
t  C/ j  I  Z*y  q  1

E U) -TR —
4n  2ieV6P{s) 1 1 A

co r  + o l y - > + e 2 - x 0 .

l - # w l ^ sŸ + ^ ( l - e x p [ - / ô w S (2) - ô w p WA(2)])+

+ ^1 + ÇU ) + e j ( l  - exp[- ibU)T}l) - b U)p U)A( 1 ) exp\icoL(y~2 + 6 2) / 2y0} 

where

A(1’2) = (e + 1)/ 2e T (1 -  e)ÇU) / 2 e ^ (s)2 + e  + k U) / ^ w 2 + e  ,

S (1)=<t w  + ( s )  A s U V + s  I I s ,  S (2) =crU) + ^ s) + + s  \ !s  .

C7U) = (e2 + r -2 - x ' 0)/\x'g\ c U) ={e2 /\xô\ + r - 2 /\xo\ + i ) / v U)y s) = \ x ' J f w  M

b (s) =co\x'g\C(s)L / 2 r 0.

Parameter b (s)can be presented in view

(19b)

(19c)

(20)



b (s)= L I 2 ^ m { 5 - 6 B) L ^  .

Hence it follows that parameter / /  ' " is equal to half o f the relativistic electron path length in the 
plate expressed in extinction lengths.

The expression (19b) represents the field amplitude for FPXR, and (19c) represents the TR 
generated on inlet and outlet surfaces of the plate. The FPXR yield is formed basically at the expense 
o f one o f the branches in the solution for X-ray waves generated in the crystal that corresponds to the 
second summand in (19b) because only there the real part o f the denominator must be vanishing:

+ (Sy + s  \ ! s  = 0. (21)

The equation (21) solution defines a frequency in whose vicinity the spectrum of FPXR
photons radiated at a fixed observation angle is concentrated.
We will consider the case o f a thin target {b{s) p {s) < < l) when the absorption coefficient p is) can be 
neglected. For the graphic extraction o f dynamical effects in coherent radiation processes we will use a 
crystal plate o f such a thickness L  that the electron path in the plate L  /  sin(c) -  6, , ) will much exceed

the extinction length L{̂ t = 1 / co |/g  |( ,<v) o f x-ray waves in the crystal, i.e. b (s) » 1.

3. Spectral-angular density of FPXR
Substituting (19b) into the well known [21] expression for spectral-angular X-radiation density

co-
d 2N

dcodQ
= co2( 2 x y 6Y j \E<(s)R ad\

0 (22)

we will obtain for thin crystal the expressions, accordingly describing the contributions o f FPXR:

 R (s)co
d 2N (s)u  FPXR

dcodQ, 4 n ( r + r - Z o )
, . 2  FPXR ’

R M   Z_
FPXR ~  . , 2

(  AW
-sin -M

W f
S  \ !  8

yj
r « S  \ !  8

(23a)

, (23b)

The expressions obtained (23) are the main result o f the present work, as they let us investigate all 
the spectral-angular characteristics o f FPXR.

4. Spectral-angular density of the radiation in Bragg direction

The expression describing the contributions o f FPXR was obtained in the work [17]:

d 2N
co- PXR

dcodQ. 4 n 7
-P UY 6 2

-R
(02 + r - 2 - X o ) 2 P X R ’

(24a)

»W - 4n PXR — ^
-O)

1-
f f (s)2 +  S

sin crw +| :(>) V#(*)2 +e j / e j  ^ a (s) + ^ (s) ~ ^ (s)2 +£ j / e j  .(24b)

5. Ratio of the PXR and FPXR yields
The PXR and FPXR spectra described accordingly by R pxr and depend on parameter £ ,

therefore the effect o f asymmetry on the ratio of these radiation yields derived from (23b) and (24b) is 
o f interest:



R ^  /R % sr = (25)

When the asymmetry parameter £ decreases, i.e. the angle S  - 6 B o f the relativistic electron 
incident on the crystal target surface increases (see in figure 2), the PXR in forward direction (FPXR) 
intensity increases and can considerably exceed the PXR in Bragg direction.

R U) «  RU) (26)PXR FPXR '

Let us consider how the intensity o f each o f the radiations changes separately. The curves 
calculated by formulas (23b) and (24b) and represented in figure 3 show that the FPXR peak 
amplitude increases and that of PXR decreases when parameter s  decreases. The curves in figure 3 
are plotted for fixed values o f the observation angle, the length of path and the energy o f the radiating 
particle.

The ratio (25) also depends on observation angle 9 . radiating particle energy defined by Lorentz 
factor y  and parameter v (s). Using (21) we will find the expression for frequency co„ near which 
spectrum of FPXR is concentrated and write the ratio (25) for that frequency:

(27) 

this ratio will

\ +  Yn U )  / n U )  - £ 2 ( o 2 I \ y '
PXR '  FPXR ~ b  V  ' | X 0

In maximum of the parametric radiation angular density, when 6  =  -yj 

have the following view:

4 ^ / 4 ^  = 2 s 2(r - 2 /\z'0\ + l)2 / y U)2.

r ~ 2 +\Zo\

(28)

As the value o f parameter v  is always less then unity, it results from (28) that when

y 2 \z'o | « 1  than PXR yield will exceed the yield o f FPXR. In the case when y 2 \x'() | > 1 (or even

some less then unity) the ratio (28) will strongly depend on asymmetry parameter £ .
To consider the influence o f the reflection asymmetry on the ratio o f angular densities of these

radiations we will integrate the expression (23) and (24) over frequency function i]<s) (co):
/  \ 2 "

dN\s) 2pUr

dQ, 8 n  2 sin 2 0B

i= PXR, FPXR

r/
\ Z o \

1

Z  o r l z o l
1 jR<s)d f / s)(a)  (29)

The curves describing the angular density o f PXR and FPXR plotted by formulas (29) are 
presented in figure 4 and figure 5. It is evident from these figures, that under condition £ « 1  the 
angular density o f FPXR considerably exceeds the density o f PXR.



Figure 4. PXR and FPXR angular density 
under condition o f reflection asymmetry 
(parameters’ = 0.1).

Figure 5. The same as in Fig.4 for another 
reflection asymmetry ( s  = 0.8).

Conclusion
Based on two-wave approximation o f the dynamic scattering theory, forward parametric X-ray 

radiation (FPXR) of a relativistic electron is investigated in a single crystal plate in a Laue scattering 
geometry. Analytical expressions for the spectral-angular distribution of FPXR and transition radiation 
(TR) are derived in general case of asymmetric reflection. It is shown that under fixed Bragg angle 6B

and path length 2 b (s) o f relativistic electron in the crystal plate the ratio o f FPXR and PXR yields 
considerably depends on the angle between reflected atomic planes and inlet surface o f the plate 8 , i.e. 
on reflection asymmetry parameter s  =  sin(c) +  6 ,,) /  sin(c) — 0 B ) , at that in the case where the angle 

o f the electron incidence on the surface o f the crystal plate 8  — 6B increases (i.e. s  decreases) the 
spectral-angular density o f PXR decreases and that o f FPXR increases and can exceed the density of 
PXR. In the present work the ratio o f FPXR and PXR yields was investigated and it was shown that 
this ratio significantly depends on the reflection asymmetry, at that with decreasing asymmetry 
parameter s  the FPXR relative contribution increases for any observation angle. The results obtained 
can be used when preparing the experimental investigations o f FPXR.
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