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Linear amplifiers with phase-sensitive noise
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We present a model for a linear amplifier which adds phase-dependent noise to the input signal.
This is achieved by preparing the internal modes of the amplifier in a squeezed vacuum. Such a
scheme could be used to amplify a squeezed-signal quadrature with reduced added noise compared
with conventional schemes. The model discussed could be realized as nondegenerate parametric am-
plification.

Standard models' of linear amplifiers and attenuators
indicate that such devices must add noise to the signal.
The noise added arises from the coupling of the signal to
the internal degrees of freedom of the amplifier. The na-
ture of the added noise depends on the state of these inter-
nal modes. Friberg and Mandel discuss the case of a
linear amplifier formed by a group of partly excited two-
level atoms. A similar model is presented in Ref. 4. In
this case the noise added is essentially thermal in charac-
ter. In Refs. 1 and 3 a number of results pertaining to
amplifiers based on nonlinear optical processes are
presented. In these cases the ultimate source of added
noise arises from the vacuum fluctuations in the internal
amplifier modes. Clearly the added noise in these cases is
phase insensitive, that is an equal amount of noise is add-
ed to both quadrature phases of the signal. Recently,
broadband squeezed states have been produced. These
states have phase-sensitive noise with the noise in one
quadrature reduced below the vacuum level. It thus be-
comes of interest to ask how one may amplify a squeezed
state without adding additional noise to the squeezed
quadrature. The problem of the noise added by the inter-
nal modes may be approached in two different ways. One
may employ a back-action evading scheme as discussed,
for example, by Yurke. Experiments using such schemes
in optical fibers are presently being conducted by Leven-
son et al. ' The scheme that we are proposing is to
squeeze the internal modes of the amplifier so that less
noise is fed into the amplified quadrature of the signal.
We shall discuss a model for this amplification. process
below.

The most direct way to see how such an amplifier
would work is to regard it as performing a linear transfor-
mation of the input and internal modes. ' In the model
considered we choose

X out G 1/2X in+ ( G 1 )1/2 Y

out $ /2 in 1/2X g+~/2 ——G X g"+~/2 —(G —1) Yg+n/2

where G is the gain and
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is a quadrature phase for the signal mode with creation

A.
and annihilation operators a,a, while Y& represents the
corresponding quadrature of the multimode internal field
of the amplifier. In a nondegenerate parametric amplifi-

3cation process Y~ would represent the idler field. Using
Eqs. (1) and (2) one may establish that

Var(X g"') =GVar(X g)+(G —1)Var( Yg),

Var(X g+ /2) =GVar(X g+ /2)+(G —1)Var( Yg+~/2),

(4)

where "Var" indicates the variance. The maximum gain
consistent with any squeezing at the output is

1+Var( Yg)
G max

Var(X g")+Var( Yg )

If the internal modes are in the vacuum state, Var( Yg) = 1

and

Gmax = w1n
1+Var(Xg )

giving a maximum gain of 2 for a highly squeezed input.
This result is also found in (4). We suggest that the
"idler" field ( Yg) also be prepared in a squeezed state,
Var( Yg ) & 1, which allows the amplifier gain to exceed the
limit of 2.

A convenient measure of the noise added by the ampli-
fier is given by the signal-to-noise ratio at the output,

( X nut ) 2

Var(X g"')

(X ln) 2

1Var(X g") + 1 ——Var( Yg )
G

where we have used ( Yg) =0. The second term in the
denominator represents the noise added by the amplifier
to the X~ quadrature of the signal. This added noise may
be reduced by squeezing the idler field [i.e., reducing
Var( Yg) below the vacuum level of one].

The above model obeys a fundamental theorem for the
noise added by a linear amplifier. If we define the total
noise in the signal quadrature by
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N =Var(Xg)+Var(Xg+ ~2),

then

N,„,=G(N;„+A ),
where

1 1
A = 1 ——[Var( Yg)+Var( Yg+ &2)])2 1 ——

G G
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—+M(2a pa —a a p —pa a ),
2

(19)

This is equivalent to the fundamental theorem of Caves'
for the noise added by a linear amplifier.

