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For a harmonic-oscillator gravitational-wave detector, we show that a quantum nondemolition
measurement of the square of the number operator may be made by coupling the detector to an os-
cillator readout via a quadratic interaction, as in optical four-wave mixing. Explicit evaluation of
the effect of a meter readout on the detector demonstrates the possibility of arbitrarily accurate in-
stantaneous measurements for sufficiently large coupling strength.

Recently a class of measurement schemes intended to
determine the effect of a gravitational wave on a large
mass have required such accuracy of resolution that the
detector must be described entirely within a quantum-
mechanical framework.! =3

In these schemes one wishes to make a sequence of mea-
surements on a single system the results of which must be
entirely predictable in the absence of the gravitational
wave. However, it is possible that if we were working at a
level where the quantum nature of the detector was mani-
fest, such a sequence of measurements would not generally
lead to a determinate sequence of results in the absence of
the gravitational wave. However, a quantum-mechanical
description of the measurement process does not preclude
such a determinate sequence if the measurement scheme is
chosen appropriately. Such measurement schemes have
come to be known as “quantum nondemolition” (QND)
measurements.

In a QND measurement scheme one must choose care-
fully the observable to be measured, the so-called QND
variable of the detector. Furthermore, the coupling of the
detector to any subsequent readout stage must be quite
specific; it must be “back-action evading.”

Caves® has given a precise prescription for determining
the QND variables and a back-action-evading readout-
meter coupling. Specifically, for an operator A(¢) to cor-
respond to a QND variable we require that

[A(1),4(t)]=0, (1)

which means that the uncertainties in 4 are isolated from
the uncertainties in variables it does not commute with.
For a measurement scheme to be back-action evading
we require that the QND observable be the only detector
observable to appear in the detector-meter interaction
Hamiltonian. This ensures that the QND observable
remains isolated from observables it does not commute
with. The back-action-evading criteria may be written as

[4,H,]=0, @)

where H| is the detector-meter interaction Hamiltonian.
When conditions (1) and (2) are met we can make a se-
quence of measurements of A, the results of which can be
predicted with certainty given an initial sufficiently pre-
cise measurement. Such a sequence constitutes a QND
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measurement of 4.

An analysis of a QND measurement process may be di-
vided into two stages. The first stage involves solving for
the time-dependent unitary evolution of the coupled
detector-meter system. During this stage correlations be-
tween the state of detector and meter build up. At some
point the free evolution is suspended and a readout of the
meter is made, whereupon the meter state is reduced. The
second stage of the analysis then involves a determination
of the nonunitary effect of meter-state reduction upon the
detector.

Quantum counting formed the basis of one of the earli-
est QND measurement proposals.> Unruh® pointed out
that this would require a quadratic coupling to the oscilla-
tor coordinate. Such a coupling would give rise to an in-
teraction Hamiltonian that commutes with the detector
number operator. Unruh* has suggested such a coupling
scheme using an LC circuit model. We have previously
considered linear-coupling schemes between harmonic os-
cillators® (see also Hillery and Scully”). In this paper we
consider a quadratic coupling scheme based on a
quantum-optical four-wave-mixing interaction. An
analysis of the nonunitary effect of the readout system for
this nonlinear coupling scheme is presented.

We consider two harmonic oscillators coupled via the
Hamiltonian

H=1%w,a"a+%0,b"b +#i¥'ata[be(t) +bTe*(1)], €)

where a and b obey boson commutation relations and
represent the detector and meter, respectively. Such a
Hamiltonian could represent two electromagnetic field
modes coupled by a third-order susceptibility as in a
four-wave-mixing process® with one mode in a highly pop-
ulated coherent excitation and treated classically. Alterna-
tively it may be viewed as representing two mechanical os-
cillators with a time-dependent coupling. We shall assume
that €(¢) has the form e(f)=ee ', that is, the classical
field is resonant with the w, mode.

The obvious choice for the detector QND variable is
aTa, which in fact is a constant of the motion, and thus,
clearly satisfies Eq. (1). Furthermore, we see that the in-
teraction Hamiltonian is back-action evading.

Solving the Heisenberg equations of motion in the in-
teraction picture we have
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Nyp()=(X12G, +iXtN,[b(0)—b(0)]
+b'(0)b(0) , 4)

Aasafa ,
(/;\HE(aTa )2,
X=X'e

If we assume the meter is initially in a number state
| ny ), perhaps resulting from a previous measurement of

Ny (1), we have
(No(0))=(Xt)X G, ) +ny(0) . (5)

This equation indicates that the most natural detector ob-
servable to attempt to measure is @a rather than ﬁa.
Clearly, éa is also a QND variable. From a measurement
of NA,,(t) at time ¢ with result n,(¢) we may infer a value g,
for @a given by

8a=[ny(t)—ny(0)]/(X2t)*. (6)

The possible error in this inferred value is given by Ag,,
where Ag, =An,(t)/(Xt)? and Anb(t)zvar(ﬁb(t)), where
var(ﬁ,,(t)) is the variance in ﬁb(t).

