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Abstract—The steady motion of a spheroidal aerosol particle with inner nonuniformly distributed heat sources 
(sinks) that is placed in an external temperature gradient is theoretically studied in the Stokes approximation. 
The mean temperature of the particle surface is assumed to differ slightly from that of the gaseous environment. 
An analytic expression for the force and rate of thermophoresis are found by solving the gas-dynamic equations 
in view of the motion of the environment.

1. FORMULATION OF THE PROBLEM

To date, the thermophoresis o f  spherical aerosol par­
ticles has been studied in great detail [1-4]. Many par­
ticles occurring both in nature and in industrial plants 
are nonspherical, e.g., spheroidal. The problem o f  ther­
mophoresis o f  a spheroidal aerosol particle has been 
considered in [5-7]. However, the convective terms in 
the heat conduction equation were neglected. Praud- 
man and Pearson [8] for the hydrodynamic problem, as 
well as Acrivos and Taylor [9] for the heat problem, 
showed that, away from the sphere, the inertial and con­
vective terms became o f  the same order o f  magnitude as 
the molecular-transport terms. Therefore, normal 
expansion in a small parameter introduces an error, 
since it fails to rigorously satisfy the boundary condi­
tions at infinity and find a unique exact solution that is 
valid throughout the flow region even in a second 
approximation. From the above, it follows that the issue 
o f  how the motion o f  the medium affects the force and 
rate o f  thermophoresis o f  a spheroidal particle is o f  the­
oretical and practical interest.

Consider the steady motion o f  a spheroidal (oblate 
spheroid) solid aerosol particle with a velocity U in the 
negative direction o f  the 0z axis. The particle contains 
nonuniformly distributed heat sources with a density qv 
The gas is at rest at infinity, and a small temperature 
gradient V77 is provided by external sources. The tem­
perature drop in the neighborhood o f  the particle is 
assumed to be small; i.e., (Ts -  7'„)/7'„ <§ 1, where Ts is 
the mean temperature o f  the particle surface and /'„ is 
the gas temperature away from the particle. In this case, 
the thermal conductivity, as well as the dynamic and 
kinematic viscosity, can be considered as constants and 
the gas, as an incompressible medium. The particle size 
is considerably larger than the free paths o f  gas mixture 
molecules; therefore, corrections in Knudsen number 
will be neglected [3]. Hereafter, the subscripts e and i 
correspond to the environment and spheroid, respec­
tively.

We will describe the thermophoresis o f  a particle in 
the spheroidal coordinate system (e, r|, cp) with the ori­
gin at the center o f  the spheroid; i.e., the origin o f  the 
fixed coordinate system coincides with the instanta­
neous position o f  tihe center o f  the particle. The curvi­
linear coordinates e, r|, and cp are related to the Carte­
sian coordinates by the relations [10]

x  = csinhesinrjcoscp, y  = csinhesinr|sin(p,
( 1.1)

( 1.2)

z = ccoshecosr),

x  = ccoshesinrjcoscp, y  = ccoshesinrisincp, 

z = csinhecosr),

where c = J b  2 -  a 2 in the case o f  a prolate spheroid
I 2 2(a<  b, formula (1.1)) or c = *Ja - b  for an oblate 

spheroid (a > b, formula (1.2)) and a  and b are the 
spheroid semiaxes. The 0 z axis o f  the Cartesian coordi­
nate system coincides with the symmetry axis o f  the 
spheroid.

In view o f  the above assumptions, the distributions 
o f the velocity Ue, pressure P e, and temperatures Te and 
7] are described by the set o f  equations (1.3) and (1.4) 
with boundary conditions (1.5)—(1.7):

V P e = | ieAU e, divU e = 0, (1.3)

PeSe(U e • V ) r e = XeA T e, A r ; = - ? A ,  (1.4)

TT c U  coshe U£ = --------  c o s t ],
8

ct/s in h e  . „  Ve/ Y7 t7 \ (I-5)= — —----- sinri - K tc— ( V T e - e n),

T e = T„ Xe( V T e • eE) = X t V T i  • eE) for e = e0, 

U e — -  0, T e — T x + IV T \ csinhecosr)

-1\,  for e -
( 1.6)
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for 0. (1.7)

Here, ee and er) are the unit vectors o f  the spheroidal 
coordinate system; X is the thermal conductivity; U =