It is instructive to compare this amplifier model to
another model which has received attention recently, the
back-action evading amplifier. The quadrature transfor-
mations defining this process are

(12)

aQ a 1 a'
(20)

where x=(x, ,x2)=(a,a*) and

r
2

where y is an amplification constant. This may be writ-
ten in terms of a Fokker-Planck equation for the Q func-
tion, Q(a) = (a

~ p ~
a), '

Xg+„g2——X'g"+ g2+GYg",

~in
out lnY g+„g2 ——Yg+~g2+ GX g" .

(13)

(14)

(21)

The signal quadrature Xg is not amplified and thus re-

ceives no added noise. In this case one monitors Yg+ &2

to obtain information about X g. We find that

N
D ~ N M (22)

For an initial squeezed signal with complex amplitude ao,
the Q function at time t has the form

(Yg n~

V(Yg+ gp)

(X ill)2

V(Xg")+ V( Yg"+ g~)G2

(15) Q(t) = I4vr deter(t)]I

X exp ——,'(x —p) cr(t) '(x —p) (23)

Comparing this with Eq. (8) we see that in this case a
squeezed internal quadrature Y'" is not necessary. One
need only make the gain large.

We now show how these results may be obtained from
an explicit model of an amplifier. Consider the interac-
tion Hamiltoniyn

where

p=(a er' a*e '
)

cr(t ) =e "'o.(0)e "'+cr ),
M*

(24)

(25)

(26)

H) ——ha I +haI (16)
and the initial covariance matrix is

This represents an amplifier model either of the type con-
sidered by Glauber" where I is a bath of inverted har-
monic oscillators, or a Raman amplifier considered by
Walls. ' Stenholm has recently used this model of an
amplifier to consider the limits to amplification of
squeezed states. In terms of our previous treatment, I
represents the internal boson modes of the amplifier. We
allow for the bath to be a squeezed vacuum with the
correlation functions'

—sinh(2r ) cosh(2r + 1 )
tT(0) =-

cosh(2r + 1 ) —sinh(2r )
(27)

Var(Xg) =Ge "+(G—1)(2N+2ReM*+ 1)

=Ge '+(G —1)Var( Yg), (28)

where r is the squeeze parameter.
The variance in the initially squeezed quadrature Xg is

( I t(t)I (t') ) =No(t t'), —

(r(t)r(t )) =MS(t —t'), (18)

where Yg is quadrature of the bath given by

Yg ——I e 'g+ I ~e+'g and 6 =e~' .

where
~

M
~

=N(N+ 1) for a minimum uncertainty
squeezed state. The master equation for the signal field
"a"may then be derived as in Collett and Gardiner

This reproduces the result of Eq. (4).
A linear attenuator may be described in a similar

manner. In this case the master equation takes the form
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Proceeding as before we find the variance of an initially
squeezed quadrature to be given by

Var(Xe) =e "e r'+(1 —e "')Var( Ye) .

For long times Var(Xe)~Var(Ye) which may be less
than that of the vacuum if the bath modes are squeezed.

This generalizes previous results for a squeezed state in-
teracting with a thermal state. "'

In this paper we have discussed a model in which one
quadrature phase of a signal may be amplified with a
reduction in the added noise. The scheme requires that
the noise added by the amplifier be phase sensitive. This
may be achieved by squeezing the internal modes of the
amplifier. See Note added in proof. One particular reali-
zation of this scheme could be achieved in a parametric
amplifier with a squeezed signal input and idler in a
squeezed vacuum. Now that squeezed light with a 50%
reduction in fluctuations has been generated in a
parametric oscillator this experiment becomes feasible.

Note added in proof The. advantage of squeezing the
idler modes in a parametric amplifier had previously been
noted by B. Yurke and J. S. Denker, Phys. Rev. A 29,
1419 (1984).
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