For the assumed initial meter state |n,(0)) we find

A~

2(G,)

W(nb+%) . (7)

(Ag,=var(G,)+

Equation (7) indicates that we cannot infer with certainty,
a value for @a by measurement of NA,,(t) even if the detec-
tor happens to be an eigenstate of @,, [i.e., var(@a)=0]
prior to the measurement. However, by ensuring that Xt is
sufficiently large the inference may be made with arbi-
trary certainty. This is the usual limit for arbitrarily accu-
rate instantaneous quantum measurements.

So far we have considered only the reversible unitary
evolution of the coupled detector-meter system. However,
if we are to be able to consider a sequence of measure-
ments we must now consider the nonunitary change of the
detector upon readout of the meter variable. In particular,
we wish to calculate the distribution of GA,, after a mea-
surement has taken place. Clearly this is identical to the
number distribution of the detector after a readout of the
meter.

If p(z) is the density operator of the coupled detector-
meter system, the density operator for the total system
after readout p(¢) is given by’

pOY=APg (ny ()P, (ny(1)) ®
b b
where ﬁﬁ (ny(2)) is a projector onto the one-dimensional
b
subspace  spanned by |np())  and !
=Tr[p(t)Pﬁb(n,,(t))].

The state of the detector after readout is then obtained
by tracing out over meter variables
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pp()=Trpy[p(1)] . 9)

The unitary time-evolution operator for the coupled sys-
tem in the interaction picture is

U(t,0)=exp{N,[£(0)bT—E*(1)b]} ,

where £(1)= —iXzt.

We assume the initial state of the system is given by
p(0)=|¥) |ny){ny | (¥ |, where ¥ refers to the state of
the detector and n,, refers to the initial state of the meter.

The initial number distribution of the detector is
P(ng)=|{n, |¢)|? while after readout it is given by
P(ng)={n, |ps(t) | ng). Using Eq. (10) we find

(10)

P(ng)="| (ny(t) | exp{ng[Et)b —E*(1)b1} | np ) | 2

XP(ng) . (11)
Using a result [Eq. (2.26)] of Ref. 1, Eq. (11) becomes
_ 1
P(n,,)=/%[L§(x)]2xke—xp(n,,) , (12)

where
M =ny(t), N=ny(0),
K=M—-N=g,(Xt)?, x=(nXt)?,

and L§(x) is the generalized Laguerre polynomial.

The function prefacing P(n,) in Eq. (12) in general has
multiple roots, indicating that P(n,) is multipeaked.
However, as (Xt)* becomes large these roots converge to
one root at x =K, that is, n, =1/g,. Then P(n,) is peaked
around n, =1/g, and becomes sharper as Xt is increased.

Providing we choose Xt sufficiently large the detector
after readout is in the eigenstate |1/g,) of @a, with
eigenvalue equal to the measured result. We showed pre-
viously [Eq. (7)] that an accurate determination of @a may
be made in the limit Xt— «. We now see that such an ar-
bitrarily accurate measurement of @a leaves the detector
in an eigenstate of éa.

In the simplest case we may prepare the state of the me-

ter so that n,(0)=0. P(n,) then has only one peak for all
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FIG. 1. Detector number distribution P(n,) after readout.
Parameters (a) n,(t)=4, n,(0)=0, xt=0.1, and 7, =20. (b)
ny(t)=25, n,(0)=0, Xt =0.25, and 7, =20.
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values of Xt and becomes more sharply peaked as Xt in-
creases.

_ This behavior is evident in Fig. 1 where we have plotted
P(n,) vs n, for two different values of Xt. For the values
of the parameters chosen /g, =20. We see that as Xt in-
creases the postreadout distribution becomes more narrow-
ly concentrated on n, =1/g,.

Since a'a is a constant of motion the detector once
placed in a near eigenstate of GA,, will remain there. Thus
a subsequent measurement of @,, will obtain a result g,,
equal to the previous measurement, if X7 is large enough,
providing no external force has acted. Any departure
from this result may be taken as evidence of the presence
of an external force.
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We have shown that a sequence of determinate results
for the measurement of the number operator for a har-
monic oscillator may be made by coupling the oscillator to
a second readout oscillator, via a four-wave-mixing in-
teraction. Such an interaction is quadratic in the detector
variables. Any departure from a determinate sequence of
results may be attributed to the presence of an external
classical driving force, for example, a gravitational wave
acting on the detector.'
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