I 2 2|U|; H,. = a!cosh e -  sin r) is the Lamé coefficient; 
cpe is the specific heat; K tc is the thermal creep coeffi­
cient, which is calculated from the kinetic theory o f  
gases; and V is the Laplacian. Today, the most rigorous 
expression for the coefficient Ktc is known for a spheri­
cal particle [3]. The gas-kinetic co e ff ic ie n t^  = 1.152 
when the accommodation coefficients o f  tangential 
momentum, a.T. and energy, a E, are equal to unity [3,4]. 
In numerical calculations, we assume that the coeffi­
cient K tc for a spheroid differs insignificantly from that 
for a sphere [6].

Boundary conditions (1.5) on the particle surface 
(e = e0) allow for creep for the tangent component o f  
the mass velocity, temperature equality, and the conti­
nuity o f  heat fluxes on the particle surface. Away from
the particle (e --- ► oo ), boundary conditions (1.6) are
valid, and the finiteness o f  the physical quantities char­
acterizing the particle at e — ► 0 is taken into account 
in (1.7).

The resultant force acting on a spheroidal particle 
from the environment is given by the formula [11]

cost! -  Ŝ g a ETisinr|\iSl,(1.8)= Jf-^eCOSTl + CE

where dS  = c2 cosh e sinr|<ir|<i(p is a differential element 
o f  area, and c ee and c eri are the strain tensor compo­
nents in the spheroidal coordinate system.

2. TEMPERATURE DISTRIBUTION 
IN THE VICINITY OF THE PARTICLE, FORCE 

AND VELOCITY OF THERMOPHORESIS

We make Eqs. (1.3) and (1.4) and boundary condi­
tions (1.5)—(1.7) dimensionless by introducing the 
dimensionless velocity, temperature, and pressure: Ve = 
UJU, tk = TJT . a n d  p k = P J P ^  (k  = e, i). Here, the 
spheroid major semiaxis is taken as the unit length; U. 
as the unit velocity; = \xJJIa. as the unit pressure; 
and as the unit temperature (U  ~ |ic|V7'|/(pc7'„)).

Expressions (1.3)—(1.7) have the single controllable 
small parameter q = a|V7'|/7'„ <§ 1. Therefore, we will 
look for a solution to the boundary-value problem in the 
form o f  expansion in powers o f  q:

' ^ V g 1"1 +  . . . ,  t  =  / 0) +  ^ (1) +  . . . ,

ve =  +  +

v„ = v i 0)-

We will restrict our consideration to the first-order 
terms in q when calculating the force acting on the par­
ticle and the velocity o f  its thermophoretic motion in 
the given external temperature gradient field. In order

to find these quantities, one has to know the distribu­
tions o f  the velocity, pressure, and temperature both 
outside and inside the spheroid. Substituting (2.1) into 
(1.4), leaving terms and solving the sets o f  equa­
tions found by the method o f  separation o f  variables, 
we will finally find in the zero approximation (q = 0)

t f \ X )  = 1 + yA0arccotA (A, = sinhe), (2.2)

4 0)(A) = D  + ^ y A 0arccotA 
A;

|  arccot Xfcfk -  arccotÀ J  fcfk.
(2.3)

Here, X0 = sinhe0 , J  = ts -  1 is the dimensionless 
parameter, ts = TJT^,  and Ts is the mean temperature o f  
the spheroid surface given by

T
—  = 1 + „ 

4nX,

Xf
D  = 1 + [ 1 -  ^  ]yà0 arccot A0, (2.4)

+i

/  = ~ 2 f - f ~  J 0 ?  + %2)d x ■> x cosr).

In (2.4), the integral is taken over the entire particle 
volume. In the first approximation (~^),

t{ç \ X ,  x)  = cosr|<{ —  + rc(À arccotÀ - 1) 
[ a
\cX  

n —

00 A 2( arccotX -  ^arccot2 (2.5)

-j-( arccotX -  X arccot2X)

t[V)(X , x )  = cosrJ.BcA + — — A. arccot A.)
I 471C J

x (2-6)

-  (A arccotA- 1 ) f ldX + (AarccotA - 1 ) ^ X f ldX I.
X0 X0

Here, co = PryXJ(ac)  and Pr is the Prandtl number. The 
constants o f  integration^! and^2 appear in expressions 
for the components o f  the mass velocity and pressure. 
These expressions are found by solving Stokes equa­
tions (1.3) in the oblate coordinate system and have the
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form [10]

C 4(e,ii) =
U

c c o s h e H .
cosr)

(2.7)

x  { X A 2 + [À -  (1 + A ^arccotA ]^ + c2( 1 + À2)} ,

U \A
^ (er i) = ——  sinr| + (1 _ AarccotA)^

P e(£,T\) = P ^  + c ^ - x ( k 2 + x 2) A 2. 
HZ

■ c \ \
(2 .8)

(2.9)

The constants T  and B  enter into expressions (2.5) 
and (2.6) for the temperature fields inside and outside 
the particle from the corresponding boundary condi­
tions on the spheroid surface. Since an expression for 
the coefficient T  will be o f  interest to us, we write it in 
explicit form:

1 - 8
A a  47tc3Air ooAA0(l+ A q )

j« , z d V

1 + An

An

■ Aq ^0
arccot An

1 -  Ô 2̂  
—~— arccot A0

2Ar

é l
2 1 + An

(1 -  ô) arccot A0
(2 .10)

2 -  j -  ] arccot A0
1 + A,

A = ( 1 -  ô) arccotA0 + 8-
An

1 ■A2
8 - Ï .

f : = 4 M a »

x I -
3a(A0 arccot A0 -  1) 

4 n c3AP7700An
J?,.z d V

(2 .11)

The coefficient A 2 is found from boundary condi­
tions (1.5) in view o f  expressions (2.7), (2.8), and 
(2 .10):

A 2 = -
2c

- 2 K ,
A)S 2v ec

(3[A0 + (1 -  A0) arccot A0]

A0 -  ( 1 + Aq ) arccot A0 | V T\

U \  + Aq(3[A0 + (1 -  Ao)arccotA0]

Pr

where

1 + A0. 1 -  A0 arccot A0( 2 -  A0 arccot A0)
A0y

A0 -  ( 1 + Aq) arccotA0

n , 1 f Aq Pr § A0- ( l  + A 0)arccotA0
p = l - 2 A tc—Y --------- -------------------------------

s A 1 + A0A0 + ( 1 -  A0) arccotA0

x 1 -  A, -  arccot A0 j arccot A0

A0 -  (2 -  A0arccotA0)A0arccotA0 

A0 -  ( 1 + Aq) arccotA0

In view o f  the explicit form o f  the coefficient A 2, we 
find a general expression for the force acting on a sphe­
roidal particle. This force is the sum o f  the viscous 
force F„ and the force I ,u >

F  = F^ + F O)

where

(3[A0 + ( 1 -  A0)arccotA0]

c<i) o s v  Ve A0 -  ( 1 + Aq)arccotA0 F  = -8 7 t|iecA:tc------------------------------------

(2 .12)

(2.13)

x

Hereafter, the superscript 5 denotes the values o f  
physical quantities at the mean temperature Ts o f  the 
spheroid surface, which is given by formula (2.4).

Substituting (2.7)-(2.9) into (1.8) and integrating, 
we arrive at

Pr-

jVTl 

1 +

1 -

h  (3[A0(1 -  Aq) arccotA0] ( l  + Aq)A 

3a(A0arccotA0 -  1)- J  qtz d V

■a;
A0y

4 nc  Ae^Aoe u y

1 -  A0 arccot A0( 2 -  A0 arccot A0) 

A0 -  ( 1 + Aq) arccotA0

(2.14)

In the general case, the force I ,u> is the sum o f  three 
forces: the thermophoretic force, the force proportional 
to the dipole moment o f  the density o f  heat sources 
nonuniformly distributed over the particle volume, and 
the third term due to the motion o f  the medium (i.e., the 
force component taking into account the convective 
terms in the heat conduction equation).

Equating the resultant force /■' to zero, we arrive at a 
general expression for the drift (thermophoretic) veloc­
ity o f  a solid oblate spheroidal particle in the external 
temperature gradient field:

U* = - a K ‘ T *
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X ■
1 -  (A0 + l/A 0)arccotA0

V i + a , (1 -  8) arccotA0 + 8
An

(2.15)

x 1 -
3 a

4 n c  A„7\,
arccotA0- z d V

Pr
1 + A0 1 -  A0 arccot A0 (2 -  A0 arccot A0)

A0y
A0 -  (1 + Aq) arccotA0

|V71

In order to find the rate o f  thermophoresis for a pro­
late spheroid, one has to substitute /A for A and ic for c 
(i is the imaginary unit) in (2.15).

Thus, formulas (2.12) and (2.15) have the most gen­
eral form and make it possible to estimate the resultant 
force acting on a solid spheroidal aerosol particle and 
its drift velocity in the external temperature gradient 
field for the case when heat sources (sinks) are nonuni - 
formly distributed inside the particle. In this approach, 
the motion o f  the environment is taken into account for 
small temperature differences in the vicinity o f  the par­
ticle.

3. RESULTS AND DISCUSSION

If one does not take into account the motion o f  the 
environment and internal heat sources, (2.15) is 
reduced to an expression for the purely thermophoretic 
velocity o f  a spheroidal particle:

&th = ^ tcv e8 / ^

Ab) =  _ b ________
J th a ,-------

1 -  (A0 + 1/A0)arccotA0

(1 -  8) arccot A0 + 8-
An

1 + Aq A,

(3.1)

which coincides with formula (9) in [5].
In the case o f  a sphere, (2.15) turns into an expres­

sion for the thermophoretic velocity o f  a solid spherical 
particle o f radius R  that includes the flow o f  the envi­
ronment and internal heat sources:

U ^ \ a = b = R ) =  Ktcv l & f sph) IV T\
T ,

(3.2)

where

Disregarding the flow o f the environment and inter­
nal heat sources yields the conventional formula for the 
thermophoretic velocity o f  a large spherical particle 
[1,2]

Uth(a = b = R )  = (3.3)
te

In order to estimate how the motion o f  the environ­
ment affects the thermophoretic velocity o f  a spheroi­
dal particle, one has to specify the nature o f  heat 
sources nonuniformly distributed over its volume. As 
an example, let us consider the simplest case when the 
particle absorbs radiation as a black body. In this case, 
radiation is absorbed in a thin layer o f  depth 8e <  e0 
that is adjacent to the heated particle surface. The den­
sity o f  heat sources inside the layer o f  depth 8e is equal 
to [12, 13]

7i(£> Tl) =

coshecosr) T
2 2 c*c(cosh  e -  sin r |)8e  

e0 -  8e < e < e0 (3.4)

where 70 is the intensity o f  an incident radiation.

The integrals J (// d V  and | (//, zd V  appear in the

expression for the thermophoretic velocity. Substitut­
ing (3.4) into these integrals in view o f the fact that 
8e <  e0 and performing integration, we find

j q . d V  = 7t/0c2A ofl + —2 
 ̂ An

jq iZ d V  = ~ ^ n I 0c3X l (  1 + \  |.

(3.5)

a;

In view o f  (3.5), expression (2.15) takes the form

U l  = K ty eS f ? J ^ ,  (3.6)

where

_  b 1 -  (A0 + l/A 0)arccotA0
J  t h  ~  .

Vl + Aq t , (1 -  8) arccot A0 + 8
An 1

1 + An V

To =
1

4rci?AX
■jqidV, 1 +

Aq a 
2A

I 0{  1 + A l[A 0 arccot A0 -  1 (3 -7)
a ;

y O p h )  _  _

4 (1  + 28)
1 + ------7------

4 k R 2K T ,  I2
To • + ^ 7 1 + ^ o

1 -  A0 arccot A0( 2 -  A0 arccot A0) 

A0 -  (1 + Aq ) arccot A0
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Ыа = 0.1

/ 0 х 102, W/m2

0.5 2 5 10

/ X) / 2) / X) / 2) / X) / 2) / X) / 2)

15 0.52 0.32 2.08 1.30 5.20 3.29 10.40 6.71
20 0.69 0.43 2.77 1.74 6.93 4.42 13.87 9.08
25 0.87 0.54 3.47 2.18 8.67 5.56 17.33 11.51

Table 2

Ыа = 0.3

70 x 102, W/m2

0.5 2 5 10

/ X) /2) / X) /2) / X) /2) / X) /2)

15 0.39 0.20 1.59 0.81 3.97 2.04 7.95 4.16
20 0.59 0.27 2.12 1.08 5.30 2.74 10.60 5.63
25 0.66 0.33 2.65 1.35 6.62 3.44 13.25 7.13

Table 3

Ыа = 0.5

I0 x 102, W/m2

0.5 2 5 10

/ X) /2) / X) /2) / X) /2) / X) /2)

15 0.32 0.12 1.26 0.48 3.15 1.20 6.31 2.45
20 0.42 0.16 1.68 0.64 4.21 1.61 8.41 3.32
25 0.53 0.20 2.10 0.80 5.26 2.03 10.51 4.20

In the case o f  a sphere, (3.6) is recast as

7-7-Oph) _  ТГ A|SX /(Sph)|V71
U t h  th  y  ’

where

y ( s p h )

4 ( 1 + 2 0 )
1 -

Rio
6АРГ 1 + 5 '

(3.8)

(3.9)

The mean temperature o f  the spheroid surface is 
related to the incident radiation intensity I 0 as

С An
t = t „  + - ^ /n  i + 4  .

4A,

1

a;
(3.10)

In order to illustrate the contributions o f  the form- 
factor (ratio o f  the spheroid semiaxes), flow o f  the envi­
ronment, and internal heat release (nonuniform distri­
bution o f  heat sources over the particle volume) to the

thermophoretic velocity (3.6), Tables 1-4 list the 
numerical estimations for particles o f  borated graphite
(A- = 55 W/(m K)) suspended in air at /'„ = 280 К and 
P e = 10s Pa.

The numerical analysis showed that, at a given ratio 
between the semiaxes, the relative contribution o f  the 
other factors increases with increasing incident radia­
tion intensity I0. This effect depends significantly on 
the equatorial radius o f  the spheroid (a). For instance, 
in Table 1 (a = 15 |am),/W  = 0.52 a t /0 = 0.5 x  102 W/m2
and/W  = 10.40 at I 0 = 10 x  102 W/m2 (/W = (|/ *  -

f th  |/ f th  ) x  100%). Such behavior o f  the fu n ction /(1) 
is due to the fact that, as follows from (3.10), (3.7), and 
the numerical estimations, the major contribution is 
from the terms proportional to the dipole moment o f  the 
density o f heat sources nonuniformly distributed over 
the particle volume. In (3.7), this is the term
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Table 4

b!a = 0.8

I0 x 102, W/m2

0.5 2 5 10

/ X) / 2) / X) / 2) / X) / 2) / X) / 2)

15 0.24 0.04 0.94 0.15 2.35 0.38 4.69 0.77
20 0.31 0.05 1.25 0.20 3.13 0.51 6.26 1.04
25 0.39 0.06 1.56 0.25 3.91 0.64 7.82 1.32

A0arccotA0 -  1. The dimensionless term related to the 
motion o f  the environment (see the heat conduction 
equation) is proportional to the Prandtl number. In a 
gas, this number is on the order o f  unity; therefore, the 
contribution o f  this term differs from that o f  the first 
one by one order o f  magnitude. This fact may be used 
to separate particles by size, finely purify gases from 
aerosol particles, estimate translucent zones appearing 
in clouds and fogs when they are probed by laser radi­
ation, etc. The influence o f  the factors mentioned above 
will increase with increasing radiation intensity. How­
ever, the mean temperature o f the spheroid surface will 
also increase (see (3.10)). In this case, we cannot con­
sider the coefficients o f  molecular transport to be con­
stant. Therefore, expressions (2.15) and (3.6) must 
involve the mean values o f the physical quantities at a 
given temperature o f the particle surface, which is 
determined by (2.4) and (3.10), to avoid large errors. It 
is also o f  interest to compare the thermophoretic veloc­
ity with that for a spherical particle with a radius equal 
to the equatorial radius o f  a spheroid, i.e., with formula
(3.8). The numerical analysis showed that in this case, 
too, the relative error increases with increasing incident 
radiation intensity and equatorial radius. For example, 
in Table 1 (a = 15 |im ) ,/ (2) = 0.32 at70 = 0.5 X 102 W /m2

and / 2> = 6.71 at I 0 = 10 x  102 W/m2 ( f n  = (| _

x  100%). However, this increase is approxi­
mately 1.5 times smaller than that in the former case.
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